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Searching for co-expressed genes in three-color
cDNA microarray data using a probabilistic model
based Hough Transform

Peter Tho, Hongya Zhao, Hong Yan

Abstract

The effects of a drug on the genomic scale can be assessedhiaeacblor cDNA microarray with the three
color intensities represented through the so-called h@katMIn our recent study we have shown that the Hough
Transform (HT) applied to the hexaMplot can be used to defemips of co-expressed genes in the normal-disease-
drug samples. However, the standard HT is not well suitedhifepurpose because: (1) the assayed genes need first
to be hard-partitioned into equally and differentially esgsed genes, with HT ignoring possible information in
the former group; (2) the hexaMplot coordinates are neglgtivorrelated and there is no direct way of expressing
this in the standard HT and (3) it is not clear how to quantifg aissociation of co-expressed genes with the line
along which they cluster. We address these deficiencies fioyulating a dedicated probabilistic model based HT.
The approach is demonstrated by assessing effects of tgeRirli on homocysteine-treated human umbilical vein
endothetial cells. Compared with our previous study we stipudetect stronger natural groupings of co-expressed
genes. Moreover, the gene groups show coherent biologicaitibns with high significance, as detected by the
Gene Ontology analysis.

. INTRODUCTION

ICROARRAY technology enables us to measure expression levalsoasands of genes simul-
I\/I taneously. The technology revolutionized research inesystbiology, personalized treatment and
drug development (e.g. [1], [2], [3]). Traditional dualleo cDNA microarrays employ two different
fluorescence dyes corresponding to two samples (e.g. “norama “disease”). It has been recently
demonstrated that it is possible to use a third dye assdciaith yet another sample hybridized to a
single microarray [4], [5]. This opened up possibilitiesassess effects of a drug in a three-color cDNA
microarray essay hybridizing three samples: normal (dyst), rdisease (dyed green) and drug-treated
(dyed blue) [6]. After scanning and data processing, thensity levels of the three dyes (R, G and B)
are read out from every spot on the array. Each spot repgesegene from the pool of genes being
assayed on the array and the intensities R, G and B reflectsstpinelevels of the genes in the normal
(healthy), disease and drug-treated samples, respgctivel
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Fig. 1. Basic layout of hexaMplot. Points in quadrants 2 and 4 correspmmgenes for which the effect of the disease has been largely
neutralized by the drug. Gene representations in quadrants 1 and 3goimtesirable drug effects. R, G and B represent gene expression

levels of normal, diseased and drug-treated samples respectively.

A two-dimensional representation of R, G and B intensitiebedahexaMplot naturally suited for
assessing the drug effect on assayed genes was introdu¢éf irhe hexaMplot coordinates represent
the log ratios of intensity pairst; = log, B/G and xs = log, G/R. Note that genes appearing in the
upper and lower half-plane of the hexaMplot are up- and doegulated, respectively, by the disease.
Analogously, genes located in the left and right half-plahéhe hexaMplot are up- and down-regulated,
respectively, by the drug treatment, compared with theadisesample. Also note that along the slant
axis ro = —x1, we havelog, B/R = 0, meaning that the expression levels of genes in the nornal an
drug-treated samples are the same.

Naturally, one would like the drug to neutralize the effeéttloe disease on the assayed genes, i.e.
ideally the gene representations in the hexaMplot shouldtet around the slant axis. Deviations form
the slant axis within the 4th and 2nd quadrants £ 0,2, < 0 andz; < 0,z > 0, respectively) still
represent drug effects in the right direction. However,egefalling into the 1st and 3rd quadrants of the
hexaMplot (1,22 > 0 andzq, 2o < 0, respectively) show an undesirable effect of the drug.eeifarther
enhancing the up-regulation, or suppressing the downlaggn of the gene by the disease. Typically,
most of the genes will not be effected by the disease or dregtrtrent [6] and their representations
will cluster around the origin of the hexaMplot. There wik la sizable portion of genes in the 2nd and
4th quadrants of hexaMplot and a smaller portion of geneshénlist and 3rd quadrants [6], [7]. The
layout of hexaMplot is illustrated in figure 1. Points in quackts 2 and 4, clustered around the slant axis,
correspond to genes for which the effect of the disease has laegely neutralized by the drug. Gene
representations in quadrants 1 and 3 point to situationsxdésirable drug effect.



A simple methodology to assess the overall therapeutictetie the drug was proposed in [6]. The
correlation coefficient of hexaMplot representations @& #ssayed genes was calculated and assessed for
statistical significance. A more involved analysis in [7}et#s groups of genes with similar expression
patterns relative to the disease and the drug proposedsftrestment. Each such group is aligned along
a line ray starting in the hexaMplot origin. The directionté ray signifies whether the drug has positive
or negative effect on expression of the group of genes, whieangle measures the drug effect level
[7]. The lines were detected through the Hough Transform, (€€ e.g. [8]) applied to differentially
expressed genes. Among the detected lines, only the liresngathrough the origin were considered .
The biological function of the resulting gene groups wadyasal in the Gene Ontology (GO) framewérk
[9], [10], [11], [12]. GO provides a unique vocabulary agesrious genomic databases of diverse species.
The driving organizational principle is to preserve esséritinctional features of genes shared among
the organisms. In the GO analysis one assesses the sigodicdra group of genes by calculating the
probability (p-value) that genes from the group will be asated with the GO category (node) by chance.
If majority of genes in the group have the same biologicakfiom, such a probability will be very low
[12].

The literature on techniques specifically designed for @ssmg gene expression data from 3-color
microarrays is very limited. Most studies related to 3-cataicroarrays deal with technical issues of
array design/construction, or refer to our previous workdata analysis methods for assessing drug
effects through 3-color microarrays [6], [7]. To our besbwiedge, there are no techniques that could be
considered direct alternatives to [6], [7] for gene expmsanalysis via 3-color microarrays in the context
of assessing drug effects. However, while the approach]akptesents a fruitful an interesting direction
in mining gene-related effects of the drug under investigatthere are several problems associated with
it:

1) The HT was applied to the differentially expressed gendg. ®etection of the differentially ex-
pressed (and hence “interesting”) genes was done throtiglg fit bi-variate Gaussian on hexaMplot
representations of the whole gene sample and then applyangbability density threshold (critical
value of they?-distribution). The “hard” separation of assayed genes agually vs. differentially
expressed genes is not optimal, especially since theréyitally be a high density of points (genes)
around the separating confidence ellipse. The obtainetts&sun be sensitive to the particular choice
of the confidence value defining what is differentially exgsed and what is not.

