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Searching for co-expressed genes in three-color

cDNA microarray data using a probabilistic model

based Hough Transform

Peter Tǐno, Hongya Zhao, Hong Yan

Abstract

The effects of a drug on the genomic scale can be assessed in a three-color cDNA microarray with the three

color intensities represented through the so-called hexaMplot. In our recent study we have shown that the Hough

Transform (HT) applied to the hexaMplot can be used to detectgroups of co-expressed genes in the normal-disease-

drug samples. However, the standard HT is not well suited forthe purpose because: (1) the assayed genes need first

to be hard-partitioned into equally and differentially expressed genes, with HT ignoring possible information in

the former group; (2) the hexaMplot coordinates are negatively correlated and there is no direct way of expressing

this in the standard HT and (3) it is not clear how to quantify the association of co-expressed genes with the line

along which they cluster. We address these deficiencies by formulating a dedicated probabilistic model based HT.

The approach is demonstrated by assessing effects of the drug Rg1 on homocysteine-treated human umbilical vein

endothetial cells. Compared with our previous study we robustly detect stronger natural groupings of co-expressed

genes. Moreover, the gene groups show coherent biological functions with high significance, as detected by the

Gene Ontology analysis.

I. I NTRODUCTION

M ICROARRAY technology enables us to measure expression levels of thousands of genes simul-

taneously. The technology revolutionized research in systems biology, personalized treatment and

drug development (e.g. [1], [2], [3]). Traditional dual-color cDNA microarrays employ two different

fluorescence dyes corresponding to two samples (e.g. “normal” and “disease”). It has been recently

demonstrated that it is possible to use a third dye associated with yet another sample hybridized to a

single microarray [4], [5]. This opened up possibilities toassess effects of a drug in a three-color cDNA

microarray essay hybridizing three samples: normal (dyed red), disease (dyed green) and drug-treated

(dyed blue) [6]. After scanning and data processing, the intensity levels of the three dyes (R, G and B)

are read out from every spot on the array. Each spot represents a gene from the pool of genes being

assayed on the array and the intensities R, G and B reflect expression levels of the genes in the normal

(healthy), disease and drug-treated samples, respectively.
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Fig. 1. Basic layout of hexaMplot. Points in quadrants 2 and 4 correspond to genes for which the effect of the disease has been largely

neutralized by the drug. Gene representations in quadrants 1 and 3 pointto undesirable drug effects. R, G and B represent gene expression

levels of normal, diseased and drug-treated samples respectively.

A two-dimensional representation of R, G and B intensities called hexaMplot, naturally suited for

assessing the drug effect on assayed genes was introduced in[6]. The hexaMplot coordinates represent

the log ratios of intensity pairs:x1 = log2 B/G and x2 = log2 G/R. Note that genes appearing in the

upper and lower half-plane of the hexaMplot are up- and down-regulated, respectively, by the disease.

Analogously, genes located in the left and right half-planeof the hexaMplot are up- and down-regulated,

respectively, by the drug treatment, compared with the disease sample. Also note that along the slant

axis x2 = −x1, we havelog2 B/R = 0, meaning that the expression levels of genes in the normal and

drug-treated samples are the same.

Naturally, one would like the drug to neutralize the effect of the disease on the assayed genes, i.e.

ideally the gene representations in the hexaMplot should cluster around the slant axis. Deviations form

the slant axis within the 4th and 2nd quadrants (x1 > 0, x2 < 0 and x1 < 0, x2 > 0, respectively) still

represent drug effects in the right direction. However, genes falling into the 1st and 3rd quadrants of the

hexaMplot (x1, x2 > 0 andx1, x2 < 0, respectively) show an undesirable effect of the drug, either further

enhancing the up-regulation, or suppressing the down-regulation of the gene by the disease. Typically,

most of the genes will not be effected by the disease or drug treatment [6] and their representations

will cluster around the origin of the hexaMplot. There will be a sizable portion of genes in the 2nd and

4th quadrants of hexaMplot and a smaller portion of genes in the 1st and 3rd quadrants [6], [7]. The

layout of hexaMplot is illustrated in figure 1. Points in quadrants 2 and 4, clustered around the slant axis,

correspond to genes for which the effect of the disease has been largely neutralized by the drug. Gene

representations in quadrants 1 and 3 point to situations of undesirable drug effect.
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A simple methodology to assess the overall therapeutic effect of the drug was proposed in [6]. The

correlation coefficient of hexaMplot representations of the assayed genes was calculated and assessed for

statistical significance. A more involved analysis in [7] detects groups of genes with similar expression

patterns relative to the disease and the drug proposed for its treatment. Each such group is aligned along

a line ray starting in the hexaMplot origin. The direction ofthe ray signifies whether the drug has positive

or negative effect on expression of the group of genes, whilethe angle measures the drug effect level

[7]. The lines were detected through the Hough Transform (HT, see e.g. [8]) applied to differentially

expressed genes. Among the detected lines, only the lines passing through the origin were considered .

The biological function of the resulting gene groups was analyzed in the Gene Ontology (GO) framework1

[9], [10], [11], [12]. GO provides a unique vocabulary across various genomic databases of diverse species.

The driving organizational principle is to preserve essential functional features of genes shared among

the organisms. In the GO analysis one assesses the significance of a group of genes by calculating the

probability (p-value) that genes from the group will be associated with the GO category (node) by chance.

If majority of genes in the group have the same biological function, such a probability will be very low

[12].

The literature on techniques specifically designed for processing gene expression data from 3-color

microarrays is very limited. Most studies related to 3-color microarrays deal with technical issues of

array design/construction, or refer to our previous work ondata analysis methods for assessing drug

effects through 3-color microarrays [6], [7]. To our best knowledge, there are no techniques that could be

considered direct alternatives to [6], [7] for gene expression analysis via 3-color microarrays in the context

of assessing drug effects. However, while the approach of [7] represents a fruitful an interesting direction

in mining gene-related effects of the drug under investigation, there are several problems associated with

it:

1) The HT was applied to the differentially expressed genes only. Detection of the differentially ex-

pressed (and hence “interesting”) genes was done through fitting a bi-variate Gaussian on hexaMplot

representations of the whole gene sample and then applying aprobability density threshold (critical

value of theχ2-distribution). The “hard” separation of assayed genes into equally vs. differentially

expressed genes is not optimal, especially since there willtypically be a high density of points (genes)

around the separating confidence ellipse. The obtained results can be sensitive to the particular choice

of the confidence value defining what is differentially expressed and what is not.

