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Abstract

Applications of interpretable machine learning (ML) techniques on medical
datasets facilitate early and fast diagnoses, along with getting deeper insight into
the data. Furthermore, the transparency of these models increase trust among
application domain experts. Medical datasets face common issues such as hetero-
geneous measurements, imbalanced classes with limited sample size, and missing
data, which hinder the straightforward application of ML techniques. In this pa-
per we present a family of prototype-based (PB) interpretable models which are
capable of handling these issues. Moreover we propose a strategy of harnessing
the power of ensembles while maintaining the intrinsic interpretability of the PB
models, by averaging over the model parameter manifolds. All the models were
evaluated on a synthetic (publicly available dataset) in addition to detailed anal-
yses of two real-world medical datasets (one publicly available). The models and
strategies we introduce address the challenges of real-world medical data, while
remaining computationally inexpensive and transparent. Moreover, they exhibit
similar or superior in performance compared to alternative techniques.

Keywords: imbalanced classification, missing data, learning vector
quantization, dissimilarity learning, dimensionality reduction, visualization
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1. Introduction

For Machine Learning (ML) techniques to be applied on anthropocentric sec-
tors, such as healthcare, judiciary, finance, it is crucial that their decision-making
mechanism are understandable and explainable by human experts [1–3]. In such
domains, performance metrics of a ML model are typically not enough to ensure
its accountability and trustworthiness [3; 4]. Additionally, this ensures improved
fairness and prevents biased learning [3–5]. Explainable AI (XAI) techniques
applied pre-training (e.g., Principal Component Analysis (PCA), t-distributed
Stochastic Neighbor Embedding (tSNE) [6]) or post-training (e.g., Local inter-
pretable model-agnostic explanations (LIME) [4], DeepView [7], Feature Rele-
vance Information (FRI) [8] and SHapley Additive exPLanations (SHAP)[9]) of
a model can approximate local explanations of the latter (trained) model’s deci-
sions, using simpler surrogate models. Being model-agnostic by definition, these
XAI techniques cannot access the actual working-logic of the trained models, and
can therefore be fooled by adversarial classifiers, as demonstrated in [10]. On the
contrary, intrinsically interpretable models (e.g., decision trees (DTs), linear/lo-
gistic regression, K-nearest neighbours (KNNs), and nearest prototype based clas-
sifiers (NPCs) [5], among others) can illustrate their respective decision-making
or working logic straightforwardly, and globally. We follow these three proposed
criteria for evaluating intrinsic interpretability/explainability [5; 11; 12] (referred
to henceforth as IICs) of different classifiers: namely the model’s intrinsic ability
to (IIC-1) select features from the input pattern ([3] describes as saliency); (IIC-
2) assign class-specific representatives; and (IIC-3) provide direct information
about the decision-boundary.

Particularly medical classification problems often exhibit complications, such
as heterogeneous measurements, high class imbalance and large amounts of miss-
ing data, which are difficult for ML in general. Heterogeneity arises due to
different data collection techniques for different groups within the same medical
cohort, such as, babies and children versus adolescents and adults. Moreover,
even the normal range of a measured physiological feature often varies greatly
with subject’s age, sex, or BMI, etc. Class imbalance is common in astronomy
(to find galaxies [13]); telecommunications management (to detect fraudulent
calls); geo-spatial image analysis (rubble and oil-spills detection) [14]; and in
healthcare (identifying rare conditions). Unaddressed, it can lead to biased and
subsequent poor classification performance, due to the minority classes being
under-represented during training and the overall accuracy often failing to reflect
the true performance. While Bayesian methods, employing class priors, handle
this challenge in an embedded manner [15], prominent model-agnostic strategies
include bagging, boosting, and sampling (including oversampling, undersampling
[16; 17] and SMOTE [14]). For missing values broadly three categories are out-
lined [1; 18–20]: (i) missing completely at random (MCAR), if the missingness is
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neither dependent on the observed nor on the missing values of the dataset; (ii)
missing at random (MAR), if the missingness is independent of the missing values
but likely to be dependent on the observed values; and (iii) missing not at random
(MNAR), if the missingness is dependent on the missing values themselves. The
cause for this can be systematic, such as the instrument failing to record a param-
eter due to censoring, or due to dataset being compounded from different studies
or labs, which were not measuring the same variables. Imputation is a commonly
used model-agnostic, strategy to fill missing data entries during preprocessing,
such that subsequently any classifier can be used on the imputed set. Non-linear
strategies, such as not missing at random importance weighted autoencoder, (not-
MIWAE) [21], backpropagate through the samples with observed data to find
unbiased estimates of gradients of the autoencoder bounds. However, non-linear
techniques typically require large amount of training instances and hence are of-
ten not applicable if the size is very limited, as often encountered in the medical
domain. For the latter multiple imputation (MI) is generally effective against
MCAR and MAR [22]. An example is the openly accessible regression-based
(linear) technique called Multivariate Imputation by Chained Equations (MICE)
[23; 24] that is often used, especially using the predictive mean matching (PMM)
strategy proposed by [25]. Alternatively ML strategies which can handle partially
observed data, were introduced, such as (i) generative modelling, and (ii) Par-
tial Distance strategy (PDS)) [26–28]. Examples of latter include distance-based
ML, that incorporate a scaling factor for computing distances dependent on the
available dimensions, such as KNN, NaN-Learning Vector Quantization (NaN-
LVQ) [29], and Angle LVQ [30; 31]. Prominent generative models such as Linear
Discriminant Analysis (LDA), Probabilistic PCA (PPCA), and Factor Analysis
(FA) show promising results for MCAR and MAR (ignorable missingness) but
cannot necessarily be assumed to work well on MNAR [1; 32–34].

Prototype-based machine learning techniques [35; 36] incorporating adap-
tive dissimilarities have shown promisingly robust with regard to heterogeneous
measurements, such as different lighting conditions, and small training set sizes
[37; 38]. They have furthermore been incorporated as layers in Neural Network ar-
chitectures [39–42]. Moreover, they can handle missing data and are intrinsically
interpretable, in terms of feature importance information, class-specific represen-
tatives and information about the decision boundary [29–31]. Since healthcare
demands interpretability, while presenting the aforementioned challenges in data
quality and quantity this paper extends our conference contributions [30; 31] two-
fold. Firstly, the original cost-function is extended to enable (i) learning from
probabilistic (or uncertain) labels and (ii) returning class probabilities as clas-
sification result. Secondly, we introduce a geodesic and rank-preserving model-
averaging and clustering strategy for ML models based on low-rank quadratic
form dissimilarities, such as Large Margin Nearest Neighbour (LMNN) [43], Near-
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est Component Analysis (NCA) [44], and Learning vector Quantization (LVQ)
[35; 36]. This proposed strategy enables identification and interpretation of local
optima, and generally shows a more robust performance than that of a single
classifier, while retaining the interpretability of an individual model (unlike any
ensembling approach). Thereafter we systematically investigate the influence of
(i) missing values of types MCAR and MNAR, (ii) the amount of missingness
and (iii) the training set size to compare the classification performance of several
common strategies to deal with such problems. We furthermore demonstrate with
real-world medical datasets, that our proposed approaches are not only competi-
tive in terms of performance, but are also easily and intuitively interpretable.

In Sec. 2 we present the works related to our proposed novel contributions,
followed by the aforementioned contributions themselves (Sec. 3, 4 and 5). Next
we illustrate the role of relevant hyperparameters and compare the performance of
our proposed methods to that of the state-of-the-art transparent ML techniques,
on publicly available synthetic datasets in Sec. 6. Thereafter we compare the
performance and interpretability of two real-world medical datasets in Sec. 7 and
8, respectively. Finally Sec. 9 highlights the strengths of our novel contributions
against relevant existing interpretable ML techniques, in the light of some of the
demands and challenges posed by healthcare applications.

2. Related work

2.1. Prototype based classifiers
A family of prototype based classifiers (PBCs) is based on the concept of LVQ,

which follows the Nearest Prototype Classification (NPC) scheme. This means
a new vector is assigned the class label of the prototype to which it is closest,
according to a chosen dissimilarity measure [35]. Techniques implementing this
concept are computationally efficient and often allow interpretation of the proto-
types as representatives of classes ensuring transparency with regards to IIC-2.
Assume the data consist of N instances xi ∈ IRD accompanied by labels yi de-
noting one of C classes and let wj ∈ IRD denote one of C prototypes with labels
c(wj). Generalized LVQ (GLVQ) [36] performs a supervised training procedure
aimed at minimizing the cost-function:

E =
N∑
i=1

f (λi) , where λi = dJi − dKi
dJi + dKi

, (1)

which exhibits a large margin principle, proven by [45]. Here, the dissimilarity of
each data sample xi to its nearest correct prototype with yi = c(wJ) is defined by
dJi , and by dKi for the nearest wrong prototype (yi ̸= c(wK)). f is a monotonic
function and we use the identity (f(a) = a) in this contribution. The cost-
function Eq. (1) is non-convex and can be optimized using gradient methods, such
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as the Fast Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-
BFGS) [46–50] used in this contribution. Extensions to GLVQ named Generalized
Matrix LVQ (GMLVQ) [51–53] introduced parameterized adaptive dissimilarity
measures, such as the quadratic form:

dLi = (xi − wL)⊤Λ(xi − wL) with
∑
i

Λii = 1 , (2)

with L ∈ {J, K} and a positive semi-definite (PSD) matrix Λ ∈ IRD×D. The lat-
ter contains additional parameters for optimization, that allows feature relevance
detection for IIC-1. The complexity of the metric tensor can be increased, from
locally linear decision-boundaries to non-linear ones, through local or classwise
matrices ΩL|c attached to the prototypes [54]. This family of interpretable classi-
fiers can intuitively deal with missing data as illustrated in [30], where the authors
compared two variants of these PBCs, (i) applying PDS on Euclidean distance
(NaNLVQ), and the other using a parametrized cosine-dissimilarity (Angle LVQ).