2) The HT implicitly imposes a noise model in the data spae¢ dloes not fit the nature of hexaMplot
representations well. First, the induced noise model d#pen the line parametrization used, which
is unsatisfactory. Second, tlie,, z2) hexaMplot representations are negatively correlated ekt
is no direct way of representing this fact in the standard HT.

0f course, it is possible that genes not on the same line are stronghjiatssioto a GO category due to some kind of nonlinear coherence
in gene expression values. However, to our best knowledge, thei® ssiah nonlinear model discussed in biology literature. The idea of
a nonlinear model needs to be tested to exist consistently in many datalvasegerpreted biologically. The Hough Transform can been

used to detect complicated curve shapes, so although our model is tine&iramework can be easily generalized to nonlinear ones if they
are indeed biologically meaningful.



3) Determination of the quantization level in the Hough spsleould reflect the amount of “measure-
ment” noise in the hexaMplot features. The quantizatioelleletermines the amount of smoothing
in the Hough accumulator, which in turn has an effect on thealer of distinct peaks (detected
lines) in the Hough space. Also, given a detected line, tleen® principled way of quantifying the
strength of association of the points with that line.

In this paper, we address these shortcomings in the frankev¥@ principled probabilistic model based
formulation outlined in the next section. Briefly, all assaygenes are considered. The weaker and stronger
contribution of equally and differentially expressed geie obtained naturally in a “soft” manner from
the probabilistic formulation of the model behind the hexddl. The model explicitly takes into account
the size and the negatively correlated nature of the nosecaded with hexaMplot gene representations.
Both the strength of association of individual genes with di@aar group (line ray in hexaMplot) and
the support for the group by the selected genes can be gedntfia principled manner through posterior
probabilities over the line angles, given the observations

The paper has the following organization: After introduciour model based Hough Transform in
section Il, we apply the methodology to assess the effectarug Rgl on homocysteine-treated human
umbilical vein endothetial cells in section Ill. Our appcbais compared with alternative clustering and
correlation based approaches in section IlI-A. The mainiriggl are summarized in section IV.

[I. PROBABILISTIC MODEL BASED HOUGH TRANSFORM

Consider a line ray iR* (hexaMplot space) starting in the origin at an angle [—= /4,77 /4). We
assume a bi-variate zero-mean Gaussian measurement ntiseowariance matrix_x. The density of
possible measurements= (z;,z5)" € R? corresponding to the poinftr cos o, rsina) on the line is
given by

p(X|a, ) = _ exp {—l(xT — (reosa,rsina)) L' (X — (rcosa, rsin a)T)} : 1)
27| X x |12 2
wherer > 0 is the (Euclidean) distance of the point on the line from thgio.

One may have a prior knowledge about the parameter vatueg € [—7 /4,77 /4) x [0, 00), Summa-

rized in the form of a prior distributiom(«, r). Given an observatior, the induced uncertainty in the

parameter space is given by the posterior

(K0 ) pla ) "
) p(X[e, ) p(a/,r") do'dr’”

p(a, T’|X) = f

[7/4,7m/4)x[0,00
We are interested only in data points aligned (up to the nreasent noise) along a common line passing

through the origin. To obtain the amount of support for thglarparameter: given the observation,

we integrater from the posterior:

plalx) = /[ plarh) o 3)

The aim of the Hough Transform (HT) and its generalizatishsoi detect possible lidecandidates
along which some of the data points are aligned. The detedtigperformed in the parameter space

2Extension to other parametrized objects such as circles is straightforward



(Hough space), where each observation induces a certaimranod mass on parameters compatible
with the observation. For example, in the original HT onetipans the Hough space of line parameters
(e.g. (bias, slope)) and increments each parameter paineyfat turns out to be compatible with the
observation. After running through all the observatiorsaks in the Hough space indicate the lines with
most support, e.g. lines along which many of the observatame aligned. In our case, the Hough space
is the angle intervald = [—x/4, 77 /4]. We do not discretize the Hough space; instead, each oliserva
x induces a support kernel(a|x) in H. Given a set of observation® = {x! x* ..,xV}, x' € R?,
1=1,2,..., N, we accumulate the evidence contributions in the Houghespaas proposed in [13], [14],
namely

1 |
H(a; D) = > plalx). @)

Note that the probabilistic support kernels in [13], [14¢ abtained in a different manner. Whereas in
our model formulation we start with a generative model of da¢a (line rays starting in the origin and
endowed with a measurement noise) and determine the (possib-Gaussian) support kernel for each
observatiornx as the marginal posterior giveqy Ji and Haralick [13], [L4Jmposethat the support kernel
has a Gaussian form of a fixed shape that is determined fronmifge data to which the HT is applied.
Given that a line candidate with inclination anglehas been detected by inspecting the peaks of the
Hough accumulatof («; D), one can ask which points frof are strongly associated with it. This can
be done by consulting the posterigngy|x?), i = 1,2, ..., N, and selecting the points above some threshold
value f. To enhance the threshold interpretability, we discretitee angle spac&{ into a regular grid
G ={a1,as,...,ayn} and turned the densitiega|x) into probabilitiesP(a;|x) over theG:
- p(&;1x)
P(a;]x) = Zﬁilp(@dx)' (5)
We then calculate the probability threshalde (0,1) asé = /M, k € (0, M), meaning that only
observations with posteriors at leasttimes greater than the uninformative distributiop)/ will be
considered. Given a probability threshaldand a (discretized) anglé, the set of selected points that
support the line rayy reads:
Se(a) = {x | x € D, P(alx) > 0}. (6)

Once the set of selected points(a) for a particular line rayx is obtained, one can check how much
the set as a whole supports that line ray by calculating tistepor
p(Se(@)|a) P(a)

D wea P(Se(@)|@) P(a)’

where P(&') is the prior distribution over the gridf and (assuming independence of observations)

p(So(@)la) = ][] »xla)

XESQ(&)
= I | stxina) piriayar ®)
XeSy(a)”0
Here,p(X|r, &) is the noise model (1) ang(r|d@’) is the conditional prior onr.

