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Abstract—Reservoir computing (RC) refers to a new class of
state-space models with a fixed state transition structure (the
“reservoir” ) and an adaptable readout form the state space. The
reservoir is supposed to be sufficiently complex so as to capture
a large number of features of the input stream that can be
exploited by the reservoir-to-output readout mapping. The field of
RC has been growing rapidly with many successful applications.
However, RC has been criticized for not being principled enough.
Reservoir construction is largely driven by a series of randomized
model building stages, with both researchers and practitioners
having to rely on a series of trials and errors. To initialize
a systematic study of the field, we concentrate on one of the
most popular classes of reservoir computing methods - Echo
State Network (ESN) - and ask: What is the minimal complexity
of reservoir construction for obtaining competitive models and
what is the memory capacity of such simplified reservoirs? On a
number of widely used time series benchmarks of different origin
and characteristics, as well as by conducting a theoretical analysis
we show: A simple deterministically constructed cycle reservoir
is comparable to the standard echo state network methodology.
The (short term) memory capacity of linear cyclic reservoirs can
be made arbitrarily close to the proved optimal value.

Index Terms—Reservoir computing, Echo state networks, Sim-
ple recurrent neural networks, Memory capability, Time series
prediction

I. I NTRODUCTION

RECENTLY there has been an outburst of research activity
in the field of reservoir computing (RC) [1]. RC models

are dynamical models for processing time series that make
a conceptual separation of the temporal data processing into
two parts: 1) representation of temporal structure in the input
stream through a non-adaptable dynamic“reservoir” , and 2)
a memoryless easy-to-adaptreadout from the reservoir. For
a comprehensive recent review of RC see [2]. Perhaps the
simplest form of the RC model is the Echo State Network
(ESN) [3]–[6]. Roughly speaking, ESN is a recurrent neural
network with a non-trainable sparse recurrent part (reservoir)
and a simple linear readout. Connection weights in the ESN
reservoir, as well as the input weights are randomly generated.
The reservoir weights are scaled so as to ensure the“Echo
State Property”(ESP): the reservoir state is an“echo” of the
entire input history. Typically, spectral radius of the reservoir’s
weight matrixW is made< 11. ESN has been successfully
applied in time-series prediction tasks [6], speech recognition
[7], noise modeling [6], dynamic pattern classification [5],
reinforcement learning [8], and in language modeling [9].
Many extensions of the classical ESN have been suggested
in the literature, e.g. intrinsic plasticity [10], [11], decoupled
reservoirs [12], refined training algorithms [6], leaky-integrator
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1Note that this is not the necessary and sufficient condition for ESP

reservoir units [13], support vector machine [14], filter neurons
with delay&sum readout [15] etc. However, there are still
serious problems preventing ESN to become a widely accepted
tool:

1) There are properties of the reservoir that are poorly
understood [12],

2) specification of the reservoir and input connections
require numerous trails and even luck [12],

3) strategies to select different reservoirs for differentap-
plications have not been devised [16],

4) imposing a constraint on spectral radius of the reservoir
matrix is a weak tool to properly set the reservoir
parameters [16],

5) the random connectivity and weight structure of the
reservoir is unlikely to be optimal and does not give
a clear insight into the reservoir dynamics organization
[16].

Indeed, it is not surprising that part of the scientific
community is skeptical about ESNs being used for

practical applications [17].
Typical model construction decisions that an ESN user

must make include: setting the reservoir size; setting the
sparsity of the reservoir and input connections; setting the
ranges for random input and reservoir weights; and setting
the reservoir matrix scaling parameterα. The dynamical part
of the ESN responsible for input stream coding is treated as
a black box which is unsatisfactory from both theoretical and
empirical standpoints. First, it is difficult to put a finger on
what it actually is in the reservoir’s dynamical organization
that makes ESN so successful. Second, the user is required
to tune parameters whose function is not well understood. In
this paper we would like to clarify by systematic investigation
the reservoir construction, namely we show that in fact a very
simple ESN organization is sufficient to obtain performances
comparable to those of the classical ESN. We argue that for
a variety of tasks it is sufficient to consider:

1) a simple fixed non-random reservoir topology with full
connectivity from inputs to the reservoir ,

2) a single fixed absolute weight valuer for all reservoir
connections and

3) a single weight valuev for input connections, with
(deterministically generated) aperiodic pattern of input
signs.