2.2. Angle LVQ
In Angle LVQ (ALVQ) the quadratic form d

{J,K}
i in Eq. (2) is replaced by a

parameterized angle-based dissimilarity:

dLi =gβ (b) , where b = bΛ(xi, wL) = x⊤
i ΛwL

∥xi∥Λ∥wL∥Λ
, with ∥v∥Λ =

√
v⊤Ω⊤Ωv,

Λ =Ω⊤Ω and gβ(b) = e−β(b−1) − 1
e(2β) − 1

with
∑
i

Λii = 1, and L ∈ {J, K}. (3)

Here, the exponential function gβ(b) transforms the cosine b = cos θ ∈ [−1, 1]
into dissimilarities in the range [0,1]. Hyperparameters include the number of
prototypes used to represent each class (fixed to one in this contribution), β
(we use β = 1 unless explicitly stated otherwise), and the choice of the metric
tensor. Similar to its Euclidean counterparts, the dissimilarity measure dLi can be
localized with varying potential for further interpretation [31]. The generalization
bounds can be estimated using the Rademacher complexity similar to LGMLVQ
[54]. The derivatives of Eq. (3) and the local variants can be found in appendix
A.1. In the presence of missingness ALVQ the cosine-dissimilarity b and its
derivates are computed on the observable dimensions only, similar to its Euclidean
predecessor NaNLVQ. However, ALVQ is more robust than Euclidean distance
with PDS (NaNLVQ) with higher missingness, as illustrated in [30].

In the presence of class-imbalance one way to counter the impact of majority
class samples is the introduction of a penalty-matrix in the cost-function [30; 55]:

Ê =
C∑
c=1

1
nc

 ∑
xi,s.t.yi=c

γc,ŷiλi

 , (4)

5



where c = yi is the class label of training sample xi, nc defines the number of
samples within that class, ŷi is the predicted label and λi is the cost-function
value of sample i Eq. (1). This allows for stricter penalisation of certain types of
misclassifications, such as misclassifications of the minority class samples (e.g.,
patients) as a majority class (e.g., Healthy).

Sampling-based strategy to address class-imbalance. The widely used imbalanced-
handling strategy Synthetic Minority Oversampling (SMOTE) [14] in its origi-
nal formulation operates in Euclidean space. Hence, for ALVQ, which operates
on a hypersphere, we introduced a geodesic variant, referred to as the geodesic
SMOTE. To do so it uses the exponential map (from Riemannian geometry),
with origin G (LogG) where the tangent space τG of the manifold is constructed
[50; 56]. Let ζ be a point on the manifold and ζ̂ the corresponding point in the
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Figure 1: Depiction of geodesic SMOTE to generate synthetic samples s on the hypershpere to
oversample minority classes for imbalanced data using Riemannian geometry.

tangent space with ζ̂ = LogG(ζ), ζ = ExpG(ζ̂) and dg(ζ, G) = de(ζ̂, G) with dg
being the geodesic distance between the points on the manifold and de being the
Euclidean distance on the tangent space. Log and Exp denote a mapping of points
from the manifold to the tangent space and vice versa. Geodesic SMOTE then
presents a point x from class c on the unit sphere with fixed length ∥x∥ = 1, that
becomes τG. Next, k nearest neighbours (xψ) of x are found from the same class
xψ ∈ Nx using the dg between the vectors θ = cos−1((x⊤xψ)/r2) and r = 1. Each
xψ is then projected onto that tangent space using only the available dimensions
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and Log transformed for spherical manifolds:

x̂ψ = Logx(xψ) = θ

sin θ
(xψ − x cos θ) . (5)

A synthetic sample can either be produced in a two-stage approach or directly
as visualized in Fig. 1. For the former the sample is generated on the tangent
space similar to the original SMOTE [14] and subsequently projected onto the
sphere via Exp [31]. For the latter it is generated on the geodesic directly, using
the new angle θ̂ = ∥x̂ψ∥ and the Exp transformation, given by:

s = x cos(θ̂α) + sin(θ̂α)
θ̂

· x̂ψ with α ∈]0, 1[ . (6)

This procedure is repeated with other random samples from a minority class until
the desired number of training samples is reached.

3. A probabilistic variant of ALVQ

In the medical domain patients can have multiple comorbidities instead of
a single crisp condition, or they can have a diagnosis which shows phenotypic
similarity or overlap with other conditions. If the classifier could estimate the
certainty of a patient belonging to all the conditions it was trained upon, then
this can constitute useful information, for further investigations or for treatment
planning. Moreover, some diseases may be difficult to diagnose, and might result
in different diagnoses given by the different consulting doctors. This can be
expressed as probability of a class assignment dependent on the fraction of experts
who agree on that class. Therefore, we develop a probabilistic version of ALVQ,
which allows to express our model’s (un)certainty about the class label, given an
input, in the form of conditional probability distribution over the classes. [57],
[58] and [59; 60] used information theoretical principles to generalize Robust Soft
LVQ (RSLVQ), by using maximum likelihood and the Cross-Entropy (CE) as
the cost-function. In our formulation, which is closely related to the CE in [58],
we estimate the class when the sample x is given, by minimizing the difference
between the true class and our estimate i.e., by minimizing the Kullback-Leibler
(KL) divergence (DKL) in the cost-function.

Consider the unknown joint distribution p(x, c) = p(c|x)p(x) over the inputs
and labels that generated our training set {(xi, ci)}Ni=1. Our discriminative model
produces an estimate p̂(c|x) of p(c|x). The expected KL divergence measuring the
mismatch between p̂(c|x) and p(c|x) can be approximated through the training
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sample as
H(p̂(c|·)) = Ep(x)[DKL(p̂(c|x) ∥ p(c|x))]

≈ 1
N

N∑
i=1

C∑
c=1

p̂(c|xi)[ln p̂(c|xi) − ln p(c|xi)]

= 1
N

N∑
i=1

C∑
c=1

p̂(c|xi) ln p̂(c|xi)
p(c|xi)

.

(7)

Since we do not have access to the true distributions p(c|xi) the cost-function
is often formulated by considering only the generated labels ci. For the case of
the generated sample (xi, ci) being noise-free p(ci|xi) = 1 (for example when
the diagnosis is genetically confirmed) other classes have a probability of 0 and
KL divergence cannot be used. In such cases one can either simplify the cost-
function considering only ci for xi: 1

N

∑N
i=1 p̂(ci|xi) ln p̂(ci|xi) or introduce some

noise by subtracting ϵ from the class and adding ϵ/(C − 1) to the others. In
the following we assume the latter and provide the detailed derivatives for noisy
labels. For sample xi the p̂(c|xi) is computed by the following parameterized
soft-max function:

p̂(c|xi) =
gΘ

(
xiΛwc⊤

∥xi∥Λ∥wc∥Λ

)
∑C
j gΘ

(
xiΛwj⊤

∥xi∥Λ∥wj∥Λ

) with gΘ(b) = eΘ(b+1) − 1
e(2Θ) − 1

. (8)

The parameter Θ can be interpreted as 1
kBT

where kB is the Boltzmann constant
and T is the absolute temperature, which determines the crispness of the decision-
boundaries (see subsec. 6.1). The derivatives of DKL(p̂(c|x) ∥ p(c|x)) (Eq. (7))
with ∥v∥Ω =

√
v⊤Ω⊤Ωv are:
DKL(p̂(c|xi) ∥ p(c|xi))

∂Ω =
C∑
c=1

∂p̂(c|xi)
∂Ω ·

(
1 + ln p̂(c|xi)

p(c|xi)

)
(9)

and DKL(p̂(c|xi) ∥ p(c|xi))
∂wj

=
C∑
c=1

∂p̂(c|xi)
∂wj

·
(

1 + ln p̂(c|xi)
p(c|xi)

)
(10)

Now ∂p̂(c|xi)
∂Ω can be expanded to

∂gΘ(bΩ(xi,w
c))

∂Ω
∑C
j=1 gΘ(bΩ(xi, wj)) − gΘ(bΩ(xi, wc))

∑C
j=1

∂gΘ(bΩ(xi,w
j))

∂Ω
(
∑C
j=1 gΘ(bΩ(xi, wj)))2

. (11)

Similarly,

∂p̂(c|xi)
∂wc

=



∂gΘ(bΩ(xi,wc))
∂wc ·

∑C

j=1 gΘ(bΩ(xi,w
j))−gΘ(bΩ(xi,w

c))· ∂gΘ(bΩ(xi,wc))
∂wc( ∑C

j=1 gΘ(bΩ(xi,w
j))

)2 if j=c

−gΘ(bΩ(xi,w
c))· ∂gΘ(bΩ(xi,wj ))

∂wj(∑C

k=1 gΘ(bΩ(xi,wk))
)2 ifj ̸= c

(12)
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where, ∂gΘ(bΩ(xi, wj))
∂Φ = ΘeΘ(bΩ(xi,w

j))+1)

e2Θ − 1 · ∂bΩ(xi, wj))
∂Φ with Φ ∈ {Ω, wj} .

(13)
The partial derivatives ∂bΩ

∂w and ∂bΩ
∂Ω are the same as the original ALVQ and

detailed in Eq. (A. 24) and (A. 25).

4. Geodesic average model

Ensembling is a well known strategy to avoid overfitting and improve on the
generalization of ML algorithms [61; 62]. However, the improved performance
by combining independently trained models comes at the cost of: (i) increased
computational and memory cost needed to keep all the constituent models of the
ensemble; and (ii) sacrificing the interpretability offered by the individual models.
In this section we propose and investigate a different strategy, namely to build
a geodesic average model that retains interpretability while avoiding overfitting
effects by combining parameter information of independently trained models.

