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(SCR) operating at the edge of stability. We view SCR as providing in their state

space feature representations of the input-driving time series. By endowing the state

space with the canonical dot-product, we “reverse engineer” the corresponding ker-

nel (inner product) operating in the original time series space. The action of this

time-series kernel is fully characterized by the eigenspace of the corresponding met-

ric tensor. We demonstrate that when linear SCRs are constructed at the edge of

stability, the eigenvectors of the time-series kernel align with the Fourier basis. This

theoretical insight is supported by numerical experiments.
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Recurrent Neural Networks (RNNs) are machine learning methods for mod-

eling temporal dependencies in sequential data, but their training can be compu-

tationally demanding. Reservoir Computing (RC), a simplified subset of RNNs,

circumvents this problem by fixing the internal dynamics of the network (the

reservoir) and focusing training on the readout layer. Simple Cycle Reservoir

(SCR) is a type RC model that stands out for its minimalistic design and proven

capability to universally approximate a wide class of processes operating on time

series data (namely time-invariant fading memory filters) even in the linear dy-

namics regime (and non-linear static readouts). We show that, interestingly,

when linear SCR is constructed at the edge of stability, it implicitly represents

the time series according to a well known and widely used technique of Fourier

signal decomposition. This insight demonstrates that deep connections can ex-

ist between recurrent neural networks, classical signal processing techniques and

statistics, paving the way for their enhanced understanding and innovative ap-

plications.

I. INTRODUCTION

Recurrent Neural Networks (RNNs) are input-driven parametric state-space machine

learning models designed to capture temporal dependencies in sequential input data streams.

They encode time series data into a latent state space, dynamically storing temporal infor-

mation within state-space vectors.

Reservoir Computing (RC) models is a subset of RNNs that operate with a fixed, non-

trainable input-driven dynamical system (known as the reservoir) and a static trainable

readout layer producing model responses based on the reservoir activations. This design

uniquely simplifies the training process by concentrating adjustments solely on the read-

out layer (thus avoiding back-propagating the error information backwards through time),

leading to enhanced computational efficiency. The simplest implementations of RC models

include Echo State Networks (ESNs)Jae01,MNM02,TD01,LJ09.

Simple Cycle Reservoirs (SCR) represent a specialized class of RC models characterized

by a single degree of freedom in the reservoir construction (modulo the state space dimen-

sionality), structured through uniform ring connectivity and binary input weights with an
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aperiodic sign pattern. Recently, SCRs were shown to be universal approximators of time-

invariant dynamic filters with fading memory over C and R respectively inLFT24,FLT24, making

them highly suitable for integration in photonic circuits for high-performance, low-latency

processingBVdSBV22,LBFM+17,HVK+20.

Understanding the intricacies of SCRs in depth is essential. In this work, we employ the

kernel view of linear ESNs introduced inTin20, in which the state-space ‘reservoir’ represen-

tation of (potentially left-infinite) input sequences is treated as a feature map corresponding

to the given reservoir model through the associated reservoir kernel. For linear reservoirs,

the canonical dot product of two input sequences’ feature representations is analytically

expressible as the (semi-)inner product of the sequences themselves. The corresponding

metric tensor reveals the representational structure imposed by the reservoir on the input

sequences, in particular in the metric tensor’s eigenspace containing dominant projection

axes (time series ’motifs’) and scaling (‘importance’ factors).

To assess the “richness” of linear SCR state-space representations,Tin20 proposed analyz-

ing the relative area of motifs under the Discrete Fourier Transform (DFT). It was observed

that the richness of these representations collapses at the edge of stability when the spectral

radius ρ of the dynamic coupling matrix equals to 1.

In this paper we theoretically analyze the collapse of motif richness at the edge of sta-

bility and show that when ρ = 1 the SCR kernel motifs correspond to Fourier basis. We

begin by reviewing the notion of SCRsRT10, kernel view of ESNsTin20, and Reservoir Motif

MachinesTFL24 in Section II. The contribution of this paper, in the subsequent sections, are

outlined as follows:

1. In Section IV, we show in C that motifs of linear SCR at the edge of stability are

harmonic functions.

2. In Section V, we show in R that n dimensional linear SCR has ⌈n2 ⌉ symmetric motifs

and ⌊n2 ⌋ skew-symmetric motifs.

3. In Section VI, we combine the results of the previous two sections and demonstrate

numerically that in R, the motifs of linear SCR at edge of stability are exactly the

columns of real Fourier basis matrix.

4. Finally in Section VII, we conclude the paper with numerical experiments supporting
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our findings.

II. SIMPLE CYCLE RESERVOIR AND ITS TEMPORAL KERNEL

Let K = R or C be a field. We first formally define the principal object of our study -

parametrized linear driven dynamical system with a (possibly) non-linear readout.

Definition II.1. A linear reservoir system over K is is the triplet R ∶= (W,V, h) where
the dynamic coupling W ∈ Mn×n (K) is an n × n matrix over K, the input-to-state

coupling V ∈ Mn×m (K) is an n ×m matrix, and the state-to-output mapping (readout)

h ∶ Kn → Kd is a (trainable) continuous function.

