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a b s t r a c t

Filamentary structures (one-dimensional manifolds) are ubiquitous in astronomical data sets. Be it in
particle simulations or observations, filaments are always tracers of a perturbation in the equilibrium
of the studied system and hold essential information on its history and future evolution. However, the
recovery of such structures is often complicated by the presence of a large amount of background and
transverse noise in the observation space. While the former is generally considered detrimental to the
analysis, the latter can be attributed to measurement errors and it can hold essential information about
the structure. To further complicate the scenario, one-dimensional manifolds (filaments) are generally
non-linear and their geometry difficult to extract and model. Thus, in order to study hidden manifolds
within the dataset, particular care has to be devoted to background noise removal and transverse
noise modeling, while still maintaining accuracy in the recovery of their geometrical structure. We
propose 1-DREAM: a toolbox composed of five main Machine Learning methodologies whose aim is to
facilitate manifold extraction in such cases. Each methodology has been designed to address particular
issues when dealing with complicated low-dimensional structures convoluted with noise and it has
been extensively tested in previously published works. However, for the first time, in this work all
methodologies are presented in detail, joint within a cohesive framework and demonstrated for three
particularly interesting astronomical cases: a simulated jellyfish galaxy, a filament extracted from a
simulated cosmic web and the stellar stream of Omega-Centauri as observed with the GAIA DR2. Two
newly developed visualization techniques are also proposed, that take full advantage of the results
obtained with 1-DREAM. This contribution presents the toolbox in all its details and the code is made
publicly available to benefit the community. The controlled experiments on a purposefully built data
set prove the accuracy of the pipeline in recovering the real underlying structures.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Physical structures with filament-like shapes are found in a
ide variety of astrophysical domains. In this work we focus on
xamples of filamentary (stream-like) structures, such as jellyfish
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galaxy tails, filaments of the cosmic web, and the tidal tails of the
globular cluster Omega-Centauri (ω−Cen). Since these systems
have a high level of complexity, the processes by which they
form and evolve are yet to be fully explored and understood,
hence the study of filamentary astronomical structures requires
powerful computational methods for their detection, modeling
and analysis.

Each of these examples shows clear morphological significance
to this work in that they all have a stream-like structure, but
our interest in these examples is also inspired from their astro-
physical importance. The interest in jellyfish galaxies stems from
their importance in studying the evolution of galaxies in dense
environments and in determining the details of environmental
influences on galaxies (Boselli and Gavazzi, 2006; Grossi, 2018).
In more details, when a dwarf galaxy enters the environment of
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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galaxy cluster, its interstellar matter (gas and dust) is often
lown out of its body producing a long tail of the constituting
atter. Other related studies have been dedicated to examining

he effect of ram pressure on the structure and dynamics of these
alaxies (Mori and Burkert, 2000; Mayer et al., 2006; Roediger
nd Brüggen, 2008; Tonnesen and Bryan, 2012; Roediger et al.,
015; Steinhauser et al., 2016; Yun et al., 2019; Steyrleithner
t al., 2020). The second example is that of the cosmic web
hat is a network of structures that naturally form as a result
f gravitational instability within cosmological volumes, and that
ave provided great insight into gravitational structure formation,
osmological models, as well as the nature of dark matter and
ark energy (Park and Lee, 2007; Platen et al., 2008; Lee and Park,
009; Lavaux and Wandelt, 2010; Bos et al., 2012; Sutter et al.,
015; Pisani et al., 2015). In addition, studies of the cosmic web
ave given important quantitative measures which improved our
nderstanding of the formation and evolution of galaxies (Hahn
t al., 2007a; Hahn, 2009; Cautun et al., 2014). As a final example,
e study a stellar stream located in the halo of the Milky Way.
tellar streams are of great importance as they are imprints of
ast merger events in the Milky Way’s formation history (John-
ton et al., 1996; Majewski, 1999; McConnachie et al., 2009;
artínez-Delgado et al., 2010; Vera-Casanova et al., 2021). Since

he dynamics of these merger events are largely dictated by
he galaxy’s gravitational potential, tidal debris including stellar
treams belonging to globular clusters have also been used as
robes of the galactic potential as they move through it (Kupper
t al., 2015; Pearson et al., 2015; Thomas et al., 2017, 2018;
onaca and Hogg, 2018; Malhan and Ibata, 2019).
Extracting topological information from point clouds of dis-

rete data forming the above structures is a difficult task, whether
hese data sets are provided by N-body simulations or by ob-
ervational surveys. For example, algorithms studying the cosmic
eb should keep in mind its anisotropic, hierarchical nature
hich forms different morphological structures spanning over six
rders of magnitude in density (Cautun et al., 2014). Similarly
or the other studied objects, structure detection and learning
lgorithms have to face problems including the very large num-
ers of high-dimensional data points as well as the handling
f noise or outliers that affect the results of manifold learning
nd dimensionality reduction. That being said, several meth-
ds and algorithms have been developed aiming to extract as-
rophysical information provided by the structures previously
entioned. Starting with jellyfish galaxies, morphometry, or the
uantitative study of morphological properties, has been used
o study ram pressure stripping in McPartland et al. (2016) and
s a probe of the evolution of these galaxies in Roman-Oliveira
t al. (2021). A myriad of algorithms has also been developed for
he tracing and studying of the various components of the cos-
ic web (e.g. Multiscale Morphology Filter [MMF], Aragón-Calvo
t al. (2007); ORIGAMI, Falck et al. (2012); NEXUS+, Cautun et al.
2013); Minimum Spanning Tree [MST], Alpaslan et al. (2014);
isous, Tempel et al. (2016)). We refer to Libeskind et al. (2018)
or a comparison between many of these algorithms. As for stellar
treams, several techniques have been used for their detection
nd analysis, exemplified by : the Matched Filter (MF; Rockosi
t al. (2002), Balbinot et al. (2011)), detecting co-moving groups
f stars (Williams et al., 2011; Arifyanto and Fuchs, 2006; Duf-
au et al., 2006), the Streamfinder algorithm (Malhan and Ibata,
018), and several others. Despite the large number of techniques
sed to study these systems, the need to keep up with the grow-
ng size of astronomical data sets and with the many complexities
f astrophysical systems is ever-present. Therefore, the devel-
pment of new Machine Learning algorithms with astrophysi-
al applications creates great potential towards handling larger
mounts of data as is needed for the exploration of the galac-
ic halo and stellar streams belonging to it, as well as towards
2

handling all the challenging properties of complex structures as
required for the analysis of jellyfish tails and the cosmic web.

When studying noisy low-dimensional manifolds, it is often
necessary to distinguish between two kinds of noise. In the case
of point-clouds, these can be defined as background and trans-
verse noise, however the actual distinction between the two is
potentially difficult. While background noise is usually referred
to as a contaminant to the data, corrupting information hidden
within it, transverse noise may hold useful information about the
sub-structures. Due to the local overlap between these two types
of noise in the vicinity of the sub-structures, discerning between
the two contributions can be a difficult task. Nevertheless, since
most Manifold Learning techniques are not designed to deal with
such ‘‘corruption’’ of the data, it is generally good practice to ad-
dress this problem before their application. A number of filtering
and denoising techniques have been devised that aim at reducing
the noise over a point-cloud (see Han et al., 2017 for an extensive
review). However, these seem to work efficiently only in mild
cases, where the density of background noise is far lower than the
one of the structure. On the other hand, the ant system (Dorigo
et al., 1999) and ant-colony system (Gambardella and Dorigo,
1996) have been applied efficiently to denoising in presence
of a moderate amount of background noise (Chu et al., 2004).
Nevertheless, due to the adopted distance metric (Euclidean) and
the computational complexity, these methods can be ineffective
on large data sets presenting noisy, non-linear manifolds.

When manifolds are expected within a noisy point-cloud,
more direct methodologies are usually applied in order to let
their mean curve/surface emerge from the noise. In this class of
methodologies, there is generally no distinction between back-
ground and transverse noise. Local smoothing has been success-
fully applied to noisy manifolds with a mild level of noise, using
different approaches. In Park et al. (2004) a weighted version
of Principal Component Analysis (PCA) is applied to local neigh-
borhoods, estimated in terms of a point’s k−nearest neighbors.
Then, points in the neighborhood are projected onto the hyper-
plane defined by the weighted PCA. A different approach is
presented in Chen et al. (2006), where a linear error-in-variables
(EIV) is estimated for each local patch and the smoothed coor-
dinates of noise-less points are derived. Global coordinates are
then recomputed for each point, merging partially overlapping
neighborhoods.

A different class of methods aims at projecting neighboring
points to the locally estimated tangent space to noisy mani-
folds. The tangent space estimation can be either performed
on the high-dimensional sample (Hao et al., 2017) or the low-
dimensional projection (e.g. Yao and Xia, 2019). Manifold Blurring
Mean Shift (MBMS, Wang and Carreira-Perpiñán, 2010) adopts
this formalism, by gradually moving neighboring points along
the orthogonal direction to the manifold. Again, the local tangent
space estimation is performed via PCA, in small neighborhoods
centered on each point. A slightly different approach is pre-
sented in Lyu et al. (2019), where Non-linear Robust PCA is
introduced. Here, local patches are decomposed into a low-rank
and a sparse component that account for the tangent space and
noise information of the patch, respectively.

Another strand of work uses a diffusion formulation over the
noisy cloud to enhance the manifold’s spine. In particular, Hein
and Maier (2007) first construct an asymmetric k−nearest neigh-
borhood graph of the point cloud and derive its graph Laplacian.
This serves as a generator for the diffusion process, which is
solved in terms of a differential equation. A similar approach but
with a physically inspired formulation is presented in Wu et al.
(2018). In contrast to the previous methodology, this method
does not use a graph to represent the data and gradually moves

points towards high density regions in the data.
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As previously mentioned, these methodologies are used as a
re-processing step when the data is corrupted by noise. Fur-
her steps are necessary to recover explicit formulations of the
idden manifolds and their low-dimensional representations.
his branch of work falls within the scope of Manifold Learning
nd has been addressed in a variety of different methodolo-
ies. The stepping stones to this field are Locally Linear Em-
edding (LLE, Roweis and Saul, 2000) and Complete isometric
eature mapping (Isomap, Tenenbaum et al., 2000). The method-
logies have been further refined and new algorithms defined
uch as Laplacian- and Hessian-eigenmaps (Belkin and Niyogi,
001; Donoho and Grimes, 2003), Local Tangent Space Alignment
LTSA, Huo et al., 2008) and Riemannian Manifold Learning (Lin
nd Zha, 2008). However, their performance is often hampered
y the presence of noise. Aided by a precise formulation of
ransverse noise, Generative Topographic Mapping (GTM, Bishop
t al., 1998b) solves this issue by modeling the manifold as a
aussian mixture, having centers constrained to lie on the image
f a low-dimensional unit interval (of the same dimension as the
anifold) smoothly embedded in the ambient space.
To further complicate the scenario, information may be lying

n multiple noisy manifolds in real-world data sets. Generaliza-
ions of existing methods to this case were proposed accord-
ngly, giving rise to algorithms such as Multi Manifold Isomap
M-Isomap Fan et al., 2016), Multi-Manifold LLE (MM-LLE
Hettiarachchi and Peters, 2015) and Hierarchical-GTM (Tino and
abney, 2002). However, carrying the same assumptions and
esign of their predecessors, they suffer from the same problems
e.g. pre-defined manifold’s intrinsic dimension, transverse noise,
opologically difficult manifolds). Other techniques gave new per-
pectives on the problem; examples are Sparse Manifold Clustering
nd Embedding (SMCE Elhamifar and Vidal, 2011) and Manifold
eflation (Ting and Jordan, 2020), where manifolds (and their
ow-dimensional representations) are recovered by means of a
raph representation of data. More recently, new mathematical
ools have been developed and widely used in multiple fields, al-
hough mainly constrained to work in three dimensions (3D point
louds for surface recovery). Computational Geometry (Boissonnat
t al., 2018) represents manifolds as Simplicial Complexes and
efines these representations via triangulations and filtrations.
gain though, transverse noise may heavily affect the results and
ampers their accuracy.
The general assumption for these methodologies is that the

ntrinsic dimensionality of the manifolds is known a priori. This
s not often the case, so much so that particular effort has
een devoted into developing methods able to estimate it (semi-
automatically. In Haro et al. (2000), the Translated Poisson Mix-
ure Model (TPMM) is used to estimate the dimensionality of
ata in local neighborhoods and partition it accordingly, while
idalgo (Allegra et al., 2020) is a Bayesian extension of TWO-
N (Facco et al., 2017), where the dimensionality information
s recovered for each point based on the distance to its closest
eighbor. Other methods consist in evaluating the local covari-
nce matrix within a pre-specified small volume centered on each
ata point and analyzing its eigen-decomposition (e.g. Mordohai
nd Medioni, 2005 and Mordohai and Medioni, 2010). Despite
ll effort spent in recovering low-dimensional noisy manifolds in
noisy environment, to the best of our knowledge, a complete,
oherent formulation that is also flexible and straight-forward to
se is still missing in the current scenario. In order to address
ll the issues presented so far in the context of multiple noisy
anifolds learning in a noisy environment, we propose a cohesive

oolbox for denoising and 1D manifold (filament) extraction. The
oolbox consists of five methodologies that have been exhaus-
ively tested in separate works, however this is the first time that

hey all come to fruition in a single environment.

3

Table 1
Information about adopted data sets for experimental sections.
Data set Size Attributes

Synthetic 4 × 104 t, h, T1, T2
Jellyfish 9 × 104 t, ρ, T ,[Fe/H],m
Cosmic Web ∼1 × 106 t, ν
ωCen ∼2 × 104 ℓ, b

The aim of this work is to present all methodologies in de-
tail, highlighting their functionalities and main objectives and
demonstrating (with the user in mind) how the various tools
can be combined in different ways for a variety of astronomical
applications, using both observed and simulated data. We show
how their application on astronomical data sets may drive sci-
entific inference on the underlying physical processes and main
properties of the studied objects. The complete implementation
of all methods can be found at the following online repository:
https://git.lwp.rug.nl/cs.projects/1DREAM.

1.1. Organization of the paper

In Section 2 we introduce the synthetic data set used for
the controlled experiments in the following section. In order to
estimate the efficiency of the methodologies, we carefully con-
struct a mock data set to test the success of our tool-kit in fitting
and recovering the known properties of the mock. In particular,
we create a point-cloud presenting two elongated non-linear
filaments. Two variables exhibit well-defined behaviors along
and across the two filaments. In Section 3, we present the five
different algorithms introduced in this work. We describe each
algorithm in detail and apply it to the mock data set. In Section 4
we outline two powerful visualization techniques that take full
advantage of the methodologies described in Section 3. Finally,
the whole methodology, aided by the visualization techniques,
is applied to three different astronomically relevant data sets,
namely:

1. A temporal snapshot of a simulated dwarf galaxy falling
into the gravitational potential of a Fornax-Cluster-like
galaxy cluster. The simulation is performed using a mod-
ification to GADGET-2 (Springel, 2005), an N-body/SPH
(Smoothed-Particle Hydrodynamics) code, where a moving
box follows closely the evolution of the simulated object.
Our goal in this case is to study the properties of other
simulated quantities, such as temperature and metallicity,
to assess if the recovered streams are loci of Star Formation
[∼9 × 104 points].