P(alSe(a)) = (7)



A. Noise model

Our two-dimensional observations are hexaMplot repregiems of the 3-color intensitie§R, G, B)
measured in cDNA microarrays. It is usual to assume that dgeiritensities are normally distributed.
Recall that the 2-dimensional hexaMplot representatioad:re

B T
X = (z1,22)" = <10g 5710g %) :

Now, consider three random variables (log intensitigs),> andY; representindog B, log G andlog R,
respectively. The hexaMplot representatidns, z5) correspond to two random variable§ = Y; — Y,
and X, = Y; — Y3 coupled throught;. Even if we assume that the individual measurement errotheof
three log intensitie;, Y> andY3; are independent, the implied noise in the hexaMplot coatd® X, X,
will be negatively correlated. This simply follows from thiact that whileY, contributes negatively to
X1, its contribution toX, is positive. Assuming that the measurement noise of therdtansityY; is a
zero mean Gaussian with varianeg, i = 1,2,3, (X1, X») will be Gaussian distributed with covariance

matrix

2 2 2
o1 + 05 —05

2

Yx = 2 2

(9)

This can be seen by realizing that for an affine-transformesstor random variabl&’ = c+ AY, where
Y is a multivariate Gaussian distributed random variabléhwiteanm and covarianceZy, X will be
Gaussian distributed with mean+ Am and covariancedXy A”. In our case

I O]. (10)

0 1 -1

If (as done in this paper) we assume equal levels of measuatemoése across the three colotg, =
0? = 02 = 02, we obtain

ZX:202[ ! _%]. (11)

B. Priors over the parameters

As explained above, for the hexaMplot typically, most of genes will not be effected by the disease
or drug treatment making their representations clustewratdhe origin of the hexaMplot. There will be
a sizable portion of genes in the 2nd and 4th quadrants of\Mhgbod positively effected by the drug
treatment. A smaller portion of genes negatively effectgdhe drug treatment will be represented in the
1st and 3rd quadrants. We express this insight through #eepise linear priop(«):



0.18

T T T T T T
0-16\/\/

0.14-

p(alpha)

0.06 -

0.04-

0.02-

\ \ \ \ \ \
0 1 2 3 4 5
alpha
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(

—a - Ay + 5, if —r/4<a<mn/4
Oz-AOA—%, if 7/4 <o <3m/4

p(e) = (12)

—a Do+ 5255 a0y 1 3n/4 < a < 5m/4

koz-Aoé—i—%, if 57/4 <a<Tn/4

where 21— )

L= — o 13
w21+ C,) (13)

and C, € [0,1] is a constant determining the ratio between the minimumr gafobability assigned to
the angles = n/4 and o = 57/4 at the center of quadrants 1 and 3, respectively, and thenmogxi
prior probability assigned to the angles= 37/4 anda = 7n/4 at the center of quadrants 2 and 4,
respectively. As an example, the prigfa) is shown in figure 2 for the inhomogeneity parameterset
to C, = 0.9. Note that wherC,, = 1, we obtain the maximum entropy uniform pript«) = 1/(2x) for

all « € [—7/4,7m/4).

It is also natural to expect that if measurements of many g@me¥e performed, only a smaller portion
of the data will show significant effects, i.e. there will beoma points concentrated around the origin
of the hexaMplot than further away from it, especially in duemts 1 and 3 of thélog B/G,log G/R)
system. We express this by formulating a priorror 0 (conditional on the angle) as a mixture of two
truncated Gaussians:

p(rla) = (1 = k(@) pi(r) + w(a) pa(r), (14)

where

2 2
r .
pi(r) = \/ﬂw.eXp{_Tw?}’ i=1,2
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Fig. 3. Mixing coefficients(a) for C, = 0.9.

with 0 < w; < wy, and

[(—a- A+ 8% i —p/i<a<T/4

a A+ 3= i r/4<a<3n/4
r(er) = (15)
—a- A+ 2% if 3r/4 < a < Br/4

(oA + 550 if 5r/4<a < Tr/4,

A, = 21=C) (16)
m

The (truncated) Gaussians(r), ¢ = 1,2, operating onr > 0 reflect the assumption of greater
concentration of gene representations around the origith@fhexaMplot than further away from it.
Moreover, in quadrants 2 and 4 there may be greater variatigroints than in quadrants 1 and 3. In
the middle of quadrants 2 and 4, the mixing coefficients of rtigture prior p(r|a) (14) are equal to
1—k(a) = 0 andk(«) = 1, making the priop(r|a) = po(r). In the middle of quadrants 1 and 3, the mixing
coefficients are determined by(«) = C, < 1 and the prior readp(r|a) = (1 — C;) pi(r) + C, pa(r).
Sincew; < wsy, in quadrants 1 and 3 the prior assumes greater concentratound the origin than in
guadrants 2 and 4. Note that whéh = 1, we obtain a simple (truncated) Gaussian prior of standard
deviationw, = wy onr, independent of the angte We illustrate the angle-conditional mixing coefficient
k(«) for C, = 0.9 in figure 3.