The corresponding linear dynamical system is given by:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xt =Wxt−1 +Vct

yt = h(xt)
(II.1)

where {ct}t∈Z− ⊂ Km, {xt}t∈Z− ⊂ Kn, and {yt}t∈Z− ⊂ Kd are the external inputs, states and

outputs, respectively. We abbreviate the dimensions of R by (n,m, d).
We make the following assumptions for the system:

1. W is assumed to be strictly contractive. In other words, its operator norm ∥W ∥ < 1.
The system (II.1) thus satisfies the fading memory property (FMP)LFT24.

2. We assume the input stream is {ct}t∈Z− is uniformly bounded. In other words, there

exists a constant M such that ∥ct∥ ≤M for all t ∈ Z−.

The contractiveness of W and the uniform boundedness of input stream imply that the

images x ∈ Kn of the inputs c ∈ (Km)Z− under the linear reservoir system live in a compact

space X ⊂ Kn. With slight abuse of mathematical terminology we call X a state space.

Definition II.2. Let C = [cij] be an n × n matrix. We say C is a permutation matrix if

there exists a permutation σ in the symmetric group Sn such that

cij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if σ(i) = j,

0, if otherwise.
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We say a permutation matrix C is a full-cycle permutationNota if its corresponding per-

mutation σ ∈ Sn is a cycle permutation of length n. Finally, a matrix W = ρ ⋅C is called a

contractive full-cycle permutation if ρ ∈ (0,1) and C is a full-cycle permutation.

The idea of simple cycle reservoir was presented inRT10 as a reservoir system with a very

small number of design degrees of freedom, yet retaining performance capabilities of more

complex or (unnecessarily) randomized constructions. In fact, it can be shown that even

with such a drastically reduced design complexity, SCR models are universal approximators

of fading memory filtersLFT24,FLT24.

Definition II.3. A linear reservoir system R = (W,w, h) with dimensions (n,m, d) is called
a Simple Cycle Reservoir (SCR) Notb if

1. W is a contractive full-cycle permutation, and

2. w ∈Mn×m ({−1,1}).

One possibility to understand inner representations of the input-driving time series form-

ing inside the reservoir systems is to view the reservoir state space as a temporal fea-

ture space of the associated reservoir kernelTin20,GGO22 . Consider a linear reservoir system

R = (W,w, h) over K with dimensions (n,1, d) operating on univariate input.

Let τ > n denote the length of the look back window and consider two sufficiently long

time series of length τ > n,

u = (u (−τ + 1) , u (−τ + 2) , . . . , u (−1) , u (0))

=∶ (u1, u2, . . . , uτ) ∈ Kτ

and

v = (v (−τ + 1) , v (−τ + 2) , . . . , v (−1) , v (0))

=∶ (v1, v2, . . . , vτ) ∈ Kτ

we consider the reservoir states reached upon reading them (with zero initial state) their

feature space representationsTin20:

ϕ(u) =
τ

∑
j=1

ujW
τ−jw, ϕ(v) =

τ

∑
j=1

vjW
τ−jw.
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The canonical dot product (reservoir kernel)

K(u,v) = ⟨ϕ(u), ϕ(v)⟩

can be written in the original time series space as a semi-inner product ⟨u,v⟩Q = u⊺Qv,

where

Qi,j =w⊺ (W⊺)i−1Wj−1w. (II.2)

Since the (semi-)metric tensor Q ∈ Mτ×τ(K) is symmetric and positive semi-definite, it

admits the following eigen-decomposition:

Q =MΛQM
⊺, (II.3)

where ΛQ ∶= diag (λ1, λ2, . . . , λNm) is a diagonal matrix consisting of non-negative eigenvalues

of Q with the corresponding eigenvectors m1,m2, . . . ,mNm ∈ Kτ (columns of M). The

Nm ∶= rank (Q) ≤ N ≤ τ eigenvectors of M with positive eigenvalues are called the motifs of

R. We have:

K(u,v) = (Λ
1
2

QM
⊺u)

⊺
(Λ

1
2

QM
⊺v) .

In particular, the reservoir kernel is a canonical dot product of time series projected onto

the motif space spanned by {mi}Nm

i=1 :

K(u,v) = ⟨ũ, ṽ⟩,

where

ũ = Λ
1
2

QM
⊺u (II.4)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ
1
2
1 ⋅ ⟨m1,u⟩
⋮

λ
1
2

Nm
⋅ ⟨mNm ,u⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (λ
1
2
i ⋅ ⟨mi,u⟩)

Nm

i=1
∈MNm(K).