2) The HT implicitly imposes a noise model in the data space that does not fit the nature of hexaMplot

representations well. First, the induced noise model depends on the line parametrization used, which

is unsatisfactory. Second, the(x1, x2) hexaMplot representations are negatively correlated and there

is no direct way of representing this fact in the standard HT.

1Of course, it is possible that genes not on the same line are strongly associated to a GO category due to some kind of nonlinear coherence

in gene expression values. However, to our best knowledge, there is no such nonlinear model discussed in biology literature. The idea of

a nonlinear model needs to be tested to exist consistently in many databasesand interpreted biologically. The Hough Transform can been

used to detect complicated curve shapes, so although our model is linear, the framework can be easily generalized to nonlinear ones if they

are indeed biologically meaningful.
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3) Determination of the quantization level in the Hough space should reflect the amount of “measure-

ment” noise in the hexaMplot features. The quantization level determines the amount of smoothing

in the Hough accumulator, which in turn has an effect on the number of distinct peaks (detected

lines) in the Hough space. Also, given a detected line, thereis no principled way of quantifying the

strength of association of the points with that line.

In this paper, we address these shortcomings in the framework of a principled probabilistic model based

formulation outlined in the next section. Briefly, all assayed genes are considered. The weaker and stronger

contribution of equally and differentially expressed genes is obtained naturally in a “soft” manner from

the probabilistic formulation of the model behind the hexaMplot. The model explicitly takes into account

the size and the negatively correlated nature of the noise associated with hexaMplot gene representations.

Both the strength of association of individual genes with a particular group (line ray in hexaMplot) and

the support for the group by the selected genes can be quantified in a principled manner through posterior

probabilities over the line angles, given the observations.

The paper has the following organization: After introducing our model based Hough Transform in

section II, we apply the methodology to assess the effect of adrug Rg1 on homocysteine-treated human

umbilical vein endothetial cells in section III. Our approach is compared with alternative clustering and

correlation based approaches in section III-A. The main findings are summarized in section IV.

II. PROBABILISTIC MODEL BASED HOUGH TRANSFORM

Consider a line ray inR2 (hexaMplot space) starting in the origin at an angleα ∈ [−π/4, 7π/4). We

assume a bi-variate zero-mean Gaussian measurement noise with covariance matrixΣX . The density of

possible measurementsx = (x1, x2)
T ∈ R

2 corresponding to the point(r cosα, r sinα) on the line is

given by

p(x|α, r) = 1

2π|ΣX |1/2
exp

{

−1

2
(xT − (r cosα, r sinα)) Σ−1

X (x − (r cosα, r sinα)T )

}

, (1)

wherer > 0 is the (Euclidean) distance of the point on the line from the origin.

One may have a prior knowledge about the parameter values(α, r) ∈ [−π/4, 7π/4)× [0,∞), summa-

rized in the form of a prior distributionp(α, r). Given an observationx, the induced uncertainty in the

parameter space is given by the posterior

p(α, r|x) = p(x|α, r) p(α, r)
∫

[π/4,7π/4)×[0,∞)
p(x|α′, r′) p(α′, r′) dα′dr′

. (2)

We are interested only in data points aligned (up to the measurement noise) along a common line passing

through the origin. To obtain the amount of support for the angle parameterα given the observationx,

we integrater from the posterior:

p(α|x) =
∫

[0,∞)

p(α, r|x) dr. (3)

The aim of the Hough Transform (HT) and its generalizations is to detect possible line2 candidates

along which some of the data points are aligned. The detection is performed in the parameter space

2Extension to other parametrized objects such as circles is straightforward.
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(Hough space), where each observation induces a certain amount of mass on parameters compatible

with the observation. For example, in the original HT one partitions the Hough space of line parameters

(e.g. (bias, slope)) and increments each parameter pair by one if it turns out to be compatible with the

observation. After running through all the observations, peaks in the Hough space indicate the lines with

most support, e.g. lines along which many of the observations are aligned. In our case, the Hough space

is the angle intervalH = [−π/4, 7π/4]. We do not discretize the Hough space; instead, each observation

x induces a support kernelp(α|x) in H. Given a set of observationsD = {x1, x2, ..., xN}, xi ∈ R
2,

i = 1, 2, ..., N , we accumulate the evidence contributions in the Hough spaceH as proposed in [13], [14],

namely

H(α;D) =
1

N

N
∑

i=1

p(α|xi). (4)

Note that the probabilistic support kernels in [13], [14] are obtained in a different manner. Whereas in

our model formulation we start with a generative model of thedata (line rays starting in the origin and

endowed with a measurement noise) and determine the (possibly non-Gaussian) support kernel for each

observationx as the marginal posterior givenx, Ji and Haralick [13], [14]imposethat the support kernel

has a Gaussian form of a fixed shape that is determined from theimage data to which the HT is applied.

Given that a line candidate with inclination angleα has been detected by inspecting the peaks of the

Hough accumulatorH(α;D), one can ask which points fromD are strongly associated with it. This can

be done by consulting the posteriorsp(α|xi), i = 1, 2, ..., N , and selecting the points above some threshold

value θ. To enhance the threshold interpretability, we discretized the angle spaceH into a regular grid

G = {α̃1, α̃2, ..., α̃M} and turned the densitiesp(α|x) into probabilitiesP (α̃j|x) over theG:

P (α̃j|x) =
p(α̃j|x)

∑M
k=1 p(α̃k|x)

. (5)

We then calculate the probability thresholdθ ∈ (0, 1) as θ = κ/M , κ ∈ (0,M), meaning that only

observations with posteriors at leastκ times greater than the uninformative distribution1/M will be

considered. Given a probability thresholdθ and a (discretized) anglẽα, the set of selected points that

support the line raỹα reads:

Sθ(α̃) = {x | x ∈ D, P (α̃|x) ≥ θ}. (6)

Once the set of selected pointsSθ(α̃) for a particular line raỹα is obtained, one can check how much

the set as a whole supports that line ray by calculating the posterior

P (α̃|Sθ(α̃)) =
p(Sθ(α̃)|α̃) P (α̃)

∑

α̃′∈G p(Sθ(α̃)|α̃′) P (α̃′)
, (7)

whereP (α̃′) is the prior distribution over the gridG and (assuming independence of observations)

p(Sθ(α̃)|α̃′) =
∏

x∈Sθ(α̃)

p(x|α̃′)

=
∏

x∈Sθ(α̃)

∫

∞

0

p(x|r, α̃′) p(r|α̃′)dr. (8)

Here,p(x|r, α̃′) is the noise model (1) andp(r|α̃′) is the conditional prior onr.