The joint priorp(a, ) = p(«) p(r|«) is illustrated in figure 4 foC,, = C, = 0.9 andw; = 1.9, wy = 2.
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C. Interpretation of the model

The standard HT assumes that all points located within as&loange of the hypothesis line contribute
equally to support that line in the Hough space. The notiotiageness is determined implicitly by coarse-
graining of the Hough space patrtition. It has been long rezegl that such &op hatstrategy to compute
the contribution of each observation is inadequate sintdealalata points are equally reliable e.g. due
to uncertainties induced by the image noise, edge oriemtagstimation etc. [15], [13], [14]. Several
“soft” alternatives to the “hardtop hatkernels have been suggested, mainly in the explicit cormtiehme
detection in images, e.g. [16], [14], [17]. However, to oesbknowledge, our approach is unique in that
the support kernels in the Hough space are obtained frormaipied generative model in the data space.
A simple illustration of our approach is presented in figuf@)5Three observationg, i = 1,2, 3, aligned
along a line ray (bold solid line) with angle are shown. The discs surrounding the observations signify
the measurement noise. Of course, when it comes to estgnidnanglen, the closer the observation is
positioned towards the origin, the greater is the inducetktainty about the actual angle in the Hough
spaceH. The uncertainty in the angle estimates associated witareagsonsx!, x* andx? is illustrated by
the pairs of dotted, dashed and solid lines, respectivelps€guently the support kerngla|x!) will be
least informative (dotted bold line in figure 5(b)), whileetBupport kerneb(«|x?) will be highly peaked
(solid bold line in figure 5(b)). The standard HT and many sf nbodifications apply the same kernel
on top of all estimates in the Hough space. Our model basedulation of the HT naturally treats the
variable degrees of uncertainty in the support kernels.

As a specific example, consider three poixts= (0.1, —0.1)", x> = (=1,0)" andx® = (—1.75,1.75)T
lying on rays with angles-r/4, = and 37w /4, respectively. The posteriors in the parameter space under
parameter setting’,, = C, = 0.9, w; = 1.9, w, = 2 are shown in figure 6. The joint posterigr&x, r|x")
for noise levelss = 0.2 ando = 0.05 are presented in figures 6(a) and (c), respectively. Note thew
reduction in noise variance leads to more peaky (inforreqposteriors in théa, r)-space. Note also that
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Fig. 5. lllustration of the model based approach to the HT used in this sTimge observations’, i = 1,2, 3, are aligned along a ray of
line (bold solid line in (a)) with anglev. Discs surrounding the observations signify the measurement ndigecldser is the observation
towards the origin, the greater is the induced uncertainty about the aoglelia the Hough spacH. The uncertainty in the angle estimates
associated with observations, x> andx® is illustrated in (a) by the pairs of dotted, dashed and solid lines, respgciives support kernel
p(alx") of the first observation will be least informative (dotted bold line in (b)hilevthe support kerngb(ce|x®) of the last observation
will be most peaky (solid bold line in (b)).

the further away the observation is from the origin, the ninfermative the corresponding posterior over
a becomes. The marginal contributiop&x|x’) to the Hough space “accumulator” are shown in figures
6(b) and (d) forc = 0.2 ando = 0.05, respectively.

One can interpret («; D) in (4) as a form of the Parzen window estimator of the denditthe angle
parameters in{. Modes of H(«; D) detect angles with maximum support, given our model formra
Of course, an alternative route may be to estimate the postistribution overH given the full dataD.
However, this cannot be done under a single line model, ag thél typically be more line candidates
with substantial amount of points aligned along them. It tese we could have opted for a mixture
model setting, with mixture components formulated as nbisy rays starting in the origin. Many points
would still not be sufficiently explained by few focused lisegments and a “garbage collector” mixture
component would need to be invoked. This is reminiscent aohixture-like” approach recently suggested
in [18], where elaborate sampling in the parameter and mepl@tes in a constrained setting is used in
the model inference stage.

Whereas the standard HT and its variants were mostly designéitie detection in image processing,
taking into account specific features such as intensity aflignt information, here we assume that the
observed data represents a cloud of distinct points (nassacily image related) ambmeof those points
can be aligned along specific parametrized geometric sh@pgsray of line starting in the origin). In
addition, the number of such geometric objects with datgnalil along them can be rather small with
most data points “unexplained”. In such cases, fitting oftor formulations can be unstable and the
HT strategy of searching for geometric objects by detectiegks in the accumulator represents a more
straightforward and robust approach. Unlike in the orighid we formulate the model using a continuous
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Fig. 6. Posteriors in the parameter space for observasibas (0.1, —0.1)T, x* = (=1,0)” andx® = (—1.75,1.75)" lying on rays with
angles—= /4, = and 3w /4, respectively. (@p(a, r|x"), ¢ = 0.2; (b) p(a|x’), ¢ = 0.2; (c) p(a, r|x*), o = 0.05; (d) p(a|x?), ¢ = 0.05.

Hough space that can be discretized for practical purpdsebe HT, discretization of the Hough space
is a essential and gquantization interval length is cru@aljt implicitly determines robustness of HT to
noise. In our model the quantization interval can be anbigréine, computational cost permitting, without
significantly effecting the model properties.

[11. A SSESSING THE EFFECT ORG1 ON HOMOCYSTEINETREATED HUMAN UMBILICAL VEIN
ENDOTHETIAL CELLS

In this section we will apply the methodology developed abtmvthe analysis of the drug Rgl (dominant
compound of the extract of ginsenosides in ginseng) on hgsteme-treated human umbilical vein
endothetial cells (HUVEC). The data has been previouslyyaedl using the standard HT method applied
to the hexaMpilot in [7]. There are 1128 genes assayed in focnoarrays obtained in four repeats under
the same experimental conditions. The original microadatg was normalized using the nonlinear Loess
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Fig. 7. Mean hexaMplot of the normalized data in the Rgl drug experimertomocysteine-treated human umbilical vein endothetial
cells. The dashed lines show rays with angles/4, 7/4, 37 /4 and5n /4.

method [20]. The mean hexaMplot of the normalized data (see sed}i®shown in figure 7.

Recall that genes distributed along the same line ray sgaitinthe origin show similar expression
patterns and drug effects. Detection of obvious line rayfigare 7 would be problematic, if working
directly in the hexaMplot coordinates. However, when comicding on the accumulated support in the
Hough space of angles from individual observations, thenntemdencies can be picked up robustly.

We applied the mild inhomogeneity setting for pfigic, r) illustrated in figure 4, namelg, = C, =
0.9 andw; = 1.9, wy = 2.