2. A temporal snapshot of a large scale formation, Dark Matter
only, N−body simulation performed with the GADGET-
3, where we extract filaments of the cosmic web and
study the dynamics of the belonging particles. [∼1.99 ×

106 points]
3. Stellar stream filaments from the GAIA data set. We focus

on one particular filament as the remnant of a previous
interaction between our Galaxy and an external object
[∼2 × 104 points].

summary of properties of the individual data sets can be found
n Table 1, where the number of particles (Size) and attributes per
article are shown. We describe these data sets and their analysis
n detail in Section 5 and draw our conclusions in Section 6.

. Synthetic data set for controlled experiment

While the methods can be applied without prior knowledge
n the data set at hand, it is essential that the results coming

https://git.lwp.rug.nl/cs.projects/1DREAM
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rom a carefully constructed case mirror the true nature of the
nderlying problem. This serves as a synthetic representation for
hich the ground truth is known to demonstrate our toolbox. The
ata set described here and used throughout Section 3 is designed
o morphologically resemble a jellyfish galaxy by defining three
ajor noisy manifolds Mk with k = 1, 2, 3. M1 is a Gaussian
istribution having mean µ1 = (0, 0, 0) and covariance matrix

1 =

(4 0 0
0 8 0
0 0 26

)
.

Thus manifold M1 is a thick, roughly one-dimensional, elon-
gated structure. The thickness of the manifold is large enough to
connect manifolds M2 and M3. In this example, this manifold
represents the ‘‘head’’ of the jellyfish galaxy. Manifolds M2 and

3 represent two streams departing from the ‘‘head’’ of the jel-
yfish, simulating the effect of a dynamical process disrupting the
ain body of the galaxy. They serve as two distinct parts of the

‘tail’’ and they are inherently one-dimensional: their underlying
rue structure is the unit interval [−1, 1] embedded in R3 through
apping functions f2 : [−1, 1] → R3 and f3 : [−1, 1] → R3. The
apping functions take the form:

2(ϑ) =

⎡⎣ 10ϑ + 8
−3 − (2ϑ + 2)2
5 sin(πϑ) + 5

⎤⎦ , f3(ϑ) =

⎡⎣ −10ϑ − 12
7 − 4 sin2 ( πϑ

2

)
5 cos(πϑ) − 3

⎤⎦ (1)

where ϑ ∈ [−1, 1]. The underlying one-dimensional structure
of the manifolds is then convolved with noise in order to obtain
a morphological analogy with the structures generally found in
astronomical simulations and observations. Both manifolds have
an overlapping double noise structure: the thin and dense, inner
region (core) and the thick, sparser layer (sparse), both defined
as Gaussian mixtures. The dense core of manifold M2 is defined
as a flat Gaussian mixture whose Nc

2 = 43 centers lie on Lc2 =

2([−1, 1]) (each distancing from the adjacent by 0.5). The shared
ovariance matrix for the core Gaussian mixture is the identity
atrix Σ c

2 = I and the component weights are π c
2 = 1/Nc

2 .
he sparse Gaussian mixture has N s

2 = 22 centers lying on the
egment Ls2 = Lc2 (the distance between adjacent centers is 1). The
hared covariance matrix is Σ s

2 = 9I and components weights are
s
2 = 1/N s

2.
Manifold M3 has the same overall structure as manifold M2.

he core structure has Nc
3 = 21 centers, regularly sampling

egment Lc3 = f3([−1, 1]), while the sparse structure has N s
3 = 11

centers on Ls3 = Lc3. Consequently, the mixture components for
core and sparse structures are π c

3 = 1/Nc
3 and π s

3 = 1/N s
3

respectively. The shared covariance matrices are Σ c
3 = Σ c

2 and
Σ s

3 = Σ s
2 for the core and sparse components, respectively. From

each manifold Mk, k = 1, 2, 3 we can now generate a point cloud
in R3, obtaining P1,P2 and P3. The union Q =

⋃
k=1,2,3 Pk of all

oint clouds represents the morphology of the synthetic data set
epicted in Fig. 1. Each manifold and the noisy point distribution
re sampled by 104 points, making the size of the synthetic data
et 4 × 104 points.

.1. Behavior of simulated physical properties

Following the SPH formulation (Price, 2012, Cossins, 2010
nd citations therein), we consider each particle t i in data set
to sample a spherical volume of radius r = hi. Here hi is

the smoothing length equal to the distance of particle t i to its
50-th neighbor in data set Q. Under the assumption of mass
preservation (Gingold and Monaghan, 1977), we assign a constant

value mi = 1 to the mass contained in each volume sampled by

4

Fig. 1. Final noisy mock data set presenting two noisy elongated filamentary
structures, connected to a noisy head and embedded in a noisy environment.

particle t i. We can now define the density of the sampled volume
as:

ρi =
mi

(4/3)πh3
i
. (2)

We also define two additional quantities having particular pre-
designed behaviors in proximity to the two manifolds in the data
set. Quantity T1 is defined to be uniformly distributed in the inter-
al [Tmin

1 , Tmin
1 +1] for particles of manifold M1, decreasing from

he center of manifold M2 (f2([−1, 1])) and sinusoidally varying
epending on the distance to the center (radial) of manifold M3

(f3([−1, 1])):

T1(P1) = X1 ∼ U(Tmin
1 , Tmin

1 + 1); (3)

T1(P2) =
δ +

(2,r) − d(t i, Lc2)P2

4
Tmax
1 ; (4)

T1(P3) = 1.5Tmax

{
1 + sin

[
16π

d(t i, Lc3)P3 − δ −

(3,r)

δ +

(3,r) − δ −

(3,r)

]}
. (5)

Where d(t i, Lck)Pk is the distance between t i ∈ Pk and the segment
Lck = Lsk = fk([−1, 1]), for j = 2, 3; δ +

(k,r) = maxt i∈Pk d(t i, L
c
k) and

δ −

(k,r) = mint i∈Pk d(t i, L
c
k) are the maximum and minimum radial

distances, respectively, within all points t i ∈ Pk from the core of
manifold Mk. Fig. 2a shows the radial profiles of quantity T1 for
the three manifolds.

Quantity T2 is uniformly sampled within the interval [Tmin
2 ,

Tmin
2 + 1] for all particles in P1, it has an increasing radial pro-

file from the center of manifold M2 and it decreases along the
longitudinal axis of manifold M3:

T2(P1) = X2 ∼ U(Tmin
2 , Tmin

2 + 1); (6)

T2(P2) =
d(t i, Lc2)P2 − δ −

2,r

4
Tmax
2 ; (7)

T2(P3) = 3Tmax
2

[
δ +

3,L − d(t i, f3(−1))

δ +

3,L − δ −

3,L

]
, (8)
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Fig. 2. Distribution of variables T1 and T2 for manifolds M1 , M2 and M3 . Panels
(a) and (b) mimic a stage of a simulated jellyfish galaxy. Variable T1 shows a
sinusoidal behavior across the radial direction of manifold M3 and a decreasing
one along the radial direction of M2 (panel (a), lower and upper filaments
respectively), while being uniformly distributed throughout M1 . Variable T2
is decreasing along the longitudinal direction of manifold M3 and the radial
direction of manifold M2 (panel (b)). It is again uniformly distributed on M1 .
The uniform noise shown in Fig. 1 is here omitted for clarity.

where the quantities δ +

3,L = maxt i∈P3 d(t i, f3(−1)) and δ −

3,L =

mint i∈P3 d(t i, f3(−1)) are the maximum and minimum (longitu-
dinal) distances, respectively, within all particles t i ∈ P3 from
point f3(−1), representing the head of manifold M3. In Fig. 2b
the radial profiles of quantity T2 for the three manifolds can be
found. We omit here the background noise.

3. Algorithms

The different methodologies forming the algorithm are here
briefly described in order to let the reader have a complete
5

qualitative overview. Each method is further described in detail
in the following sections and graphically depicted in Fig. 3.

LAAT: (Fig. 3a) Taking advantage of the Ant Colony Optimization
methodology, Locally Aligned Ant Technique (LAAT) aims
at enhancing the contrast between high and low density
regions in a point cloud via the use of pheromone. This
scalar field is used to distinguish between high and low
density regions in the data set. By selecting a threshold in
the pheromone value, it is possible to filter out particles
while preserving those lying in a dense environment. If
sub-structures are hidden within the point-cloud, LAAT
helps in uncovering them with an adjustable parameter
(threshold);

EM3A: (Fig. 3b) The Evolutionary Manifold Alignment Aware Agents
(EM3 A) algorithm aims at enhancing density contrasts in
the data set by pushing particles in high density regions
towards an empirically estimated mean curve of the hid-
den sub-structures, using a similar framework as LAAT. The
result of this procedure is a ‘‘diffused’’ point-cloud where
the transverse noise to sub-structures is greatly reduced,
enabling a more efficient application of the subsequent
methodologies;

Dimensionality Index: (Fig. 3c) The resulting points in the dif-
fused data set may belong to structures of different, low,
intrinsic dimension. By eigen-decomposition of local neigh-
borhoods, the Dimensionality Index assigns to each point
in the diffused (and respectively, the noisy) data set, an
integer label denoting its intrinsic dimension. The labels
are used to partition both the noisy and the diffused data
sets into their low-dimensional counterparts;

1D Multi-Manifold Crawling: (Fig. 3d) operates on the one-
dimensional partition of the diffused data set. As an iter-
ative procedure, it discovers filaments in the point-cloud
and constructs their corresponding skeletons in the data
space, while building their low-dimensional representa-
tions. The procedure operates a small agent walking (crawl-
ing) along the diffused point-cloud following the direction
given by the local tangent space estimation. The procedure
ends by depletion of the data set of the visited regions by
crawling. Its end result is an atlas of structures recovered
from the data set, each one with its low- and high-
dimensional representations. The previously described
methodologies are unable to distinguish between different
substructures. Their aim is to enhance the possibility of
their detection by filtering out (LAAT) or reduce (EM3 A)
background and transverse noise respectively. It is only
with 1D Multi-Manifold Crawling that the low-dimensional
structures are detected, separated and pre-modeled (via
their low-dimensional representation). While the outcome
of the previous methodologies is a global point-cloud, the
result of 1D Multi-Manifold Crawling is a set of partitions
of the data set, where each partition is a detected structure
that carries a low-dimensional representation.

Stream GTM: (Fig. 3e) Since ultimately all structures are ini-
tially noisy and only by pre-processing we are able to
recover their skeleton, Stream Generative Topographic Map-
ping (Stream GTM) builds a probabilistic model for each
extracted sub-structure, describing the transverse noise
distribution along the manifold itself as a constrained Gaus-
sian mixture model. This allows for a more natural repre-
sentation of the filaments and serves as a tool for further

analyzing the recovered structures.
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Fig. 3. Sketches depicting the five methodologies for structure detection (a), denoising (b), dimensionality index (c), crawling (d) and modeling (e) proposed in our
toolbox.
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Via the use of the methodologies composing 1-DREAM it is then
possible to identify varying density, low-dimensional regions in
any particle data set and to recover filament-like structures hid-
den within a noisy environment. Furthermore, the structure of
individual filaments is regularized via their probabilistic formu-
lation introduced in SGTM. Transverse noise along a detected
manifold is here used to achieve smoothness of the manifold
structure by modeling it as a mean curve plus noise. While the
comparison with other methodologies is not the focus of this
work (and will be presented in an upcoming paper1), 1-DREAM
as in this regularization property and advantage with respect to
ts competitors. The structures recovered via 1-DREAM are indeed
ore robust to noise, even when taking the stochasticity of the
ethodologies into account.

.1. Noise attenuation

We first describe the methodologies developed for the re-
uction of background (LAAT) and transverse (EM3 A) noise.
he pheromone value recovered by LAAT informs us about the
ackground noise level. By thresholding it at specific values (de-
endent on the data set) the underlying coherent structures
merge from the noisy environment. Filtering out the points
ith low pheromone value, we obtain the data set to be fed to
M3 A. This methodology reduces transverse noise on the mani-
olds by pushing points towards their spine (mean curve/surface).
hese steps are often necessary for further analysis of the hidden
tructures.

.1.1. LAAT: Locally Aligned Ant Technique
The Locally Aligned Ant Technique (Taghribi et al., 2022) aims

o extract manifolds from noisy data sets in reliance on the idea
f Ant Colony Optimization (ACO; Dorigo and Stützle, 2004). The
atter is a computational method used for revealing the short-
st path between two given data points when multiple routes
etween them are possible. In this section, we clarify the method-
logy of LAAT that links between the natural behavior of ants as
hey follow their own pheromone trails in search of the shortest
ath to food and the capturing of points that are locally aligned
ith the major directions of a given manifold. For a complete
iew of LAAT, we refer the reader to Algorithm 1 in Taghribi et al.
2022).

