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Nomenclature
b = codebook vector element
h(i,j) = neighborhood function of i to j codebook vectors
j = codebook vector index
M = number of codebook vectors
R? = high-dimensional data space
X = element of data set
8 = scaling parameter governing neighborhood size
n = learning rate

1. Introduction

URING the validation and verification of ice accretion codes,

predicted ice shapes must be compared with experimental
measurements of wind-tunnel or atmospheric ice shapes. Current
methods for ice accretion code validation are based on ice shape
features such as horn angle, horn thickness, stagnation thickness, and
wrap limits, depicted in Fig. 1.

While the shape features noted by Wright and Chung [1] are
important and can be related to airfoil performance, in many
instances, distinct horns and other ice features are not apparent.
Furthermore, horn and ice features can change considerably along
the span of a two-dimensional airfoil. Consequently, most compar-
isons of computational predictions to ice shape measurements
provide an ad hoc comparison of the predicted ice shapes to a typical
two-dimensional ice shape trace. Most important, no definition of
what makes the measured ice shape typical is provided, and no
statistical data are provided to determine how well the predictions
compare to the typical ice shape.

Most two-dimensional ice shapes on straight wings have
considerable three-dimensional variations along the span of the
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wing. Figure 2 shows a three-dimensional point cloud from an ice
shape measured after a test in the NASA Icing Research Tunnel at the
John H. Glenn Research Center at Lewis Field. The ice shape point
cloud shows significant variation along the spanwise direction. This
variation along the spanwise direction is evident when the point
cloud is projected onto the chord-thickness plane, shown in Fig. 3.
Figure 3 shows that the typical ice shape may have a deviation of as
much as 0.1 in. in any direction on the horn. However, current ice
shape comparison techniques do not consider this experimental
uncertainty in the comparisons. More rigorous typical ice shapes and
comparison methods are required to advance ice accretion codes.

Because of the spanwise variation of ice shape measurements, a
new method is needed to determine what constitutes a typical ice
shape. The following sections present the basics of a neural network
concept called a self-organizing map (SOM) [2]. Combining SOMs
or other nonlinear manifold modeling schemes with multidimen-
sional statistical descriptions has the potential for enabling this more
rigorous comparison of ice shape predictions to three-dimensional
ice shape measurements.

1L

Figure 4 shows three-dimensional data scattered about 8, which is
inherently one-dimensional (a manifold). In a signal-processing
application, the data in Fig. 4 are noisy and require significant
memory. If information about 8 could be obtained, the trend of the
noisy data could be transmitted much less expensively than
transmitting the complete noisy data set. The important question is:
how can the nature of 8 be determined using the experimental data?

SOMs depend on the use of codebook vectors, b, to represent
clumps of data, depicted in Fig. 5. When a series of codebook vectors
are connected, the one-dimensional manifold guiding the data in
Fig. 5 is represented by the spline through the codebook vectors. To
develop the codebook vectors, an initial shape or random distribution
of the vectors is determined. The codebook vectors are then moved in
the direction of the clump of points to which the codebook vector is
closest. Like most neural network approaches, the SOM requires a
learning or training process. Over iterative moves, the codebook
vectors spread out and settle into their local clumps.

The SOM can be best described as a constrained clustering method
[2]. Consider a data set of high-dimensional points aligned (up to
some noise) along a lower dimensional manifold embedded in the
high-dimensional data space R?, as depicted in Fig. 4. In a SOM,
such a data set is described through a collection of M codebook
vectors b/ € R¢, j=1,2,...,M, living in the data space. Each
codebook vector, b/, represents the region of the data space around it
(Voronoi compartment of 5/), such that all data points in that region
are closer to b/ than to any other codebook vector. Crucially, a
topological neighborhood structure is imposed on the codebook
using a neighborhood function A(i, j), i, j=1,2,... , M. Higher
values of h(i, j) signify that codebook vectors b' and b’ should be
neighbors (e.g., lie close to each other in the data space). Smaller
values of 4 (i, j) mean that no such requirement applies.