In figures 8(a),(b) and 9 we show the Hough accumulatow; D) (4) for three levels of noise standard
deviation:c = 0.5, 0 = 0.01 ando = 0.05, respectively. Vertical dashed lines indicate dominarakgan
the accumulator. As expected, lowering the noise variaesalts in more peaky support kernelgx|x)
and consequently in a less smooth accumulator. We ran areé#ing process” starting with a large noise
variances = 1 and, as the variance decreases, we detect the emergin@yingane group) candidates.
In figure 8(a) only two ray candidates can be detected, rqughiresponding to angles = —x/4 and
a = 3n/4. These line rays explain most of the data in the 4th and 2ndrgnés of the hexaMplot in
figure 7. Ato = 0.01 (figure 8(b)) the Hough accumulator is too rugged with maryaandidates (gene
groups) supported by few data points (genes). Figure 1CGepteghe six detected line rays (solid bold
lines) foro = 0.05 (figure 9), together with the selected points (st&fg)y) (6) supporting the lines (see

3The data was normalized by robust local regression in the MA plot [Tffjinvarrays and then the scales were adjusted between the
arrays as proposed in [20]. The within and between arrays normalizatis performed using Limma package written in R language [21].

4 One might wonder about the mismatch between our prior (centered atitiie of the hexaMplot) and the data distribution in figure
7. However, note that the role of prior distribution is to express our idbastahe distribution of items of interest (in our case - cylindric
coordinates of the 2-dimensional gene hexaMplot representajit)to seeing the actual data measuremerts explained in section
1I-B, one may naturally expect the gene representations to be cerdevadd the origin (most of the genes will not be effected by the

disease or drug treatment). There is no reason for the distribution otthal aneasured data to follow every detail of the prior distribution.
The data we work with simply reflect the gene selections made by the biologists designing the experiment.
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Fig. 8. Hough accumulatoH («; D) for 2 levels of noise standard deviation:= 0.5 (a) ando = 0.01 (b).

ht(alpha)
T

Fig. 9. Hough accumulataH (a; D) for standard deviation of the noise setdo= 0.05.

section I). Here, M = 126 andx = 25, meaning that the angle spate= [—7/4, 77 /4) was discretized
into 126 values{a;} and the selection threshold wés= /M = 0.2.

The posteriorsP(&|Sq(@)) (7) of the detected lines are shown in figure 11(a). It is cliwat the
selected genesy(a)) support the detected lines (gene groups) - especially thogke 4th quadrant
of the hexaMplot - very strongly. We also plot the posteriofghose six detected gene groups for the
case of a larger observational noise= 0.3 (figure 11(b)). Moreover, for three levels of observational



Fig. 10.

0.5

-15

Detected line rays (solid bold lines) fer= 0.05 and selected points supporting those lines
were chosen using/ = 126 andk = 25.

hexaMplot

line | & | (6-(0.05),a4(0.05) | (a_(0.3),da4+(0.3)) | (&—(1.0), a4 (1.0))
1 | -0.685 (-0.735,-0.684) (-0.736, -0.683) (-0.885,-0.535)
2 | -0585| (-0.635,-0.584) (-0.635, -0.535) (-0.785,-0.435)
3 | -0.285 (-0.335,-0.284) (-0.385, -0.235) (-0.685,-0.235)
4 | 1.965 (1.914,1.966) (1.665, 2.265) (-0.035, 3.015)
5 | 2.215 (2.165,2.216) (2.015, 2.365) (1.565, 2.765)
6 | 2.465 (2.415,2.466) (2.265, 2.615) (1.865, 3.015)

TABLE |

14

(stars). The selected Spiiats

THE SHORTEST INTERVALS(&— (), &+ (0)) CONTAINING THE ESTIMATED LINE ANGLES AND 95% OF THE POSTERIOR MASS
P(-|S9(&)) AROUND THEM. WE SHOW THE INTERVALS FOR THREE LEVELS OF OBSERVATIONAL NOISEr = 0.05, 0 = 0.3 AND ¢ = 1.0.

noisec = 0.05,0.3, 1.0, the shortest “quantile” intervalgy_ (o), &, (o)) containing the estimated angles

and 95% of the posterior masy-|Sy(a)) around them are reported in table I. Intervéds (o), @ (o))

represent the uncertainty one has in the point estimatesm@fahgles, given the support of the selected

points Sp(&). Note that unlike in the traditional HT, this uncertainty asare follows from a principled
model formulation that reflects our assumptions about thia ganeration process.

From the four available repeats of the microchips, the aethirough estimates of standard deviation
of the hexaMplot noise were belo3 for most genes. For such noise levels, the selected genég in t
4th quadrant of the hexaMplot still support the correspogdhree gene groups quite strongly. In general,
since the support kernelg«|x) in the Hough accumulatalf («; D) (4) are posteriors over angles given a
single observation, the resulting accumulator may be oveosh. Hence, we detect the emerging dominant
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Fig. 11. Posteriord’(«a|Se(«)) of the six detected lines (gene groups) in figure 10 for two levels of wagenal noises = 0.05 (a) and
o = 0.3 (b).

gene groups by annealing the HT through lowering the vaeigrarameter? as described above, and
for detected groups with solid gene support we calculatéepioss P(&|Sy(&)) given the full setSy(a))
of group members and a realistic estimate of the noise level.

We investigated the biological meaning of the six detectedigs of genes (line rays in the hexaMplot)
within the Gene Ontology (GO) framework [9], [10], [11], [L1ZThe results are summarized in table II.
The table has the following organization: For each line weorethe numbeiSy(a)| of detected genes
(second column). Representative GO terms for geneSy(n) are listed in the third column. For each
GO term we report the number of genes annotated to that tetheiGO (fourth column), as well as the
number of genes from the gene grafg &) annotated to it (fifth column). In the sixth column we show
the probability (p-value) that genes frafij(a) would get annotated to the GO term by chance [12]. The
p-values are calculated using hypergeometric distributiban annotation file contains genes, a given
GO term hasn annotated genes, and a gene group contagesnes of interest, the probability of seeing
k or more genes of interest annotated to that GO term is datedhas [12]:

p-value= ik %3_7) (17)