Consider a data set Q = {t1, t2, . . . , tn} consisting of n points
such that t i ∈ RD, then there exists D principle components in a
spherical neighborhood N i

r := B(t i, r) of radius r around a point
i. We denote vd and λd the local eigenvectors and the corre-
ponding ordered eigenvalues respectively with d = 1, 2, . . . ,D.
hat being introduced, LAAT then consists of a random walk
n which artificial ‘‘ant’’ jump from a point belonging to the
ata set to the next where high preference is given to: jumps
long the dominant eigenvectors, and paths where an amount
f artificially deposited pheromone is accumulated (Dorigo and

1 This additional work can be found at https://git.lwp.rug.nl/cs.projects/
DREAM.
6

Stützle, 2004). Given a path (t j − t i) between points i and j, the
relative normalized weighting of the alignment of this path with
a local eigenvector vd can be given as follows:

w
(i,j)
d =

| cosα
(i,j)
d |∑D

d′=1 | cosα
(i,j)
d′ |

. (9)

Where α
(i,j)
d is the angle between (t j − t i) and vd. Furthermore,

the normalized eigenvalues show the relative importance of the
different eigenvectors, and are given by the following:

λ̃
(i)
d =

λ
(i)
d∑D

d′=1 λ
(i)
d′

(10)

This then allows us to define the preference of the jump from t i to
j that is aligned with the local eigen-directions. The preference
s given by:

(i,j)
=

D∑
d=1

w
(i,j)
d · λ̃

(i)
d (11)

Preferences are normalized (Ẽ(i,j)) so that they sum to 1 within the
neighborhoodN i

r . Moreover, by defining an amount of pheromone
F j(t) for a point t j at a time t , the above preference will allow for
the accumulation of pheromone on the points aligning with the
manifold. As inspired by nature, an evaporation rate 0 < ζ < 1
is incorporated in the definition of the pheromone thus serving
the purpose of decreasing its amount on less visited points. The
pheromone quantity is:

F j(τ + 1) = (1 − ζ ) · F j(τ ), (12)

Again, pheromone quantities are normalized (F̃ j(τ )) so that they
sum to 1 within N i

r . Combining Eqs. (11) and (12) allows us to
define the total preference of the jump from t i to t j:

(i,j)(τ ) = (1 − κ)F̃ j(τ ) + κ Ẽ(i,j). (13)

here κ ∈ [0, 1] is a parameter which adjusts the relative
importance of the two terms. Finally, the jump probabilities can
be defined as:

P(j|i, τ ) =
exp(βV (i,j)(τ ))∑

j′∈N (i)
r

exp(βV (i,j′)(τ ))
, (14)

Here, β > 0 is a parameter that is analogous to the inverse of
temperature in statistical physics (Taghribi et al., 2022). After-
wards, choosing a set of hyper-parameters given by the number
of ants Nants, epochs Nepoch, and steps of each ant Nsteps is nec-
essary for the completion of the random walk. A random starting
point is chosen such that the randomwalk begins from the denser
neighborhoods. In practice, this means that given the median Ñ
of the set of neighborhoods N = {|N (i)

r | |xi ∈ Q}, the condition
for a random starting point i is:

|N (i)
r | ≥ Ñ (15)

In a given epoch, the ants will then perform the random walk
on the points in Q for N and with the jump probabilities
steps

https://git.lwp.rug.nl/cs.projects/1DREAM
https://git.lwp.rug.nl/cs.projects/1DREAM
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Table 2
Full list of parameters for LAAT.
r ∗

∈ R Neighborhood radius
ζ ∈ R (ζ = 0.1) Evaporation rate
κ ∈ R (κ = 0.5) Shape v. Pheromone
β ∈ R (β = 10) Inverse temperature
γ ∈ R (γ = 0.05) Deposited pheromone
F j
Th

∗
∈ R Pheromone threshold

Ñ ∈ N (Ñ = 5) Neighborhood threshold
Nepoch ∈ N (Nepoch = 10) Epochs
Nsteps ∈ N (Nsteps = 2500) Steps per epoch
Nants ∈ N (Nants = 500) Ants

defined in (14). To update the value of the pheromone quantity,
the indices of the points visited by a given ant ℓ is stored in a
oute multi-set Aℓ which allows us to count the multiplicity of
isits to the points in the data set. The value of the pheromone
uantity on a given point j is updated according to the following
ormula:
j(τ ) = F j(τ − 1) + ν(j)γ ∀j ∈ Aℓ, (16)

here γ is a constant value denoting the amount of pheromone
eposited, and ν(j) is the multiplicity of element j in Aℓ. Therefore,
ith the enforced pheromone evaporation rate and the defined

ump probabilities, the pheromone will accumulate along the
oints aligned with given manifolds, and will dissipate in more
cattered regions, hence highlighting the structures in a noisy
ata set. We refer the reader to Taghribi et al. (2022) for a
emonstration of the high robustness of results to changes in the
reviously defined parameters, and a comparison with state-of-
he-art methods of similar purpose. The application of the LAAT
ethodology to the synthetic data set described previously is
hown in Fig. 4. For this analysis we used a radius r = 2 and a
eighborhood size threshold of Ñ = 5. The blue inner structure
s revealed from within the whole noisy data set. While visually,
he same structure can be identified in Fig. 1, LAAT introduces a
calar field on the data set as a proxy of relevant dense regions. It
s then straightforward to provide a pheromone threshold (e.g. in
ur case F j

Th = 20) that enables filtering of the noisy data set. The
iltered data set will contain only the most relevant regions. A
omplete list of all parameters in the LAAT methodology is given
n Table 2. Free-parameters are denoted by a ∗ symbol and their
alues specified in each experimental study (Sections 5.1–5.3).
he values suggested for the rest of the parameters are the ones
sed throughout this work.

.1.2. EM3A: Evolutionary manifold alignment aware agents
While LAAT isolates points in proximity to high-density re-

ions, ideally the true manifold lies within the noisy point-cloud
hat samples it. In order to find the mean curve of manifolds,
y reducing the amount of transverse noise, a secondary step in
his analysis is necessary. Intuitively, we would like to be able to
ush points in proximity to over-dense regions in the data space,
owards the unknown mean curve of the manifold. We propose a
rocedure, devoted to approximate the true nature of manifolds
y pulling nearby points towards an empirically estimated, local
ean curve. This solution is also inspired by ant colony behavior

or picking up and dropping carried objects. This section explains
he steps followed by EM3 A, a method introduced in Moham-
adi and Bunte (2020) to employ this behavior by instructing
gents walking through the data space to pick up the data points
nd place them in a closer proximity to the manifolds. Since
he net effect of the methodology is to move points towards
igh density, low-dimensional regions, the methodology shares
imilarities with the work presented in Wu et al. (2018), where
he task is modeled as a diffusion process. For this reason we will
ften refer to the data set obtained via EM3 A as a ‘‘diffused’’ one.
7

Fig. 4. Pheromone value for every point in the data synthetic data set emulating
a Jellyfish galaxy at the end of the procedure.

The first step in accomplishing the above is to define an
approximation strategy to recognizing the manifold structure. In
that pursuit, local PCA is employed again to estimate the local
eigenvalues and eigenvectors within neighborhoods of radius r
centered on the data points. Given data set Q and t i ∈ Q, the
eigenvectors vi

d and normalized eigenvalues λ̃i
d for the neighbor-

hood N i
r := B(t i, r) ∩ Q. Defining the saliencies (Mordohai and

Medioni, 2010) Si = i × (λ̃(i)
d − λ̃i+1

d ) as the expansion coefficient
or the local covariance matrix, the intrinsic dimensionality of the
anifold is estimated as given in Wang et al. (2008), Mordohai
nd Medioni (2005) by:

= argmax Si
i

. (17)

The set {vi
1, . . . , vi

d̂
} can then be used as an approximation to

the tangent space of manifold M at t i.
Next, a random walk is initiated in which agents are reinforced

to move data points closer to the underlying manifolds in the data
set. Let U be the matrix whose columns are the first d eigenvec-
tors of N i

r , and let µ be the kernel average of t i’s neighbors, then
the distance to a manifold M is estimated by:

δM(i) = ∥(I − UU⊤)(µ − t i)∥. (18)

Here ∥.∥ is the Euclidean norm. We now define the weights
and probabilities associated with the random walk. For each point
t j within N i

r , the following weights are defined:

w(t i, t j) =

{
1 −

δM(i)
ι

δM(i) ≤ ι

0 δM(i) > ι.
(19)

The parameter ι is chosen such that 50% of neighbors have
one-zero weights. The agent jump probability to the next desti-
ation is then given by:

(t i, t j) =
w(t i, t j)∑

m∈N i
r
w(t i, tm)

. (20)

Having defined this jump probability, the agents are encour-
aged to remain close to the manifold. Since the agents are not
only walking, but also picking up and dropping down points, what
is then required is to define a pick-up probability for the agent of
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ata point t j:

pick(t j) =
1 − w(t i, t j)∑

m∈N i
r
(1 − w(t i, tm))

. (21)

In other words, the probability to be picked up increases with
he distance of the point from the tangent space. Since we aim
t enhancing the density contrast between points more likely
elonging to the manifold and all others, at each time t we move
hese points towards the manifold along the complement of the
angent space. The displacement update reads:
new
j = toldj + η(I − UU⊤)(µ − toldi ). (22)

Here η > 0 is the learning rate controlling the amount of dis-
placement produced. In addition to the denoising, as mentioned
previously, the topological nature of the manifold should also be
preserved under the above steps. To ensure that, over-smoothing
of the manifold is avoided by introducing a threshold such that
the agents can only change the neighborhood if the mean distance
of neighbors to the tangent space is larger than the threshold.

The performance of the above method is clearly dependent
n the chosen radius of the neighborhood (Kaslovsky and Meyer,
014). Since highly curved manifolds require smaller radii while
he suppression effect of the noise requires larger radii, it is
ifficult to choose a proper value for r without prior knowledge
f the manifold properties. Therefore, as a solution to this prob-
em, EM3 A combines the above procedure with Evolutionary
ame Theory (EGT) concepts to automatically adapt the radius
arameter.
Since r is a continuous variable, we assume that it lies within

he range [Rmin, Rmax] discretized into m smaller intervals. To
ink this step to EGT, each interval is therefore viewed as an
volutionary strategy within a population of m strategies. Tak-
ng p1, . . . , pm as the frequencies of each strategy, we let p =

p1, . . . , pm} denote the distribution of strategies within the pop-
lation. In a generation t , each agent randomly selects a strategy

while following a population share distribution p(t)
= [p(t)ℓ ]m×1,

here p(t)ℓ is the population share (frequency) of the ℓ-th strat-
egy at the current generation. For this agent with a strategy ℓ,
he neighborhood radius is uniformly selected from the interval
rℓ, rℓ+1].

Next, a copy of the data set is provided for all the agents on
hich they perform the random walk with Ns steps according to
he above described rules. The output of each walk is averaged
o form the updated data set and the fitness of each strategy is
omputed. Letting Sℓ denote the number of agents with strategy
and Nℓ the number of times they change the data set at a given
eneration, then the fitness fℓ of strategy ℓ follows:

ℓ =
Nℓ

Sℓ · Ns
. (23)

For a given strategy ℓ, the rate of change of its frequency ṗℓ/pℓ,
measures its evolutionary success. This measure can be equated
to the difference between the fitness of the strategy and the
average fitness of the population. In other words for a generation
t we can define:
ṗℓ

pℓ

= fℓ − f̄ . (24)

The above equation can be rewritten in the following iterative
form:

p(t+1)
ℓ = ptℓ + ptℓ

(
f tℓ − f̄ t

)
. (25)

Therefore, in the following generations, the agents will choose
their strategy from the distribution p(t+1)

= [p(t+1)
ℓ ]. Iterating for

a given number of generations will thus lead to the denoising of
the manifolds in a noisy data set while maintaining the properties
8

Fig. 5. Data set of points selected s.t. F j(t = tend) >= FTh (blue dots) and diffused
ata set obtained with EM3 A (red dots).

Table 3
Full list of parameters for EM3A.
Rmin

∗
∈ R Minimum radius

Rmax
∗ > Rmin Maximum radius

ι ∈ R (ι > 0) Jump weight (adaptive)
η ∈ R (η = 1e−2) Learning rate
Ns ∈ N (Ns = 500) Number of steps
Ng ∈ N (Ns = 5) Number of generations

of the embedded structures. Results of EM3 A applied to the syn-
thetic data filtered according to the pheromone value are shown
in Fig. 5 (red dots). The processed data is sensibly denser along the
mean curve of the two elongated manifolds, while it is roughly
unchanged for manifold M1 (sampled by point-cloud P1). The
over-densities in the middle of the two manifolds (close to the
high-curvature regions) are likely to be caused by slight variations
in the pheromone value recovered by LAAT. The crisp selection of
particles with high pheromone may have caused varying point-
density along the manifolds, and this is converted by EM3 A in a
stronger push towards the over-dense regions. Indeed, the denser
red regions are always delimited by gaps (under-dense regions)
in the filtered point-cloud (blue dots). All parameters of EM3 A
are listed in Table 3. The free parameters used for the synthetic
data set are Rmin = 1 and Rmax = 2

3.2. Modeling

In the following we describe the methodologies aimed at
identifying the local intrinsic dimensionality of structures in the
data set (Dimensionality Index) on a point-by-point basis (Sec-
tion 3.2.1). The one-dimensional points are used for detection of
filaments via Crawling (Section 3.2.2) and its results as initializa-
tion for SGTM 3.2.3. Since these methodologies aim at detecting
and recovering individual sub-structures in the data set, we refer
to this step as ‘‘modeling’’.

3.2.1. Dimensionality index
While in first approximation, the approach used in

Section 3.1.1 is enough to roughly estimate the local dimen-
sionality of a neighborhood, we dedicate this section to a more
refined version of dimensionality index. In light of the new data
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Fig. 6. Partition of data sets Q̃ into its corresponding one, two and
hree-dimensional subsets: Q̃1 (red) Q̃2 (blue) and Q̃3 (green).

et obtained via LAAT and EM3 A, the new estimate of local di-
ensionality incorporates continuity information about the local
tructure, previously hidden by noise. Around each t̃ i ∈ Q̃ we
perform local PCA using points from N i

r = B(t̃ i; r)∩ Q̃, obtaining
eigenspectrum λi,1 ≥ λi,2 ≥ · · · ≥ λi,d.

The dimensionality index ∆O
i of t̃ i ∈ Q̃ used in Wang et al.

(2008) (limited to 3-dimensional data) is obtained as in Eq. (17).
However, a more accurate dimensionality index can be found
in Canducci et al. (2022). We summarize it in the current sec-
tion. The normalized eigen-spectrum Λ̃i (see Eq. (10)) of each
point t̃ i’s neighborhood is mapped onto the Simplex of multino-
mial distributions. The geodesic distance of each Λi with respect
to the vertices {e1, e2, e3} is evaluated on the simplex, where
e1 = (1, 0, 0), e2 = (1/2, 1/2, 0), e3 = (1/3, 1/3, 1/3) represent the
eigen-spectra of ideal 1−, 2− and 3−dimensional neighborhoods
respectively. Then, the dimensionality index of point t̃ i is the
index j corresponding to the closest vertex, under the geodesic
distance dJ (Λi, ej):

∆G
i = argmin

j
dJ (Λ̃i, ej), (26)

dJ (Λ̃ℓ, Λ̃m) = 2 arccos

(
D∑

k=1

√
Λ̃k

ℓ · Λ̃k
m

)
. (27)

We also propose a ‘‘soft’’ version of dimensionality index, by
imposing a kernel K (Λ̃i; ej) on each prototypical vertex of the
Simplex. We chose to use a Gaussian smoothing kernel s.t.:

K (Λ̃; ej) = exp

[
−

dJ (Λ̃, ej)2

2s2

]
, (28)

here s is the geodesic distance on the simplex between any
ertex and the equidistant point on the Simplex with respect to
ll vertices. This kernelization of the geodesic distances on the
implex imposes a distribution:

i(j) =
K (Λ̃i; ej)∑D
k=1 K (Λ̃i; ek)

. (29)

n order to take into account the smoothness of manifolds in data
pace, we impose a smoothing kernel in that space on each point
9

t̃ i ∈ Q̃ s.t.:

c(i, l) = exp
[
−∥t̃ i − t̃ l∥2/(2r2)

]
.

The smoothed normalized index distribution reads:

PS
i (j) =

1∑
t̃ l∈B(t̃ i,r)

c(i, l)

∑
t̃ l∈B(t̃ i,r)

c(i, l) · Pl(j), (30)

here the sum is taken over diffused points t̃ l in the spherical
eighborhood of t̃ i of radius r . The smoothed dimensionality
ndex of t̃ i is then
S
i = argmax

j
PS
i (j). (31)

very point in Q̃ (and its noisy counterpart Q) can be assigned to
he respective d−dimensional subset Q̃d (Qd), creating a partition
f the original set into:

˜d = {t̃ i ∈ Q̃ | ∆S
i = d} (32)

d = {t i ∈ Q | ∆S
i = d}, (33)

uch that
⋃D

d=1 Qd = Q. The results of the application of dimen-
ionality index to the point cloud defined in Section 2 are shown
n Fig. 6 and were obtained with the same radius used for LAAT
r = 2). For a better visualization of the results we only show here
he diffused points as divided into 1−, 2−, 3−dimensional sets,
epresented in red, blue and green color respectively (Q1, Q2 and
3 respectively). Although the synthetic data set described in Sec-
ion 2 does not contain intrinsically two-dimensional points, the
imensionality index proposed in Eq. (31) recovers Q̃2 ̸= ∅. This
iscrepancy can be attributed to the EM3 A algorithm diffusing
oints too strongly towards high-density regions. However, since
e are interested in detecting the one-dimensional structures
streams) in the data set, upon visual inspection, the recovered
stimation of Q̃1 and Q1 (red points in Fig. 6) is acceptable and
he contamination of 2−dimensional (blue) points is minimal.