4.1. Geodesic average over model parameters
In order to build an average of k models we compute the geometric mean

of each of the model parameters, namely the trained prototypes of each class
Wc = {w{c,k}}ki=1 and the positive semi-definite matrices Λk. We restrict the
description for one prototype per class here, each initialized close to the class
means. With random initialization one might need to rotate the coordinate sys-
tem to align the prototypes before averaging. If using several prototypes per class
the correct index for averaging can be found using the geodesic distance of the
set of prototypes within each class. The β (or Θ) parameter is a positive scalar
and typically fixed or found by line search. Classification by geodesic LV QA

variants (Eqs. (3), (A. 26) and (8)) takes place on the hypershpere and the geo-
metric mean of the model prototypes of each class wc ∈ M in the Riemannian
interpretation, known as Karcher mean [63], is the point in M that minimizes
the sum of squared geodesic distances:

wc = arg min
w∈M

k∑
i=1

dgeod(w{c,i}, w)2 with c ∈ {1, . . . , C} , (14)

with w{c,i} being the prototype of class c of individual model i. In the Eu-
clidean LVQ variants, GRLVQ, GMLVQ and LGMLVQ, the geodesic distance is
simply Euclidean. In case of M being the hypersphere the geodesic distance is
dgeod(wi, wj) = cos−1( wiwj

∥wi∥∥wj∥). This mean exists and is uniquely defined only
as the set of prototypes Wc is contained in an open half-sphere, which means
a convexity radius of π/2, and is typically computed by non-linear optimiza-
tion methods [63–65]. However, computing the geometric mean of the positive
semi-definite (PSD) matrices Λk is less straightforward.
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The computation of geometric means of positive definite (PD) matrices as
proposed by [66] has received considerable attention due to its relevance for nu-
merous applications, ranging from control theory, convex programming, mercer
kernels and diffusion tensors in medical imaging. However, the computation of
this Ando mean is not rank-preserving, resulting almost surely in a rank null
for matrices with rank M < D/2 [67]. Due to the growing interest in low-rank
approximations in large-scale applications, [67; 68] introduced and extended the
geometric mean to the set of PSD matrices S+(M, D) of fixed rank M using a
Riemannian framework. Their approach bases on the decomposition of each of
the k metric tensors

Λi = UiR
2
iU

⊤
i for i = 1 . . . k (15)

exhibiting the geometric interpretation of PSD matrices in S+(M, D) as flat M -
dimensional ellipsoids in IRD. Here Ui is element of the Stiefel manifold St(M, D),
which denotes the set of all orthonormal M -frames in IRD. Thus, the columns
of each Ui forms an orthonormal basis of the M -dimensional subspace the cor-
responding flat ellipsoid is embedded in and each R2

i is an M × M PD matrix
that defines the ellipsoids shape in that low rank cone. [67] proposes that the
Karcher mean of the k M -dimensional subspaces Ui serves as a basis for the
mean of the Λk where all flat ellipsoids are brought to by a minimal rotation. In
that common subspace the problem reduces to the computation of the geometric
mean of k rank M PD matrices. The implementation of their proposed mean
for an arbitrary number of PSD matrices is outlined in Algorithm 11. For more
information about the rank preserving PSD mean and its properties we refer the
reader to [67].

4.1.1. Convex combinations of models
LVQ models approximate the solution to non-convex problems and as such

may converge to different local optima in independent training runs and the com-
plexity of the problem. We expect that the model resulting from averaging over
models from different local optima might exhibit inferior performance compared
to its original contributors. Therefore we investigate convex combinations of
Matrix LVQ models empirically and propose a clustering strategy to distinguish
models to build local averages. For the prototypes of the models the Karcher
mean, Eq. (14), can be generalized to a weighted mean or convex combination:

ŵc = arg min
w∈M

k∑
i=1

αidgeod(w{c,i}, w)2 (16)

with c ∈ {1, . . . , C}, αi ≥ 0 and
∑
i

αi = 1 .

1We provide the Matlab code at https://github.com/kbunte/geodesicLVQ_toolbox
10
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Algorithm 1 Computation of geometric rank preserving PSD mean
1: procedure PSDmean({Λi}k

i=1)
2: for i = 1 → k do
3: compute eigenvalue decomposition Λi = UiR

2
i U⊤

i

4: compute an orthonormal basis V on the Stiefel manifold St(M, D) of the Karcher
mean of the k subspaces Ui

a

5: for i = 1 → k do
6: compute two orthogonal matrices Oi and OV

i by SVD of U⊤
i V b

7: compute bases Yi = UiOi

8: compute bases Vi = V OV
i

9: with Ψ2
i = Y ⊤

i ΛiYi the ellipsoid of Λi rotated to the mean subspace is ViΨ2
i V ⊤

i

10: express the ellipsoids in a common basis V : T 2
i = V ⊤ViΨ2

i V ⊤
i V

11: compute the ando mean A(T 2
1 , . . . , T 2

k ) in the low-rank cone c

12: return the geometric mean Λ = V A(T 2
1 , . . . , T 2

k )V ⊤

aThe Karcher mean of a set of M -dimensional subspaces of IRD on Grassmann manifold
Gr(M, D) is unique in a geodesic ball of radius less than π/(4

√
2) [75] and can be found by

minimal rotation, as provided in the SuMMET package [76].
bThese bases remove ambiguity in the definition of the PSD mean choosing particular bases

Yi of the fibers UiO(M) and bases Vi of the mean subspace fiber V O(M) building the endpoints
of the geodesic in the Grassmann manifold [67].

cMethods are proposed in [66; 77; 78] and we used the mmtoolbox implementation by the
latter.

To the best of our knowledge an analytical solution for the weighted mean does
not exist and several iterative strategies were proposed [69–73]. Two fast iterative
solutions exhibiting linear and quadratic convergence for spheres can be found in
[74].

[67] provided an analytical solution for the weighted average of two positive
semi-definite matrices Λ1 and Λ2 ∈ S+(M, D), which can be summarized as fol-
lows. It bases on the same decomposition as stated in Eq. (15), i.e. Λ1=U1R2

1U⊤
1

and Λ2=U2R2
2U⊤

2 defined up to an orthogonal transformation O ∈ O(M)2 and
hence Ai = UiR

2
iU

⊤
i =UiOi(O⊤

i R2
iOi)O⊤

i U⊤
i . The equivalence classes UiO(M),

called fibers, denote all bases that correspond to the same M -dimensional sub-
space UiU

⊤
i . While the orthogonal transformations do not affect the Grassmann3

mean of subspaces they do effect the Ando mean of the low-rank PD matrices
A(R2

1, R2
2) ̸= A(R2

1, O⊤R2
2O) which causes the problems with the definition of a

geometric mean. To deal with the ambiguity [67] proposed to compute particular
representatives Y1=U1O1 and Y2=U2O2 as bases of the fibers, obtained by SVD
of U⊤

1 U2 = O1(cos Σ)O⊤
2 using the matrix cosine. These two bases correspond

2O(M) denotes the general orthogonal group in dimension M
3Grassmann Gr(M, D) denotes the space of all M -dimensional linear projectors in IRD
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to the endpoints of the geodesic in the Grassman manifold that minimize the
distance between two fibers in the Stiefel manifold St(M, D). These are than
used to define a geodesic between Y1 and Y2 containing the convex combinations
or t-weighted mean

Y (t) = Y1 cos Σt + X sin Σt with t ∈ [0, 1] , (17)
where Σ is the diagonal matrix containing all principal angles and X = (Y2 −
Y1 cos Σ)(sin Σ)−1. Note that the half-way point Y (0.5) is the Riemannian mean
of Y1 and Y 2. Than the representative PD matrices for the M -dimensional
ellipsoids in the low rank cone in the corresponding subspaces are given by Ψi =
Y ⊤
i ΛiYi. Following [79] the convex combination (or t-weighted mean denoted by

#t) of these two PD matrices is computed as

Ψ1#tΨ2 = Ψ1/2
1

(
Ψ−1/2

1 Ψ2Ψ−1/2
1

)t
Ψ1/2

1 (18)
Finally, having all the necessary ingredients, the convex combination of the SDM
matrices Λ1 and Λ2 is computed by the t-weighted mean [67]:

Λ(t) = Y (t)(Ψ1#tΨ2)Y (t)⊤ . (19)

5. Clustering of Matrix LVQ models

In order to avoid averaging across local optima we propose a clustering strat-
egy based on the Grassmann distance between the bases of the fibers Ui from the
decomposition of the metric tensors Λ, see Eq. (15) and the text above (17). The
Grassmann distance dGr(Ui, Uj) = ∥Σ∥2 is computed using the principal angles
[Σ1, . . . , Σm], which are collected in the diagonal matrix Σ obtained by SVD of
the product of the subspaces U⊤

i Uj = Oi(cos Σ)O⊤
j . In case of localized class-wise

metric tensors Λc = Ωc⊤Ωc we compute the Grassmann distance for each of the c
projectors and use the average distance for clustering. We employ agglomerative
hierarchical clustering using Ward Linkage on the pairwise Grassman distances
and extract cluster memberships varying the numbers of clusters. Afterwards we
compute the geodesic average model using only members of the same cluster and
compute the macro averaged accuracy (MAA)4 on the training set to select the
best clustering. Of course different cluster methods could be used as well, such as
for example variations of Grassman k-Means [80–82]. Furthermore, the Matlab
ManOpt toolbox5 provides a rich collection of algorithms for a variety of manifold
optimization problems. However, we decided to use hierarchical clustering, since
we have typically a comparable low number of models, such that the squared
complexity with the number of instances does not state a problem and it avoids
further introduction of local optima as is expected using k-Means or Gaussian

4mean of the classwise accuracies
5http://www.manopt.org
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Figure 2: Visualizations of macro averaged accuracies (MAA) in training and test of the convex
hull build by three P LV QA models from the same (a,b) and three different clusters (c,d)

Mixture Model approaches. Furthermore, the cluster memberships for different
numbers of clusters can be easily extracted without the need of re-running the
method. Fig. 2 shows the MAA of the convex hull build by three probabilistic
LV QA models trained on the exact same dataset (that of GCMS on the urinary
metabolites, explained in subsec. 7.1) with rank M set to three. The first two
panels depict the training and test set performances of the closest models within
the same cluster, while the latter 2 panels show the performance of models taken
from three different clusters. It can be seen that the convex combination of met-
ric tensors from different clusters can lead to inferior performance, while it can
improve using models from the same cluster. Therefore, we propose to extract
2-k clusters, compute the average model of each and look at an elbow in the
training performance.