5 Note that such calculations can lead to seemingly overly small p-valuesses @& small number of genes from a gene group that
are included in a GO term, e.g. line 4, GO: 0002439. Here- 86 genes from the: related human genes are directly annotated to GO:
0002439 and: = 1 gene in line 4 cluster is annotated to that GO term. Due to the very ta@ed not very smalin, the p value may be
very small even if only one gene in our cluster is annotated to the GO terim.sitbation is common in GO annotation analysis of gene
clusters. It is still an open problem how to select annotated GO terms ofetiesf interest. Some researchers only consider GO terms
with the smallest p-value. Others are not only interested in the GO term withnthbest p-value (e.g< 0.01), but also require that the
number of genes from the cluster annotated to the term be no less thaia catoff value (e.g> 5). In this study, the GO term with the
smallest p-value is used without considering the number of genes &hota
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The first three lines with angles if+7/4,0) represent genes withR?, G, B) intensities satisfying
G < R < B. In other words, the disease decreases expression of aggmpared with its normal expres-
sion levelR, i.e.G < R. The drug eliminates this effect by overexpressing the gigfe- R. Genes in the
group corresponding to the 1st line are related to acutemmflatory response (G0O:0002675, GO:0002525)
increasing for example the concentration of non-antibodytgins in the plasma (G0O:0006953), or in-
creasing the intra- or extra-cellular levels of prostadlaG0:0002539) and leukotriene (GO:0002540).
Genes clustered along the 2nd line are related to cellularpooents and mechanisms effected by the
disease. The 3rd line groups genes that are related to gimdacthanisms (GO:0005488) and breakdown
of neutral lipids (GO:0046461), membrane lipids (GO:0@®4and glycerolipids (GO:0046503). The
disease also down-regulates genes related to pathway® afothplement cascade which allow for the
direct killing of microbes as well as regulation of other immne processes (G0O:0001867, GO:0006957).
The drug Rg1l corrects this situation by stimulating the patysv

The 4th and 5th lines with angles {r/2,37/2) represent genes withR, G, B) intensities satisfying
R < B < G. Compared with its normal expression level, the expressioa gene is increased by the
disease@ > R). The drug partially eliminates this effect by reducing &x@ression level t@, leaving B
still above the normal expressidn Finally, the sixth line withn € (37/2, 7) groups genes withR, G, B)
intensities satisfyingB < R < (G. The disease causes increased expression of a géne i) and the
drug compensates for this effect by driving the gene expedselow the normal level < R). While
genes grouped together by the 4th line are associated witiuima and chronic inflammatory response,
the genes corresponding to the 5th and 6th lines are agaitedeio cellular components and mechanisms
effected by the disease.

One can legitimately ask how stable are our results witheetsip setting of the prior paramet&rgVe
repeated the whole experiment under two less mild inhomeigesettingsC, = C, = 0.8, w; = 1.8,
wy=2andC, =C, = 0.7, w; = 1.7, wy = 2. We also performed the experiments under uniform prior
over the angles({, = 1) and a simple Gaussian prior over(C, = 1) with standard deviatiow, = w,
set tow, = 2,3,4,10,60. Note that the setting’, = C,. = 1,w, = 60 represents virtually uniform prior,
as the radius of the data does not exceed

The six peaks in the original Hough accumulator (figure 9) dor= 0.05 dominated the Hough
accumulators in all 7 prior settings described above. Besgyed that the six lines in the hexaMplot
are robustly recovered under a wide range of prior settiwvgsnext investigated whether the leading GO
terms in table Il determined from gene group$a) would stay unchanged regardless of the prior settings.
In table 11l we report for each investigated prior and eacte v the number of gened/s by which the
gene groupSy(a) differs from that of our original prior setting’, = C, = 0.9, w; = 1.9, wy = 2. The
gene groups corresponding to lines 1, 4, 5 and 6 are perfexttyered for all tested prior settings. The
gene groups for lines 2 and 3 differed by at most 2 genes, whiahnegligible difference, given that the
number of genes in original groups corresponding to linea@ &is 64 and 71, respectively. Indeed, the

®We are thankful to anonymous referees for suggesting to perforystarsatic quantitative study of this issue.



line | |[So(a)] | GO term ID | # genes| # genes fromSy(&) | p-value
1 80 G0:0002675 87 37 0.00173
G0:0002525| 85 36 0.00242
GO0:0006953| 85 36 0.00242
G0:0002527 86 36 0.00322
G0:0002543| 86 36 0.00322
G0:0002539| 60 27 0.00441
G0:0002540 60 27 0.00441
2 64 GO0:0044424| 176 41 0.00000
GO0:0044444| 175 41 0.00000
G0:0044446| 168 39 0.00294
GO0:0030117| 165 38 0.00437
GO0:0045265| 162 37 0.00536
3 71 G0:0005488| 178 51 0.00000
GO:0050794| 163 55 0.00295
GO0:0046461| 88 19 0.00381
G0:0046466 88 19 0.00381
G0:0046503 88 19 0.00381
G0:0001867| 104 24 0.00382
GO0O:0006957| 104 24 0.00382
4 12 G0:0005488| 178 9 0.00000
G0:0002439| 86 1 0.00597
5 13 G0:0005488| 178 9 0.00000
GO0:0044464| 175 6 0.00000
GO:0000502| 164 5 0.00000
6 11 G0:0005488| 178 6 0.00000
G0:0043231| 157 3 0.00340
GO0:0007242| 140 2 0.00490
TABLE I

THE EFFECTS OF THE DRUARG1 ON HCY-TREATED HUVE CELLS. FOR EACH GENE GROUHLINE RAY IN FIGURE 10) WE SHOW
REPRESENTATIVEGENE ONTOLOGY TERMS AND THE STRENGTH OF THEIR ASSOCIATION WITH THEEENE GROUP(P-VALUE).
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Prior linel | line2 | line3|lined|line5 | line6
Coa=Cr=07 w1 =17 0 2 2 0 0 0
Co=Cr=08 wi =18 0 1 1 0 0 0

Co=Cr=1,w,=2 0 0 0 0 0 0

Co=Cr=1,w.=3 0 0 0 0 0 0

Co=Cr=1w, =4 0 0 0 0 0 0

Co=Cr=1w =10 0 0 1 0 0 0

Co=Cr=1,w =60 0 0 1 0 0 0
TABLE 11l

CARDINALITY OF THE SET DIFFERENCE BETWEEN THE GENE GROUPS) (&) DETECTED UNDER THE ORIGINAL PRIOR SETTING
Co = Cr =0.9,w; = 1.9, wa = 2 AND THE OTHER TESTED PRIOR SETTINGSTHE SIZES OF THE ORIGINAL SETSSp (&)
CORRESPONDING TO LINESL, 2, 3, 4, 5AND 6 ARE 80, 64, 71, 12, 13ND 11.