Reservoir Motif Machine (RMM)TFL24 is a predictive model motivated by the kernel

view of linear Echo State Networks described above. By projecting the τ -blocks of input

time series onto the reservoir motif space given by span({mi}Nm
i=1 ), RMM captures temporal

and structural dynamics in a computationally efficient feature map.
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In particular, rather than relying on the motif weights λ
1
2
i determined by the reservoir

R in Equation (II.4), RMM introduces a set of adaptable motif coefficients, denoted as

C ∶= {ci ∈ R}Nm
i=1 , to define its feature map as follows:

φ (u;C) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 ⋅ ⟨m1,u⟩
⋮

cNm ⋅ ⟨mNm ,u⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (ci ⋅ ⟨mi,u⟩)Nm

i=1 ∈ RNm . (II.5)

This feature map is used to train a predictive model, such as linear regression or kernel-

based methods, directly in the motif space.

Remark II.4. To streamline the theoretical analysis of SCR kernels, in line withTin20, we

assume that the length of the look-back window (past horizon) τ is an integer multiple of

the dimension of the state space n, i.e. there exists k ∈ N+ such that τ = k ⋅n. In particular,

denoting by m a SCR motif calculated with τ = n, it is shown inTin20 that when τ = k ⋅n, the
corresponding motif is a concatenation of k copies of m, scaled by ρl⋅n, l = 0,1,2, ..., k − 1.
Recall that ρ is the spectral radius of the dynamic coupling W . Hence, to study SCR motifs

with past horizon τ = k ⋅ n, for any k ∈ N+, it is sufficient to study only the base case τ = n.

III. ON THE EDGE OF STABILITY OF SIMPLE CYCLE RESERVOIRS

Having defined the reservoir temporal kernel, one can ask how “representationally rich”

is the associated feature space (span of the reservoir motifs). To quantify the ‘richness’ of

the reservoir feature space of a linear reservoir system over R,Tin20 proposed the following

procedure:

Consider a linear reservoir system R = (W,w, h) with dimensions (n,1, d) over R. Sup-
pose W has spectral radius ρ. Recall from Remark II.4 that: to study the SCR motif struc-

ture of, it is sufficient to consider the past horizon τ = n.The motif matrix M ∈ Mn×n (R)
is constructed according to Equation (II.3) from the matrix Q (metric tensor of the inner

product of the reservoir kernel).

First, Discrete Fourier Transform (DFT) is applied to the kernel motifs (columns of M),

considering only those with motif weights upto a threshold of 10−2 of the highest motif
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weight. This yields an n×n′ matrix of Fourier coefficients over C with n′ ≤ n. These Fourier
coefficients are then collected in a (multi)set Z ∶= {zk}n⋅n

′

k=1 .

To evaluate the diversity and spread of the Fourier coefficients in the complex plane,Tin20

proposed calculating the coarse-grained area occupied by Z ⊆ C. In particular, the box

[−7,7]2 in the complex plane is partitioned into a grid of cells (followingTin20 we use side

length 0.05). The relative area covered by Z ⊆ C is defined as the ratio of the number of

cells visited by the coefficients zk ∈ Z to the total number of cells in the grid. An example

of the distribution of Fourier coefficients Z of linear SCR with n = 97 at ρ = 0.9813,0.999,1
and w being the first n digits of binary expansion of π is presented in Figure 1Notc.

(a) ρ = 0.9812798473475446 (b) ρ = 0.999 (c) ρ = 1

FIG. 1: Example of Fourier coefficient of linear SCR at ρ = 0.9812798473475446,0.999,1
respectively. 0.9812798473475446 in particular is where the relative area peaks in Figure 2.

Replicating the experiment inTin20 in Figure 2, we observe that the “richness” of the

motif space of SCR, as measured by relative area under the current setup, increases as

the spectral radius approaches approximately ρ ≈ 0.9813. Beyond this point, the measure

sharply declines, aligning with the results for a randomly generated reservoir. This decline

is also observed in is also shown in Figure 2, as ρ increases from approximately 0.98 (the

peak of Figure 2) to the edge of stability at ρ = 1.

In this paper, we aim to investigate this ‘collapse of representational richness’Notd of SCR

models at the edge of stability ρ = 1. In particular, we will show that at the edge of stability,

the motifs of linear SCR are (sampled) harmonic functions.

We now derive properties of the motifs of linear SCR in both the complex real domains:
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FIG. 2: Relative area of Linear SCR and Randomly generated Reservoir with respect to

the spectral radius

1. In Section IV, we show in C that the motifs are harmonic functions. Following the

approach ofLFT24, we begin with unitary dynamical coupling and progress to cyclic

permutations.

2. In Section V, we demonstrate in R that the number of symmetric motifs is ⌈n2 ⌉, while
the number of skew-symmetric motifs is ⌊n2 ⌋. In line withFLT24, we start with orthogonal

coupling and then move onto cyclic permutation.

Combining these two results, we conclude that at ρ = 1, the motifs alternate between real

and imaginary components of the first n elements of the Fourier bases, which correspond

to cosines and sines, respectively. We supplement our theoretical findings with numerical

simulations of the motif space of SCR in the next section, which then lead to the numerical

experiments in the final section.
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IV. UNIT SPECTRAL RADIUS SCR IMPLIES HARMONIC MOTIFS IN

COMPLEX DOMAIN

We first show that, in the complex domain C, the motifs of SCR can be derived explicitly.