6. Synthetic datasets and experiments

In this section we perform two synthetic experiments to show the influence
of the hyper-parameter Θ of the monotone function gΘ in (8) and to investigate
the influence of missingness when the ground truth is known.

6.1. Influence of Θ on classifier confidence
We created a three-dimensional synthetic dataset, each sample of which lies

on the surface of a sphere. This toy dataset contained 85000 samples which were
distributed into three classes in the proportion of 2:1:1, as shown in the Mollweide
projection of this dataset (Fig. 3).
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cls1

cls2

cls3

prots

Figure 3: Mollweide projection of a 3D dataset for investigation of the effect of the Θ value

Since we are interested in studying the effect of Θ alone on the region of
significant influence and area of regions of uncertainty, we fixed the Ω and the
wc with c = 1, . . . , C and C = 3 of a trained Probabilistic Angle LVQ model
and varied only the value of Θ. In Fig. 4 each column corresponds to a value of
Θ ∈ {0.1, 1, 2, 5, 10, 50, 100} and each row depicts the regions of probability for

Figure 4: Effect of the value of Θ in classification uncertainty. The o-marker represents the
prototype of the class highlighted in each row, namely class (Cls) 1, 2 and 3.

class 1, 2 and 3, respectively. In each sub-figure the Mollweide projection of the
samples of the toy dataset are coloured according to the confidence of the model
in assigning that sample the label of the class whose prototype is highlighted
(big white circle). The heatmaps illustrate how with increasing Θ the regions of
uncertainty become narrower, resulting in crisper decisions. Since we aimed for
non-crisp decisions we set Θ < 20 in our experiments on the real-world datasets.
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Figure 5: Synthetic data: plot of the 3 informative dimensions (left) and class-wise heatmaps
of subject-wise average 60% missingness of type MNAR and MCAR (right).

6.2. Impact of training dataset size, type and amount of missingness
We modelled a synthetic dataset6 to simulate the influence of the limited

availability of training data, given the different type and amounts of missingness,
as often encountered in biomedical data analysis. The synthetic dataset χsyn is
created with three informative dimensions in which three classes are arranged on
two-dimensional manifold arcs bending in 3D and overlapping with their narrow
parts in the center of a sphere, as visualized in Fig. 5. Similar to our real-
world biomedical dataset the absolute values are not very informative in this
arrangement. To increase the complexity we augmented it with four nonlinear
transformations of the original three informative dimensions and five dimensions
of uniform random noise, resulting in 20 dimensions in total. The non-linear
copies were created by taking the (i) base 10 logarithmic transform, and the
exponential transforms (ii) eχ, (iii) χ3 and (iv) χ5. The dataset is successively
treated with increasing amount of missingness, starting from 10% up to 60% in
steps of 10%. We considered both the structured missingness mechanism such as
the MNAR, as well as the more simplistic MCAR. In particular, the dataset is
divided into three groups of group proportions 0.4 : 0.4 : 0.2, to simulate a dataset
that is built from three different laboratories and studies, as described hereafter.
They are represented by an additional “group id” ∈ [1, 2, 3]. The first two groups
of data (studies) measure a few, potentially mutually exclusive, features and the
third group measures all features of the 20-dimensions of synthetic data. In case
the identity of the group is known or observed (e.g. we know which lab the data
items come from), we would have the MAR mechanism. If this is not the case and
“group id” is unobserved (e.g. the data items from different labs were merged into

6Publicly available in https://git.lwp.rug.nl/cs.projects/angleLVQtoolbox.git
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a single data set without the lab information), the missingness is of type MNAR.
However, with passage of time each of the first two labs started measuring a
few more dimensions than they initially used to, and thus we have a time and
study-dependent (systematic) missingness. This scenario bears some similarity
to our dataset described in subsec. 7.1. In reality randomly missing samples can
exist in addition to systematically missing ones. Hence we added 12-15% of the
target total missingness as random missingness. The right panel in Fig. 5 shows
the most complicated case with 60% MNAR. We generated 300 samples per class
(total of 900 samples) for training and validation, and an independent test set
consisting of 30,072 samples.

To study the effect of the training set size on the generalization performance
of the classifiers under the varying amounts of missingness, we successively re-
duced the amount of data from 80% to 20% of the original 900 samples in steps
of 10%. Next, using 10-fold cross-validation (CV), we compare several strategies
for classification in the presence of missing data in the synthetic datasets ex-
plained above. The first strategy bases on generative modeling, namely applying
PPCA [33] on the data with missingness, followed by classification by LDA, as
proposed in [32]. The algorithm is abbreviated by LDAQ where Q denotes the
latent dimension for PPCA. PPCA performed on the full training sets suggests
an intrinsic dimensionality of 10 for each percentage of missingness. For clas-
sifiers which cannot handle missing data in their original formulation, such as
Random Forest (RF) and KNN, we apply the PMM strategy of MICE [23; 83]
on the training set to generate 10 imputed training sets and imputation mod-
els. These models then generate the corresponding imputed validation sets and
imputed hold-out test set7.

For the KNN classifier we varied number of nearest neighbours k and type of
distance used, namely Euclidean and Mahalanobis, and abbreviate the method
with iKNNEk and iKNNMk respectively. [84] suggests that the value of k should
be chosen as the square root of the number of training instances. However, since
we varied the size of the training set and simultaneously wanted to eliminate
the effect of different values of this hyperparameter for the different sizes of the
training set, we selected the upper limit of k ≈

√
162 ≈ 12 for all the sets accord-

ing to the smallest set being 20% of the original samples. For RF we selected
150 DTs, which is large enough for a strong ensemble classifier and still smaller
than the smallest training set. For PBCs we compare the original Euclidean dis-
tance based classifier GMLVQ with rank M on the imputed data, abbreviated
by iLV QEM and the NaNLVQ capable of handling missing values, accordingly
referred to as LV QEM . The geodesic Angle LVQ extension (LV QAM ) is applied

7A recent out-of-sample extension for MICE called mice.reuse is available at https://
github.com/prockenschaub/Misc/tree/master/R/mice.reuse

16

https://github.com/prockenschaub/Misc/tree/master/R/mice.reuse
https://github.com/prockenschaub/Misc/tree/master/R/mice.reuse


Table 1: Selected average training T z
fN and hold-out test HOz

fN errors for fraction f ∈ [1, 0.2]
of N original training samples, containing z% of missingness of type MNAR (on an average).

Classifier T 0%
N HO0%

N HO0%
0.2N HO30%

N HO30%
0.2N HO60%

N HO60%
0.2N

ikNNE12 .06 (.01) 0.15 (.01) 0.23 (.05) 0.22 (.03) 0.28 (.04) 0.41 (.01) 0.45 (.02)
ikNNM12 .02 (0) 0.08 (.01) 0.23 (.07) 0.23 (.04) 0.34 (.05) 0.45 (.01) 0.52 (.02)
ikNNE5 .05 (.01) 0.17 (.01) 0.26 (.05) 0.26 (.03) 0.30 (.04) 0.43 (.01) 0.47 (.02)
ikNNM5 .02 (0) 0.12 (.01) 0.25 (.06) 0.28 (.04) 0.36 (.05) 0.48 (.01) 0.53 (.02)
iRF150 .00 (0) 0.01 (0) 0.02 (.01) 0.06 (.01) 0.08 (.02) 0.25(.01) 0.30(.01)
iLV QE10 .02 (0) 0.02 (0) 0.07 (.04) 0.15 (.02) 0.21 (.04) 0.36 (.01) 0.43 (.03)
iLV QA10 .00 (0) 0.01 (0) 0.08 (.05) 0.14 (.02) 0.20 (.04) 0.35 (.01) 0.41 (.03)
iLV QE20 .02 (.01) 0.02 (.01) 0.07 (.03) 0.15 (.02) 0.21 (.04) 0.36 (.01) 0.43 (.03)
iLV QA20 .00 (0) 0.01 (0) 0.08 (.05) 0.14 (.02) 0.20 (.04) 0.35 (.02) 0.42 (.04)

LDAQ10 .01 (.01) 0.17 (.03) 0.26 (.07) 0.25 (.03) 0.30 (.05) 0.38 (.03) 0.40 (.03)

LV QE20 .02 (.01) 0.02 (.01) 0.07 (.03) 0.15 (.01) 0.21 (.04) 0.30(.01) 0.35(.03)
LV QA20 .00 (0) 0.01 (.01) 0.07 (.05) 0.14 (.02) 0.20 (.02) 0.27(.01) 0.35(.05)
LV QE10 .02 (0) 0.02 (0) 0.07 (.04) 0.15 (.01) 0.23 (.04) 0.31 (.01) 0.37 (.03)
LV QA10 .00 (0) 0.01 (0) 0.08 (.05) 0.14 (.02) 0.21 (.04) 0.27(0) 0.35(.04)
P LV QA1

10 .00 (0) 0.01 (0) 0.01 (0) 0.15 (.03) 0.16 (.03) 0.27(.01) 0.28(.02)
LV QLA10 .01 (0) 0.05 (.03) 0.13 (.07) 0.13 (.02) 0.23 (.05) 0.24 (.02) 0.36 (.04)

both on the original and the imputed data (iLV QAM ) to show the influence of
the imputation on the models. The novel probabilistic ALVQ is abbreviated by
PLV QAΘ

M in the following, and the hyperparameter Θ = 1. Additionally we set
the rank M = 10 for direct comparison with LDAQ=10. The PBCs are repeated
5 times with random initialization on each training set.