GO analysis confirmed that all leading GO terms reportedbfetd are robustly recovered for all tested
prior settings.

A. Comparison with alternative clustering and correlationsbd approaches

We conclude the experiments by comparing our approach withesother clustering and correlation
based approaches to gene grouping based on gene expresditas plhere is, of course, a huge number
of general approaches for gene grouping (see e.g. [22]). ¥¢el three representative approaches to
highlight potential strengths/weaknesses of our apprdacigrouping genes in the context of assessing
drug effects through 3-color cDNA arrays.

The genes were grouped using a probabilistic clusterindhade{Gaussian mixture model (GMM)), a
non-probabilistic “hard” clustering method (K-means ¢dus1g) and a correlation based method (Average
Correlation Clustering Algorithm (ACCA) [23]). The driving foe behind gene grouping in clustering
based approaches is a distance between expression prdfiledivadual genes (Euclidean distance in
the case of K-means clustering, Mahanabolis distancesancise of GMM). On the other hand, in
correlation based approaches it is the correlation (‘ahgktween expression profiles that determines the
gene similarity. We considered two gene expression profilegene grouping:

. 3D - the original three (log) intensities of gene expressiodemmormal, disease and drug-treated

conditions. Models fitted on such data will be referred to yNE3D, K-means-3D and ACCA-3D.

« 2D - two-dimensional hexaMplot gene representations obthifnem the original intensities as

described in section |. Models built on hexaMplot gene repn¢ations will be denoted by GMM-2D,
K-means-2D and ACCA-2D.

Gaussian mixture model is a generative probabilistic mofi¢he data and so some sort of principled
model selection can be applied to specify the number of comps. We used cross-validated model
likelihood [24] and the optimal number of 2- and 3-variateu€sian components in GMM-2D and GMM-
3D were 6 and 4, respectively. A 6-component GMM-2D fittedhte hexaMplot gene representations is
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Fig. 12. Gaussian mixture model with 6 mixture components fitted on theMyga gene representations (shown as dots). For each
2-variate Gaussian mixture component we show the axes of ellipsessfacd density. The widths of the axes are given by one standard
deviation.

illustrated in figure 12. The genes were formed around idd& mixture components based on posterior
probabilities of the componengs given a gengy, P(j|g). If for a given gengy and a mixture component
J» P(jlg) > 3/4, the geney was assigned to group The other two methods, K-means clustering and
ACCA, patrtition the data set in a “hard” manner. Model seleti® less straightforward and for ease of
comparison with our approach we constructed 6 gene groupadh case (2D and 3D).

As before, the detected gene groups were analyzed for btallogneaning within the GO framework.
The results are summarized in table IV. For each gene groupewert the method under which it
was constructed (first column), its size (third column) ane tepresentative GO tefngfourth column)
associated with the group most strongly (with the smalleglpe (seventh column)). Also shown is the
number of genes annotated to that GO term (fifth column) aachttimber of genes from the gene group
annotated to the GO term (sixth column).

Comparing tables 1l and 1V, it appears that the gene groupbygalternative approaches in general
lead to larger, more general GO terms. Such GO terms aretkgiess specific from the point of view
of the underlying biological functionality. Interestiyglgene groups constructed by alternative techniques
and the three main groups (1,2 and 3) discovered by our agprogerlap with their representative GO
terms in roughly similar numbers of genes. Hence, compaitdaiternative techniques, in our approach

"Note that groups 6 (GMM-2D) and 4 (GMM-3D) were not annotated withQ t8rm since their size was too small. This can happen
in probabilistic clustering for ‘internal’ mixture componentssurrounded by other mixture components. Even though many pgigest

explained by such a mixture componenin the sense that the posteri¥(j|g) maximizesP(-|g), P(j|g) is not high enough to merit

inclusion of g in the groupj.
8Note from eq. (17) that the p-values can be very small due to very laugebern of annotated human genes in GO and reasonably

large GO term sizesn.
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model group | group size| GO term ID | # genes| # genes from group p-value
ACCA-2D 1 18 GO0:0006897| 258 4 0.00450
2 174 G0:0007169| 278 19 0.00000
3 275 GO0:0043067| 855 54 0.00000
4 119 G0:0042981| 847 27 0.00003
5 430 G0:0008284| 420 64 0.00000
6 74 G0:0010033| 730 16 0.00210
ACCA-2D 1 117 GO0:0007169| 278 13 0.00097
2 45 GO0:0048534| 333 7 0.05800
3 138 G0:0042981| 847 37 0.00000
4 158 G0:0048514| 261 15 0.00009
5 494 GO0O:0009611| 584 69 0.00000
6 138 G0:0042325| 477 27 0.00000
GMM-2D 1 68 GO0:0009611| 584 14 0.00055
2 134 GO0:0042981| 847 35 0.00000
3 42 GO0:0008406| 109 6 0.00460
4 85 GO0:0009611| 584 16 0.00053
5 128 GO0:0019220| 497 22 0.00000

6 3 - - - -
GMM-3D 1 564 G0:0010033| 730 97 0.00000
2 131 GO0:0007626| 292 21 0.01100
3 228 GO0:0042981| 847 62 0.00000

4 1 - - - -
K-means-2D| 1 132 G0:0043085| 535 24 0.00000
2 227 G0:0010033| 730 42 0.00000
3 151 G0O:0006468| 767 28 0.00000
4 112 GO0:0043067| 855 30 0.00000
5 243 GO0:0010941| 858 47 0.00000
6 225 GO0:0016310| 1102 44 0.00000
K-means-3D 1 103 GO0:0006468| 767 22 0.00006
2 178 GO0:0042981| 847 52 0.00000
3 46 G0:0045321| 332 7 0.06500
4 287 GO:0006955| 962 48 0.00000
5 83 G0O:0007166| 1976 23 0.05700
6 393 G0:0006468| 767 88 0.00000