During the training process, the codebook vectors get adapted to
the data set so that the quantization error (resulting from representing
each original data point x by the codebook vector b*"™ closest to it)
is minimized and, at the same time, the layout of codebook vectors b/
in the data space respects the neighborhood properties dictated by the
neighborhood function A (i, j). For a one-dimensional data structure
(e.g., Fig. 4), one simply prescribes that the representative codebook
vectors b/ must lie on a bicycle chain embedded in the data space.
This corresponds to imposing a linear order on the codebook vector
indexes 1 <2 <3 <.+ <M and defining
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Fig. 1 Ice shape characterization parameters (reprinted from [1]).

Fig. 2 Three-dimensional ice shape.
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Fig. 3 Two-dimensional presentation of ice shape point cloud on
straight airfoil.
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where § is the scale parameter governing the neighborhood size.

During the training phase, data points are iteratively selected from
the data set, and for each data point x, all codebook vectors are moved
from their current positions closer to x. How much each codebook
vector b/ gets moved depends on how close we want b/ to be to the
principal representative 5V of x. The closer b’ should be to b¥"™)
as measured by the value i(win(x), j) of the neighborhood function,
the more it gets moved toward x. The update equation can be
summarized as

bl < b/ + hlwin(x), j]- 1+ (x — b)), j=12,....M
where 7 is a positive real number, called the learning rate, modulating
the proportions of codebook vector updates.

To ensure convergence of the algorithm, the learning rate, 7, is
made to decrease over time (e.g., exponentially) from some initial
value to zero. It can be shown that, in order to preserve the neigh-
borhood relations among the codebook vectors, it is recommended
that the neighborhood scale parameter, §, decreases over time as well.
Starting with a broader neighborhood (higher value of §) enabling
rough ordering of codebook vectors in the data space, the
neighborhood size is gradually decreased, leading to a more selective
codebook ordering.

When the SOM method is applied to the two-dimensional
projection of the ice shape data, the result is Fig. 6. Figure 6 presents a
30-point SOM representation of the ice shape. The SOM results
demonstrate that the codebook vectors spread out and, since many

Fig. 4 Three-dimensional data scattered about a one-dimensional
manifold [6].
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Fig. 6 Application of SOM to ice shape point cloud.
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Creation of codebook vectors about data clumps [6].

points are usually packed in feature changes (like horn tips), that
most of the important shape features are captured well by the SOM
representation.

III. Application to Ice Shape Characterization

The nature of the SOM method and the positioning of the
codebook vectors enable a more rigorous validation method for ice
accretion codes when combined with multidimensional statistical
descriptors. Since the clumps of points are distributed about the
codebook vectors, the deviations of the point measurements in the
clumps can be used to evaluate the coverage statistics and uncertainty
of the codebook vector representation. Figure 7 demonstrates how
each surface measurement is used to determine a deviation from the
spline surface through the control points or codebook vectors.

When the deviation of all of the points in a clump are used to
calculate the spatial standard deviation about the codebook vectors,
coverage limits that contain a set percentage of the points may be
determined. An example of the generation of 95% coverage limits is
presented in Fig. 8. Figure 9 shows the resulting 95% coverage limits
when the method is applied to the three-dimensional ice shape using
the central difference estimate for local derivatives at a codebook
vector, as opposed to the true spline normals.

Figure 9 demonstrates how the coverage limits provide a
mechanism for comparison of the measured ice shapes to predicted
ice shapes. If the predicted ice shape is within the coverage limits or
uncertainty bands, then the predicted ice shape agrees with the
experimental measurements.