In contrast to the complex trial-and-error ESN construction,
our approach leaves the user with only two free parameters
to be set,r and v. This not only considerably simplifies the
ESN construction, but also enables a more thorough theoretical
analysis of the reservoir properties. The doors can be open
for a wider acceptance of the ESN methodology amongst
both practitioners and theoreticians working in the field of



IEEE TRANSACTIONS ON NEURAL NETWORKS 2

time series modeling/prediction. In addition, our simple deter-
ministically constructed reservoir models can serve as useful
baselines in future reservoir computing studies. The paperis
organized as follows. Section II gives an overview of Echo
state network design and training. In Section III we present
our simplified reservoir topologies. Experimental resultsare
presented in Section IV. We analyze both theoretically and
empirically the short term memory capacity (MC) of our
simple reservoir in Section V. Finally, our work is discussed
and concluded in Sections VI and VII, respectively.

II. ECHO STATE NETWORKS

Echo state network is a recurrent discrete-time neural
network withK input units,N internal (reservoir) units, and
L output units. The activation of the input, internal, and output
units at time stept are denoted by:s(n) = (s1(t), ..., sK(t))T ,
x(t) = (x1(t), ..., xN (t))T , and y(t) = (y1(t), ..., yL(t))T

respectively. The connections between the input units and
the internal units are given by anN × K weight matrixV ,
connections between the internal units are collected in an
N ×N weight matrixW , and connections from internal units
to output units are given inL×N weight matrixU .

K Input  un i ts
     s( t )  

 Dynamica l  Reservo i r
     N in ternal  un i ts
            x( t )

L  output  un i ts
       y( t )  

V U 
W  

Fig. 1. Echo state network (ESN) Architecture

The internal units are updated according to2:

x(t + 1) = f(V s(t + 1) + Wx(t) + z(t + 1)), (1)

wheref is the reservoir activation function (typicallytanh or
some other sigmoidal function);z(t+1) is an optional uniform
i.i.d. noise. The linear readout is computed as3:

y(t + 1) = Ux(t + 1). (2)

Elements ofW andV are fixed prior to training with random
values drawn from a uniform distribution over a (typically)
symmetric interval. To account for ESP, the reservoir connec-
tion matrixW is typically scaled asW ← αW/|λmax|, where
|λmax| is the spectral radius4 of W and0 < α < 1 is a scaling

2There are no feedback connections from the output to the reservoir and
no direct connections from the input to the output.

3The reservoir activation vector is extended with a fixed element accounting
for the bias term.

4The largest among the absolute values of the eigenvalues ofW .

parameter [5].
ESN memoryless readout can be trained both offline (Batch)
and online by minimizing any suitable loss function. We use
the Normalized Mean Square Error (NMSE) to train and
evaluate the models:

NMSE =
〈‖ŷ(t)− y(t)‖2〉

〈‖y(t)− 〈y(t)〉‖2〉
, (3)

where ŷ(t) is the readout output,y(t) is the desired output
(target),‖.‖ denotes the Euclidean norm and< · > denotes
the empirical mean.

A. Offline (Batch) Training

It consist of first running the network on the training set,
and then computing the output weights such that the training
Normalized Mean square Error(NMSE) is minimized.

The Offline Training can be done in the following detailed
steps:

1) Initialize W with a scaling parameterα < 1 and run the
ESN on the training set.

2) Dismiss data from initialwashout period and collect
remaining network statesx(t) row-wise into a matrix
X5.

3) The target values from the training set are collected in
a vectory.

4) The output unit weights are computed using ridge re-
gression [18]:

U = (XT X + λ2I)
−1

XT y, (4)

where I is the identity matrix,λ is the regularization
factor.