In particular, in this section we set K = C and show that when the spectral radius ρ = 1, the
motifs of linear SCR are harmonic, i.e. they are precisely the Fourier basis (columns of the

Fourier matrix).

Consider a linear reservoir system R = (W,w, h) over C with dimensions (n,1, d) and W

of spectral radius ρ. Let Qρ denote the metric tensor of the reservoir kernel (Eq. (II.2).

In the spirit ofLFT24, we begin by considering a more general setting of W = ρU, where U

is a unitary matrix in Mn×n(C) (i.e. UU∗ = U∗U = I) and ρ ∈ (0,1]. We then move to the

special case where U =C is a cyclic permutation. Since U is unitary, its eigenvalues all have

magnitude 1. We let its eigenvalues be {sj ∈ C ∶ 1 ≤ j ≤ n} with corresponding eigenvectors

{ξj ∶ 1 ≤ j ≤ n}, and we know each ∣sj ∣ = 1.
By construction:

Qρ = [Qρ (i,j)]1≤i,j≤τ = [w∗W∗(i−1)Wj−1w]1≤i,j≤τ .

The matrix Qρ is a τ × τ matrix. Denote

Xρ = [W∗(i−1)Wj−1]1≤i,j≤τ ,

and,

ŵ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w

w

⋱
w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Notice that Xρ is an τn × τn matrix while ŵ is an τn × τ matrix. Then by construction,

Qρ = ŵ∗Xρŵ. Notice that since W = ρU and U is unitary, we can rewrite Xρ as follows:

Xρ = [ρi+j−2Uj−i]1≤i,j≤τ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I ρU ρ2U2 ⋯ ρτ−1Uτ−1

ρU∗ ρ2I ρ3U ⋮
ρ2U∗2 ρ3U∗ ρ4I

⋮ ⋱
ρτ−1U∗(τ−1) ρ2(τ−1)I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Finally, we let λ = 1 + ρ2 + ρ4 +⋯ + ρ2(τ−1) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

τ, if ρ = 1
1−ρ2τ
1−ρ2 , if ρ < 1

.

With the ultimate goal of computing the eigen-decomposition of Qρ, we first characterize

the eigenvalues and eigenvectors of Xρ. For the eigenvalues we first observe the following:

Lemma IV.1. The matrix Xρ satisfies X2
ρ = λXρ.

Proof. Multiplying the i-th row of Xρ with its j-th column, we obtain:

τ−1
∑
k=0

ρi+k−1U−(i−k−1) ⋅ ρj+k−1Uj−k−1 = (
τ−1
∑
k=0

ρ2k)ρi+j−2Uj−i = λρi+j−2Uj−i.

This proves the desired equality.

As a result, we can now fully characterize the eigenvalues of Xρ.

Corollary IV.2. The eigenvalues of Xρ are either 0 or λ. Moreover, the multiplicity of the

eigenvalue λ is n.

Proof. Let ξ be an eigenvector of Xρ with eigenvalue κ. Then Xρξ = κξ, and thus

X2
ρξ = κ2ξ = (λXρ)ξ = κλξ.

This implies that either κ = 0 or λ.

Moreover, Tr(Xρ) = n(1 + ρ2 + ⋯ + ρ2(τ−1)) = nλ. But the trace also equals the sum of

all the eigenvalues. Since the eigenvalues of Xρ can only be 0 or λ, we conclude that the

multiplicity of the eigenvalue λ is precisely n.

We now turn to characterize the non-zero eigenvectors of Xρ. We will then use these

vectors to compute the motif matrix of Qρ. Recall ξj are the eigenvectors of U with the

corresponding eigenvalues sj. For each j, define

ξ̂j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξj

ρs−1j ξj

⋮
ρτ−1s−(τ−1)j ξj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Cnτ

Lemma IV.3. Each ξ̂j is an eigenvector of Xρ with eigenvalue λ. Moreover, { 1√
λ
ξ̂j}

n

j=1
is

an orthonormal set.
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Proof. First, since U is unitary, we have Uξj = sjξj and U∗ξj = s−1j ξj. Therefore, U
kξj = skj ξj

and U∗kξj = s−kj ξj for all non-negative integers k, or, stated more compactly, Ukξj = skj ξj for
all integers k.

Expanding Xρξ̂j, we observe that its i-th block entry equals:

n−1
∑
k=0

ρi+k−1U−(i−k−1)ρks−kj ξj =
n−1
∑
k=0

ρi+2k−1s−i+1j ξj = (
n−1
∑
k=0

ρ2k)ρi−1s−(i−1)j ξj = λρi−1s−(i−1)j ξj.

This is precisely λ times the i-th block entry of ξ̂j. This proves that Xρξ̂j = λξ̂j.

Since each ξj is a unit vector and each ∣sj ∣ = 1, we have that ∥ξ̂j∥2 = ∑n−1
k=0 ρ2k = λ.