Recognizing that the ultimate goal of ice shape characterization is
aerodynamic performance prediction, the parameters presented by
Wright and Chung [1] may still be used to describe mean ice shapes
characterized by the proposed methods. The benefit of the proposed

Spline normal

1.96S for 95%
coverage

N Spline through
coverage limits

Fig. 8 Generation of coverage limits using local point statistics.
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Fig. 9 Application to ice shape point cloud using control point central
difference derivatives.

approach is that each of the aerodynamic performance criteria noted
by Wright and Chung [1] may be determined with quantifiable
uncertainties and using either the mean ice shape or the 95%-outer
coverage limits. Furthermore, given the fact that the difference
between the mean ice shape and the 95%-outer coverage limits is
twice the local root-mean-square ice roughness, distinguishing
between the mean ice shape and the 95%-outer coverage limits
enables the ability to discern the difference between ice form
aerodynamics effects and ice roughness aerodynamic effects, given a
situation where the resolution and accuracy of the wind-tunnel
balances used to measure performance are sufficient to discern the
difference.

It should be noted that the SOM approach is one of several
different dimensionality reduction or manifold learning strategies
that could be used for ice shape characterization. For example,
Laplacian eigenmaps [3] or generative topographic mapping [4]
could also be used for ice shape characterization in a similar manner.
The important aspect of the manifold learning strategy for ice shape
characterization is that local neighborhoods of the point cloud are
associated with each codebook vector as part of the learning process.
These associated regions or neighborhoods of the point cloud lend
themselves to the evaluation of local neighborhood statistics. This
process allows the manifold to be characterized, representing the
mean ice shape and the distribution of the experimental surface
measurements about the manifold (i.e., the measurement noise
caused by the roughness of the ice shape) to be characterized as well.
Thus, the local data neighborhoods may be used to generate coverage
limits that capture the characteristics of the point cloud in a
statistically meaningful way.

Many questions remain regarding the repeatability of SOM
application methods and the related manifold leaning strategies. For
example, the most important is: how many codebook vectors are
needed to fully characterize a shape? Others are: if an initially
random set of codebook vectors is used, is the method repeatable, and
can initial shapes be used that provide repeatable and quick ice shape
characterization?

In the next sections, the SOM will be applied to a rime ice shape, to
a glaze ice shape formed on an airfoil at an angle of attack (AOA)
(depicted in Fig. 3), to a bimodal glaze ice shape, and to a glaze ice
shape with multiple upper and lower horns. Initial observations based
on the ice shape characterizations are presented, and improvements
and future explorations are discussed.

IV. Application to Selected Ice Shapes

Four ice shapes were examined using SOMs. The ice shapes were
generated in the Icing Research Tunnel at NASA Glenn Research
Center in Cleveland, OH. Castings were made of the ice shapes to
enable better reflectivity of the laser off the ice accretion surfaces.
The castings were scanned with different laser systems and used to
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create point clouds of the ice shapes. Each of the point clouds
consisted of well over 100,000 point measurements. Because of the
memory limits with the SOM tool used with more than 30 codebook
vectors, only the 50% spanwise-center section and approximately
20% of the chordwise airfoil measurements closest to the leading
edge (approximately 20,000 points for each ice shape) were
analyzed.

The shortened point clouds were then analyzed using the JAVA
applet BSOMI1 [5]. Initially, BSOM1 places a random distribution of
codebook vectors in the ice shape domain. Running BSOM1 with a
random initial placing of the codebook vectors produces a final ice
shape characterization where the codebook vectors adequately
capture the ice shape, but the points are out of order along the
arclength of the manifold (nonbicycle-chained). To create ice shape
characterizations with ordered points along the arclength of the ice
shape, the initial points were manually placed in order along a shape
that resembled the first 15% of a NACA airfoil. BSOM1 was then set
to automatic learning and run until significant movement of the
codebook vectors could not be detected. The resulting codebook
vectors from BSOM1 and the point clouds were then read into
Mathcad to generate the coverage limits.

The next sections describe the results of the SOM and statistical
coverage limits for the four icing shapes. Those ice shapes include
1) a rime ice shape, 2) a glazed ice shape created with the airfoil
positioned with a nonzero AOA, 3) a bimodal glaze ice shape, and
4) a multihorn glaze ice shape. The ice shapes and corresponding
SOM representations explore issues with the rapid and repeatable
application of SOM methods to ice shapes.