B. Online Training

Standard recursive algorithms (like Least Mean Square
(LMS) and Recursive Least Square (RLS)) for NMSE min-
imization known from adaptive liner signal processing can be
applied to online ESN estimation. According to [19] LMS
converges slowly, but RLS algorithms which are widely used
in linear signal processing when fast convergence is of prime
importance work fine. RLS training starts after initialwashout

steps. Output weights are updated every time stept according
to the following equations:

k(t) =
P (t− 1) x(t)

xT (t) P (t− 1) x(t) + γ
(5)

P (t) = γ−1(P (t− 1)− k(t) xT (t) P (t− 1)) (6)

U(t) = U(t− 1) + k(t) [y(t)− ŷ(t)] (7)

wherek stands for the innovation vector;y andŷ correspond
to the desired and calculated (readout) output unit activities;U
is the vector of output weights (weights from input and hidden
units); P is the error covariance matrix initialized with large

5In case of direct input-output connections, the matrixX collects inputs
s(t) as well.
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diagonal values. ‘Forgetting parameter’γ is usually set to a
value smaller that1.0. The first value of reservoir activation
vectorx is set to a constant (e.g.1.0) to account for the bias
term.

III. SIMPLE ECHO STATE NETWORK RESERVOIRS

To simplify the reservoir construction, we propose several
easy structured typology templates and we compare them to
those of the classical ESN. We consider bothlinear reservoirs
that consist of neurons with identity activation function,as
well as non-linear reservoirsconsisting of neurons with the
commonly used tangent hyperbolic (tanh) activation function.
Linear reservoirs are fast to simulate but often lead to inferior
performance when compared to non-linear ones [20].

A. Reservoir Typology

Besides the classical ESN reservoir introduced in the last
section Figure. 1 , we consider the following three reservoir
templates (model classes) with fixed topologies Figure. 2:

• Delay Line Reservoir (DLR)- composed of units or-
ganized in a line. Only elements on the lower sub-
diagonal of the reservoir matrixW have non-zero values
Wi+1,i = r for i = 1...N − 1, wherer is the weight of
all the feedforward connections.

• DLR with backward connections (DLRB)- the same
structure as DLR but each reservoir unit is also connected
to the preceding neuron. Nonzero elements ofW are
on the lowerWi+1,i = r and upperWi,i+1 = b sub-
diagonals, whereb is the weight of all the feedback
connections.

• Simple Cycle Reservoir (SCR)- units organized in a cycle.
Nonzero elements ofW are on the lower sub-diagonal
Wi+1,i = r and at the upper-right cornerW1,N = r.

B. Input Weight Structure

The input layer is fully connected to the reservoir. For ESN
the input weights are (as usual) generated randomly from a
uniform distribution over an interval[−a, a]. In case of simple
reservoirs (DLR, DLRB and SCR), all input connections have
the same absolute weight valuev > 0; the sign of each
input weight is determined randomly by a random draw from
Bernoulli distribution of mean1/2 (unbiased coin). The values
v anda are chosen on the validation set.

IV. EXPERIMENTS

A. Datasets

We use a range of timeseries covering a wide spectrum of
memory structure and widely used in the ESN literature [3],
[4], [6], [10], [11], [19]–[21]. For each data set, we denotethe
length of the training, validation and test sequences byLtrn,
Lval andLtst, respectively. The firstLv values from training,
validation and test sequences are used as the initial washout
period.

1) NARMA System:The Nonlinear Auto-Regressive Mov-
ing Average (NARMA) system is a discrete time system. This
system was introduced in [22]. The current output depends on
both the input and the previous output. In general, modeling
this system is difficult, due to the non-linearity and possibly
long memory.
- fixed order NARMA time series: NARMAsystems of order
O = 10, 20 given by equations 8, and 9, respectively.

y(t+1) = 0.3y(t)+0.05y(t)

9
∑

i=0

y(t−i)+1.5s(t−9)s(t)+0.1,

(8)

y(t + 1) = tanh(0.3y(t) + 0.05y(t)

19
∑

i=0

y(t− i)

+ 1.5s(t− 19)s(t) + 0.01), (9)

wherey(t) is the system output at timet, s(t) is the system
input at timet (an i.i.d stream of values generated uniformly
from an interval[0, 0.5]. [19], [22].
-random 10th order NARMA time series:This system is
generated by:

y(t+1) = tanh(αy(t)+βy(t)

9
∑

i=0

y(t−i)+γs(t−9)s(t)+ϕ),

(10)
whereα, β, γ and ϕ are assigned random values taken from
±50% interval around their original values in eq. (8) [19].
Since the system is not stable, we used a non-linear saturation
function tanh [19]. The inputs(t) and target datay(t) are
shifted by -0.5 and scaled by 2 as in [10]. The networks were
trained on system identification task to outputy(t) based on
s(t), with Ltrn = 2000, Lval = 3000, Ltst = 3000 and
Lv = 200.