6

A. Noise model

Our two-dimensional observations are hexaMplot representations of the 3-color intensities(R,G,B)

measured in cDNA microarrays. It is usual to assume that the log intensities are normally distributed.

Recall that the 2-dimensional hexaMplot representations read:

x = (x1, x2)
T =

(

log
B

G
, log

G

R

)T

.

Now, consider three random variables (log intensities)Y1, Y2 andY3 representinglogB, logG andlogR,

respectively. The hexaMplot representations(x1, x2) correspond to two random variablesX1 = Y1 − Y2

andX2 = Y2 − Y3 coupled throughY2. Even if we assume that the individual measurement errors ofthe

three log intensitiesY1, Y2 andY3 are independent, the implied noise in the hexaMplot coordinatesX1, X2

will be negatively correlated. This simply follows from that fact that whileY2 contributes negatively to

X1, its contribution toX2 is positive. Assuming that the measurement noise of the log intensityYi is a

zero mean Gaussian with varianceσ2
i , i = 1, 2, 3, (X1, X2) will be Gaussian distributed with covariance

matrix

ΣX =

[

σ2
1 + σ2

2 −σ2
2

−σ2
2 σ2

2 + σ2
3

]

. (9)

This can be seen by realizing that for an affine-transformed vector random variableX = c +AY , where

Y is a multivariate Gaussian distributed random variable with meanm and covarianceΣY , X will be

Gaussian distributed with meanc + Am and covarianceAΣYA
T . In our case

A =

[

1 −1 0

0 1 −1

]

. (10)

If (as done in this paper) we assume equal levels of measurement noise across the three colors,σ2 =

σ2
1 = σ2

2 = σ2
3, we obtain

ΣX = 2σ2

[

1 −1
2

−1
2

1

]

. (11)

B. Priors over the parameters

As explained above, for the hexaMplot typically, most of thegenes will not be effected by the disease

or drug treatment making their representations cluster around the origin of the hexaMplot. There will be

a sizable portion of genes in the 2nd and 4th quadrants of hexaMplot positively effected by the drug

treatment. A smaller portion of genes negatively effected by the drug treatment will be represented in the

1st and 3rd quadrants. We express this insight through the piecewise linear priorp(α):
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Fig. 2. Prior on anglesα for the inhomogeneity parameter settingCα = 0.9.
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

−α ·∆α + 1
2π
, if − π/4 ≤ α < π/4

α ·∆α + 3Cα−1
2π(1+Cα)

, if π/4 ≤ α < 3π/4

−α ·∆α + 5−3Cα

2π(1+Cα)
, if 3π/4 ≤ α < 5π/4

α ·∆α + 7Cα−5
2π(1+Cα)

, if 5π/4 ≤ α < 7π/4

(12)

where

∆α =
2(1− Cα)

π2(1 + Cα)
(13)

andCα ∈ [0, 1] is a constant determining the ratio between the minimum prior probability assigned to

the anglesα = π/4 andα = 5π/4 at the center of quadrants 1 and 3, respectively, and the maximum

prior probability assigned to the anglesα = 3π/4 and α = 7π/4 at the center of quadrants 2 and 4,

respectively. As an example, the priorp(α) is shown in figure 2 for the inhomogeneity parameterCα set

to Cα = 0.9. Note that whenCα = 1, we obtain the maximum entropy uniform priorp(α) = 1/(2π) for

all α ∈ [−π/4, 7π/4).

It is also natural to expect that if measurements of many genes were performed, only a smaller portion

of the data will show significant effects, i.e. there will be more points concentrated around the origin

of the hexaMplot than further away from it, especially in quadrants 1 and 3 of the(logB/G, logG/R)

system. We express this by formulating a prior onr ≥ 0 (conditional on the angleα) as a mixture of two

truncated Gaussians:

p(r|α) = (1− κ(α)) p1(r) + κ(α) p2(r), (14)

where

pi(r) =
2√
2πωi

exp

{

− r2

2ω2
i

}

, i = 1, 2
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Fig. 3. Mixing coefficientκ(α) for Cr = 0.9.

with 0 < ω1 ≤ ω2, and

κ(α) =




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
















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





−α ·∆r +
1+Cr

2
, if − π/4 ≤ α < π/4

α ·∆r +
3Cr−1

2
, if π/4 ≤ α < 3π/4

−α ·∆r +
5−3Cr

2
, if 3π/4 ≤ α < 5π/4

α ·∆r +
7Cr−5

2
, if 5π/4 ≤ α < 7π/4,

(15)

∆r =
2(1− Cr)

π
. (16)

The (truncated) Gaussianspi(r), i = 1, 2, operating onr ≥ 0 reflect the assumption of greater

concentration of gene representations around the origin ofthe hexaMplot than further away from it.

Moreover, in quadrants 2 and 4 there may be greater variationof points than in quadrants 1 and 3. In

the middle of quadrants 2 and 4, the mixing coefficients of themixture prior p(r|α) (14) are equal to

1−κ(α) = 0 andκ(α) = 1, making the priorp(r|α) = p2(r). In the middle of quadrants 1 and 3, the mixing

coefficients are determined byκ(α) = Cr ≤ 1 and the prior readsp(r|α) = (1 − Cr) p1(r) + Cr p2(r).

Sinceω1 ≤ ω2, in quadrants 1 and 3 the prior assumes greater concentration around the origin than in

quadrants 2 and 4. Note that whenCr = 1, we obtain a simple (truncated) Gaussian prior of standard

deviationωr = ω2 on r, independent of the angleα. We illustrate the angle-conditional mixing coefficient

κ(α) for Cr = 0.9 in figure 3.