Tab. 1 reports the performance in terms of classification error (and standard
deviation) averaged over the 10 folds CV, when applied on the datasets with
MNAR values. The classifier names are abbreviated as introduced before together
with the main hyperparameters shown in the subscript and superscript. Prefix i
denotes that the classifier is trained and tested on the imputed datasets. In the
column names, T z

fN refers to the training error and HOz
fN the corresponding hold-

out test error, where f indicates the fraction of the original number of samples
N used for training, and z marks the average percentage of missingness per
sample. Tab. 1 shows that RF exhibits the lowest error in the hold-out test
test. However we also observed that RF suffers significant overfitting. This table
further indicates that throughout the experimental settings (variation of amount
of missingness and available data for training), the performance of LV QA10 is
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Table 2: Selected average training T z
fN and hold-out test HOz

fN errors for fraction f ∈ [1, 0.2]
of N original training samples, containing z% of missingness of type MCAR (on an average).

Classifier T 0%
N HO0%

N HO0%
0.2N HO30%

N HO30%
0.2N HO60%

N HO60%
0.2N

ikNNE12 .06 (.01) 0.15 (.01) 0.23 (.05) 0.23 (.01) 0.23 (.01) 0.38 (.01) 0.38 (.01)
iRF150 .00 (0) 0.01 (0) 0.02 (.01) 0.06 (0) 0.06 (0) 0.23 (.01) 0.23(.01)

LDAQ10 .10 (.01) 0.17 (.03) 0.26 (.07) 0.21 (.03) 0.22 (.03) 0.33 (.03) 0.33 (.03)

LV QE10 .02 (0) 0.02 (0) 0.07 (.04) 0.14 (.01) 0.16 (.02) 0.28 (.01) 0.28 (.02)
LV QA10 .00 (0) 0.01 (.01) 0.08 (.05) 0.13 (.01) 0.14 (.02) 0.28 (.02) 0.28 (.03)
P LV QA10 .00 (0) 0.01 (0) 0.01 (0) 0.15 (.02) 0.16 (.03) 0.29 (.02) 0.29 (.02)
LV QLA10 .01 (0) 0.05 (.03) 0.13 (.07) 0.15 (.02) 0.16 (.03) 0.27 (.02) 0.35 (.03)

more stable than LV QE10 even for the lowest rank of Ω. With regards to the
KNN, the choice of distance measure has a stronger effect than the choice of k
for this data. Comparing LDAQ and the LVQs, we find that the effect of the
number of PCs is more pronounced in the former than the effect of the rank of
Ω for the latter.

Furthermore, we investigate whether the superior performance by RF is due
to ensembling. Therefore we train a system of 150 LV QA20 on the exact same
imputed subsets of training data that each of the 150 DTs of the RF had trained
on, on the most difficult setting (60% MNAR and training set reduced to 20%
of its original size). The mean generalization error from the system of iLV QA20

is 0.39 (0.02) and that from LV QA20 is 0.32 (0.01) against RF’s 0.30 (0.01).
This additionally confirms that imputation does adversely affect the performance
of LV QA classifiers. Since ensembling compromises with the interpretability of
a classifier we applied geodesic averaging to our classifier, which resulted in a
generalization error of 0.31 (0.01), thus comparable to RF with 150 DTs trained on
the exact same subset of training data, indicating that ensembling and averaging
strategies are indeed beneficial.

Next we compare and discuss the performance of the classifiers on the afore-
mentioned MCAR datasets. For each of the classifiers, only the most promising
hyperparameter settings (based on the validation set performance) were applied.
Hence, in the following experiments we omit imputation for algorithms that han-
dle the missingness internally. We set both Q for LDA and rank(Ω) to the intrinsic
dimensionality estimated by PPCA and eigenvalue decomposition (EVD): 10.
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Figure 6: Classification error plots of 6 methods on the hold-out test set for MCAR and MNAR.
F → full/original size, R → 20% of F , suffixes 1 to 3 denote 0%, 30% and 60% missingness.

Tab. 1, 2, and the visual summary of the performances of PLV QA, LV QA,
LV QE and LDA trained on unimputed data, and KNN and RF on the imputed
dataset, in Fig. 6 illustrate the following: (i) there is prominent superiority in
performance of LV QA against LV QE only when missingness is of type MNAR,
while remaining similar for MCAR; (ii) KNN and LDA are less prone to error
when the missingness type is MCAR; (iii) even though RF with 150 DTs have a
slightly lower error rate than that of the LVQ classifiers, our investigation con-
firmed that it is because of ensembling. Since the motivation behind Tab. 1 was
to show the difference in influence of the MCAR and MNAR type of missingness,
we have not repeated the experiment with ensembling for this part.

7. Computer aided diagnosis of Inborn disorders of steroidogenesis

Inborn steroidogenic disorders (referred to henceforth as ISD) are genetic
diseases affecting the Endocrine system which synthesizes hormones controlling
bodily functions, such as blood pressure regulation, stress response, sex differen-
tiation and puberty. ISDs can cause blockages in hormone production, leading to
several forms of Congenital Adrenal Hyperplasia (CAH) and Differences in Sex
Development (DSD) [85], which are rare but potentially life-threatening. How-
ever as identifying the ISDs involve measuring complex characteristic patterns of
the steroidogenic biomarkers, computer-aided-diagnostic approaches are highly
desirable for rapid diagnosis, and thereby for efficient treatment planning, selec-
tion, its delivery to save lives.
7.1. Urine steroid metabolite GC-MS dataset

The IMSR collected a unique but highly imbalanced dataset of 32 steroid
metabolites (biomarkers) extracted from the urine samples of 829 healthy controls
(HCs), and 178 patients with ISDs (ISD-1: 22, ISD-2: 12, ISD-3: 30, ISD-
4: 26; ISD-5: 37; ISD-6:51), using Gas Chromatography–Mass Spectrometry
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(GC-MS). This dataset was compiled across multiple analyses and studies, and
over two decades, during which there were enhancement of both the clinicians’
understanding of what constitute important biomarkers, and the GC-MS method
itself. Consequently, certain biomarkers were only measured in subjects from later
studies and resulted in systematic missingness in this dataset (see Fig. 7).

10 20 30

200
400
600
800

10 20 30

5
10
15
20

10 20 30

2
4
6
8

10
12

10 20 30

10

20

30

10 20 30

5
10
15
20
25

10 20 30

10
20
30

10 20 30

10
20
30
40
50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

200

400

600

800

1000

Missing Available

Figure 7: Heat-maps showing the presence of a combination of random and systematic missing-
ness in each of the conditions of ISDs and HCs contained in the GC-MS dataset.

The third challenge is heterogeneous measurements, due to presence of large
variations in biomarker profiles across the subjects, even within the same condi-
tion, due to individual physiological features, such as age, sex, and the subject’s
age dependent difference in urine sample collection methods. To combat this, we
constructed pairwise combinations of these biomarkers, resulting in 496 ratios,
following the proposal of [85–87] that using ratios of biomarkers.

7.2. Experimental setup and selecting hyperparameters.
Due to the limited number of samples for the rare disorders of steroidogenesis

it is impossible to keep a hold-out test. Therefore, we validate the performance
of the classifiers using 5-fold CV, using stratified sampling to preserve the class
distribution. Following the outcome from the series of experiments performed
on the synthetic datasets, we did not use imputation on the GC-MS dataset for
any algorithm which can handle missing data implicitly. The data is prepro-
cessed by z-score transform with the mean and standard deviation determined
by each training set and consecutively used in the corresponding test set. PPCA
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Figure 8: The cumulative variance shows that 57 intrinsic dimensions together explain 95%,
and 100 intrinsic dimensions explain more than 99% of the variance of the dataset.

and EVD revealed Q = 300 latent dimensions (Fig. 8) and suggest that ≈ 57
and 100 latent dimensions can explain 95% and 99% of the variances of this
dataset respectively. EVD of Λ=Ω⊤Ω with Ω ∈ IR57×D revealed an intrinsic di-
mensionality M=6. We additionally experimented with Ω ∈ IR3×D that allows
the visualization of the decision-boundaries (satisfying IIC-3). Experiments on
each fold were repeated at least 5 times with random initialization of elements
Ωij ∈ [−1, 1]. Tab. 3 summarizes the experiments performed on the biomarker
ratios of the GC-MS dataset. LV QE indicates GMLVQ using Euclidean distance,
while LV QAβ

M indicates ALVQ (using cosine-based dissimilarity), and M denotes
the rank of metric tensor Λ and β the hyperparameter in ALVQ. For this dataset
we also experimented with the more complex local variant, using local metric
tensors, which are referred to in the tables as LV QLA. The probabilistic variant
is abbreviated by PLV QAΘ

M . For block-A all the classifiers, except LDA, were
applied on 10 imputed sets of training data per fold since LDA can intrinsically
handle missingness. Thus while the variability in the rest of the classifiers in this
block arise from both the imputed sets and the oversampling per iteration, the
variation in LDA performance is solely due to oversampling. In block-B most
experiments used geodesic SMOTE to tackle the class-imbalance in a compa-
rable way. Alternatively a cost-weight matrix (Eq. (4) [30]) can be used, that
can penalize certain classification errors more than others. We observed com-
parable results to the use of geodesic SMOTE and added one result with costs
γcp = 1/7 for demonstration. The diagonal γc=p and misclassified healthy con-
trols cost is 2/3, misclassifications of ISD-4 and ISD-5 for any other disease is 1/3,
and the highest penalty is induced by a patient being misclassified as healthy,
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Table 3: Experiments on the GC-MS data. All experiments were performed on 5 folds CV using
stratified sampling, and repeated random initializations per fold.