TABLE IV

THE EFFECTS OF THE DRUARG1 ON HCY-TREATED HUVE CELLS. FOR EACH GENE GROUP WE SHOW THE GROUP SIZE AND THE
REPRESENTATIVEGENE ONTOLOGY (GO) TERM ASSOCIATED WITH THE GROUP WITH THE SMALLEST PVALUE. WE ALSO REPORT THE
NUMBER OF GENES IN THEGO TERM AND THE NUMBER OF GENES FROM THE GROUP ASSOCIATED WITH THGO TERM.
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smaller gene groups lead to more specific (smaller) reptasen GO terms# gene} while the numbers
of genes from the gene groups inside their representativée@s are proportionally higher - even though
we have smaller groups that yield smaller representativet&@s, the numbers of genes from groups
in their representative GO term# @enes fronSy(a) in table Il) are comparable to their counterpa#s (
genes from groupn table IV), that are however obtained from larger gene gsoand GO terms. Hence,
the gene groupings obtained by our approach appear to betigbtly linked to more specific biological
functionalities, which is preferable from the point of viea systems biology.

Of course, one can always modify the basic clustering angkladion based approaches so that smaller
and smaller groupings are obtained. One can then hope teatiesmaller gene groups there will still be
sufficiently many genes related to some important biolddigaction (as detected by the Gene Onthology).
Besides great computational expense of such an approactgrefaoncern is the question of the origin of
such groupings. Where do they come from? In what sense do tipmaanaturally from the data? In our
approach, line rays in the hexaMplot group coherently esg@d genes as clusters, where the coherence is
modeled as linear relations, whose biological interpr@tathave been studied extensively in biclustering.
Indeed, GO appears to provide some evidence for such cateererview of drug evaluation, the desirable
genes should accumulate along the slant axis of the hexaMpdmsidering the different effect of a drug,
the lines passing through the origin of the hexaMplot aredusemeasure the drug effect levels. The
direction of a line can be used to determine whether the daggpositive or negative effect on a group
of genes. The probabilistic Hough Transform introducedhiis study provides a natural mechanism for
finding groups of related genes buried inside a backgrouaddcbf other gene representations. Other
clustering/correlation based approaches are usuallgdai@partition (in a hard or soft mannethe whole
set of geneswithout being able to focus on ‘interesting’ groupings,imot paying attention to the rest
(see figure 12). On the contrary, we pose a drug-effect cklatear relation between gene representations
in a group and detect significant groups modulo measurenwsé nignoring the the background cloud
of points not showing significant linear groupings (see &gL0).

As mentioned above, it is difficult to apply a principled mbdelection in the case of K-means
clustering, but a principled model selection could be agapto Gaussian mixture model (a “soft” version
of K-means): it returned 6 and 4 components on the 2-D and 3k gepresentations, respectively.
These gene groupings appear inferior to the ones discowgredir methodology. Of course it would be
possible to modify e.g K-means to return clusters of the sizgroupings detected by our approach. But
the question is, why that particular setting of K-means aadamother (smalled/larger clusters)? In our
method, the group sizes emerge naturally from the data,aheeyot dictated by another unrelated method
or imposed prior to model building.

We finish by stressing that these results, however encovgagome from one specific study and the
true value of the presented approach can only be determyéd bse by the wider community of users
and practitioners.
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IV. CONCLUSION

It has been shown that the HT applied to hexaMplot gene reptasons can be used to detect groups
of co-expressed genes in the normal-disease-drug samfllebigwever, the standard HT is not well
suited for the purpose becaugé) the assayed genes need first to be hard-partitioned intdlye Gunl
differentially expressed genes, with the HT applied onlyhe latter ones, ignoring possible information
in the former groupy(2) the hexaMplot coordinates are naturally negatively catesl and there is no
direct way of expressing this in the standard HT #8yit is not clear how to calculate in a principled
and consistent manner the strength of association of a grbup-expressed genes with the line along
which the genes cluster.

In this study we have addressed these deficiencies by fotimyla dedicated probabilistic model
based HT for detecting gene groups aligned along line ragirsg in the origin in the hexaMplot.
The nature of noise in the hexaMplot representations isifpaty accounted for. All genes are taken
into account, but the contribution of genes less diffeadiytiexpressetito detection of co-expressed
gene groups is naturally suppressed. When finding the ceessed gene groups we apply the annealing
process driven by the decreasing noise variance parametehe noise variance decreases, more and
more gene groups emerge analogously to the emergence ehsaneg number of increasingly detailed
clusters in deterministic annealing (e.g. [25]). When a ggmoeip with a solid gene support emerges, we
guantify the confidence of detecting the group by calcudathre full posterior of the corresponding line
ray, given the gene group, for realistic noise estimategepoesent the uncertainty about point estimates
of line angles, given the support of the selected points, ia@ @alculate the shortest intervals containing
the estimated line angles and 95% of the posterior mass @rthem. No such “confidence/reliability”
guantitative measures follow naturally from the standafdfermulation.

Inclusion of all assayed genes in our analysis enabled usbigstly detect stronger natural groupings of
co-expressed genes than those found in the previous studi/fiereas [7] reported 15 gene groups of size
4-12, we have found a smaller number of naturally emergingms (6), three of which have significantly
stronger gene support (64-80 genes in a group). The pastefithese three groups under realistic noise
estimates show solid support for their detection and, gerhmore importantly, the three gene groups
show coherent biological functions with high significanes, detected by the GO analysis. Moreover,
when compared with some general clustering and correldizs®d gene grouping techniques (Gaussian
mixture modeling, K-means clustering, Average Correlattastering Algorithm), gene groups obtained
by our approach appear to be more tightly linked to more $pebiological functionalities. Robust
detection of larger gene groups with coherent biologicalcfion is potentially of great importance for
robust analysis of drug effects via 3-color cDNA normaledise-drug sample microarrays. However, our
encouraging results come from one specific study. To askessue value of our approach it will need
to be applied in a range of contexts by the wider communitysgrsi and practitioners.
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