The joint priorp(α, r) = p(α) p(r|α) is illustrated in figure 4 forCα = Cr = 0.9 andω1 = 1.9, ω2 = 2.
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Fig. 4. Joint priorp(α, r) = p(α) p(r|α) for Cα = Cr = 0.9 andω1 = 1.9, ω2 = 2.

C. Interpretation of the model

The standard HT assumes that all points located within a “close” range of the hypothesis line contribute

equally to support that line in the Hough space. The notion ofcloseness is determined implicitly by coarse-

graining of the Hough space partition. It has been long recognized that such atop hatstrategy to compute

the contribution of each observation is inadequate since not all data points are equally reliable e.g. due

to uncertainties induced by the image noise, edge orientation estimation etc. [15], [13], [14]. Several

“soft” alternatives to the “hard”top hatkernels have been suggested, mainly in the explicit contextof line

detection in images, e.g. [16], [14], [17]. However, to our best knowledge, our approach is unique in that

the support kernels in the Hough space are obtained from a principled generative model in the data space.

A simple illustration of our approach is presented in figure 5(a). Three observationsxi, i = 1, 2, 3, aligned

along a line ray (bold solid line) with angleα are shown. The discs surrounding the observations signify

the measurement noise. Of course, when it comes to estimating the angleα, the closer the observation is

positioned towards the origin, the greater is the induced uncertainty about the actual angle in the Hough

spaceH. The uncertainty in the angle estimates associated with observationsx1, x2 andx3 is illustrated by

the pairs of dotted, dashed and solid lines, respectively. Consequently the support kernelp(α|x1) will be

least informative (dotted bold line in figure 5(b)), while the support kernelp(α|x3) will be highly peaked

(solid bold line in figure 5(b)). The standard HT and many of its modifications apply the same kernel

on top of all estimates in the Hough space. Our model based formulation of the HT naturally treats the

variable degrees of uncertainty in the support kernels.

As a specific example, consider three pointsx1 = (0.1,−0.1)T , x2 = (−1, 0)T andx3 = (−1.75, 1.75)T

lying on rays with angles−π/4, π and 3π/4, respectively. The posteriors in the parameter space under

parameter settingCα = Cr = 0.9, ω1 = 1.9, ω2 = 2 are shown in figure 6. The joint posteriorsp(α, r|xi)

for noise levelsσ = 0.2 andσ = 0.05 are presented in figures 6(a) and (c), respectively. Note howthe

reduction in noise variance leads to more peaky (informative) posteriors in the(α, r)-space. Note also that
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Fig. 5. Illustration of the model based approach to the HT used in this study.Three observationsxi, i = 1, 2, 3, are aligned along a ray of

line (bold solid line in (a)) with angleα. Discs surrounding the observations signify the measurement noise. The closer is the observation

towards the origin, the greater is the induced uncertainty about the actual angle in the Hough spaceH. The uncertainty in the angle estimates

associated with observationsx1, x2 andx3 is illustrated in (a) by the pairs of dotted, dashed and solid lines, respectively. The support kernel

p(α|x1) of the first observation will be least informative (dotted bold line in (b)), while the support kernelp(α|x3) of the last observation

will be most peaky (solid bold line in (b)).

the further away the observation is from the origin, the moreinformative the corresponding posterior over

α becomes. The marginal contributionsp(α|xi) to the Hough space “accumulator” are shown in figures

6(b) and (d) forσ = 0.2 andσ = 0.05, respectively.

One can interpretH(α;D) in (4) as a form of the Parzen window estimator of the density of the angle

parameters inH. Modes ofH(α;D) detect angles with maximum support, given our model formulation.

Of course, an alternative route may be to estimate the posterior distribution overH given the full dataD.

However, this cannot be done under a single line model, as there will typically be more line candidates

with substantial amount of points aligned along them. In that case we could have opted for a mixture

model setting, with mixture components formulated as noisyline rays starting in the origin. Many points

would still not be sufficiently explained by few focused linesegments and a “garbage collector” mixture

component would need to be invoked. This is reminiscent of a “mixture-like” approach recently suggested

in [18], where elaborate sampling in the parameter and modelspaces in a constrained setting is used in

the model inference stage.

Whereas the standard HT and its variants were mostly designedfor line detection in image processing,

taking into account specific features such as intensity of gradient information, here we assume that the

observed data represents a cloud of distinct points (not necessarily image related) andsomeof those points

can be aligned along specific parametrized geometric shapes(e.g. ray of line starting in the origin). In

addition, the number of such geometric objects with data aligned along them can be rather small with

most data points “unexplained”. In such cases, fitting of mixture formulations can be unstable and the

HT strategy of searching for geometric objects by detectingpeaks in the accumulator represents a more

straightforward and robust approach. Unlike in the original HT, we formulate the model using a continuous
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Hough space that can be discretized for practical purposes.In the HT, discretization of the Hough space

is a essential and quantization interval length is crucial,as it implicitly determines robustness of HT to

noise. In our model the quantization interval can be arbitrarily fine, computational cost permitting, without

significantly effecting the model properties.

III. A SSESSING THE EFFECT OFRG1 ON HOMOCYSTEINE-TREATED HUMAN UMBILICAL VEIN

ENDOTHETIAL CELLS

In this section we will apply the methodology developed above to the analysis of the drug Rg1 (dominant

compound of the extract of ginsenosides in ginseng) on homocysteine-treated human umbilical vein

endothetial cells (HUVEC). The data has been previously analyzed using the standard HT method applied

to the hexaMplot in [7]. There are 1128 genes assayed in four microarrays obtained in four repeats under

the same experimental conditions. The original microarraydata was normalized using the nonlinear Loess
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Fig. 7. Mean hexaMplot of the normalized data in the Rg1 drug experimenton homocysteine-treated human umbilical vein endothetial

cells. The dashed lines show rays with angles−π/4, π/4, 3π/4 and5π/4.

method3 [20]. The mean hexaMplot of the normalized data (see sectionI) is shown in figure 7.

Recall that genes distributed along the same line ray starting in the origin show similar expression

patterns and drug effects. Detection of obvious line rays infigure 7 would be problematic, if working

directly in the hexaMplot coordinates. However, when concentrating on the accumulated support in the

Hough space of angles from individual observations, the main tendencies can be picked up robustly.

We applied the mild inhomogeneity setting for prior4 p(α, r) illustrated in figure 4, namelyCα = Cr =

0.9 andω1 = 1.9, ω2 = 2.