Algorithms Hyperparameters & experiment
LDAQM PPCA for latent dimension of M=100 and 57, SMOTE (imbalance)
iKNNE

κ MICE (imputation), SMOTE (imbalance), and k ∈ {3, 5, 7}
iRFt MICE (imputation), SMOTE (imbalance), number of DTs t ∈ {7, 50, 100}

LV QEM SMOTE (imbalance), 1 prot/class, Rank(Λ) M ∈ {100, 57, 6, 3}
LV QA

β
M Geodesic SMOTE (imbalance), 1 prot/class, Rank(Λ) M ∈ {100, 57, 6, 3}

LV QLA
β
M Geodesic SMOTE (imbalance), 1 prot/class, Rank(ΛL) M ∈ {100, 57, 6, 3}

P LV QAθM Geodesic SMOTE (imbalance), 1 prot/class, Rank(Λ) M ∈ {100, 57, 6, 3}

cP LV QAθM
Cost weight matrix γcp (imbalance), 1 prot/class, Rank(Λ) M ∈
{100, 57, 6, 3}

(cP )LV Q
A

{β,θ}
M

eη
Ensembling (majority vote) of η ∈ {5, 100} iterations of (cP )LV QA

{β,θ}
M for

each fold with Rank(Λ) M ∈ {100, 57, 6, 3}

(cP )LV Q
A

{β,θ}
M

#ηυ
Geodesic average of υ clusters over η = 100 (cP )LV QA

{β,θ}
M models for each

fold with Rank(Λ) M ∈ {6, 3}

setting the corresponding column off-diagonal elements to 1. We concentrate on
the best hyperparameter settings (based on training performances only) of the
newly presented intrinsically interpretable classifiers (LV QA, LV QLA, PLV QA

and cPLV QA) from block-B, to perform ensembling experiments (block-C). This
is to ensure that they (i) constitute a fairer performance comparison to RF (which
is an ensemble of η DTs), and (ii) enable easy comparison and interpretation of
the corresponding average models presented in block-D (see Sec. 4). In block-D,
the clustering strategy is employed before building the geodesic average model
(see Sec. 5), abbreviated by #ηυ in the subscript, where υ=1 (the default setting)
indicates that all models were used in a single cluster. υ >1 indicates that the
average was build in subsets of υ clusters. The latter is only beneficial if there
are significantly different local optima found, which usually is encountered when
the complexity of the model (global metric tensor, rank and/or number of pro-
totypes) is too small for the classification problem, such as the rank 3 restriction
that allows visualization of the decision-boundaries.

7.3. Performance comparison on the GC-MS data
In this section we present the results of the best hyperparameter settings

(selected based on training performance) described in Tab. 3 for LDA, KNN and
RF. For LVQ classifiers, their performances on both imputed and unimputed
(original ratios) were compared, however as was seen for the synthetic dataset,
imputation has an adverse effect and we do not show them. We performed grid-
search to optimize the hyper-parameter settings of all methods with respect to
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Table 4: GC-MS: mean validation performance (and standard deviation) across 5 folds. Evaluation
measures include sensitivity (Sens, all conditions versus healthy), macro-averaged accuracy (MAA),
and class-wise accuracy (cw-Acc). Blocks C and D show the performance of majority vote ensembling
((cP )LV Qeη) and the fold-wise average model ((cP )LV Q#η).

Method Sens. MAA Healthy ISD-1 ISD-2 ISD-3 ISD-4 ISD-5 ISD-6

A: State-of-the-art traditional, interpretable, flexible ML models.

iRF100 94.1(.03) 92.4(.03) 99.8 (.00) 88.5 (.16) 96.7 (.07) 90.7 (.14) 89.3 (.17) 87.1 (.09) 94.8 (.06)

iKNNE
5 86.2 (.06) 79.6 (.06) 98.0 (.01) 61.1 (.22) 82.7 (.30) 82.7 (.13) 84.9 (.13) 66.6 (.14) 80.9 (.14)

LDAQ100 87.7 (.03) 80.3 (.02) 97.7 (.01) 63.0 (.29) 76.7 (.22) 83.3 (.12) 72.7 (.23) 78.6 (.07) 90.2 (.00)

B: LVQ variants with different hyperparameter settings.

LV QE6 89.4 (.04) 86.2 (.06) 99.3 (.00) 78.0 (.14) 93.3 (.15) 83.3 (.12) 76.7 (.33) 78.6 (.15) 94.0 (.05)

LV Q
A1

6 95.1 (.04) 91.3 (.03) 98.9 (.01) 84.0 (.22) 98.7 (.03) 93.3 (.10) 89.9 (.12) 78.6 (.17) 95.7 (.05)

P LV Q
A10

3 95.8 (.02) 89.8 (.03) 98.2 (.01) 81.0 (.25) 95.3 (.10) 90.7 (.13) 86.9 (.14) 81.6 (.16) 94.5 (.06)

P LV Q
A15

6 96.6(.03) 91.8(.03) 98.1 (.01) 85.0 (.24) 100 (.00) 91.3 (.12) 88.8 (.17) 80.5 (.13) 98.8 (.03)

cP LV Q
A15

6 97.3(.02) 91.1(.04) 97.2 (.02) 84.8 (.20) 97.2 (.10) 92.4 (.09) 89.6 (.15) 81.6 (.14) 95.0 (.06)

LV Q
LA1

3 95.2 (.03) 91.1 (.03) 99.0 (.01) 85.0 (.18) 97.3 (.06) 92.7 (.09) 88.0 (.18) 78.2 (.12) 97.3 (.05)

C: Ensembling selected LVQ variants.

LV Q
A1

3
e100 94.8 (.03) 91.7 (.02) 99.2 (.01) 81.0 (.21) 100 (.00) 96.7 (.07) 88.0 (.18) 78.9 (.14) 98.0 (.04)

LV Q
A1

6
e100 94.3 (.03) 91.4 (.02) 99.0 (.01) 81.0 (.21) 100 (.00) 96.7 (.07) 88.0 (.18) 78.9 (.14) 96.2 (.05)

P LV Q
A10

3
e100 96.6(.03) 93.1(.03) 98.9 (.01) 86.0 (.22) 100 (.00) 96.7 (.07) 88.0 (.18) 81.8 (.17) 100 (.00)

P LV Q
A15

6
e100 96.6(.03) 93.4(.02) 98.7 (.01) 86.0 (.22) 100 (.00) 96.7 (.07) 88.0 (.18) 84.3 (.14) 100 (.00)

cP LV Q
A15

6
e100 97.2(.02) 92.7(.03) 98.4 (.02) 91.0 (.12) 100 (.00) 93.3 (.09) 88.0 (.18) 81.8 (.17) 96.0 (.05)

LV Q
LA1

3
e100 94.4 (.02) 90.2 (.02) 99.3 (.01) 76.0 (.25) 100 (.00) 93.3 (.09) 88.0 (.18) 78.9 (.14) 96.2 (.05)

D: Averaging selected LVQ variants.

LV Q
A1

3
#1005

94.4 (.02) 85.7 (.08) 94.9 (.09) 72.6 (.20) 85.3 (.23) 92.7 (.09) 83.7 (.15) 73.3 (.18) 97.3 (.04)

LV Q
A1

6
#1005

94.6 (.02) 91.4 (.01) 99.0 (.01) 78.5 (.22) 100 (.00) 96.7 (.07) 88.0 (.18) 81.6 (.12) 96.2 (.05)

P LV Q
A10

3
#1004

96.5(.01) 89.0 (.03) 98.1 (.01) 77.8 (.24) 92.5 (.07) 92.5 (.07) 86.0 (.22) 81.0 (.14) 95.5 (.04)

P LV Q
A15

6
#1001

96.6(.02) 92.6(.02) 98.4 (.01) 86.4 (.20) 99.9 (.00) 93.8 (.08) 88.0 (.17) 82.8 (.14) 99.3 (.00)

cP LV Q
A15

6
#1001

97.8(.01) 92.9(.04) 98.1 (.01) 91.0 (.12) 100 (.00) 93.3 (.09) 88.0 (.18) 81.8 (.17) 98.0 (.04)

LV Q
LA1

3
#1001

95.5 (.01) 91.2 (.02) 99.3 (.01) 81.0 (.21) 100 (.00) 93.3 (.09) 88.0 (.18) 78.9 (.14) 98.2 (.04)

the training data. For KNN the performance corresponding to Euclidean distance
with κ=5 nearest neighbours is reported. For the PLV QAΘ

M , Θ=10 and and
15 were found to be good choices for for rank M=3 and 6 respectively. We
present the generalization performance from those experimental settings which
had best training performance, were easy to interpret, and helped in considerable
knowledge gain by the medical community. Tab. 4 shows the most interesting
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selection of performances of Angle LVQ (global and local), the newly introduced
probabilistic variant PLV QAΘ

M , RF (with 100 trees), imputed KNN with κ = 5,
LDA with latent dimension Q = 100, and the original matrix LV QEM (imputed
and NaNLVQ). Since the class-wise accuracy of the healthy condition is the same
as the specificity we only report the former. Tab. 4 shows that the imputed RF
is superior to LDA or imputed KNN. Furthermore, the experiments demonstrate
that the use of the angular dissimilarity in the LVQ models is beneficial for this
dataset. Note, that the ALVQ models are also fairly robust with respect to the
hyper-parameter setting, with the exception of the rank 3 models that trade some
of the performance for additional interpretability by visualization. Interestingly,
PLV QAΘ

M even with ranks 3 and 6 of Λ, and LV QLAβ
M with rank 3 local metric

tensors ΛL show better performance than their original formulation and have
comparable performance to RF. Following an ensembling strategy with 100 LVQ
models leads to a fair comparison. Especially the PLV QA models achieve similar
or superior performance and exhibit higher sensitivity and MAA when compared
to RF, albeit with some loss of interpretability. However, the clustered average
models in block-D, resolves this by harnessing the power of ensembling while
preserving interpretability, as explained in Sec. 4. The overall best performance
is achieved with an ensemble of PLV Q models over 100 random initializations,
and their corresponding average model in a single cluster. The cost weight matrix
cPLV Q is a viable and computationally cheaper alternative to oversampling as it
can steer training with prior knowledge without generation of synthetic samples,
while maintaining comparable performance.