2) Laser Dataset:The Santa Fe Laser dataset [13] is a
cross-cut through periodic to chaotic intensity pulsations of
a real laser. The task is to predict the next laser activation
y(t + 1), given the values up to timet; Ltrn = 2000, Lval =
3000, Ltst = 3000 andLv = 200.

3) Hénon Map: H́enon Mapdataset [23] is generated by:

y(t) = 1− 1.4y(t− 1)
2

+ 0.3y(t− 2) + z(t), (11)

where y(t) is the system output at timet, z(t) is a normal
white noise with standard deviation of0.05 [24]. We used
Ltrn = 2000, Lval = 3000, Ltst = 3000 andLv = 200. The
dataset is shifted by -0.5 and scaled by 2. Again, the task is
to predict the next valuey(t + 1), given the values up to time
t.

4) Non-linear Communication Channel:The dataset was
created as follows [6]: First, an i.i.d. sequenced(t) of symbols
transmitted through the channel is generated by randomly
choosing values from{−3,−1, 1, 3} (uniform distribution).
Then,d(t) values are used to form a sequenceq(t) through a
linear filter

q(t) =0.08d(t + 2)− 0.12d(t + 1) + d(t) + 0.18d(t− 1)

− 0.1d(t− 2) + 0.09d(t− 3)− 0.05d(t− 4)

+ 0.04d(t− 5) + 0.03d(t− 6) + 0.01d(t− 7). (12)
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Fig. 2. (A) Delay Line Reservoir(DLR). (B) Delay Line Reservoir with Feed-Back connections (DLRB). (C) Simple Cycle Reservoir (SCR).

Finally, a nonlinear transformation is applied toq(n) to
produce the signals(n) :

s(t) = q(t) + 0.0036q(t)2 − 0.11q(t)3. (13)

Following [6], the inputs(t) signal was shifted +30. The task
is to outputd(t − 2) when s(t) is presented at the network
input.Ltrn = 2000, Lval = 3000, Ltst = 3000 andLv = 200.

5) IPIX Radar: The sequence (used in [12]) contains 2000
values with Ltrn = 800, Lval = 500, Ltst = 700 and
Lv = 100. The target signal is the sea clutter data (the radar
backscatter from an ocean surface). The task was to predict
y(t + 1) and y(t + 5) (1 and 5 step ahead prediction) when
y(t) is presented at the network input.

6) Sunspot series:The dataset (obtained from [25]) con-
tains 3100 sunspots numbers from Jan 1749 to April 2007,
whereLtrn = 1600, Lval = 500, Ltst = 1000 andLv = 100.
The task was to predict the next valuey(t + 1) based on the
history of y up to timet.

7) Nonlinear System with Observational Noise:This sys-
tem was studied in [26] in the context of Bayesian Sequential
State estimation. The data is generated by:

s(t) = 0.5s(t−1)+25
s(t− 1)

1 + s2(t− 1)
+8 cos(1.2(t−1))+w(t),

(14)

y(t) =
s2(t)

20
+ v(t), (15)

where the initial condition iss(0) = 0.1; w(t) andv(t) are
zero-mean Gaussian noise terms with variances taken from
{1, 10}, i.e. (σ2

w, σ2
v) ∈ {1, 10}2. Ltrn = 2000, Lval = 3000,

Ltst = 3000 andLv = 200. The task was to predict the value
y(t + 5), given the values fromt − 5 up to timet presented
at the network input.