A. Rime Ice Shape

Figure 10 presents a rime ice shape point cloud and its 30-point
SOM representation. A significant observation about the SOM
representation is the inability of the SOM to capture the sharp leading
edge of the ice shape. Because the codebook vectors are
automatically moved in the direction of the closest clump, they do not
seem to capture abrupt changes in the manifold (discontinuous
manifold derivatives), such as the leading edge on the rime ice shape
where there is a low level of roughness. Otherwise, the codebook
vectors capture the ice shape very well, qualitatively. Figure 10 also
presents the 95% SOM coverage limits of the rime ice shape. While
the SOM does not capture the location of the point of the leading edge
of the airfoil, the computed coverage limits enclose the point cloud.

B. Glace Ice Shape with Angle of Attack

Figures 3, 6, and 9 present a glaze ice shape formed on an airfoil
placed in the wind tunnel with an AOA. Inspecting Figs. 3, 6, and 9,
the far spanwise sections of the ice shape are bare airfoil surfaces;
i.e., the edges of the airfoil have no ice accumulation. While the
codebook vectors seem to represent the ice shape adequately, Fig. 9
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Fig. 10 Rime ice shape point cloud with SOM representation and
coverage limits.
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demonstrates that the inclusion of these non-iced airfoil points
significantly increases the coverage limits on the bottom surface of
the airfoil. Since the measurements on the clean airfoil regions create
non-Gaussian distributions of measurements around the codebook
vectors, the coverage limits include less than 95% of the points in
each of local data clump. Ensuring the coverage limits include the
proper percentage of the local neighborhood points is an important
test of the combined SOM-statistical point cloud representation.
Since the coverage limits were constructed to be 95% coverage
limits, if more or less than 95% of the local data neighborhood are
included within the limits, then there are two inferences:

1) The data is distributed about the codebook vector in a non-
Gaussian manner.

2) More codebook vectors should be included to represent the
data.

To investigate the question of how many codebook vectors are
needed to represent an ice shape, the shortened section of the ice
shape of Fig. 3, without the clean airfoil sections, was analyzed using
a40-point SOM and a 50-point SOM. Figure 11 presents the 40-point
SOM representation and coverage limits of a glaze ice accretion
formed on an airfoil at an AOA. Figure 11 demonstrates that
increasing the number of codebook vectors to 40 continues to capture
the form of the ice shape, qualitatively. Figure 11 also demonstrates
that eliminating the clean airfoil points that were included in the
original ice shape file greatly improves the coverage limits captured
by the SOM. That is, not more or not less than 5% of the shortened
point cloud measurements appear outside the spline through the
coverage limit points.

Figure 12 presents the results of a 50-point SOM for the shortened
point cloud from the ice shape of Fig. 3. Figure 12 demonstrates that
increasing the number of codebook vectors does not necessarily
improve the point cloud representation. Figure 12 shows that, on the
downstream section of the top horn, the codebook vectors begin to
deviate about the perceived manifold in a meandering (i.e., zigzag)
pattern. Figure 12 identifies a natural limiting factor of quality of
SOM representation. The limiting case being that the minimum
arclength between two codebook vectors should not be less than
twice the local standard deviation of the data points from the
manifold in order to represent the original manifold.

The fact that there is an upper bound or limitation on the number of
codebook vectors that can be used to represent a noisy data set
distributed about a smooth manifold initially appears to be a
limitation of the combined SOM-statistical approach. However, this
artifact actually reduces some of the subjectivity of the approach. The
limitation on the proximity of codebook vectors to the local
neighborhood standard deviation means is that, although more
codebook vectors could be used for a given data set, once the distance
between the codebook vectors approaches twice the standard
deviation of the point cloud from the manifold, adding codebook
vectors does not improve the representation coverage. This is, in
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Fig. 11 Reduced glazed AOA ice shape with coverage limits of 40-point
SOM Representation.
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Fig. 12 Reduced glazed AOA ice shape with coverage limits of 50-point
SOM representation.

essence, saying that once the distance between the codebook vectors
approaches the local statistical coverage limits, both the mean ice
shape and the ice roughness are characterized in a statistically
meaningful way given the noisy data set.