7.4. Knowledge extraction from Angle LVQ models
7.4.1. Visualisation of decision-boundaries

The ALVQ variants, both probabilistic and deterministic, with Λ of rank 3 can
be used to visualize the decision-boundaries between the conditions, the positions
of the prototype of each class, and the subjects on a sphere, satisfying IIC-3. The
rank-3 model is not complex enough for the GC-MS classification problem result-
ing in trade-off in performance and several local optima, and requiring clustering
before averaging. For Fig. 9 we selected a model from PLV Q

A10
3

#ηυ
cluster 4 which

averaged over 32 constituent models of fold 1. We visualize the sphere in two
dimensions using the Mollweide projection8. The reduction of the hypersphere
of 496 dimensions to 3 dimensions for visualisation purpose slightly compromised
with the sensitivity and class-wise accuracies. However, this illustration provides
an effective visual explanation for collaborators of how PLV Q

A10
3

#1004
performs

classification on the hypersphere and highlights the position of subjects which lie
close to decision-boundaries which may be challenging to accurately classify.

8Matlab code available at https://github.com/SrGh31/classificationSphereMollweide
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ISD-1 ISD-2 ISD-3 Healthy

ISD-4 ISD-5 ISD-6 Prototypes

Figure 9: Mollweide projection of the decision-boundaries, prototypes and samples induced by
one of the cluster models P LV Q

A10
3

#1004
averaged over 32 individual models in fold-1.

7.4.2. Biomarker extraction
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Figure 10: Biomarker relevance for ISD as occurrence frequency extracted from top 20 and
140 most relevant ratios with P LV QA and RF respectively. Numbers 1-32 indicate the 32
biomarkers extracted from urine for investigation

Matrix LVQ models enable the extraction of feature relevance information
from the given dataset (satisfying IIC-1). One can obtain similar information
from RF (feature importance) using MDA strategy. Fig. 10 shows the feature
relevance in the form of occurrence frequency of each biomarker measured in urine
for the classification of ISD, extracted from the largest 20 ratios on diagonal of
Λ in comparison with those extracted from 140 most important ratios of the RF
(to cover 20 ratios × 7 classes). We reassuringly find that both the performance
as well as the feature relevance and importance profiles obtained from PLV QA

and RF to be very similar.
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While it is theoretically possible to extract condition specific information from
RF, it is not as intuitive or straightforward a process as it is to extract similar in-
formation from all LV QA variants. Class-specific biomarker information is often
vital for the clinicians’ understanding and interpretation, but often difficult to
obtain from classification models. However PBCs can also extract the magnitude
of the disease-specific biomarkers measured, and the (disease) prototype profiles
can be obtained by both the global and local versions of LV QA. Furthermore,
the local version provide clinicians information about a unique “fingerprint” pat-
tern of biomarker ratios (i.e. feature vectors) most specific for distinguishing
each condition fulfilling IIC-2. The feature relevance information for each con-
dition is easily extracted from the diagonal of the matrix LVQ variants with
classwise local metric tensors ΛL. However, both probabilistic and deterministic
LVQ variants can provide the domain expert with far superior interpretability in
this regard. Using the average models we can perform a descriptive analysis of
the classification-terms (as detailed in subsubsec. 7.4.3).

7.4.3. Descriptive analysis of Probabilistic LVQ decisions
Any matrix LVQ model allows the analysis of its decision-making based on

the classification-terms, which essentially serve similar purpose to that by the
classification activation map (CAM) as explained in [3]. For the proposed variant
PLV QA (Eq. (8)) for example a classification-term is the product of the sample
vector dimension xi,d1, the relevance matrix element Λd1,d2, and a prototype
dimension wc

d2, together with additional factors or transformations dependent
on the dissimilarity measure. A sample xi is classified as class c if the sum
of classification-terms (T ic) including prototype wc is larger than for any other
prototype:

p̂(c|xi) =
gΘ

(∑D
F1=1,F2=1 T ic

F1,F2

)
∑C
j gΘ

(∑D
F1=1,F2=1 T ic

F1,F2

) with T ic
F1,F2 = xi,F1ΛF1,F2wc

F2
∥xi∥Λ∥wc∥Λ

.

While the generalization performance is demonstrated in the previous section we
show here the decision-making statistics over the full dataset, and hence a descrip-
tive analysis. Therefore, we build one model from the 5 fold cPLV Q

A15
6

#1001
models,

using the geodesic averaging strategy that represents the average statistics of the
trained decision-making process across all folds. Extracting the feature-wise rel-
evances from the diagonal of Λ and sorting in descending order reveals that 394
biomarker ratios (out of 496) already contain over 95% of the total relevance
and equivalent accuracy. We remove the unimportant dimensions resulting in a
reduced model for the following analysis, that only misclassifies 15 out of 1007
samples in total. Among the latter are 10 HCs, 1 ISD-1 patient missed as healthy,
2 ISD-3 patients missed as ISD-5 and 2 ISD-5 patients misclassified as ISD-4. The
p̂(c|xi) provides the probability for sample i to belong to class c and we can see
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Figure 11: Biclusters of classification terms T ic for the 394 metabolite ratio features F averaged
for all samples of xi with yi = c for every condition c. The terms of the missed ISD-1 sample
(lower left panel) are sorted according to the condition bicluster (top left)

that the second most likely class is often the correct one. However, we are inter-
ested in the ratios and biomarkers and how much (on average) they contribute
to the decision.

The matrix of classification-terms T ic contain positive or negative entries
indicating the correlation of xi with the prototype wc induced by the metric
tensor Λ. Since the classification decision is based on the biggest sum over all
arg max

c
(
∑
F1,F2 T ic

F1,F2) the terms can be sorted. Fig. 11 shows biclusters of

classification-terms T ic averaged for all samples of xi with yi = c for every condi-
tion c. The rows and columns are clustered using the agglomerative Ward2 cluster
algorithm [88; 89], grouping similar entries simultaneously in rows and columns.
Note that most of the classification decisions for each condition are only based on
comparably few biomarker ratios as many terms are close to zero. In contract to
HCs the patients show mostly a clear important block of pairwise ratios dominat-
ing the decision. The misclassified ISD-1 sample is shown in the lower left panel
with the sorting adopted from its condition’s average T ic showing clearly that
important ratios differ significantly from the respective prototype. Fig. 12 de-
picts the performance change dependent on the number of top ratios used in the
model and the frequency of biomarkers for each class. The left panel shows the re-
spective class specific sensitivity and specificity (as well as overall sensitivity and
specificity in terms of healthy vs disease) achieved by the model being reduced
to the top x ratios extracted from the sorted average classification-terms T ic per
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Figure 12: Descriptive analysis of ratio contribution (left) and metabolite frequency among top
ratios (right) for the classification of the inborn disorders of steroidogenesis

class yi = c. And the right panel depicts the frequency of biomarkers among the
top ratios and their appearance in nominator or denominator, that indicates if
it is over- or under-produced in the respective class. We additionally report the
number of top ratios per class that achieve 98% of the balanced accuracy (BA,
arithmetic mean of the sum of sensitivity and specificity of the class versus the
other classes combined) within each panel. Notably, the classification decision
for patients of some of the conditions, namely ISD-1, ISD-2, and ISD-4, is very
accurate with over 0.95 BA and on average based on fewer than 10 biomarker ra-
tios (9, 5 and 8 respectively). Within those top ratios an overwhelming majority
of over 80% contain one specific biomarker in the numerator indicating an excess
compared to HCs, which constitutes an interesting biomarker for each of these
conditions. Conditions ISD-3, ISD-6, ISD-5, and HC are more heterogeneous
and an increasing number of ratios and consequently biomarkers are necessary
to distinguish them. In summary, the classifier exhibits excellent performance
and readily provides ample insight into the contribution of each feature for the
decision of each individual sample, as well as the feature statistics over all sam-
ples per class. This transparency constitutes an important characteristic for the
purpose of medical education, potentially biomarker discovery and to gain trust
for computer-aided-diagnosis with ML within the medical community.
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8. Analysis of the UCI (Cleveland) heart disease dataset

8.1. Cleveland heart disease dataset
This dataset (details in [90]) contains 13 features from 164 HCs and 139 heart

disease (HD) patients, belonging to 5 different sub-categories: HD1 (55), HD2
(36), HD3 (35) and HD4 (13). Of them, six subjects contain missing values which
according to [90] were replaced by −9. Exploratory analysis showed that while
there is a very good separation between HCs and HDs in binary classification,
the multi-class problem differentiating between the 4 classes of HDs turn out to
be remarkably difficult. In this study we investigated this dataset as a five-class
problem, as suggested in [5; 31].

8.2. Experimental setup and hyperparameter selection
In this section we compare the most promising classifiers as demonstrated

on the GC-MS dataset on the publicly available UCI HD dataset. As mentioned
earlier, unlike many of the the existing classifiers the ALVQvariants can learn even
in the presence of missing values, thus obviating the need for imputation (even
with a pseudo value, such as -9 as suggested for this dataset [90]) or case-deletion.
We follow the recommendation with the pseudo value for the RF training. Many
previous publications report performances simplifying the five classes, Healthy
and HD1-HD4, to the binary disease versus healthy problem, due to the difficulty.
Since we were interested in investigating this dataset as a multi-class problem and
the smallest minority class contained only 13 subjects, we use 5-fold stratified
training-validation split for CV. We use z-score transformation in each fold using
the mean and standard deviation of the corresponding training set. As before,
we compare two strategies for handling class-imbalance: (a) the original SMOTE
[14] or geodesic SMOTE for the ALVQ variants and (b) assigning user-defined
variable costs of misclassification (Eq. (4)). For RF we used only (a). We ensured
that all the minority classes in the training set were oversampled to contain the
same number of samples as the majority class (HC) and based on line search chose
k = 3 nearest neighbours for both SMOTE and geodesic SMOTE. For option (b)
we set the cost-weight entries to 1 to only handle the imbalance. We varied the
number of trees for RFt from t=50-200 and set hyperparameter β = 1 for LVQAβ

M

and and θ = 2 for its newly introduced probabilistic counterpart PLVQAθ
M after

grid-search on the training data. To be comparable to the RF, we trained 100
LV QA models in each fold and additionally reported the performance of their
majority vote ensemble, abbreviated by (cP)LVQ∗

e100. We trained the 100 LVQ
models with a full metric tensor rank of M = 13 in each fold and also built a one-
cluster geodesic average model abbreviated by (cP)LVQ∗

#1001
for further analysis.