In figures 8(a),(b) and 9 we show the Hough accumulatorH(α;D) (4) for three levels of noise standard

deviation:σ = 0.5, σ = 0.01 andσ = 0.05, respectively. Vertical dashed lines indicate dominant peaks in

the accumulator. As expected, lowering the noise variance results in more peaky support kernelsp(α|x)
and consequently in a less smooth accumulator. We ran an “annealing process” starting with a large noise

varianceσ = 1 and, as the variance decreases, we detect the emerging line ray (gene group) candidates.

In figure 8(a) only two ray candidates can be detected, roughly corresponding to anglesα = −π/4 and

α = 3π/4. These line rays explain most of the data in the 4th and 2nd quadrants of the hexaMplot in

figure 7. Atσ = 0.01 (figure 8(b)) the Hough accumulator is too rugged with many ray candidates (gene

groups) supported by few data points (genes). Figure 10 presents the six detected line rays (solid bold

lines) forσ = 0.05 (figure 9), together with the selected points (stars)Sθ(α̃) (6) supporting the lines (see

3The data was normalized by robust local regression in the MA plot [19] within arrays and then the scales were adjusted between the

arrays as proposed in [20]. The within and between arrays normalization was performed using Limma package written in R language [21].
4 One might wonder about the mismatch between our prior (centered at theorigin of the hexaMplot) and the data distribution in figure

7. However, note that the role of prior distribution is to express our ideas about the distribution of items of interest (in our case - cylindric

coordinates of the 2-dimensional gene hexaMplot representations)prior to seeing the actual data measurements. As explained in section

II-B, one may naturally expect the gene representations to be centeredaround the origin (most of the genes will not be effected by the

disease or drug treatment). There is no reason for the distribution of the actual measured data to follow every detail of the prior distribution.

The data we work with simply reflect the gene selections made by the biologistswhen designing the experiment.
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Fig. 8. Hough accumulatorH(α;D) for 2 levels of noise standard deviation:σ = 0.5 (a) andσ = 0.01 (b).
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Fig. 9. Hough accumulatorH(α;D) for standard deviation of the noise set toσ = 0.05.

section II). Here,M = 126 andκ = 25, meaning that the angle spaceH = [−π/4, 7π/4) was discretized

into 126 values{α̃i} and the selection threshold wasθ = κ/M = 0.2.

The posteriorsP (α̃|Sθ(α̃)) (7) of the detected lines are shown in figure 11(a). It is clearthat the

selected genesSθ(α̃)) support the detected lines (gene groups) - especially thosein the 4th quadrant

of the hexaMplot - very strongly. We also plot the posteriorsof those six detected gene groups for the

case of a larger observational noiseσ = 0.3 (figure 11(b)). Moreover, for three levels of observational



14

−1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

hexaMplot

Fig. 10. Detected line rays (solid bold lines) forσ = 0.05 and selected points supporting those lines (stars). The selected pointsSθ(α)

were chosen usingM = 126 andκ = 25.

line α̃ (α̃−(0.05), α̃+(0.05)) (α̃−(0.3), α̃+(0.3)) (α̃−(1.0), α̃+(1.0))

1 -0.685 (-0.735,-0.684) (-0.736, -0.683) (-0.885,-0.535)

2 -0.585 ( -0.635,-0.584) (-0.635, -0.535) (-0.785,-0.435)

3 -0.285 (-0.335,-0.284) (-0.385, -0.235) (-0.685,-0.235)

4 1.965 (1.914,1.966) (1.665, 2.265) (-0.035, 3.015)

5 2.215 (2.165,2.216) (2.015, 2.365) (1.565, 2.765)

6 2.465 (2.415,2.466) (2.265, 2.615) (1.865, 3.015)

TABLE I

THE SHORTEST INTERVALS(α̃−(σ), α̃+(σ)) CONTAINING THE ESTIMATED LINE ANGLES AND 95% OF THE POSTERIOR MASS

P (·|Sθ(α̃)) AROUND THEM. WE SHOW THE INTERVALS FOR THREE LEVELS OF OBSERVATIONAL NOISE: σ = 0.05, σ = 0.3 AND σ = 1.0.

noiseσ = 0.05, 0.3, 1.0, the shortest “quantile” intervals(α̃−(σ), α̃+(σ)) containing the estimated angles

and 95% of the posterior massP (·|Sθ(α̃)) around them are reported in table I. Intervals(α̃−(σ), α̃+(σ))

represent the uncertainty one has in the point estimates of line angles, given the support of the selected

pointsSθ(α̃). Note that unlike in the traditional HT, this uncertainty measure follows from a principled

model formulation that reflects our assumptions about the data generation process.

From the four available repeats of the microchips, the obtained rough estimates of standard deviation

of the hexaMplot noise were below0.3 for most genes. For such noise levels, the selected genes in the

4th quadrant of the hexaMplot still support the corresponding three gene groups quite strongly. In general,

since the support kernelsp(α|x) in the Hough accumulatorH(α;D) (4) are posteriors over angles given a

single observation, the resulting accumulator may be oversmooth. Hence, we detect the emerging dominant
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Fig. 11. PosteriorsP (α|Sθ(α)) of the six detected lines (gene groups) in figure 10 for two levels of observational noise:σ = 0.05 (a) and

σ = 0.3 (b).

gene groups by annealing the HT through lowering the variance parameterσ2 as described above, and

for detected groups with solid gene support we calculate posteriorsP (α̃|Sθ(α̃)) given the full setSθ(α̃))

of group members and a realistic estimate of the noise level.

We investigated the biological meaning of the six detected groups of genes (line rays in the hexaMplot)

within the Gene Ontology (GO) framework [9], [10], [11], [12]. The results are summarized in table II.