8) Isolated Digits: This dataset6 is a subset of the TI48
dataset which contains 500 spokenIsolated Digits (zero to
nine), where each digit is spoken 10 times by 5 female
speakers. These 500 digits are randomly split into training
(Ntrn = 250) and test (Ntst = 250) sets. Because of the
limited amount of data, model selection was performed using
10-fold cross-validation on the training set. The Lyon Passive
Ear model [27] is used to convert the spoken digits into 86

6obtained from http://snn.elis.ugent.be/rctoolbox

frequency channels. Following the ESN literature using this
dataset, the model performance will be evaluated using the
Word Error Rate (WER), which is the number of incorrect
classified words divided by the total number of presented
words. The 10 output classifiers are trained to output 1 if
the corresponding digit is uttered and -1 otherwise. Following
[28] the temporal mean over complete sample of each spoken
digit is calculated for the 10 output classifiers. The Winner-
Take-All (WTA) methodology is then applied to estimate the
spoken digit’s identity. We use this data set to demonstratethe
modeling capabilities of different reservoir models on high-
dimensional (86 input channels) time series.

B. Training

We trained a classical ESN, as well as SCR, DLR, and
DLRB models (with linear and tanh reservoir nodes) on the
time series described above with the NMSE to be minimized.
The model fitting was done using both offline (Batch) and
online training. For offline training we used ridge regression7,
where the regularization factorλ was tuned per reservoir and
per dataset on the validation set. For online training we used
RLS with forgetting factor ofγ = 0.9999995 [19], and we
add uniform noisez(t) to the updated internal unit activations
[19], where the noise level (a form of regularization) was
optimized per reservoir and per dataset using the validation
set. For each model we calculate the average NMSE8 over
10 simulation runs. Our experiments are organized along five
degrees of freedom: 1) reservoir topology; 2) reservoir
activation function; 3) input weight structure; 4) readout
learning and 5) reservoir size.

C. Results

For each data set and each model class (ESN, DLR, DLRB,
SCR) we picked on the validation set a model representative to
be evaluated on the test set. Ten randomizations of each model
representative were then tested on the test set. For the DLR,
DLRB and SCR architectures the model representatives are

7We also tried other forms of offline readout training, such as wiener-
hopf methodology (e.g. [16]), pseudoinverse solution (e.g [3]) and singular
value decomposition (e.g. [21]). Ridge regression lead to the best results. We
are thankful to the anonymous referee for suggesting the inclusion of ridge
regression in our repertoire of batch training methods.

8word error Rate (WER) in the case ofIsolated Digitsdataset
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defined by the method for readout learning (offline or online),
the input weight valuev and the reservoir weightr (for DLRB
network we also need to specify the valueb of the backward
connection). The randomization was performed solely by
randomly generating the signs for individual input weights9,
the reservoir itself was intact. For the ESN architecture, the
model representative is specified by the method for readout
learning, input weight scaling, reservoir sparsity and spectral
radius of the weight matrix. For each model setting (e.g. for
ESN - readout learning, input weight scaling, reservoir sparsity
and spectral radius), we generate 10 randomized models and
calculate their average validation set performance. The best
performing model setting on the validation set is then used to
generate another set of 10 randomized models that are fitted
on the training set and subsequently tested on the test set.

More details on the experiments, such as the chosen readout
learning method, input and reservoir weights, spectral radius
of the reservoir weight matrix etc. can be found in [Appendix
A].

Figures 3, 4 and 5(A) show the average test set NMSE
(across ten randomizations) achieved by the selected model
representatives. Figure 3 presents results for the four model
classes using non-linear reservoir on thelaser, Hénon Map
and Non-linear Communication Channeldatasets. On those
time series, the test NMSE for linear reservoirs were of an
order of magnitude worse than the NMSE achieved by the
non-linear ones. While the ESN architecture slightly outper-
forms the simplified reservoirs on thelaser and Hénon Map
time series, for theNon-linear Communication Channelthe
best performing architecture is the simple delay line network
(DLR). The SCR reservoir is consistently the second-best
performing architecture. Even though the differences between
NMSE are in most cases statistically significant, from the
practical point of view, they are minute. Note that theNon-
linear Communication Channelcan be modeled rather well
with a simple Markovian delay line reservoir and no complex
ESN reservoir structure is needed. Nonlinearity in the reservoir
activation and the reservoir size seem to be two important
factors for successful learning on those three datasets.