Hence, 1√
λ
ξ̂j is a vector of norm 1. Finally, eigenvectors {ξj} of any unitary matrix form an

orthonormal basis, so ⟨ξi, ξj⟩ = δij. This implies:

⟨ξ̂i, ξ̂j⟩ =
n−1
∑
k=0

ρ2ks−ki (sj)−k⟨ξi, ξj⟩,

which is 0 when i ≠ j. This proves that {ξ̂j}, j = 1, . . . , n, are pairwise orthogonal.

Since all the other eigenvalues of Xρ are 0, we immediately have the desired eigen-

decomposition of the matrix Xρ as:

Xρ =
1

λ

n

∑
j=1

ξ̂j ξ̂
∗
j

Recall an n × n full-cycle permutation matrix is given by:

C ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ⋯ ⋯ ⋯ 1

1 0 ⋯ 0

0 1 0 ⋮ ⋮
⋮ 0 ⋱ 0 ⋮
0 ⋮ 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For the rest of the section, we set ρ = 1 and W = C is a full-cycle permutation and

we will now compute eigen-decomposition of the metric tensor Q =Q1 of the corresponding

reservoir kernel.

From elementary matrix analysis, we know the eigenvalues of a full-cycle permutation C

are precisely the n-th root of unities {ωj = e
2πij
n ,1 ≤ j ≤ n}. Its normalized eigenvectors for
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each eigenvalue ωj is given by the Fourier basis:

ξj =
1√
n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ωj

ω2
j

⋮
ωn−1
j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Cn, j = 1, . . . , n. (IV.1)

We will now compute the eigenvalues and eigenvectors of Q explicitly. First, we see that

Q = ŵ∗X1ŵ,

where X1 = 1
n ∑

n
j=1 ξ̂j ξ̂∗j . Define ξ∗jw = ⟨w, ξj⟩ = dj.

While, following Remark II.4, we focused on the case where τ = n, the results of this

section up to this point (Lemma IV.1, Corollary IV.2, and Lemma IV.3) hold for general τ .

Theorem IV.4. Consider a linear SCR system R = (C,w, h) over C with dimensions

(n,1, d) and with the full cycle permutation matrix C as its dynamical coupling. Let Q denote

metric tensor of the reservoir kernel under the past horizon τ = n. Then, the eigenvectors ξj,
j = 1,2, ..., n of C (eq. (IV.1)) are also eigenvectors of Q with the corresponding eigenvalues

equal to the squared projections of the input coupling vector w onto ξj, ∣dj ∣2 = ∣ξ∗jw∣2. In

other words, R has motifs ξj, with motif weights ∣dj ∣ = ∣ξ∗jw∣ = ∣⟨w, ξj⟩∣, j = 1,2, ..., n.

Proof. Define an n × τ matrix,

A = 1√
n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ̂∗1

ξ̂∗2

⋮
ξ̂∗n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ŵ

Then Q =A∗A, and we have:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 ω−11 d1 ⋯ ω
−(τ−1)
1 d1

d2 ω−12 d2 ⋯ ω
−(τ−1)
2 d2

⋮ ⋮ ⋮ ⋮
dn ω−1n dn ⋯ ω

−(τ−1)
n dn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=D ⋅F

Here, by the assumption that τ = n, we can define two n×n matrices D = diag{d1, d2,⋯, dn}
and F = [ω−(j−1)i ]. Note that F∗ is the discrete Fourier transform matrix, so we know
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F∗F = FF∗ = nI. Therefore,

Q = ( 1√
n
F∗)diag{∣d1∣2, ∣d2∣2,⋯, ∣dn∣2}(

1√
n
F) .

Here, ( 1√
n
F) is a unitary matrix. The j-th column of ( 1√

n
F∗), which is precisely ξj, is the

eigenvector for ∣dj ∣2

Remark IV.5. When τ ≠ n, we can still reach a similar decomposition as above, but the

matrix F = [ω−(j−1)i ] is an n× τ matrix. When τ is not an integer multiple of n in particular,

its rows may not be orthogonal to each other in general, so it is hard to characterize the

eigenvectors of Q. However, when τ is an integer multiple of n, the rows of F are orthogonal

to each other. In this case, the eigenvectors of Q is given by the n of these τ dimensional

vectors (ω−ji )τ−1j=0 .

As a result, in the case when ρ = 1 and the matrix W =C is a full-cycle permutation, the

motif matrix for Q consists of ξj, which is precisely the discrete Fourier transform matrix.

In other words, the columns of the motif matrix are precisely the Fourier basis.

Remark IV.6. Notice that ∣dj ∣2 = ∣dn−j ∣2, so that the eigenvalues and eigenvectors of the

motif matrix come in pairs. Here, ξj and ξn−j = ξj share the same eigenvalue ∣dj ∣2 = ∣dn−j ∣2.