The table has the following organization: For each line we report the number|Sθ(α̃)| of detected genes

(second column). Representative GO terms for genes inSθ(α̃) are listed in the third column. For each

GO term we report the number of genes annotated to that term inthe GO (fourth column), as well as the

number of genes from the gene groupSθ(α̃) annotated to it (fifth column). In the sixth column we show

the probability (p-value) that genes fromSθ(α̃) would get annotated to the GO term by chance [12]. The

p-values are calculated using hypergeometric distribution. If an annotation file containsn genes, a given

GO term hasm annotated genes, and a gene group containsq genes of interest, the probability of seeing

k or more genes of interest annotated to that GO term is determined as5 [12]:

p-value=
q

∑

j=k

(

m
j

)(

n−m
q−j

)

(

n
q

) . (17)

5 Note that such calculations can lead to seemingly overly small p-values in cases of small number of genes from a gene group that

are included in a GO term, e.g. line 4, GO: 0002439. Herem = 86 genes from then related human genes are directly annotated to GO:

0002439 andk = 1 gene in line 4 cluster is annotated to that GO term. Due to the very largen and not very smallm, the p value may be

very small even if only one gene in our cluster is annotated to the GO term. This situation is common in GO annotation analysis of gene

clusters. It is still an open problem how to select annotated GO terms of the genes of interest. Some researchers only consider GO terms

with the smallest p-value. Others are not only interested in the GO term with the smallest p-value (e.g.< 0.01), but also require that the

number of genes from the cluster annotated to the term be no less than a certain cutoff value (e.g.≥ 5). In this study, the GO term with the

smallest p-value is used without considering the number of genes annotated.
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The first three lines with angles in(−π/4, 0) represent genes with(R,G,B) intensities satisfying

G < R < B. In other words, the disease decreases expression of a gene,compared with its normal expres-

sion levelR, i.e.G < R. The drug eliminates this effect by overexpressing the genes,B > R. Genes in the

group corresponding to the 1st line are related to acute inflammatory response (GO:0002675, GO:0002525)

increasing for example the concentration of non-antibody proteins in the plasma (GO:0006953), or in-

creasing the intra- or extra-cellular levels of prostaglandin (GO:0002539) and leukotriene (GO:0002540).

Genes clustered along the 2nd line are related to cellular components and mechanisms effected by the

disease. The 3rd line groups genes that are related to binding mechanisms (GO:0005488) and breakdown

of neutral lipids (GO:0046461), membrane lipids (GO:0046466) and glycerolipids (GO:0046503). The

disease also down-regulates genes related to pathways of the complement cascade which allow for the

direct killing of microbes as well as regulation of other immune processes (GO:0001867, GO:0006957).

The drug Rg1 corrects this situation by stimulating the pathways.

The 4th and 5th lines with angles in(π/2, 3π/2) represent genes with(R,G,B) intensities satisfying

R < B < G. Compared with its normal expression level, the expression of a gene is increased by the

disease (G > R). The drug partially eliminates this effect by reducing theexpression level toB, leavingB

still above the normal expressionR. Finally, the sixth line withα ∈ (3π/2, π) groups genes with(R,G,B)

intensities satisfyingB < R < G. The disease causes increased expression of a gene (G > R) and the

drug compensates for this effect by driving the gene expression below the normal level (B < R). While

genes grouped together by the 4th line are associated with immune and chronic inflammatory response,

the genes corresponding to the 5th and 6th lines are again related to cellular components and mechanisms

effected by the disease.

One can legitimately ask how stable are our results with respect to setting of the prior parameters6. We

repeated the whole experiment under two less mild inhomogeneity settingsCα = Cr = 0.8, ω1 = 1.8,

ω2 = 2 andCα = Cr = 0.7, ω1 = 1.7, ω2 = 2. We also performed the experiments under uniform prior

over the angles (Cα = 1) and a simple Gaussian prior overr (Cr = 1) with standard deviationωr = ω2

set toωr = 2, 3, 4, 10, 60. Note that the settingCα = Cr = 1, ωr = 60 represents virtually uniform prior,

as the radius of the data does not exceed2.

The six peaks in the original Hough accumulator (figure 9) forσ = 0.05 dominated the Hough

accumulators in all 7 prior settings described above. Being assured that the six lines in the hexaMplot

are robustly recovered under a wide range of prior settings,we next investigated whether the leading GO

terms in table II determined from gene groupsSθ(α̃) would stay unchanged regardless of the prior settings.

In table III we report for each investigated prior and each line α̃ the number of genesNδ by which the

gene groupSθ(α̃) differs from that of our original prior settingCα = Cr = 0.9, ω1 = 1.9, ω2 = 2. The

gene groups corresponding to lines 1, 4, 5 and 6 are perfectlyrecovered for all tested prior settings. The

gene groups for lines 2 and 3 differed by at most 2 genes, whichis a negligible difference, given that the

number of genes in original groups corresponding to lines 2 and 3 is 64 and 71, respectively. Indeed, the

6We are thankful to anonymous referees for suggesting to perform a systematic quantitative study of this issue.
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line |Sθ(α̃)| GO term ID # genes # genes fromSθ(α̃) p-value

1 80 GO:0002675 87 37 0.00173

GO:0002525 85 36 0.00242

GO:0006953 85 36 0.00242

GO:0002527 86 36 0.00322

GO:0002543 86 36 0.00322

GO:0002539 60 27 0.00441

GO:0002540 60 27 0.00441

2 64 GO:0044424 176 41 0.00000

GO:0044444 175 41 0.00000

GO:0044446 168 39 0.00294

GO:0030117 165 38 0.00437

GO:0045265 162 37 0.00536

3 71 GO:0005488 178 51 0.00000

GO:0050794 163 55 0.00295

GO:0046461 88 19 0.00381

GO:0046466 88 19 0.00381

GO:0046503 88 19 0.00381

GO:0001867 104 24 0.00382

GO:0006957 104 24 0.00382

4 12 GO:0005488 178 9 0.00000

GO:0002439 86 1 0.00597

5 13 GO:0005488 178 9 0.00000

GO:0044464 175 6 0.00000

GO:0000502 164 5 0.00000

6 11 GO:0005488 178 6 0.00000

GO:0043231 157 3 0.00340

GO:0007242 140 2 0.00490

TABLE II

THE EFFECTS OF THE DRUGRG1 ON HCY-TREATED HUVE CELLS. FOR EACH GENE GROUP(LINE RAY IN FIGURE 10) WE SHOW

REPRESENTATIVEGENE ONTOLOGY TERMS AND THE STRENGTH OF THEIR ASSOCIATION WITH THEGENE GROUP(P-VALUE ).
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Prior line 1 line 2 line 3 line 4 line 5 line 6