Note that the only parameter required by the dimensionality
ndex is the neighborhood radius r .

.2.2. Crawling: Multiple manifolds 1D1d crawling
We describe here a recursive algorithm that enables us to

eparate all distinct one-dimensional manifolds contained in data
ets Q1 and Q̃1 while sampling them in representative sets of
oints and building their respective low dimensional represen-
ations. The end result of this technique (see Fig. 7), as op-
osed to LAAT (Section 3.1.1), is a discrete skeleton for each
ne-dimensional manifold in the data set. In fact, LAAT only
ighlights over-densities within a point-cloud, without partition-
ng into its low-dimensional components. With Crawling, each
keleton is assumed to lie on a high dimensional embedding of
he unit interval (a bent and stretched version of it), sampled by
finite set of points representing the ‘‘steps’’ taken by the agent
hile walking (crawling) on Q̃1. The results from this algorithm
re used to initialize Stream GTM through a parametric mapping
unction f : [−1; 1] −→ RD via linear regression applied to the
arameters W . The only main assumption of the algorithm is that
t the selected size (given by the radius parameter, in this case
= 2), the tangent space to each manifold is isomorphic to R.

nitialization
We first initialize the residuals set R = Q̃1. This data set is

sed as a reference for regions that have been visited by crawling,
eaving Q̃1 unscathed. Initially, a single ‘‘seed’’ t̃0 ∈ R̃ is randomly
elected and PCA applied to its local neighborhood of radius r:
(t̃0, r) ∩ R̃. The unit eigen-vector v̂0 =

v0
∥v0∥

, associated to the
largest eigen-value λ1, spans the tangent space to manifold Mk at
point t̃ : T M . Eigen-vector v̂ , being the direction where most
0 t̃0 k 0



M. Canducci, P. Awad, A. Taghribi et al. Astronomy and Computing 41 (2022) 100658

c
s
b
i
R

C

n
p

1

s

W
a
1
e

t

W
M
i

Fig. 7. Extracted skeletons (black diamonds and line) of the two manifolds after
crawling, overlay the 1D data set extracted by means of the dimensionality index
(red lines). The point-cloud surrounding each skeleton is the corresponding
recovered noisy manifold.

of the neighborhood’s variance is preserved, gives us the initial
preferential direction for crawling. We can now estimate two new
points along direction v̂0 at distance β · r from t̃0:

z±

n = t̃0 ± β · r · v̂0, (34)

where β = 0.75 is a regularization parameter aimed at mitigating
the effect of outliers on PCA and index n identifies the iteration
number (during the initialization n = 1). In order to keep the
crawling adherent to manifold Mk, for every new candidate z±

n
we compute its closest neighbor in data set R̃:

t̃±

n = arg min
t̃ ∈ R̃

(∥t̃ − z±

n ∥) (35)

under the condition that ∥t̃±

n − t̃0∥ ≤ r . This condition enforces
the maximum length between two adjacent points on manifold
Mk to never exceed the neighborhood radius r . After the es-
timation step, we initialize the set of representative points of
manifold Mk as Pk

= {t̃0, t̃
+

1 , t̃−

1 } and the low-dimensional
ounterpart Pk

= {0, 1, −1}. The direction v̂0, being the tangent
pace to Mk at point t̃0, is preserved as a member of the tangent
undle (see Tu, 2010) to manifold Mk: TMk. The last step in the
nitialization phase removes the neighborhood of point t̃0 from
overwriting the set.

rawling update
After the initialization phase is completed, at every iteration

, crawling is recursively applied to every point identified in the
revious iteration n − 1 following:

. Seed selection: From Pk select point t̃+

n−1 and compute the
neighborhood N = B(t̃+

n−1, r) ∩ R. Applying PCA to N ,
compute the unit principal component ûn−1.

2. Parent point recovery: Recover t̃+

n−2 and v̂
+

n−2 the parent
point and corresponding tangent vector of t̃+

n−1. For ‘‘par-
ent’’ we mean the point that generated t̃+

n−1 in iteration

n − 2 of crawling.

10
3. Tangent space projection: Since PCA is a rotationally invari-
ant method, ûn−1 is not a priori identifiable with the cur-
rent crawling direction (it could be oriented as its inverse
vector). We solve this issue by computing the angle θ
between ûn−1 and v̂

+

n−2

θ = arccos(ûn−1 · v̂
+

n−2), (36)

where (·) denotes the scalar product. The new crawling
direction v̂

+

n−1 is given by:

v̂
+

n−1 =

{
+ûn−1 if −

π
2 ≤ θ ≤

π
2

−ûn−1 if π
2 < θ < 3π

2
. (37)

4. Updates: Using Eqs. (34) and (35), a new point lying on man-
ifold Mk in direction v̂

+

n−1 is found and added to Pk. The
latent space Pk and tangent bundle TMk are also updated
coherently. Finally, the neighborhood N is subtracted from
data set R.

When the condition ∥t̃ − z±
n ∥ ≤ r does not hold for any t̃ ∈ R an

end of the manifold is encountered and crawling is suppressed
along the current direction. The same procedure is applied to
point t̃−

n−1, using parent direction v̂
−

n−2, until the second end of
the manifold is found.

Once both ends of a manifold are detected, we repeat the
Initialization and Update phases on data setR, which, at the end of
iteration k of the procedure contains all points of data set Q̃1 ex-
cept the ones extracted frommanifolds up toMk. Since data setR
is recursively depleted of points, we expect its size to converge to
zero after a certain number of iterations of the whole procedure.
This consideration gives us a criterion for halting the crawling
algorithm. When |R| ≤ ν, ν ≥ 0 being a user-specified threshold,
assuming the processing of Q̃1 took K runs, the procedure results
in a collection of extracted one-dimensional manifolds repre-

sented by the sets
{
Pk
}K
k=1

, containing sampled points from data

et Q̃1 representative of manifolds
{
Mk

}K
k=1,

{
Pk
}K
k=1, the associ-

ated low-dimensional counterparts, and
{
TMk

}K
k=1, the respective

tangent bundles.

Noisy manifolds recovery
Assuming that set Pk has sampled manifold Mk with Lk points,

for every point t̃ℓ
∈ Pk we compute N k

ℓ := B(t̃ l, r) ∩ Q1.
e define the noisy sample of manifold Mk as the union of

ll neighborhoods of radius r computed on all points t̃ℓ, ℓ =

, . . . , Lk: Ak
=

⋃Lk
ℓ=1 N

k
ℓ . By performing this assignment for

very set Pk, we obtain the K sets containing samples of the
noisy manifolds detected in the different runs of crawling. We
now have K manifolds and for each Mk in Q1, with k = 1, . . . , K ,
hree unique sets:

• Pk: contains all points sampled from Q̃1 at distance of at
most r , forming a skeleton for the manifold;

• Pk: the low-dimensional representation of set Pk;
• Ak: the set of all points describing its noisy structure, sam-

pled from Q1.

e also recover the tangent bundle TMk associated to manifold
k, by collecting all tangent directions to the manifold on points

n Pk. For completeness, the list of parameters used in Crawling
are presented in Table 4.

3.2.3. SGTM: Stream GTM
The Generative Topographic Mapping (GTM, Bishop et al.,

1998b) is a generative algorithm used generally for dimension-
ality reduction and density modeling of high dimensional, noisy
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Table 4
Full list of parameters for Crawling.
r ∗

∈ R Neighborhood radius
β ∈ R (β = 0.75) Jump tolerance

Fig. 8. Iso-surfaces of the Probability Density Function (PDF) of the individual
robabilistic models obtained via SGTM for each manifold in the synthetic data
et.

ata sets. It is the probabilistic formulation of Self-Organizing
ap (SOM, Kohonen, 1982) and it aims at modeling low dimen-
ional structures in high-dimensional data sets as constrained
aussian Mixtures. In its original formulation, the Gaussian cen-
ers are constrained to lie on the principal components of the
ata set, while the noise model is assumed to be spherical. Our
ormulation differs from the original by imposing a structure
n the centers co-linear with the manifold’s skeleton and a
anifold-aligned noise model (replacing the spherical Gaussian

ormulation). The proposed methodology is a simplification of
he one proposed in Canducci et al. (2022), by noting that non-
ntersecting one-dimensional graphs can always be embedded on
he unit segment of the real line via a non-linear, parametric
apping.
Let us consider manifold Mk found in data set Q1 by crawling

n data set Q̃1. In the following, we describe Stream GTM applied
to a single manifold Mk, dropping superscript k (for readability
easons) on every component derived by crawling. However, this
ethodology is performed for every detected Mk, with k =

, . . . , K .
We first initialize the latent one-dimensional structure of the

anifold by scaling set P , so that it lies on the interval [−1; 1]:

ℓ = −1 +
pℓ − min(P)

max(P) − min(P)
∀pℓ ∈ P. (38)

alling X = {xℓ, ℓ = 1, . . . , L} the scaled P , we can define a set
f S radial basis functions (RBFs) φ1, . . . , φS , centered on a subset
f X :

s(xℓ) = exp
[
−

(xs − xℓ)2
2

]
. (39)
2σ s

11
Table 5
Full list of parameters for SGTM.
r ∗

∈ R Neighborhood radius
S ∗

∈ N Number of RBFs
υ ∈ R (υ = 1e3) Regularization Cov. matrix
ω ∈ R Scaling factor Cov. matrix (adaptive)

Here σ is computed as the mean distance between adjacent
centers: σ =

∑S−1
s=1 ∥xs − xs+1∥/(S −1). The centers xs of the RBFs

are sampled regularly from X .
The mapping of points from the latent space X to embedded

points in P is achieved by the function y(x;W ), governed by
he S × D matrix of parameters W . Given the definition of RBFs
n Eq. (39) we can define the mapping function as:

(x;W ) = Φ(x)W (40)

here x is the column vector containing points in X and Φ(x)
s a L × S matrix, having Φℓs = φs(xℓ). The manifold aligned
robabilistic model is a flat mixture model

(t|W , Σℓ) =
1
L

L∑
ℓ=1

p(t|xℓ,Σ ℓ,W ), (41)

where the mixture components are locally manifold-aligned mul-
tivariate Gaussians centered at the embedded points t̃ℓ ∈ P:

p(t|xℓ,Σ ℓ,W ) =
1

[(2π )D|Σ ℓ|]
1
2
exp

(
−

∆t⊤Σ−1
ℓ ∆t

2

)
(42)

with ∆t = y(xℓ;W )− t . As proposed in Bishop et al. (1998a), we
model the local manifold-aligned covariance matrix by comput-
ing the derivatives of the mapping function with respect to the
latent variables:

Σ ℓ =
1
υ
I + ω

∂y⊤

∂x

⏐⏐⏐⏐
xℓ

∂y
∂x

⏐⏐⏐⏐
xℓ

, (43)

here the purpose of parameter υ (in this work υ = 1e3) is
avoiding singularity of Σ ℓ and ω is a scaling factor equal to
the distance between neighboring nodes in the latent space. The
derivatives of the mapping function with respect to the latent
space coordinates are:

g(xℓ) =
∂y
∂x

⏐⏐⏐⏐
xℓ

=
∂Φ

∂x

⏐⏐⏐⏐
xℓ

W =

S∑
s=1

(xℓ − xs)
σ 2 φ(xℓ)ws ∈ RD, (44)

where we denote by ws the s−th row of matrix W . As a la-
tent variable model, Stream GTM can be trained to maximize
log-likelihood

L(W ) =

N∑
n=1

ln

{
1
L

L∑
ℓ=1

p(tn|xℓ,Σ ℓ,W )

}
(45)

ia the E–M algorithm outlined in Bishop et al. (1998a). All
arameters in SGTM are listed in Table 5. The application of SGTM
o the individual manifolds in the synthetic data set results in
wo probabilistic model which can be visualized by their iso-
urfaces corresponding to an iso-value of their Probability Density
unctions (PDFs), see Fig. 8, pink surfaces.
From the discussion presented, the toolbox is mainly depen-

ent on one single hyper-parameter: the neighborhood radius r .
t is advisable to choose the parameter after visual inspection of
he data set at hand. The choice of this hyper-parameter influ-
nces the computational cost of the whole methodology, since
AAT, EM3 A, Dimensionality Index, Crawling and SGTM all rely
n this for the computation of local PCA. If the radius r is chosen
o that a sphere of radius r encloses the estimated thickness of
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Fig. 9. Sketch depicting the formation of the uniformly sampled concentric
cylindrical volumes, aligned with the local tangent space of manifold Mk on
the SGTM center t̃ℓ .

the filaments within the data set, slight variations of this hyper-
parameter from the designated value do not influence the results
significantly. A more detailed analysis of the stability of the
toolbox w.r.t. r will be presented in an additional work, in prepa-
ration. It is not straightforward to estimate the computational
cost of the toolbox once the radius r has been chosen, because
of the recursive nature of most algorithms. A more detailed
analysis of this on specific data sets can be found in the respective
papers: (Taghribi et al., 2022) for LAAT, (Mohammadi and Bunte,
2020) and for EM3 A. A detailed theoretical analysis of EM3 A is
also presented in Mohammadi et al. (2021) where convergence
bounds are outlined together with optimal estimation of hyper-
parameters. Quantitative analysis of the effect of changes in the
parameters, as well as computational costs for rest of the method-
ologies (Dimensionality Index, Crawling and SGTM) can be found
in Canducci et al. (2022). In the respective papers, each method-
ology is proofed against state-of-the-art comparable techniques.

4. Visualization techniques

4.1. Bi-dimensional profiles

After optimization of SGTM through the E–M algorithm, every
manifold Mk is represented as a Gaussian mixture with manifold
aligned noise, whose updated centers {t̃ℓ; ℓ = 1, . . . , Lk} are
constrained to lie on a one-dimensional subspace of R3. We now
describe a methodology that, taking full advantage of the prob-
abilistic nature of SGTM, simultaneously recovers the behavior
of properties along the manifold’s elongation and its thickness
within the simulated volume. This methodology gives a compre-
hensive view of the extracted manifold in a single frame, allowing
for a better understanding of its main radial and longitudinal
features.