V. MOTIFS OF ORTHOGONAL DYNAMICS WITH UNIT SPECTRAL

RADIUS IN REAL DOMAIN

In this section we return to the real domain, i.e. K = R and show that at unit spectral

radius, the motifs of SCR consists of a fixed number of symmetric and skew symmetric

vectors. As inFLT24, we begin by deriving properties of the motif space of linear reservoir

systems with orthogonal dynamical coupling and then move on to the special case of cyclic

permutation.

Let W ∈Mn×n (R) be the dynamical coupling matrix of a reservoir system R = (W,w, h)
over R. Suppose W is orthogonal with spectral radius ρ = 1. We now show that the matrix

corresponding to the reservoir kernel Q ∶=Qρ=1 is Toeplitz.

Q is Toeplitz if and only if Qij =Qi+1,j+1 for all i, j = 1, . . . , n − 1. By construction of Q,

this is satisfied if and only if:

w⊺ (W⊺)i−1Wj−1w =w⊺ (W⊺)iWjw.

14



Now, orthogonality of W implies W⊺W = I. Without loss of generality assume that i ≥ j.
Then

(W⊺)i−1Wj−1 = (W⊺)i−j = (W⊺)iWj,

showing that Q is indeed Toeplitz.

Let J denote the exchange matrix with 1 on the antidiagonal and 0 everywhere else:

J ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ⋯ 0 1

0 0 0 ⋯ 1 0

0 0 ⋯ 1 0 0

⋮ ⋮ . .
.
. .
. ⋮ ⋮

0 1 0 ⋯ 0 0

1 0 0 ⋯ 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Lemma V.1. Symmetric Toeplitz square matrices are centrosymmetric.

Proof. Let T denote a symmetric Toeplitz τ × τ matrix. Let {tk}τ−1k=0 denote the generating

sequence of T such that T is expressed as:

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t0 t1 ⋯ tτ−2 tτ−1

t1 t0 ⋯ tτ−3 tτ−2

t2 t1 ⋱ ⋮ ⋮
⋮ ⋮ ⋯ t0 t1

tτ−1 tτ−2 ⋯ t1 t0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Consider:

Tτ+1−i,τ+1−j = tτ+1−i−τ−1+j

= tj−i = ti=j = Tij.

The shows that T satisfies the definition of centro-symmetry. The second last equality is

given by symmetry of T and the last equality is due to T being Toeplitz.

Corollary V.2. Let W be the dynamical coupling matrix of a reservoir system R =
(W,w, h). If W is orthogonal with spectral radius ρ = 1, then Q is symmetric centrosym-

metric.
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Proof. Q is symmetric by construction. Moreover, when W is orthogonal with spectral

radius 1, Q is Toeplitz and hence centrosymmetric by lemma V.1.

Definition V.3. Let K be an arbitrary field. A τ -dimensional vector v overK is symmetric

if:

Jv = v.

Similarly, v is skew-symmetric if:

Jv = −v.

ByCB76: symmetric centrosymmetric matrices of order n admits an orthonormal basis of

eigenvectors with:

1. ⌈n2 ⌉ symmetric eigenvectors,

2. ⌊n2 ⌋ skew-symmetric eigenvectors

A. Motif structure of cyclic permutation dynamics with unit spectral radius

Following Remark II.4, we focus on the case where τ = n below. In the special case when

the dynamical coupling is a cyclic permutation, the corresponding matrix Q is circulant. A

circulant matrix is a specific type of Toeplitz matrix in which each row is a cyclic shift of

the previous row, with elements shifted one position to the right.

The cyclic permutation can equivalently be expressed as the linear map:

C ∶ Rn → Rn

(ak)nk=1 ↦ (bk)
n
k=1 ∶= (ak−1 (mod n))

n

k=1 (V.1)

Then by construction we have:

C.1 Cα ⋅Cβ =Cα+β (mod n) .

C.2 (C⊺)i =Cn−i (mod n)

Theorem V.4. Let W ∈Mn×n (R) be the dynamical coupling matrix of a reservoir system

R = (W,w, h). If W is a cyclic permutation with spectral radius ρ = 1. Then the metric

tensor Q1 ∶= Qρ=1 of the reservoir kernel is circulant. Moreover, there exists an orthogonal

basis such that R has ⌈n2 ⌉ symmetric motifs and ⌊n2 ⌋ skew-symmetric motifs.

16



Proof. Let ri denote the ith row of the matrix Q ∶=Q1. It suffices to show that ri =Ci−1 ⋅ r1.
By construction, for j = 1, . . . , n:

(r1)j =w⊺Cj−1w

(ri)j =w⊺ (C⊺)
i−1

Cj−1w

By C.1 and C.2, the jth component of ri can be rewritten as:

(ri)j =w⊺ (C⊺)
i−1

Cj−1w

=w⊺Cn−i+1Cj−1w =w⊺Cj−i (mod n)w (V.2)

By Equation V.1 and C.1, the jth component of Ci−1 ⋅ r1 can be written as:

Ci−1 (r1)j =w⊺Cj−(i−1)−1 (mod n)w =w⊺Cj−i (mod n)w

which coincides with Equation V.2 and thus Q1 is circulant.