Cα = Cr = 0.7, ω1 = 1.7 0 2 2 0 0 0

Cα = Cr = 0.8, ω1 = 1.8 0 1 1 0 0 0

Cα = Cr = 1, ωr = 2 0 0 0 0 0 0

Cα = Cr = 1, ωr = 3 0 0 0 0 0 0

Cα = Cr = 1, ωr = 4 0 0 0 0 0 0

Cα = Cr = 1, ωr = 10 0 0 1 0 0 0

Cα = Cr = 1, ωr = 60 0 0 1 0 0 0

TABLE III

CARDINALITY OF THE SET DIFFERENCE BETWEEN THE GENE GROUPSSθ(α̃) DETECTED UNDER THE ORIGINAL PRIOR SETTING

Cα = Cr = 0.9, ω1 = 1.9, ω2 = 2 AND THE OTHER TESTED PRIOR SETTINGS. THE SIZES OF THE ORIGINAL SETSSθ(α̃)

CORRESPONDING TO LINES1, 2, 3, 4, 5AND 6 ARE 80, 64, 71, 12, 13AND 11.

GO analysis confirmed that all leading GO terms reported in table II are robustly recovered for all tested

prior settings.

A. Comparison with alternative clustering and correlation based approaches

We conclude the experiments by comparing our approach with some other clustering and correlation

based approaches to gene grouping based on gene expression profiles. There is, of course, a huge number

of general approaches for gene grouping (see e.g. [22]). We used three representative approaches to

highlight potential strengths/weaknesses of our approachfor grouping genes in the context of assessing

drug effects through 3-color cDNA arrays.

The genes were grouped using a probabilistic clustering method (Gaussian mixture model (GMM)), a

non-probabilistic “hard” clustering method (K-means clustering) and a correlation based method (Average

Correlation Clustering Algorithm (ACCA) [23]). The driving force behind gene grouping in clustering

based approaches is a distance between expression profiles of individual genes (Euclidean distance in

the case of K-means clustering, Mahanabolis distances in the case of GMM). On the other hand, in

correlation based approaches it is the correlation (‘angle’) between expression profiles that determines the

gene similarity. We considered two gene expression profilesfor gene grouping:

• 3D - the original three (log) intensities of gene expression under normal, disease and drug-treated

conditions. Models fitted on such data will be referred to by GMM-3D, K-means-3D and ACCA-3D.

• 2D - two-dimensional hexaMplot gene representations obtained from the original intensities as

described in section I. Models built on hexaMplot gene representations will be denoted by GMM-2D,

K-means-2D and ACCA-2D.

Gaussian mixture model is a generative probabilistic modelof the data and so some sort of principled

model selection can be applied to specify the number of components. We used cross-validated model

likelihood [24] and the optimal number of 2- and 3-variate Gaussian components in GMM-2D and GMM-

3D were 6 and 4, respectively. A 6-component GMM-2D fitted to the hexaMplot gene representations is
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Fig. 12. Gaussian mixture model with 6 mixture components fitted on the hexaMplot gene representations (shown as dots). For each

2-variate Gaussian mixture component we show the axes of ellipses of constant density. The widths of the axes are given by one standard

deviation.

illustrated in figure 12. The genes were formed around individual mixture components based on posterior

probabilities of the componentsj, given a geneg, P (j|g). If for a given geneg and a mixture component

j, P (j|g) > 3/4, the geneg was assigned to groupj. The other two methods, K-means clustering and

ACCA, partition the data set in a “hard” manner. Model selection is less straightforward and for ease of

comparison with our approach we constructed 6 gene groups ineach case (2D and 3D).

As before, the detected gene groups were analyzed for biological meaning within the GO framework.

The results are summarized in table IV. For each gene group wereport the method under which it

was constructed (first column), its size (third column) and the representative GO term7 (fourth column)

associated with the group most strongly (with the smallest p-value8 (seventh column)). Also shown is the

number of genes annotated to that GO term (fifth column) and the number of genes from the gene group

annotated to the GO term (sixth column).

Comparing tables II and IV, it appears that the gene groupingsby alternative approaches in general

lead to larger, more general GO terms. Such GO terms are potentially less specific from the point of view

of the underlying biological functionality. Interestingly, gene groups constructed by alternative techniques

and the three main groups (1,2 and 3) discovered by our approach overlap with their representative GO

terms in roughly similar numbers of genes. Hence, compared with alternative techniques, in our approach

7Note that groups 6 (GMM-2D) and 4 (GMM-3D) were not annotated with a GO term since their size was too small. This can happen

in probabilistic clustering for ‘internal’ mixture componentsj surrounded by other mixture components. Even though many pointsg get

explained by such a mixture componentj in the sense that the posteriorP (j|g) maximizesP (·|g), P (j|g) is not high enough to merit

inclusion ofg in the groupj.
8Note from eq. (17) that the p-values can be very small due to very largenumbern of annotated human genes in GO and reasonably

large GO term sizesm.
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model group group size GO term ID # genes # genes from group p-value