Since the majority of the probabilistic model tensors exhibited a rank of 12 after
training, and we need equal rank to build the average model, we limited the rank
to 12 for all of them.
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Table 5: UCI HD data: mean performance (std), in terms of Sensitivity (HC versus H1-4
combined), MAA and class-wise accuracies (cw-Acc), of RFt with t trees and Angle LVQ models
(cP )LV QA

β,θ
M with rank M , and c indicating the use of cost weights, P probabilistic cost-function

(7) and the subscripts eη and #ηυ marking the ensemble results with majority vote and average
across η models and υ clusters

Method Sens MAA Healthy HD1 HD2 HD3 HD4

RF100 73.48 (.03) 31.82 (.04) 86.37(.03) 15.64 (.07) 19.36 (.10) 25.71 (.11) 12.00 (.12)
RF150 74.45 (.02) 33.60 (.03) 86.25 (.03) 15.27 (.07) 23.14 (.10) 28.00 (.10) 15.33 (.12)
RF200 74.63 (.02) 31.68 (.04) 86.12 (.02) 14.18 (.07) 19.36 (.09) 27.43 (.12) 11.33 (.10)

P LV Q
A2

12 89.08 (.05) 50.23 (.04) 67.52 (.03) 26.67 (.09) 32.10 (.03) 51.34 (.15) 73.50 (.13)
cP LV Q

A2
12 88.91 (.05) 51.34 (.06) 71.09 (.03) 25.71 (.09) 29.05 (.07) 52.20 (.15) 78.67 (.17)

cLV Q
A1

13 83.26 (.07) 30.94 (.07) 63.97 (.15) 21.29 (.12) 21.47 (.14) 15.49 (.14) 32.50 (.22)

P LV Q
A2

12
e100 88.33 (.08) 58.55(.08) 74.41 (.03) 32.73 (.14) 30.36 (.11) 68.57(.27) 86.67(.18)

cP LV Q
A2

12
e100 87.59 (.08) 57.74 (.04) 75.04 (.04) 30.91 (.19) 33.21(.07) 62.86 (.26) 86.67(.18)

cLV Q
A1

13
e100 82.69 (.09) 33.15 (.10) 82.35 (.06) 16.36 (.12) 21.79 (.18) 8.57 (.08) 36.67 (.41)

P LV Q
A2

12
#1001

91.24 (.07) 50.07 (.08) 61.02 (.08) 29.09 (.15) 25.00 (.12) 48.57 (.28) 86.67(.18)
cP LV Q

A2
12

#1001
92.75(.04) 50.95 (.10) 65.34 (.10) 34.55(.17) 28.21 (.11) 40.00 (.27) 86.67(.18)

cLV Q
A1

13
#1001

84.78 (.09) 33.62 (.12) 76.23 (.05) 18.18 (.14) 21.79 (.18) 8.57 (.08) 43.33 (.43)

Tab. 5 summarizes the mean and standard deviations of the method perfor-
mances measured in Sensitivity (HCs versus all diseases combined), MAA and
cw-Acc (HCs and HD1-4). It can be seen immediately that the five class problem
is challenging with a MAA not much more than 30% achieved by the RF. The
two class problem of all heart disease versus healthy is easier, showing a sensi-
tivity and specificity (cw-Acc of the HCs) of ≈ 74% and ≈ 86%. Interestingly
this dataset shows a clear difference between the two different cost-functions for
the ALVQ. Ensembles of the version inspired by GLVQ (updating only the clos-
est correct and wrong prototypes) exhibit only slightly better performance than
RF, while the probabilistic version improves the sensitivity and MAA by more
than 10%. This effect might be caused by the influence of all classes in every
update due to the use of the parameterized soft-max. Both strategies to handle
the imbalance, namely cost-weight matrix and geodesic SMOTE, demonstrate
similar performance. The benefits of cost-weighting over oversampling include:
(i) faster execution, since it operates on fewer samples; and (ii) provision for the
user to indicate priorities for the classification. We observe that increase of accu-
racy for one class is usually accompanied with a decrease of accuracy of another
class. RF exhibits the best accuracy for the HCs at the expense of disease-class

30



1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12 13

# of class-wise top features

0

0.5

1

class sensitivity

class specificity

Disease sensitivity

Disease specificity

Figure 13: UCI HD: Class-wise feature importance for the classification of each class extracted
from the terms (left) and the sensitivity and specificity considering HCs (Class 1) versus disease
(Class 2-5) as well as the respective class versus all others combined (right).

accuracies. However, performance with respect to the classwise-accuracies of the
disease-classes are clearly surpassed by the Angle LV Q variants, which in turn
demonstrates a high sensitivity for the two-class problem. Similar to the previ-
ous section we can analyze the statistics of the contribution of the features to
the decision of the trained classifiers for each class using the classification-terms
of the average model across all folds of the cPLV Q

A2
12

#1001
experiment. Fig. 13

illustrates the performance of each class versus all others combined, as well as
Healthy versus disease, when including only the top features for the samples of
the respective class in the right panel. Since we do not consider ratios we can
show the classification-term contribution of the features for each class directly as
shown in the left panel. Especially the HC (Class-1) and HD1 (Class-2) exhibit
a very similar pattern of important features, which explains the difficulty to dis-
tinguish them. Fig. 13 shows that the “Oldpeak”, referring to ST depression in
the ECG signal, induced by exercise relative to rest, is an important feature to
identify HC, HD1 and HD5 from the rest. Contrarily, “Thalach” which refers to
the maximum heart rate achieved, is important to discriminate HD3 and HD4
from the rest. While RF can find the overall feature importance and there usually
is overlapping agreement with the findings from prototype based methods, the
classification-terms from LVQ models help in extraction of class-specific feature
relevance as seen in Fig. 13.
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9. Conclusion and Future work

This paper demonstrates the performance of ALVQ classifiers when facing
heterogeneous measurements, imbalanced classes, limited data for training and
systematically missing values. It introduces (2) a probabilistic cost-function that
enables training despite the varying certainty in labels, and reflect upon the un-
certainty of the classification, thus providing additional insight into the model,
and (3) strategies to combine ensembling with interpretability, by computing the
geodesic average of matrix LVQ models. This is preceded by a clustering strategy,
if multiple local optima is detected. These serve as more transparent alternatives
to a traditional ensemble and extends to other members of the adaptive metric
family, such as the Euclidean LVQ variants and LMNN [43; 44; 91]. We pro-
vide our code and a detailed analysis and demonstrate the transparency of our
framework and how knowledge is extracted from real-world medical datasets.

Our findings show that in the presence of heterogeneous measurements and
systematic missingness the cosine-based adaptive dissimilarity measure (as used
in Angle LV Q) appears more robust than the parameterized Euclidean distance.
The paper further demonstrates the adverse impact of imputation on distance-
based classification in synthetic experiments. The application of RF, the newly
developed Probabilistic Angle LV Q, and the model-averaging strategy9 will be
presented in a forthcoming paper written for the medical community. Sec. 8
presents the same on publicly available dataset (subsec. 8.1) for reproducibil-
ity and verification. In summary, the proposed strategies show promising re-
sults for domains such as healthcare, that are plagued with challenges of imbal-
anced classes, missing and heterogeneous data, that require not only high per-
formance but also demand algorithmic transparency, estimation of uncertainty,
interpretability, and explainability.
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Appendix A Derivatives of ALVQ variants

A.1 Angle LVQ derivatives
The derivatives of the cost-function of ALVQ (Eq. (3)) are as follows:

∂E

∂Ω =
N∑
i=1

∂f

∂µi

∂µi
∂Ω and ∂E

∂wL∈[J,K] =
N∑
i=1

∂f

∂µi

∂µi
∂wL

, with (A. 20)

∂µi
∂Ω = 2dK

(dJ + dK)2 · ∂dJ

∂Ω − 2dJ

(dJ + dK)2 · ∂dK

∂Ω , (A. 21)

∂µi
∂wJ

= 2dK

(dJ + dK)2 · ∂dJ

∂wJ
, and ∂µi

∂wK
= −2dJ
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∂wK
, s.t. (A. 22)

∂dLi
∂Ω =∂gβ(b)

∂bΛ
· ∂bΛ(xi, wL)

∂Ω and ∂dLi
∂wL

= ∂gβ(b)
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∂wL
. (A. 23)

Partial derivatives w.r.t bΛ(xi, wL) are given by:

∂bΛ(xi, wL)
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]
. (A. 25)

where xi,n denotes dimension n of vector xi and n = 1, . . . , M .

Significance of β in ALVQ. In general, the greater the distance between a sam-
ple and a prototype, the lesser is the contribution of that sample towards the
update strength of the prototype and Ω. However, β in Eq. (3) parameterizes
the strength of this relation between the sample’s distance and its contribution
towards updating the parameters, such that β ≈ 0 linearizes this relationship.

A.2 Angle LGMLVQ derivatives
In [31] we also introduced the angle variant of the localized GMLVQ (LGM-

LVQ) and its reduced rank variant. The dissimilarity b in the local extension of
ALVQ is written as:

b = bΩL = x⊤
i ΩL⊤ΩLwL

∥xi∥ΩL∥wL∥ΩL

, (A. 26)
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with corresponding derivatives given by:
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This variant is especially efficient when the decision-boundaries are not linearly
separable.
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