Circulant matrices are Toeplitz. Since Q1 is symmetric circulant, it is symmetric cen-

trosymmetric of order n. Thus byCB76, Q1 admits an orthonormal basis spanning the space

of space of motif consisting of ⌈n2 ⌉ symmetric eigenvectors of Q1 and ⌊n2 ⌋ skew-symmetric

eigenvectors of Q1.

VI. LINEAR SCR AT UNIT SPECTRAL RADIUS IS FOURIER

TRANSFORM

This section bridges the theoretical results and numerical experiments by explicitly con-

structing the Fourier basis matrix corresponding to a linear SCR over R. We present nu-

merical simulations to validate our theoretical findings and outline the components of the

numerical experiments in the final section.

Combining the results of the previous sections, we conclude that: At unit spectral radius,

the motifs of linear SCR over R with n neurons of look back window τ = n are:

R.1 Harmonic, i.e. they correspond to the Fourier basis (Theorem IV.4).

R.2 There are ⌈n2 ⌉ symmetric vectors (cosines) and ⌊n2 ⌋ skew-symmetric vectors (sines) with

positive eigenvalues. (Theorem V.4).
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We now demonstrate the explicit construction of the Fourier basis matrix corresponding

to the motifs of a linear SCR at unit spectral radius.

For a linear reservoir system over R, the motifs must also be real. By conditions R.1 and

R.2, each motif must then correspond to either the real or imaginary parts of the Fourier

basis. More precisely, for k = 0, . . . , ⌈n2 ⌉ and i = 0, . . . , τ −1 (The ceiling function accounts for

Theorem V.4.), the real Fourier basis matrix F = F[i, j] ∈Mτ×n(R) is defined as

F[i,2k] =
√

2

τ
cos

2πki

τ
. . . Even columns

F[i,2k + 1] =
√

2

τ
sin

2πki

τ
. . . Odd columns

(VI.1)

We claim that the motifs of a linear SCR are exactly the first n columns of F.

In Figure 3 and Figure 4, we present the Fourier analysis of motifs of the SCR at unit

spectral radius when τ = n = 97.
In Figure 4, we present examples of 4 randomly chosen motifs and their corresponding

Fourier basis in F. While some motifs and their corresponding Fourier basis are shifted by

a fixed phase of π or reflected over the x-axis, their Fourier spectra align as illustrated in

Figure 3. Furthermore, Figure 3, we observe that the eigenvalues come in pairs, as discussed

in IV.6. The motifs may not be strictly harmonic in the classical sense due to the coarseness

of the discretization grid (non-integer division of period) (See Remark VI.1 below).
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(a) Column-wise DFT of motifs of linear

SCR with unit spectral radius.

(b) Column-wise DFT of first n columns of

F.

(c) Columns of Fig 3a rearranged according

to largest Fourier spectra.

(d) Columns of Fig 3b rearranged with

same indices as Fig 3c.

FIG. 3: Column-wise DFT of motifs of linear SCR with ρ = 1 and the column-wise DFT of

F. The first row shows the Fourier spectra in the original form and the second row has

their columns rearranged with the same shuffling indices.
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FIG. 4: Example of 4 randomly chosen motifs and their corresponding Fourier basis.

Notice some are off by a phase of π.
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Remark VI.1. In practice, motifs represent harmonic functions sampled at specific fre-

quencies. This explains why certain motifs may not visually appear as harmonic functions

(e.g., motif 93 in Figure 4), yet their Fourier spectra reveal characteristics consistent with

harmonic functions (see Figure 3). The effect of sampling is further demonstrated in Fig-

ure 5, which compares the 93rd Fourier basis generated according to Equations VI.1 at two

different sampling sizes.

On the first plot the sine curve is being sampled a high frequency with 500 sampling

points; whereas the sampling points are reduced to 97 = n = τ on the second plot. On the

third plot we see that they are generated by the exact same function but with different

sampling frequency. Notice that the first plot appears to be harmonic but the second one

does not.

Therefore, While this function may not visually resemble a harmonic function at the

default sampling size of n = 97, increasing the sampling size to 500 makes the function

progressively align with the visual properties of a harmonic function.

The reason the Fourier spectra align with those of harmonic functions in the computa-

tional process is due to the matching of sampling frequencies within the DFT algorithm.
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FIG. 5: Plots of Fourier basis number 93 constructed under Equations VI.1 sampled under

two different frequencies.
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VII. ILLUSTRATIVE EXAMPLES ON TIME SERIES FORECASTING

We conclude the paper with numerical experiments illustrating our findings. We compare

time series forecasting results using the so-called Reservoir Motif Machines (RMM)TFL24 and

the linear SCR. RMM is a simple time series forecasting method based on the feature space

representation of time series derived from linear reservoirs and has demonstrated remark-

able predictive performance, even surpassing that of more complex transformer models on

univariate time series forecasting tasks. A brief exposition of RMM is presented in Section II.