ACCA-2D 1 18 GO:0006897 258 4 0.00450

2 174 GO:0007169 278 19 0.00000

3 275 GO:0043067 855 54 0.00000

4 119 GO:0042981 847 27 0.00003

5 430 GO:0008284 420 64 0.00000

6 74 GO:0010033 730 16 0.00210

ACCA-2D 1 117 GO:0007169 278 13 0.00097

2 45 GO:0048534 333 7 0.05800

3 138 GO:0042981 847 37 0.00000

4 158 GO:0048514 261 15 0.00009

5 494 GO:0009611 584 69 0.00000

6 138 GO:0042325 477 27 0.00000

GMM-2D 1 68 GO:0009611 584 14 0.00055

2 134 GO:0042981 847 35 0.00000

3 42 GO:0008406 109 6 0.00460

4 85 GO:0009611 584 16 0.00053

5 128 GO:0019220 497 22 0.00000

6 3 – – – –

GMM-3D 1 564 GO:0010033 730 97 0.00000

2 131 GO:0007626 292 21 0.01100

3 228 GO:0042981 847 62 0.00000

4 1 – – – –

K-means-2D 1 132 GO:0043085 535 24 0.00000

2 227 GO:0010033 730 42 0.00000

3 151 GO:0006468 767 28 0.00000

4 112 GO:0043067 855 30 0.00000

5 243 GO:0010941 858 47 0.00000

6 225 GO:0016310 1102 44 0.00000

K-means-3D 1 103 GO:0006468 767 22 0.00006

2 178 GO:0042981 847 52 0.00000

3 46 GO:0045321 332 7 0.06500

4 287 GO:0006955 962 48 0.00000

5 83 GO:0007166 1976 23 0.05700

6 393 GO:0006468 767 88 0.00000

TABLE IV

THE EFFECTS OF THE DRUGRG1 ON HCY-TREATED HUVE CELLS. FOR EACH GENE GROUP WE SHOW THE GROUP SIZE AND THE

REPRESENTATIVEGENE ONTOLOGY (GO) TERM ASSOCIATED WITH THE GROUP WITH THE SMALLEST P-VALUE . WE ALSO REPORT THE

NUMBER OF GENES IN THEGO TERM AND THE NUMBER OF GENES FROM THE GROUP ASSOCIATED WITH THE GO TERM.
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smaller gene groups lead to more specific (smaller) representative GO terms (# genes), while the numbers

of genes from the gene groups inside their representative GOterms are proportionally higher - even though

we have smaller groups that yield smaller representative GOterms, the numbers of genes from groups

in their representative GO terms (# genes fromSθ(α̃) in table II) are comparable to their counterparts (#

genes from groupin table IV), that are however obtained from larger gene groups and GO terms. Hence,

the gene groupings obtained by our approach appear to be moretightly linked to more specific biological

functionalities, which is preferable from the point of viewof systems biology.

Of course, one can always modify the basic clustering and correlation based approaches so that smaller

and smaller groupings are obtained. One can then hope that even in smaller gene groups there will still be

sufficiently many genes related to some important biological function (as detected by the Gene Onthology).

Besides great computational expense of such an approach, of more concern is the question of the origin of

such groupings. Where do they come from? In what sense do they appear naturally from the data? In our

approach, line rays in the hexaMplot group coherently expressed genes as clusters, where the coherence is

modeled as linear relations, whose biological interpretations have been studied extensively in biclustering.

Indeed, GO appears to provide some evidence for such coherence. In view of drug evaluation, the desirable

genes should accumulate along the slant axis of the hexaMplot. Considering the different effect of a drug,

the lines passing through the origin of the hexaMplot are used to measure the drug effect levels. The

direction of a line can be used to determine whether the drug has positive or negative effect on a group

of genes. The probabilistic Hough Transform introduced in this study provides a natural mechanism for

finding groups of related genes buried inside a background cloud of other gene representations. Other

clustering/correlation based approaches are usually forced topartition (in a hard or soft manner)the whole

set of genes, without being able to focus on ‘interesting’ groupings, while not paying attention to the rest

(see figure 12). On the contrary, we pose a drug-effect related linear relation between gene representations

in a group and detect significant groups modulo measurement noise, ignoring the the background cloud

of points not showing significant linear groupings (see figure 10).

As mentioned above, it is difficult to apply a principled model selection in the case of K-means

clustering, but a principled model selection could be applied to Gaussian mixture model (a “soft” version

of K-means): it returned 6 and 4 components on the 2-D and 3-D gene representations, respectively.

These gene groupings appear inferior to the ones discoveredby our methodology. Of course it would be

possible to modify e.g K-means to return clusters of the sizeof groupings detected by our approach. But

the question is, why that particular setting of K-means and not another (smalled/larger clusters)? In our

method, the group sizes emerge naturally from the data, theyare not dictated by another unrelated method

or imposed prior to model building.

We finish by stressing that these results, however encouraging, come from one specific study and the

true value of the presented approach can only be determined by its use by the wider community of users

and practitioners.
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IV. CONCLUSION

It has been shown that the HT applied to hexaMplot gene representations can be used to detect groups

of co-expressed genes in the normal-disease-drug samples [7]. However, the standard HT is not well

suited for the purpose because:(1) the assayed genes need first to be hard-partitioned into equally and

differentially expressed genes, with the HT applied only tothe latter ones, ignoring possible information

in the former group;(2) the hexaMplot coordinates are naturally negatively correlated and there is no

direct way of expressing this in the standard HT and(3) it is not clear how to calculate in a principled

and consistent manner the strength of association of a groupof co-expressed genes with the line along

which the genes cluster.

In this study we have addressed these deficiencies by formulating a dedicated probabilistic model

based HT for detecting gene groups aligned along line rays starting in the origin in the hexaMplot.

The nature of noise in the hexaMplot representations is specifically accounted for. All genes are taken

into account, but the contribution of genes less differentially expressed9 to detection of co-expressed

gene groups is naturally suppressed. When finding the co-expressed gene groups we apply the annealing

process driven by the decreasing noise variance parameter.As the noise variance decreases, more and

more gene groups emerge analogously to the emergence of increasing number of increasingly detailed

clusters in deterministic annealing (e.g. [25]). When a genegroup with a solid gene support emerges, we

quantify the confidence of detecting the group by calculating the full posterior of the corresponding line

ray, given the gene group, for realistic noise estimates. Torepresent the uncertainty about point estimates

of line angles, given the support of the selected points, we also calculate the shortest intervals containing

the estimated line angles and 95% of the posterior mass around them. No such “confidence/reliability”

quantitative measures follow naturally from the standard HT formulation.

Inclusion of all assayed genes in our analysis enabled us to robustly detect stronger natural groupings of

co-expressed genes than those found in the previous study [7]. Whereas [7] reported 15 gene groups of size

4–12, we have found a smaller number of naturally emerging groups (6), three of which have significantly

stronger gene support (64–80 genes in a group). The posteriors of these three groups under realistic noise

estimates show solid support for their detection and, perhaps more importantly, the three gene groups

show coherent biological functions with high significance,as detected by the GO analysis. Moreover,

when compared with some general clustering and correlationbased gene grouping techniques (Gaussian

mixture modeling, K-means clustering, Average CorrelationClustering Algorithm), gene groups obtained

by our approach appear to be more tightly linked to more specific biological functionalities. Robust

detection of larger gene groups with coherent biological function is potentially of great importance for

robust analysis of drug effects via 3-color cDNA normal-disease-drug sample microarrays. However, our

encouraging results come from one specific study. To assess the true value of our approach it will need

to be applied in a range of contexts by the wider community of users and practitioners.
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