The centers obtained at the end of optimization have most
likely shifted along the manifold, due to local variations of point
density within the manifold itself. In order to take this shift into
consideration we update the tangent bundle to manifold Mk by
computing the derivative of the (trained) mapping function with
respect to latent center xℓ:

ξ̂ℓ = g(xℓ), (46)

where g(xℓ) is derived in Eq. (44). Doing this for every center
xℓ ∈ Pk we obtain the updated subset of the tangent bundle
TMk

= {ξ̂ℓ; ℓ = 1, . . . , Lk − 1} of manifold Mk. Let us now
consider a point cloud C containing points as row vectors, uni-
formly sampling a cylindrical volume of radius 2, aligned along
the z-axis and centered at the origin O = (0, 0, 0). In order
to radially partition the point cloud C into concentric cylindrical
12
shells (bottom right panel of Fig. 9, cyan and magenta cylinders),
we first create C by projecting C onto the x–y plane:

C = C

(1 0
0 1
0 0

)
(47)

For every point p ∈ C we compute its distance to the projected
origin d(p, 0) = ∥p − [0, 0]∥. We can now group points in C so
that

Ii =
{
j | dri−1 ≤ d(pj, 0) < dri

}
∀pj ∈ C, (48)

where dri = (i−1)× rM/(c −1) is the low extreme of the interval
defined by two consecutive concentric rings on the cylinder,
rM the maximum allowed distance from the mean curve of the
manifold, c the desired number of bins across the radial direction
and i = 1, . . . , c−1. The sets I1, I2, . . . , INr contain all indices of
points in C (and thus in C) belonging to specific cylindrical shells
concentric with respect to the origin 0 (0) and the z-axis. It is
always possible to scale, translate and rotate the point cloud so
that the cylindrical axis is oriented as vector ξ̂ℓ, the origin over-
posed to center t̃ℓ and the axis length equal to dℓ, ℓ+1 (as shown
in Fig. 9, top, right panel).

Scaling. In matrix notation, the scaling operator is S

S =

(1 0 0
0 1 0
0 0 dℓ, ℓ+1

)
Rotation. We can compute the quaternion q (Hamilton, 1866)
where the first three components are given by ξ̂ℓ × (0, 0, 1) and
the 4−th component by ξ̂ℓ · (0, 0, 1). Its matrix representation
is given by R:

R =

⎛⎝1 − 2q22 − 2q23 2q1q2 − 2q3q4 2q1q3 + 2q2q4
2q1q2 + 2q3q4 1 − 2q21 − 2q23 2q2q3 − 2q1q4
2q1q3 − 2q2q4 2q2q3 + 2q1q4 1 − 2q21 − 2q22

⎞⎠
hift. We can then shift the scaled and rotated point cloud so that
ts origin is on center t̃ℓ.

Any point p ∈ C is then mapped to p′
∈ C′ under the combined

perator as:
′
= (p S) R + t̃ℓ. (49)

aving obtained a point cloud C′ uniformly sampling a thick
ylindrical volume with axis tangential to manifold Mk on point

˜ℓ, we can now compute the weighted mean of any quantity
ontained in the data set, over the volume sampled by C′.
Note that the families of indices I1, . . . , INr , when applied to

′, contain all indices of points in cylindrical shells concentric
ith respect to point t̃ℓ and vector ξ̂ℓ, radially partitioning the
ylindrical volume sampled by C′. For each linear segment of
anifold Mk, parameterized by its corresponding SGTM, we have
ow obtained a uniformly sampled cylindrical volume aligned
long its corresponding local tangent space. Computing ⟨Tm(p′)⟩
or every p′

∈ C′ we can now evaluate the mean value of Tm over
he concentric rings defined by the index families I1, . . . , INr as:

Tm,i = ⟨Tm(dri−1, d
r
i )⟩ =

∑
j∈Ii

⟨Tm(p′

j)⟩

|Ii|
, (50)

obtaining the mean of Tm over the cylindrical shell between
(dri−1, d

r
i ) for every i = 1, . . . ,N r .

We can iterate the whole process for every center of SGTM,
obtaining for each linear segment, the distribution of Tm in con-
centric cylindrical shells centered on the current center (Fig. 9,
left panel). By considering both longitudinal (defined recursively
by the centers of SGTM) and radial (obtained by the linear oper-
ator defined in Eq. (49) on point cloud C) profiles, we obtain the
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Fig. 10. Comparison of the estimated manifold M3 (a) and its Ground Truth (b) on the synthetic Jellyfish data. Left: top panels show the noisy data set points
blue) with background noise removed and including the noisy manifold identification (cyan) both for SGTM (a) and the Ground Truth (b). Correspondingly, the
ottom panels depict the skeleton of M3 (black) recovered via Crawling and SGTM in (a) and its Ground Truth in (b). Right: contains the estimated (a) and true (b)
i-dimensional profiles (normalized with Eq. (60)) for variables ρ i, T 1i, T 2i , and mi (from top to bottom).
p
w
f

lots shown in Figs. 10a and 11a. In both panels, the vertical axis
f each plot contains the radius of the cylindrical shells dr and the
orizontal axis the approximated geodesic distance (computed by
ummation of the lengths of the individual linear segments) from
he head of the manifold. From these plots we can verify that the
ehavior of quantities T (second panel from top) and T (third
1 2

13
anel from top) are in agreement with how they were designed
hen constructing the data set (Section 2). The decreasing pro-

ile for quantity T1 and increasing for T2 along manifold M2 is
detected, as well as the sinusoidal behavior of quantity T1 along
manifold M3’s thickness and T2’s decreasing profile along its
longitudinal elongation. The bottom plot in each panel presents
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Fig. 11. Comparison of the estimated manifold M2 (a) and its Ground Truth (b) on the synthetic Jellyfish data. Left: top panels show the noisy data set points
blue) with background noise removed and including the noisy manifold identification (orange) both for SGTM (a) and the Ground Truth (b). Correspondingly, the
ottom panels depict the skeleton of M2 (black) recovered via Crawling and SGTM in (a) and its Ground Truth in (b). Right: contains the estimated (a) and true (b)
i-dimensional profiles (normalized with Eq. (60)) for variables ρ i, T 1i, T 2i , and mi (from top to bottom).
he mass distribution over the radial and longitudinal dimensions
f the manifolds. As expected, the mass is constant throughout
he sampled volumes and it is everywhere mi = 1.

For each manifold, Figs. 10b and 11b show the true profiles
ecovered by using the ground truth skeletons described in Sec-
ion 2. As previously described, variable T shows a sinusoidal
1

14
variation along the radial direction of manifold M3 and decreas-
ing radial profile across manifold M2, variable T2 is decreasing on
the longitudinal direction of manifold M3 and radially decreasing
from the core of manifold M2. The profiles, when compared
with the ones obtained using the skeletons recovered by our
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Fig. 12. Top row: recovered manifolds (in red) via SGTM and their corresponding Ground Truth (black). Bottom row: Point-by-point orthogonal distance between
MGT
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methodology, look virtually identical. Small deviations are notice-
able for variable T1 halfway through manifold M3, however even
in this case the variation is minimal and does not compromise
the overall agreement. This demonstration is a first quantitative
confirmation of the accuracy of our methodology in recovering
the underlying structures of the data set. Having obtained a
parameterization of the two manifolds in the data set (MSGTM

k ),
t is now possible to compare the recovered structures with their
round Truth (MGT

k , given in Eq. (1)). In order to have a measure
hat is unbiased with respect to the particular parameterization
roduced by Crawling and SGTM, we re-sample each manifold
y projecting the Ground Truth points onto the recovered curves,
long their local orthogonal planes. The module of the projection
ives the local orthogonal distance between a point in MGT

k and
ts corresponding in MSGTM

k . The two recovered manifolds (red
oints), together with their Ground Truths (black points) are
hown in the top row of Fig. 12. The point-by-point orthogonal
istance is shown in the bottom row. The maximum distance be-
ween the two curves is at the point of maximal curvature of the
anifold. This discrepancy has two main contributions. Firstly,

he data set obtained with EM3 A is slightly misaligned with the
round Truth. This is probably due to the random sparsity of the
ransverse and background noise in the data set. The combined
ffect of these two uncertainty factors may affect the local density
stimation, and thus the displacement of nearby points onto local
angent spaces (over- or under-shooting). The second contribu-
ion is due to the application of Crawling and SGTM. While the
nitialization provided by crawling lies on the data set obtained
ith EM3 A and carries the same uncertainty, the SGTM formu-

ation should compensate for possible small deviations. However,
he radius r = 2 chosen in this example might be too large for
apturing the high-curvature regions. Also, the imposed σ value
estimated from the RBF setup) used for constraining the model’s
omplexity is possibly too large. It is however generally advisable
o avoid over-fitting the data with an overly complex model
or the sake of its generalizability to unseen data sampled from
he same distribution. Despite this minor discrepancy between
he recovered curves, an overall agreement is achieved for both
anifolds. The discrepancy between the two curves at the peak
f the distance is also responsible for the deformation of the bi-
imensional profiles, especially in the central part of the plots
15
Table 6
Recovery accuracy from bi-dimensional profiles.
Manifold ς0.2(log10 ρ) ς0.2(T1) ς0.2(T2)

M3 0.9897 0.8615 0.9846
M2 0.9089 1.0000 0.8776

(e.g. Fig. 10 panels a and b) for variable T1 (sinusoidal profile from
the core of manifold M2). Nonetheless, despite the amount of
noise corrupting both the structures and the simulated quantities,
1-DREAM still manages to recover a reasonable approximation to
the Ground Truth.

The centers obtained by projection of the Ground-Truth onto
the manifolds recovered via SGTM can also be used to obtain
new Ground Truth bi-dimensional profiles. In this case, the two
bi-dimensional profiles for each manifold are directly compa-
rable. The mean value of variable Tm in bin (dri−1, d

r
i ) of the

bi-dimensional profile Tm,i = ⟨Tm(dri−1, d
r
i )⟩ is derived according

o Eq. (50) for the ground-truth, Tm,i
GT
, and SGTM, Tm,i

SGTM
, recov-

ered manifolds. For each bin we can now compute the fractional
deviation of variable Tm between the two recovered structures:

ςm,i =

Tm,i
SGTM

− Tm,i
GT

Tm,i
GT

 . (51)

We estimate the accuracy of the recovered bi-dimensional pro-
files as the ratio of pixels having fractional deviation lower than
0.2 and the total number of pixels, such that

ς0.2(Tm) =
|{(i, ℓ) | ςm,i < 0.2}|

N r × (Lk − 1)
. (52)

he values of ς0.2(Tm), Tm being log10(ρ), T1 or T2 for both man-
folds M2 and M3 are given in Table 6. In agreement with the
revious discussion, variable T1 for manifold M3 and T2 for M2
how the largest variation with respect to the Ground-Truth,
owever, only ∼ 14% and ∼ 13% (respectively) of the pixels have
arger fractional deviation than 0.2, while we reach a good agree-
ent between Ground-Truth and SGTM in the other cases. The
arameters of the Bi-dimensional profile technique are provided
n Table 7.
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Table 7
Full list of parameters for Bi-dimensional profiles.
c ∗

∈ N Radial number of bins
rM ∗

∈ R Maximum radial distance from mean curve

4.2. Co-moving orthonormal coordinate frames

For each manifold Mk, we can now obtain a better discretiza-
tion of its ‘‘spine’’, by introducing more points in the latent space
and propagating them in the ambient space through the mapping
function y(x;W ) : Pk

−→ Pk. Consider the linear segment Iℓ :=

[xℓ, xℓ+1], where xℓ, xℓ+1 ∈ Pk. Denoting by dℓ = ∥Iℓ∥ the length
of segment Iℓ, let us assume that the number of equidistant
points to be inserted in Iℓ is Nℓ. We can define the new points
via the recursive rule:

xmℓ = xℓ +
m

Nℓ + 1
dℓ for m = 1, . . . ,Nℓ. (53)

Applying this relation to points xℓ, ∀ℓ = 1, . . . , Lk − 1, We ob-
ain the up-sampled latent space Pk

↑
=

{
x1, x11, . . . , x

Nℓ

1 , x2, . . . ,

xLk−1, x
1
Lk−1

, . . . , xNℓ

Lk−1
, xLk

}
, having size

⏐⏐Pk
↑

⏐⏐ = Nℓ
(
Lk − 1

)
+ Lk.

Propagation of latent point set Pk
↑
into the ambient space through

mapping function y(xℓ;W ), for every xℓ ∈ Pk
↑
, leads to the up-

sampled embedded point-set Pk
↑
, as depicted in Fig. 13, right

panel, black dots. As in Section 4.1, the tangent bundle TMk is
updated by applying Eq. (46) to every point in Pk

↑
. In this section,

lightly abusing mathematical notation, we will use index ℓ for
ny latent (and corresponding embedded) point belonging to Pk

ℓ

nd drop subscript ↑, for readability purposes.
For every ξ̂ℓ ∈ TMk we can recover a set of two vectors, u1 =

u1
1, u

2
1, u

3
1) and u2 = (u1

2, u
2
2, u

3
2), perpendicular to ξ̂ℓ, spanning

he perpendicular plane T ⊥

ℓ to manifold Mk on center t̃ℓ. This is
chieved by solving the system of linear equations given by:

u1 · u2 = u1
1u

1
2 + u2

1u
2
2 + u3

1u
3
2 = 0

u1 · ξ̂ℓ = u1
1ξ̂

1
ℓ + u2

1ξ̂
2
ℓ + u3

1ξ̂
3
ℓ = 0

u2 · ξ̂ℓ = u1
2ξ̂

1
ℓ + u2

2ξ̂
2
ℓ + u3

2ξ̂
3
ℓ = 0

(54)

eing a degenerate system of linear equations we can recover an
nfinite number of solutions giving infinite pairs of vectors span-
ing the perpendicular plane T ⊥

ℓ . In order to maintain consistency
throughout the manifold’s elongation, we choose the solution to
be:

u1 = (ξ̂ 2
ℓ , − ξ̂ 1

ℓ , 0), (55)

2 = (ξ̂ 1
ℓ ξ̂ 3

ℓ , ξ̂ 2
ℓ ξ̂ 3

ℓ , − [(ξ̂ 1
ℓ )

2
+ (ξ̂ 2

ℓ )
2
]), (56)

o that T ⊥

ℓ = span(û1, û2), where û1 = u1/∥u1∥ and û2 =

2/∥u2∥. Under this scheme, the two vectors form an orthonor-
mal coordinate frame for the plane locally perpendicular to center
t̃ℓ. The two vectors are shown in Fig. 13 as the magenta and blue
arrows, changing direction slightly, between any pair of adjacent
centers in Pk. The tangent bundle is here also shown (sampled
on points in Pk) as green arrows. We can now impose a regular
M × M square grid of side a on plane T ℓ

⊥
, taking advantage of

he local coordinate frame given by unit vectors û1 and û2 (black
ridded rotated squares in Fig. 13). We define the set Yℓ =

y11, . . . , y1M , y21, . . . , y2M , . . . , yM1, . . . , yMM}, where

y ij = 0ℓ + i δû1 + j δû2;

0ℓ = t̃ℓ − 2(û1 + û2)
(57)

nd the increments along vectors û1 and û2 are given by δû1 =

a/M)û and δû = (a/M)û respectively. The number of bins
1 2 2

16
Fig. 13. Sketch depicting the formation of co-moving orthonormal planes along
a portion of manifold Mk , enclosed within two centers of the corresponding
SGTM.