We use RMM because it allows us to explicitly define the feature space representation

by imposing a set of motifs, rather than having the feature space representation implicitly

defined as in classical ESNs, such as SCR. This provides an ideal platform to showcase our

theoretical findings: that the feature space representation of the motif space of a linear SCR

is the same as that defined by the Fourier basis matrix F in Equation VI.1.

For reproducibility of the experiments, all experiments are CPU-based and are performed

on Apple M3 Max with 128GB of RAM. The source code and data of the numerical analysis

is openly available at https://github.com/Lampertos/motif Fourier.

We compare the prediction results on univariate time series forecasting across the follow-

ing models:

1. Lin-RMM with SCR motifs and unit spectral radius,

2. Lin-RMM with Fourier basis motifs as discussed in Section VI, and

3. Linear SCR with unit spectral radius.

It is essential to emphasize that this experiment is not intended to showcase the predictive

capability of the models, but rather to highlight the similarities in feature space represen-

tation between the linear SCR model over R and the Fourier basis motifs introduced in

Section VI. Consequently, hyperparameters are kept constant throughout the experiments

to underscore this feature space comparison.

The fixed set of hyperparameters for all experiments are as follows: rin = 0.05 for input

weights, n = 97 for the number of reservoir neurons, and τ = 2n = 194 for the look-back

window length. All models are trained using ridge regression with a ridge coefficient of 10−3.

The prediction horizon is set to 168.
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A. Datasets

To facilitate the comparison of our results with the state-of-the art, we have used the

same datasets and the same experimental protocols used in the recent time series forecasting

papersZZP
+20. Those are briefly described below for the sake of completeness.

a. ETT The Electricity Transformer Temperature datasetNoteconsists of measure-

ments of oil temperature and six external power-load features from transformers in two

regions of China. The data was recorded for two years, and measurements are provided

either hourly (indicated by ’h’) or every 15 minutes (indicated by ’m’). In this paper

we used oil temperature of the ETTh1, ETTm1 dataset for univariate prediction with

train/validation/test split being 12/4/4 months.

b. ECL The Electricity Consuming LoadNotf consists of hourly measurements of elec-

tricity consumption in kWh for 321 Portuguese clients during two years. In this paper

we used client MT 320 for univariate prediction. The train/validation/test split is 15/3/4

months.

c. Weather The Local Climatological Data (LCD) datasetNotg consists of hourly mea-

surements of climatological observations for 1600 weather stations across the US during four

years. The dataset was used for univariate prediction of the Wet Bulb Celcius variable.

B. Discussion

From Figure 6 and Figure 7 we see that there’s virtually no difference between Lin-RMM

with unit spectral radius SCR motifs and Lin-RMM with Fourier basis. This confirms our

observations in the previous sections. Furthermore Figure 6 also confirms that Lin-RMM

with unit spectral radius SCR motifs (red bar) has superior performance against classical

SCR with unit spectral radius, this affirms the studies inTFL24.

Amongst RMM’s we compare the MSE loss in Figure 7. Notice that the difference between

the MSE loss between RMM under Fourier motifs and SCR motifs are around 1e−13 which

is negligible compared to the MSE loss of the models against standardized input signals.
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FIG. 6: Statistics of MSE loss of Fourier RMM, unit SCR RMM and unit SCR across

different data sets with fixed prediction horizon 168.

FIG. 7: Comparison of MSE loss between Fourier RMM and unit SCR RMM in ETTm2.
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VIII. CONCLUSION

Linear recurrent neural networks (RNN), such as Echo State Networks (ESN) can be

thought of as providing feature representations of the input-driving time series in their state

spaceTin20,GGO22. By endowing the feature (state) space with the canonical dot-product, one

can “reverse engineer” the corresponding inner product in the space of time series (time

series kernel) that is defined through the the dot product in the RNN state spaceTin20. This

in turn helps to shed light on the inner representational schemes employed by the RNN

to process the input-driving time series. In particular, the induced (semi-)inner product

in the time series space can be theoretically analyzed through eigen-decomposition of the

corresponding metric tensor. The eigenvectors (time series motifs) define the projection

basis of the induced feature space and the (decay of) eigenvalues its dominant subspace

and effective dimensionality. The induced time series kernels by the Simple Cycle Reservoir

(SCR) models were shown to be superior (in terms of dimensionality, motif variability, and

memory) to several alternative ESN constructionsTin20.

In this paper we have shown a rather surprising result: When SCR is constructed at the

edge of stability, the basis of its induced time series feature space correspond to the well

known and widely used basis for signal decomposition - namely the Fourier basis.

This insight also explains the reduction in relative area covered by Fourier representations

of SCR motifs observed byTin20 at the edge of stability. Our results imply that the feature

space representation of a linear SCR at unit spectral radius effectively performs a weighted

projection onto the Fourier basis.

This observation is supported by numerical experiments, in which we compared the time

series forecasting accuracy of Lin-RMM with the motif space defined by a linear SCR at

unit spectral radius and the Fourier basis, respectively.
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