C. Bimodal Glaze Ice Shape

Some ice shapes have a significant variation in form, as opposed to
smaller scale changes referred to as roughness, across the span of the
airfoil and ice shape. In some instances, two distinct modes of ice
shape can be identified within one ice shape point cloud. Figure 13
presents the SOM results and coverage limits for a bimodal ice shape.
Figure 13 shows that, for the shortened point cloud from the ice
shape, the outer mode is dominant. The codebook vectors most
closely follow the outer mode, but the codebook vectors are slightly
skewed inward because of the points following the inner mode of the
ice shape. Figure 13 also demonstrates that inclusion of the inner
mode points inflates the coverage limits such that the outer limit
points are far outside the true scatter of the point cloud outside of the
codebook vectors.

For a bimodal ice shape, a meaningful representation of the ice
shape would be obtained by characterizing both the inner and outer
modes separately. For example, Fig. 14 presents a 50-point SOM
representation of the bimodal ice shape with most of the points
following the inner mode removed from the point cloud. While a few
of the points begin to deviate from the outer mode shape, the new
SOM representation and coverage limits represent the outer mode
manifold very well.
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Fig. 13 Bimodal ice shape point cloud with 30-point SOM
representation and coverage limits.
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and coverage limits.
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Fig. 15 Multihorn ice shape point cloud with SOM representation and
95% coverage limits.

D. Multihorn Ice Shape

Finally, the SOM approach was applied to a glaze ice shape that
presented multiple horns on both the upper and lower surfaces of the
airfoil. A 38-point SOM representation and the resulting coverage
limits for an ice shape with multiple upper and lower surface horns
are presented in Fig. 15. Figure 15 demonstrates that the 38-point
SOM representation effectively captures the overall manifold shape
and the two dominant horn features; however, the smaller features of
the surface are smoothed. Also, the coverage limits on the secondary-
bottom horn are somewhat inflated, because the feature is actually a
spanwise-developing feature. That is, the form of the secondary-
bottom horn is not constant across the shortened point cloud, but it is
actually changing along the spanwise distance across the shortened
point cloud.
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V. Conclusions

The neural network concept called a SOM was presented for the
identification of typical ice shapes for comparison of measured wind-
tunnel ice shapes with the results from ice accretion prediction codes.
In addition to the ice shape characterization, a method was presented
for the generation of coverage limits for the SOM representation
using the statistics of the surface points around each point’s winning
codebook vector.

The results of the SOM characterizations and coverage limits for
four ice shapes were presented. The SOMs provided captured the
significant trends of each of the ice shapes studied. While significant
trends were captured, observations and issues noted during the
application of the SOM and coverage limit methods to the four ice
shapes included the following:

1) There is an upper limit on the number of points able to capture
the true form of the manifold (ice shape). This limit is set by the
deviation of the point cloud about the manifold and the arclength
along the manifold between two codebook vectors.

2) Errors in the SOM representation or coverage limit inflation
may be caused by spurious points, nonice shape artifacts (such as
bare airfoil points), and bimodal ice shapes.

3) When low noise (roughness) is present in the ice shape, the
SOM methods may smooth regions with discontinuous slopes on the
manifold, such as at the tip of a rime ice shape.

Based on this initial investigation, the SOM process represents a
promising approach to rigorous geometric characterization of three-
dimensional ice shape point clouds. The generation of statistical
coverage limits based on the SOM representation, which are the
equivalent of uncertainty regions for the experimentally measured
ice shapes, also constitutes a significant advancement in the
validation and verification of ice accretion codes and modeling tools.
Because the ultimate goal of ice shape characterization is aero-
dynamic performance prediction of iced vehicles, which goes
beyond the geometric characterization presented in this work, future
efforts are suggested regarding 1) the evaluation of aerodynamically
important ice shape parameters, noted by Wright and Chung [1],
using the SOM ice shape representations, and 2) the relationship of
the identified parameters to iced airfoil and vehicle aerodynamic
performance.
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