M must be chosen as an odd integer in order for t̃ℓ to be on
the origin of the local coordinate frame. In order to represent
only local properties of the manifold we perform a selection of
relevant particles in the data set based on their position with
respect to the new reference frame. We first compute the pro-
jection t∥

m of all particle’s original positions tm onto the tangent
vector ξ̂ℓ (note that ∥ξ̂ℓ∥ = 1) to manifold Mk at point t̃ℓ:
t∥

m =

[
(tm − t̃ℓ) · ξ̂ℓ

]
ξ̂ℓ. We assume that the distance dℓ between

adjacent points in Pk
ℓ is always proportional to the distance

dℓ between corresponding adjacent points in Pk
ℓ and constant.2

We then select only those particles such that ∥t∥

m∥ ≤ dℓ/2.
dditionally, we compute the perpendicular component t⊥

m of
osition tm, by building the projection operator onto T ℓ

⊥
as in

ection 3.2.2: P = VV †, where V is the matrix having u1 and
2 as column vectors: t⊥

m = P(tm − t̃ℓ). In our analysis we
ill only consider particles lying within the sphere of radius
, centered on t̃ℓ: ∥t⊥

m∥ <= b, where b can be imposed by
he user or automatically selected as b = a

√
2/2: the half-

diagonal of the gridded plane T ℓ
⊥
. However, this parameter is

only defined when a non-SPH weighting (e.g. Gaussian) scheme
is applied. In fact, when SPH is in place, there is no need to select
a subset of particles surrounding the plane in order to compute
the mean value of properties on the plane. This is achieved via
the SPH weighting scheme presented in Eq. (60) through the
smoothing length parameter, defined for all particles in the data
set. Identifying with J the index set of all particles satisfying
these two conditions, we can now compute the weighted mean
of variables T1(J , y ij) and T2(J , y ij) with respect to points y ij ∈

ℓ, under the SPH formulation (see Section 4.3). Top row of
igs. 14a–14b present the behaviors of variables T1, T2 and density
respectively, for manifold M2 detected in the synthetic data

set, computed at position t̃kℓ (t̃kℓ varying along the manifolds
for each group of pictures). Having the probabilistic model for
manifold Mk as SGTMs, we also compute the Probability Density
Function of the Mixture on plane T ⊥

ℓ as:

pk(y ij) =

∑
xℓ∈Pk

πℓp(y ij|xℓ, Σ̂ ℓ, Ŵ ), (58)

here Σ̂ ℓ and Ŵ are the parameters found through optimization
with the EM algorithm (see Section 3.2.3) and πℓ the component
proportion given by πℓ = 1/|Pk

|.
The PDFs for manifolds Mk on plane T ⊥

ℓ at position tkℓ are
hown in the bottom left panel of Figs. 14a–18b, while central and

2 This might not always be the case, but present small variations due to
raining SGTM. However, since we interpolate the SGTM model by up-sampling
k
ℓ in order to increase smoothness of the orthonormal planes, the distance
etween adjacent centers in Pk

ℓ (and thus its embedding Pk
ℓ) can always be

regularized by up-sampling this set more densely.
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Fig. 14. Snapshots n.20 (a) and n.80 (b) of the video clip generated by considering co-moving coordinate frames on the elongation of manifold M3 . The top row
panels show the distribution of variables ρ, T1 and T2 over the coordinate frame T ⊥

ℓ defined on tℓ , shown in bottom central and right panels as a red sphere. Bottom
left panel presents the Probability Density Function obtained through SGTM on the same plane.
right panels show the current position on the manifold and with
respect to the whole data set respectively. By applying recursively
this procedure to every t̃ℓ ∈ Pk we obtain a representation of the
variables of interest, on co-moving orthonormal reference frames
along each manifold, showing the clear radial behavior of these
variables.

Figs. 14a–14b present the results for selected points on man-
ifold M . The top central panel in each figure clearly manifests
3

17
the sinusoidal radial behavior of variable T1. This implies that
the center of the manifold has been correctly identified by SGTM
and its centers lie closely to its underlying nature (see Eq. (1)).
Comparing top right panel in Fig. 14a and the one in Fig. 14b,
the longitudinal dimming of variable T2 can be verified, showing
that its true nature has been correctly recovered. The snap-
shots obtained via the co-moving orthonormal coordinate frames

technique are joined sequentially into a movie that shows the
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Table 8
Full list of parameters for Co-moving Orthonormal coordinate
frames.
Nℓ ∈ N (Nℓ = 5) Latent interval upsample size
M ∈ N (M = 25) Pixels on plane
a ∗

∈ R (a > 0) Length of plane
b ∈ R (b = a

√
2/2) Distance from plane

evolution of the quantities while moving along the manifold. The
presented figures only show selected snapshots of the movie for
manifold M3, however the analysis has been performed for both
manifolds in the synthetic data sets and the associated movies
can be found at: https://git.lwp.rug.nl/cs.projects/1DREAM. The
snapshots presented in this work are individual frames of the
movie clip and they are referred to as ‘‘snaphsot n. . . . ’’ when
addressed in the captions (see e.g. Table 8). A list of parameters
used in this case for the described visualization technique is given
in Table 8.

4.3. Weighting schemes

Depending on the data at hand, it is possible to implement
ultiple different weighting schemes. Here, we focus on two
ain approaches: an SPH formulation and a classical Gaussian
moothing, with variable length-scale. If the data set is obtained
ia an SPH simulation, the weighted mean of any simulated quan-
ity has to be computed following the formulation of the code
sed. In the following, we will consider the weighting scheme
mplemented in GADGET2 and a general Gaussian smoothing
echnique. We provide a detailed description of the two formula-
ions for a given center of SGTM and the associated point-set on
hose points the mean is intended to be computed (either the
niformly distributed cylindrical shells or the sampled perpendic-
lar plane centered on t̃ℓ). We will identify the query point-set
y C′

= {p′

1, p
′

2, . . . , p
′

N}.

4.3.1. SPH-like weights
Consider a point p′

i ∈ C′. We need to compute the weighted
mean, under the SPH formalism, of variable Tm summing through
all the particles t j ∈ Q. The spline approximation of the Gaussian
kernel (usually referred to as smoothing kernel) on a finite support
is:

W (qj, hj) =
1

πh3
j

⎧⎨⎩
1
4 (2 − qj)3 − (1 − qj)3 0 ≤ qj < 1
1
4 (1 − qj)3 1 ≤ qj < 2
0 qj ≥ 2

(59)

where qj = ∥t j − p′

i∥/hj (hj being the smoothing length defined
in Section 2.1). Using the kernels, the exact weighted mean of
quantity Tm at point p′ is:

Tm,i := ⟨Tm(p′

i)⟩ =

∑
t j∈Q

mj
ρj
Tm(t j)W (qj, hj)∑

|Q|

n=1
mn
ρn

W (qn, hn)
(60)

The term in the denominator is generally considered to be ap-
roximating unity when the particles in a data set are distributed
niformly; however, this is not often the case in practice. Each
article t j of an SPH data set samples a spherical volume of
adius hj. Since all particles are evolved following the equations of
otion defined by the Lagrangian formulation of fluids, their dis-

ribution at a given evolutionary stage is far from uniform. Thus,
he approximation to unity assumption is generally incorrect at an
dvanced evolutionary stage. The role of the normalization term

|Q|

n=1
mn
ρn

W (qn, hn) in the denominator of Eq. (60) is to eliminate
the interpolation’s dependence from the particles’ distribution.
18
As such, it cannot be disregarded when computing the weighted
mean of quantity Tm on any point in C′.

In order to check the influence of the normalization term,
we show in Fig. 15 panel a and b the corresponding behaviors
of ρ i, T 1,i, T 2,i and mi when the normalization term is omitted
in Eq. (60). While the ranges of the first three variables ex-
ceed their true respective values, it is striking the difference of
the mass distribution with respect to the normalized versions
(Figs. 10a and 11a). The radial sinusoidal profile of variable T1
on manifold M3 is also completely lost (right side, second panel
from the top), as the sparser distribution in the further regions
from the core of the manifold does not carry enough weight to
compensate for the inner regions.

4.3.2. Gaussian smoothing
If the data set has not been generated via an SPH simulation,

the weighted mean of any variable on point-set C′ is obtained by
imposing a Gaussian isotropic kernel on each point p′

i ∈ C′, with
scale length κ , obtaining for each point t j ∈ Q, weight:

p(t j|p′

i, κ) =
1

2πκ2 exp

(
−

t j − p′

i

2
2κ2

)
. (61)

The weighted mean of variable Tm on every point p′

i ∈ C′ is then
obtained by summing through all particles in data set Q as:

Vm,1 := ⟨Tm(p′

j)⟩ =

∑
|Q|

j=1 p(t j|p
′

i, κ)Tm(t j)∑
|Q|

n=1 p(tn|p
′

i, κ)
. (62)

. Experiments on different data sets

This section is devoted to the application of the proposed
ethodology to three different data sets. In order to avoid confu-
ion, each subsection indicates the data set by the same notation
sed in the previous sections (Q and Q̃ for the noisy and dif-

fused data sets respectively). The first data set (Section 5.1) is a
simulated dwarf galaxy interacting with its host galaxy cluster.
In particular, we examine a single simulated snapshot of the
dwarf’s evolution. The choice of the snapshot is motivated by
the presence of multiple gaseous filamentary structures, located
mainly at the back of the simulated box and forming a gaseous
tail. In this case we are only considering the gas particles’ dis-
tribution, disregarding Dark Matter and Stellar particles. Here,
we analyze the gas temperature (T ), gas density (ρ), neutral gas
fraction (which is the ratio of neutral, or atomic, gas mass to
total gas mass) and metallicity (the iron abundance [Fe/H]) of the
extracted streams. We note that for [Fe/H], which is defined as
a logarithmic ratio of concentrations, we first recover the linear
ratio then we use Eq. (60), and finally we go back to logarithmic
scale. The second data set (Section 5.2) is obtained via a Dark
Matter simulation of a sample volume of the Universe’s Large
Scale Structure (LSS). We focus here on the kinematic properties
of the filaments of dark matter extracted from the Cosmic Web.
The third and last data set is the observed stellar spatial distri-
bution of a sky-region enclosing the globular cluster ω−Centauri.

e aim at recovering the two stellar streams detected by Ibata
t al. (2019a) and describing their radial and longitudinal density
rofiles.

.1. Simulated jellyfish: dwarf galaxy in Fornax cluster

Methodologies: LAAT → EM3 A → Dimensionality Index
Crawling → SGTM → Bi-dimensional profiles → Co-moving

rthonormal coordinate frames.
The simulations initially consider a dwarf galaxy evolving in

solation for 8 billion years. Here, isolation means that the galaxy

https://git.lwp.rug.nl/cs.projects/1DREAM
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Fig. 15. Same as panels Figs. 10a and 11a but without normalization in the SPH weighting scheme.
as assembling its mass through mergers but was not absorbed
y a more massive structure, such as a galaxy cluster, where its
nternal properties could be affected by external processes such
s gravitational interactions with other galaxies and ram-pressure
tripping. A full catalogue and detailed study of these galaxies can
e found in Verbeke et al. (2015), Verbeke et al. (2017).
Taking the end product of this initial evolutionary stage, Mas-

ropietro et al. (2021) study the evolution of these galaxies when
njected on different orbits in the gaseous halo of a Fornax-like
alaxy cluster. During this stage, filamentary structures form in
19
different orbital epochs. In our analysis we will consider a single
temporal snapshot of a dwarf galaxy evolving on a generic orbit.

5.1.1. Extracted manifolds
We recover 15 streams of gas with varying lengths. In the fol-

lowing, for the sake of clarity, we discuss only the most elongated
manifold recovered through the methodology. The manifolds are
visualized via the two methodologies described in Sections 4.1
and 4.2, respectively. The values of the free parameters adopted
for this analysis are shown in Table 9
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Fig. 16. Bi-dimensional profiles of one elongated manifold recovered via the methodology discussed in this work.
Table 9
Adopted values for experiments on Jellyfish galaxy.

LAAT r = 1 F j
Th = 5

EM3A Rmin = 0.5 Rmax = 1.5
Crawling r = 1
SGTM r = 1 S = L/2
Bi-dim profile rM = 3 c = 19
Moving frames a = 2

Bi-dimensional profiles on jellyfish
Using the visualization tool described in Section 4.1 we

resent, in Fig. 16, one of the manifolds recovered via our method-
logy, departing from the head of the jellyfish and extending
hroughout its tail. Overall, while the elongation of individual
anifolds varies, the inspected properties behave similarly for all
etected structures. In particular, the neutral fraction (second bi-
lot from the top), along with density (top bi-plot), is generally
igher in the inner regions of the manifolds, across roughly their
hole elongation. At the same time, temperature (bottom bi-plot,

n logarithmic scale) is consistently lower in the same regions.
similar behavior cannot be found for the metallicity (third bi-
lot from the top). It can be argued that this quantity is generally
igher in the inner regions as well, however the non-uniformity
f its distribution discourages an accurate inference on the causes
f this anomaly. It is possible that, as the manifolds are from
ifferent regions of the galaxy, their interaction with the gas of
he galaxy cluster’s halo in previous epochs heavily influenced
heir evolution. Nonetheless, since the gas’s metallicity does not
irectly affect the chances of its collapse, we can safely argue that
he streams in jellyfish galaxies are effective loci of star formation.
urthermore, the core of these streams are more likely to contain
ewly born stars, and thus be observed via optical observations.

o-moving orthonormal coordinate frames on jellyfish
The same quantities (ρ, neutral gas fraction, [Fe/H], and T )

ave been studied via the Co-moving orthonormal coordinate

rames technique and here presented for the same manifold

20
previously identified. The results are shown in Figs. 17 and 18
for four subsequent centers on the examined manifold. The three
panels on top (left to right) and the one on the bottom left,
show the distribution of these quantities on the perpendicular
planes to the tangent bundle of the manifold. Over-plotted to the
quantities distribution, in every panel we show the PDF of the
probabilistic model obtained via SGTM, as (red) iso-curves. The
red dot represents the center of the plane, corresponding to the
embedded skeleton of the manifold. The bottom central and right
panels show the location of the current plane with respect to the
manifold and the whole data set respectively. For consistency, we
will show in this work snapshots from the same manifold shown
in Fig. 16.

Throughout the manifold’s elongation we verify, via the snap-
shots presented in Figs. 17 and 18, the centering of the recovered
skeleton with respect to the regions having the highest density.
This region is also always associated to a higher neutral fraction
and lower temperature. In the case of the studied manifold in
agreement with the bi-dimensional profile (see Fig. 16), little can
be said about the behavior of the metallicity, although there is a
tendency of creating cores with local peaks surrounded by lower
metallicity regions.

5.2. Kinematic study on cosmic web’s filaments

On the many mega-parsec cosmological scales of the Universe,
the spatial distribution of galaxies as well as clusters of galaxies
is not uniform. In fact, looking at the results of the Sloan Digital
Sky Survey (SDSS) (Fukugita, 1998; Gunn et al., 1998), one can see
that there is an intricate, interconnected pattern that emerges at
such a scale. This pattern forms a network now famously known
as the cosmic web (Bond et al., 1996). As described in Peebles
(1980), the cosmic web emerges as the outcome of the anisotropic
nature of gravitational collapse. The latter is the driving force
behind structure formation including the emergence of the cos-
mic web’s different morphological components namely: clusters,

filaments, and walls. The connection between these components
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Fig. 17. Equally spaced snapshots of the extracted manifold from jellyfish data set. Each panel in each sub-figure shows the distribution of a variable across the
current orthonormal plane. The two bottom panels show the position of the current center (red sphere) on the detected manifold (black curve) and on the global
diffused data set (blue dots, right panel).
can be summarized as follows: clusters are regions of intersec-
tion of filaments, and filaments are regions of intersection of
walls (Doroshkevich, 1980; Shapiro et al., 1983; Pauls and Melott,
1995; Sathyaprakash et al., 1996; Cautun et al., 2013).

The growing interest in studying the cosmic web lies not
only in its involvement in the cosmology domain, but also in its
important influences on the evolution and properties of galaxies.
For instance, in works such as Aragón-Calvo et al. (2007), Hahn
et al. (2007a,b), and Paz et al. (2008) it has been shown that
21
the spin-orientation and shape of dark matter halos are dis-
tinctly influenced by the cosmic web environment they occupy
(whether it is filamentary or sheetlike in nature). It has also been
demonstrated that galaxies tend to have an alignment with the
filaments that they inhabit (Jones et al., 2010; Tempel et al., 2013;
Ganeshaiah Veena et al., 2018; Welker et al., 2019). Moreover,
the influence of the cosmic web environment extends to other
properties of galaxies such as their colors, gas content, and star
formation rates (SFRs). Different studies have pointed out general
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Fig. 18. Same as in Fig. 17 for additional centers on the manifold.
trends of these properties whereby galaxies closer to the cosmic
web structures exhibit a lower specific SFR (are redder in color)
and tend to be older, more metal rich and α-enhanced when
compared to galaxies that have a larger distance to the struc-
tures (Rojas et al., 2004; Beygu et al., 2016; Chen et al., 2017;
Kraljic et al., 2018; Winkel et al., 2021).

Given what has been presented, we illustrate the applicability
of our methods by applying our pipeline on data sets pertaining to
the cosmic web. The nature of the data is further described in the
following section. We also reserve the detailing of the robustness
22
of the extracted and modeled morphologies to a second paper,
where we narrow our focus to the cosmic web and the ability of
our tool to trace out its different structures.

5.2.1. Generation of the cosmic web data set
We use a dark matter-only N-body cosmological simulation

that was run using the GADGET-3 code. The initial conditions
were generated at redshift z = 200 using the Multi Scale
Initial Condition software (MUSIC; Hahn and Abel (2011)). The
CAMB package (Code Anisotropies in the Microwave Background;
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Table 10
Adopted values for experiments on Cosmic Web.

LAAT r = 1.5 F j
Th = 5

EM3A Rmin = 1 Rmax = 2
Crawling r = 1.5
SGTM r = 1.5 S = L/2
Moving frames a = 1

Lewis and Challinor (2011)) is used to calculate the linear power
spectrum. We study a single cosmological volume with dimen-
sions 120 × 120 × 120 Mpc/h. The dark matter (DM) particles
have a fixed mass of 1.072×109M⊙/h, and a cosmology of Ωm =

.3, ΩΛ = 0.7, Ωb = 0.047 and h0 = 0.684 was assumed for
he initial conditions and for the simulation itself. In this project,
e consider the redshift zero output file, which consists of the
asses, velocities and positions of all the dark matter particles in

he present.

.2.2. Extracted manifolds
Methodologies: LAAT → EM3 A → Dimensionality Index
Crawling → SGTM → Co-moving Orthonormal coordinate

frames.
Adopting the methodology presented previously, we isolate

two manifolds in the simulated volume, connected by a node of
the Cosmic Web. By building orthonormal co-moving frames over
the skeletons of these manifolds, we study their DM distribu-
tion and kinematic properties. The values of the free parameters
adopted for this analysis are shown in Table 10. For each particle
in the simulation, at each location over the manifold’s skeleton,
we compute its tangential and orthogonal velocity with respect
to the local reference frame. We look at the DM particles dis-
tribution as a discrete sample of the actual dark matter, where
each particle is representative of the kinematic state of a fixed
size neighborhood.

Given a specific point t̃ℓ ∈ P↑

k belonging to manifold Mk’s up-
sampled skeleton, as a product of our methodology we recover
the corresponding tangent vector ξ̂ℓ and perpendicular plane
T ⊥

ℓ = span{û1, û2}. As discussed in Section 4.2, we obtain the
index set J of all particles falling within the box of size dℓ × 2b
entered on t̃ℓ. Each tm such that m ∈ J , has a velocity νm ∈ R3

escribing its motion. The velocity vector is projected onto T ⊥

ℓ

and along the tangent vector ξ̂ℓ to manifold Mk on t̃ℓ:
⊥

m = Pνm; ν∥

m = (νm · ξ̂ℓ)ξ̂ℓ, (63)

or every m ∈ J . We can now compute the weighted mean of the
wo projected velocities over points on T ⊥

ℓ :

ν(y ij)
⊥

=

∑
m∈J p(t⊥

m|y ij, δ)ν⊥
m∑

q∈J p(t⊥
q |, y ij, δ)

(64)

ν(y ij)
∥

=

∑
m∈J p(t⊥

m|y ij, δ)ν
∥

m∑
q∈J p(t⊥

q |y ij, δ)
, (65)

here p(t⊥
m|y ij, δ) is the Gaussian kernel defined in Eq. (61).

Note that parameter δ can be fixed by the user to match a
esired smoothing, however in our experiments we fix it to δ =√
a/M
4 : the half-diagonal of the square formed by four adjacent

points sampling T ⊥

ℓ in Yℓ. Having obtained a velocity field on
⊥

ℓ , we are now able to compute its rotor and divergence with
espect to the local coordinate frame. We define the ∇ operator
n the local reference frame given by span{û1, û2, ξ̂ℓ} as ∇ =

(∂/∂u1, ∂/∂u2, ∂/∂ξℓ), so that the rotor and divergence of vector
field ν can be written as

∇ × ν⊥
=

(
∂ν⊥,3

−
∂ν⊥,1)

û1

∂u1 ∂ξℓ

23
+

(
∂ν⊥,1

∂ξℓ

−
∂ν⊥,3

∂u1

)
û2

+

(
∂ν⊥,2

∂u1
−

∂ν⊥,1

∂u2

)
ξ̂ℓ

=

(
∂ν⊥,2

∂u1
−

∂ν⊥,1

∂u2

)
ξ̂ℓ; (66)

∇ · ν⊥
=

∂ν⊥,1

∂u1
+

∂ν⊥,2

∂u2
+

∂ν⊥,3

∂ξℓ

=
∂ν⊥,1

∂u1
+

∂ν⊥,2

∂u2
. (67)

he final forms of the rotor and divergence are obtained by noting
hat only the third term in the expansion is non-null in the first
ase, while it is the only null element in the second (being the
ector field over the plane).
The results for one manifold selected from the simulated vol-

me are shown in Figs. 19–20.
In each sub-figure, information is presented by the following

cheme:
Skeleton (solid, black line) recovered by up-sampling the em-

edded graph obtained via SGTM and isosurface of the corre-
ponding model’s PDF (red, opaque surface). Extracted simulated
articles obtained via soft assignment on the whole data set,
iven the model (gray dots). Current center t̃ℓ (red sphere) of the

perpendicular plane T ⊥

ℓ and vectors û1 (blue arrow) û2 (magenta
rrow) spanning it (top left panel). Heatmap of the weighted
ean projected tangential velocity ∥ν∥

∥, at rest frame: the ve-
locity of the central point ν∥(t̃ℓ) has been removed in order to
represent local velocities with respect to the local frame. Over-
plotted are the iso-contours of the model’s PDF (dashed black
lines) and a mask hiding sparsely populated regions of plane T ⊥

ℓ

(top middle panel).
Quiver plot (vector plot) of the weighted mean velocity field

(black arrows) over the plane with over-plotted iso-contours
of the model’s PDF. Again the central velocity ν⊥(t̃ℓ) has been
subtracted to the velocity field (top right panel).

Number of particles within the sphere of radius κ for each
point y ij ∈ Yℓ, sampling regularly plane T ⊥

ℓ , with over-plotted
mask (bottom left panel).

Tangential component of the rotor (also called ‘‘curl’’) of the
weighted mean velocity field computed over the perpendicular
plane (bottom middle panel).

Divergence of the weighted mean velocity field computed over
the perpendicular plane (bottom right panel).

A few main results can be drawn from the visualization of the
kinematic properties of the two manifolds using our technique:

• The skeletons of the manifolds are generally aligned with
their corresponding densest regions, when these are unique.
In cases where mass has a multi-modal distribution, the
center of the plane is usually placed in order to include all
modes. This is visible in the bottom left panel of each figure.
The regions containing the largest amount of particles (and
thus the highest density) are usually centered on the plane
when presenting one peak, or slightly shifted when more
than one peak can be found.

• The tangential velocity of particles on the manifold (top
central panel) has the tendency to change sign at a certain
distance from the two extremities. The extremities of each
manifold are the nodes of the cosmic web (i.e. the clusters).
In particular, starting from one node and moving towards
the other, the tangential velocity has a negative sign at
first (overall blue color), meaning that particles are pulled
towards the starting node. As we move towards the second
node, the tangential velocity’s module tends to decrease
until it reaches zero. After this ‘‘saddle’’ point, the tangential
velocity is aligned with the crawling direction, meaning that
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Fig. 19. Different snapshots of orthonormal coordinate frame movie for manifold n.1 of the Cosmic Web.
the particles tend to be pushed towards this second node
(the parallel velocity map turns red). Fig. 20a clearly shows
the flip in sign of the tangential velocity. Fig. 20b, shows
a slight deviation from this behavior. This is due to the
presence of a mass concentration within the filament (also
identifiable in the bottom left panel of the figure) locally
pulling particles towards itself.

• The parallel curl (perpendicular to the plane) of the velocity
field shows clear islands of opposite signs. This result is in
agreement with what found in Laigle et al. (2014), although
24
the analysis is only performed on one filament here. In their
work, the number of regions with opposite curl shows a
large variability throughout the elongation of the stream.
It is however also pointed out that four regions are most
commonly found. In our analysis we generally agree with
the findings of Laigle et al. (2014) in terms of the variabil-
ity in the number of these regions, but further analysis is
needed to confirm the most common occurrence. However,
in some iterations, we are in agreement with their predic-
tion (e.g. Fig. 19b). Future studies will focus on applying
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Fig. 20. Same as in Fig. 19 for further centers on the manifold. The bottom central panel (curl) and top right panel (velocity field) of Fig. 20 also present numbered
square regions in shades of purple. The three numbered squares identify regions presenting opposite sign in curl and their respective velocity field. Zoomed in
pictures of the velocity field in the three regions are presented in Fig. 21.
the proposed methodology to a larger set of filaments in
order to obtain a robust estimate about the variability in the
number of these regions across a larger population.

• Particles in the outskirts of the manifolds are attracted to-
wards their cores. This result transpires from a visual inspec-
tion of the top right panels of all figures. The weighted mean
perpendicular velocity field is generally oriented towards
the center of the plane (the manifold’s core).
25
• In Fig. 20b we identify three regions of high vorticity from
the bottom central panel. The three square regions are num-
bered and shown correspondingly on the top right panel.
The same regions are presented in Fig. 21a–c respectively.
The velocity map in the three regions confirms the behavior
presented in the colored regions in bottom central panel of
Fig. 20b. In particular, the ‘‘blue-curl’’ region 1 presents a
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Fig. 21. Zoomed-in regions of high vorticity identified in Fig. 20b. Note how local vortices can be identified within each panel. The corresponding values for the
curl can be identified in the bottom central panel in Fig. 20b. The zoom-in region 1 curl (blue) is opposite to zoom-in 2 and 3 (red) and this is reflected in the
orientation of the vortices: counter clockwise for 1 and clockwise for 2 and 3.
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vortex oriented counter clockwise, while the vortices in the
‘‘red-curl’’ regions 2 and 3 are oriented clockwise.

To summarize, our tool was applied to a simulated cosmic web
volume, and it was able to recover from the complex point clouds
streams of complicated morphology. The proposed analysis of the
structures is in agreement with previous findings regarding the
dynamics of the filaments. This example of application of our
toolbox is further proof of the validity of the proposed method-
ologies. Furthermore, it is still possible to extend the analysis to
other non-dynamical properties of the cosmic filaments (e.g. as
shown in Section 5.1 for the jellyfish galaxy), as well as their
morphology, with no further effort in the development of new
tools. As this will be subject of future studies, we believe that the
toolbox here presented and demonstrated may prove extremely
useful in the understanding of these structures.

5.3. ω-Centauri’s stellar stream from GAIA-DR2

The study of the stellar galactic halo of the Milky Way is of
great importance to astronomers interested in the archaeologi-
cal aspects of the Galaxy, particularly because of the halo’s key
role in characterizing the galaxy’s formation history. A crucial
component to the formation of galaxies in a hierarchical forma-
tion scenario is the growth by tidal disruption or mergers with
external astronomical objects. This led to the deposit of merger
debris in the Milky Way’s halo in the form of stellar streams or
stellar overdensities (Helmi, 2020). In order to characterize the
interaction history of the Milky Way, astronomers have tracked
the stars found within stellar streams in the halo allowing them
to trace the stars’ origins back to the early phases of the Galaxy’s
formation (Helmi, 2020).

Moreover, dynamically cold stellar streams provide an oppor-
tunity to probe the acceleration field of the Galaxy both locally
and globally (Johnston, 1999; Ibata et al., 2002; Johnston et al.,
2002; Carlberg, 2012). This gives great insight onto the nature of
the gravitational force and the distribution of dark matter both
of which are encoded in the Milky Way’s acceleration field (Ibata
et al., 2021).

Deep wide-field photometric surveys including the SDSS (York
et al., 2000), PanSTARRS (Chambers and Pan-STARRS Team, 2016),
and DES (Abbott et al., 2018) have increased our knowledge of
the Galaxy’s stellar halo by revealing many of the narrow streams
and overdensities belonging to it (Helmi, 2020). However, much

greater clarity was obtained with the Gaia mission following the
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second Gaia data release (DR2; Gaia Collaboration, 2018) and the
third early data release (EDR3; Gaia Collaboration, 2020).

Given the multidimensional data provided in Gaia EDR3, the
Milky Way’s stellar streams constitute another natural applica-
tion of our pipeline. For a test subject, we have chosen ω-Centauri
as it is the largest cluster known and has been extensively proven
to be tidally disrupted. In particular we base our work on the
information provided in Ibata et al. (2019a) for spotting the tidal
arms of ω-Centauri. Further detailing of this procedure will be
provided in Section 5.3.1. Through this third demonstration, we
show that our modeling is applicable not only to simulation
outputs, but also to the ever-increasing amounts of observational
data.

5.3.1. Isolation of ω-Centauri’s stream
Methodologies: EM3 A → Dimensionality Index → Crawling

→ SGTM → Co-moving Orthonormal coordinate frames (mod.).
In this section, we outline the different steps followed to

spot the tidal-arms of Omega-Centauri (ω−Cen). This will act
s the preprocessing stage before applying our algorithms to
xtract and model the targeted streams. Through the N-body
imulations conducted in Ibata et al. (2019a), the ‘‘Fimbulthul
tructure’’ (Ibata et al., 2019b) in Gaia DR2 was identified as
art of the tidal arm of the cluster. The properties of the system
hat were guided by the results of their N-body simulations then
erved as a selection filter applied to the stars in an area around
he cluster. In order to obtain a distribution of the stars that show
he two streams, we follow their selection criteria and refer the
eader to Ibata et al. (2019a) for a detailed motivation of the
election basis.
From the Gaia archive, we choose a rectangular region span-

ing l = [−70◦, −30◦
] and b = [5◦, 50◦

] where l and b are
he galactic longitude and latitude respectively. In this region, we
elect the stars that have a parallax uncertainty less than 1 mas
nd those with parallax measurements consistent within 1σ with
istances between 4 and 6 kpc.
We then apply a filter on the kinematic behavior where we

elect the stars that have proper motions along the declination
irection µδ similar to that of the cluster, and proper motions
long the right ascension direction µα that show a decreasing
inear gradient as a function of b. The rate of decrease is taken
s 0.125 mas/yr for every degree in b. For these requirements,
α = −3.1925 ± 0.0022 mas/yr and µδ = −6.7445 ± 0.0019

mas/yr are chosen as the reference values for the cluster, and the
stars within 1 mas/yr of the two kinematic criteria are selected.
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Table 11
Adopted values for experiments on ω−Centauri.
EM3A Rmin = 1 Rmax = 2
Crawling r = 1.5
SGTM r = 1.5 S = L/2
Moving frames a = 2.5

Furthermore, to correct for interstellar extinction, we use the
ust maps provided in Schlegel et al. (1998) and recalibrated
y Schlafly and Finkbeiner (2011) to modify the brightness and
olors of the remaining stars. The extinction-corrected magni-
udes are obtained assuming foreground-only interstellar extinc-
ion with RV = 3.1. For choosing the stars belonging to the
olor-Magnitude Diagram (CMD) of the cluster, we draw the
olygons shown in Figure 4a in Ibata et al. (2019a) and select
he stars belonging to the regions within those polygons. This
election rule allows for the filtering out of a large number of
ackground stars while minimizing the bias against selecting
tars belonging to ω-Centauri (Ibata et al., 2019a).

.3.2. Modeling of stream via SGTM
All the selected particles are collected in data set Q. We first

pply EM3A 3.1.2. In fact, when removing particles within a
ircular region centered on the core of ωCen, the point distri-
ution is irregular in its vicinity, causing a sharp discontinuity
etween the dense (Fig. 22a, lower left) and sparse (Fig. 22b, up-
er right) filaments. Furthermore, the over-density of the galaxy
n the bottom left region of the panel, has a higher chance of
heromone being deposited there than on the filaments. This
esults in LAAT not being able to equally distribute pheromone
long the regions of interest. However, the application of EM3 A
o the data set obtained by kinematical and color-magnitude
iltering proved successful, being EM3 A less influenced by global
ensities and more focused on local anisotropies. Since the data
et has large variations of the local densities, particular care
as to be taken when applying the methodology. In particular,
dopting a large number of iterations with a large radius for
eighborhood search may result in the production of spurious
tructures, unrelated to the filament we require to extract. On
he other hand, a small radius may disrupt the main structure
f interest prematurely, fragmenting it in multiple clumpy re-
ions. It is thus advisable to monitor the advancement of the
ethodology at each iteration and to test different values for its
yper-parameters. Furthermore, since ωCen’s main body has the

highest star’s number density, we remove from data set Q all the
stars lying within the sphere of radius r = 0.8 deg, centered
at [309.10202, +14.96833] in the galactic coordinate reference
system. Following the application of the proposed methodologies,
we recover the skeleton and SGTMmodel of ωCen’s stream. The re-
sulting SGTM is shown in Fig. 22b, together with the stars selected
by the criteria in Section 5.3.1 (Fig. 22a), as obtained by Ibata et al.
(2001). The parameters used for the methodologies are shown in
Table 11. The red line is the skeleton after training SGTM, the
noise model is represented by the isocurves at different isovalues
of the model’s likelihood over the data space. The stream’s model
resembles very closely the one highlighted in Fig. 22a. Gray dots
in Fig. 22b are the same points presented in Fig. 22a, however
we omit the coloring in order to enhance visibility of the noise
model’s iso-contours. The stream is analyzed via the methodology
presented in Section 4.2, but adapted for the 1D case.

Co-moving orthonormal reference frame
We now consider the co-moving orthonormal reference frame

technique, for this one-dimensional case. Figs. 23a–c show the

results on ωCen’s streams. The yellow strip on the top-right panel

27
Fig. 22. Panel (a) depicts the GAIA DR2 stars after selection by criteria explained
in Section 5.3.1, colored by local stellar log-density (adapted from Ibata et al.,
2001). Panel (b) shows the probabilistic model of Omega-Centauri’s stream as
obtained from crawling and SGTM. The red line marks the trained skeleton and
the stars are colored by the log likelihood with a threshold to gray to visualize
isocurves.

of each figure, shows the selection of stars used for computing
local density of the stream. The selection is made on a geometrical
basis, by projecting all stars onto the tangential and perpendicular
spaces of the manifold at each node in the trained SGTM. For
each point in t̃ℓ ∈ P (we drop index k, since we only consider
one manifold), we know the tangent vector to the manifold at
t̃ℓ: ξ̂ℓ = [ξ 1

ℓ , ξ 2
ℓ ]. Its orthogonal complement is given by either

ξ⊥+

ℓ = [−ξ 2
ℓ , ξ 1

ℓ ] or ξ⊥−

ℓ = [ξ 2
ℓ , −ξ 1

ℓ ], giving the vectors pointing
towards increasing or decreasing b respectively. We chose here to
adopt ξ⊥

ℓ = ξ⊥+

ℓ as the orthogonal complement to tangent vector
ξ̂ℓ.

At each t̃ℓ, we project all stars in Q onto the tangent vector ξℓ.
To define the width of the selection strip, we impose a maximum
module for the orthogonal projection onto ξℓ. In this case the
maximum tangential distance is fixed at the distance between
two adjacent centers in the SGTM. We then project all stars onto
ξℓ’s orthogonal complement ξ⊥ and impose a maximum perpen-
dicular distance of 8◦. The stars satisfying these two restrictions
are plotted in the central panel of each plot (yellow points) in
Fig. 23 and it can be verified that they form indeed a rectangular
shape with shorter edge aligned with the tangential space to
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Fig. 23. Visualizations of ωCen ’s stream recovered from GAIA DR2. Each row contains the original density map (left), the model likelihood with the visualization
frame position marked by a red dot (middle). The yellow window expands perpendicular to the stream and can be used to inspect properties at different positions
by analyzing sources within, such as distribution perpendicular to the stream (right histogram). (a) and (b) show regions where the stream peaks clearly, while the
reference frame in panel (c) exemplifies a fainter stream part exhibiting a flatter histogram.
T
t
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the manifold and the longer edge aligned with its orthogonal
complement. We then partition the orthogonal axis in bins and
form a histogram of the number of particles per bin, as shown
in the right panels of Fig. 23, at varying t̃ℓ ∈ P . The histogram
hows how the stellar number density is generally higher nearby
he middle of the perpendicular axis, where the current center of
GTM is located.
In order to estimate the detection quality of the stream we

valuate the Signal-to-noise ratio (SNR) of the central counts with
espect to a co-moving background. For each point on the stream,
e define three apertures of fixed area. The first one lies on
 c

28
the streams and is centered on the current position along the
manifold (Fig. 24 left plot, yellow dots). This is used to estimate
cStream the count of stars belonging to the stream. However, the
resulting count is biased by the sky contribution. In order to
remove this bias we define two other apertures (Fig. 24 left plot,
red dots) and estimate their respective counts as cSky1 and cSky2 .
The average sky count is obtained by ⟨cSky⟩ = 0.5 × (cSky1 + cSky2 ).
he counts per pixel are obtained by normalizing the counts by
he area of the Sky aperture A (fixed for all centers). We now
ompute the Signal of the stream by subtracting the average sky

ount from the stream count and obtain the SNR for the stream
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Fig. 24. Left panel: sky background selection (red circle), overlaid to the box containing the filament from ωCen . Black diamonds show the position of the centers for
GTM (Center ID), after training. Right panel: SNR for each corresponding center of SGTM. We removed the central centers identifying the core of ωCen , since our
nterest is on the quality of detection of the stream.
etection at point t̃ℓ ∈ P:

SNR(t̃ℓ) =
S(t̃ℓ)
N(t̃ℓ)

=
cStream − ⟨cSky⟩√

⟨cSky⟩

√
A
A

. (68)

articularly important for the estimation of the SNR is the area of
oth sky and on-object apertures. In this case, we fix the width
f the rectangles to be double the distance between neighboring
enters on the stream. However, for future analysis, the multi-
licative factor can be changed and imposed by the user in order
o optimize the result. We believe a factor 2 is sufficient in our
ase to obtain a reasonable SNR throughout the whole stream.
he SNR for each point (Center ID in the figure) on the stream
s shown in Fig. 24, right plot. In order to allow visibility of both
he SNR of the streams and the core of ω−Centauri, we present
he SNR in logarithmic scale. Representative Centers IDs are also
hown on the left plot for an easier visual correspondence with
he x-axis of the right plot. The SNR shows a sharp peak at around
enter ID = 25 in correspondence to the core of ω−Centauri. The
eft-most edge of the plot also shows a slight increase in SNR,
ue to the proximity to the hosting galaxy (Center ID = 0, purple
iamond). After the peak in the core, the SNR gradually decreases
p to the right-most edge of the manifold (green diamond),
here the filament is barely detectable.

. Conclusions

We present a coherent, semi-automatic toolbox for the analy-
is of noisy data sets with underlying complicated one-
imensional structures convoluted with transverse noise. The
oolbox is built on five methodologies, each one addressing dif-
erent challenges in this kind of data sets. The first methodology
LAAT) aims at recovering high-density regions distributed along
longated filaments within sparse background noise. It is based
n ant-colony optimization techniques and via the assignment
f a scalar field over the data set it enables selection of relevant
eatures depending on a user-specified threshold. The second
ethodology (EM3 A) enhances over-density along filaments, by
ushing points towards the perpendicular complement of the
anifolds. It is again inspired by ant-colony optimization and
ses principles of game theory for parameter tuning. The third
ethodology (Dimensionality Index) is devoted to defining a
29
dimensionality index to all particles in the data set. Through the
dimensionality index, it is possible to define partitions of the
data set containing only points belonging to structures of defined
dimensionality. A smoothed version of the index is proposed
as a way to take into account the global structure to which
particles locally belong. Having separated one-dimensional points
from the rest of the data set, a manifold crawling algorithm
is proposed that traces the skeletons of the hidden structures.
In order to describe the transverse noise to the manifolds, a
constrained Gaussian Mixture Model is devised in the form of
Stream Generative Topographic Mapping.

We also presented two visualization techniques that take full
advantage of the manifold formulation. The Bi-dimensional pro-
file gives a global view over the manifold, showing concisely the
behavior of desired quantities along the mean curve and across
the radial direction of the filaments. The orthonormal coordinate
frame technique gives a detailed depiction of the same quan-
tities over local frames perpendicular to the manifold’s tangent
direction at each desired location.

The aim of this work is to demonstrate how the various
methodologies can be combined in different ways for a range of
astronomical applications, both on simulated and observed data
sets. Particular care is dedicated to describing in detail the various
aspects of each methodology, with the user experience in mind.

Initially, the toolbox has been applied to a mock data set,
where two main filamentary structures have been defined having
non-linear shapes. The point cloud sampling the manifolds in-
cludes additional transverse and background noise. Each particle
in the data set has a specific value for two simulated physical
quantities. The quantities are designed to follow specific profiles
along and across the two filaments. The application of the toolbox
to this case is used as evaluation of its accuracy in recovering the
hidden structures as well as the variation of the two simulated
quantities along them. Knowing the ground-truth of the two fil-
aments, a quantitative comparison with the structures recovered
via the toolbox was possible, univocally proving the quality of
its performance. We also showed how removing the normaliza-
tion by the ‘‘approximation to unity’’ from SPH interpolations, is
prone to producing artifacts in the final visualization of simulated
quantities, misguiding inference from simulations.

The toolbox has also been applied to two simulated data sets:
a dwarf galaxy interacting with its host galaxy cluster and a fila-
ment from the cosmic web. In the first case, particular attention
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as been devoted to the onset of Star Formation in the arms
enerated by mixing of the dwarf’s interstellar gas and the gas
rom the cluster. After the recovery of a dominant filament in the
ata set, its density, neutral fraction, metallicity and temperature
ave been analyzed with both our visualization techniques, find-
ng favorable Star Formation conditions in the inner parts of the
anifolds, along its whole elongation. In the second application,
e studied the dynamics of a filament extracted from the simu-

ated Cosmic Web. Focusing only on Dark Matter, we show that
slands of opposite curl may appear in the core of the filament,
onfirming previous findings. Given the orthonormal coordinate
lane visualization technique, we are able to estimate the number
f these islands while scrolling along the manifold. Furthermore,
o prove the wide range of possible applications of our toolbox,
e studied the stellar filament of the ω-Centauri globular cluster,

recovered from the GAIA DR2 data set. The application to this
particular data set proved successful, enabling a detailed study
of the stellar number density along the manifold allowing for
the computation of the local Signal-to-Noise Ratio, for a further
constraint on its detectability.

For future continuation of this work, we showcase the ap-
plicability and fitness of the proposed toolbox for extensively
studying the properties of the cosmic web structures. It is then
possible to explore the physical properties of the Dark Matter
halos, gas, or individual galaxies in relation to these structures. As
also mentioned in the introduction, the ability of these method-
ologies to handle very large point clouds opens the possibility
of investigating unexplored regions of the Milky Way that are
dense in stars in pursuit of signs of merger debris. Aside from the
examples mentioned so far, the proposed toolbox can be applied
to a variety of cases and will help in the detection and analy-
sis of filamentary structures with very different natures, hidden
within noisy environments. It is essential to note that this also
includes non-physical manifolds, (e.g. in high-dimensional pa-
rameter spaces). This work showcases the potential of 1-DREAM
on manifolds in physical spaces, either simulated or observed.
However, with no additional modifications or assumptions, it is
possible to extend it to a variety of different spaces, such as the
multidimensional parameter space of astronomical observations,
or the color-magnitude diagram of stellar systems and many
more. Some of these studies will be the subject of future works,
but we believe that 1-DREAM will become a useful tool in many
different fields.
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