Figure 4 presents results for the four model classes on
the threeNARMAtime series, namely fixedNARMAof order
10, 20 and randomNARMA of order 10. The performance
of linear reservoirs do not improve with increasing reservoir
size. Interestingly, within the studied reservoir range (50-
200), linear reservoirs beat the nonlinear ones on20-th order
NARMA10. For all NARMAseries, the SCR network is either
the best performing architecture or is not worse than the best
performing architecture in a statistically significant manner.
Note that NARMA time series constitute one of the most
important and widely used benchmark datasets used in the
echo state network literature (e.g. [3], [4], [6], [10], [11], [19]–
[21]).

9Strictly speaking we randomly generated the signs for input weights and
input biases. However, as usual in the neural network literature, the bias terms
can be represented as input weights from a constant input +1.

10The situation changes for larger reservoir sizes. For example, nonlinear
ESN and SCR reservoirs of size 800 lead to the average NMSE of 0.0468
(std 0.0087) and 0.0926 (std 0.0039), respectively.

The results for the high-dimensional data setIsolated Digits
are presented in figure 5(A). Except for the reservoir size
50, the performances of all studied reservoir models are
statistically the same (see table VIII in [Appendix A]). When
compared to ESN, the simplified reservoir models seem to
work equally well on this high dimensional input series.

For IPIX Radar, Sunspot SeriesandNonlinear System with
Observational Noisethe results are presented in tables I and II,
respectively. On these data sets, the ESN performance did not
always monotonically improve with the increasing reservoir
size. That is why for each data set we determined the best
performing ESN reservoir size on the validation set (N = 80,
N = 200, N = 100 for IPIX Radar, SunspotSeries and
Nonlinear System with Observational Noise, respectively). The
performance of the other model classes (DLR, DLRB and
SCR) with those reservoir sizes was then compared to that of
ESN. In line with most RC studies using theSunspotdata set
(e.g. [29]), we found that linear reservoirs were on par11 with
the nonlinear ones. For all three data sets, the SCR architecture
perform slightly better than standard ESN, even though the
differences are in most cases not statistically significant.

Ganguli, Huh and Sompolinsky [30] quantified and theo-
retically analyzed memory capacity of non-autonomous linear
dynamical systems (corrupted by a Gaussian state noise) using
Fisher information between the state distributions at distant
times. They found out that the optimal Fisher memory is
achieved for so called non-normal networks with DLR or
DLRB topologies and derived the optimal input weight vector
for those linear reservoir architectures. We tried settingthe
input weights to the theoretically derived values, but the
performance did not improve over our simple strategy of
randomly picked signs of input weights followed by model
selection on the validation set. Of course, the optimal input
weight considerations of [30] hold for linear reservoir models
only. Furthermore, according to [30], the linear SCR belongs
to the class of so called normal networks which are shown
to be inferior to the non-normal ones. Interestingly enough,
in our experiments, the performance of linear SCR was not
worse than that of non-normal networks.

D. Further Simplifications of Input Weight Structure

The only random element of the SCR architecture is the
distribution of the input weight signs. We found out that any
attempt to impose a regular pattern on the input weight signs
(e.g. a periodic structure of the form+−+− ..., or +−−+
− − ... etc.) lead to performance deterioration. Interestingly
enough, it appears to be sufficient to relate the sign patternto
a singledeterministicallygenerated aperiodic sequence. Any
simple pseudo-random generation of signs with a fixed seed
is fine. Such sign patterns worked universally well across all
benchmark data sets used in this study. For demonstration, we
generated the universal input sign patterns in two ways:

1) the input signs are determined from decimal expansion
d0.d1d2d3... of irrational numbers (in our caseπ ande).
The firstN decimal digitsd1, d2, ..., dN are thresholded

11and sometimes better (within the range of reservoir sizes considered in
our experiments)
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Fig. 3. Test set performance of ESN, SCR, DLR, and DLRB topologies withtanh transfer function on thelaser, Hénon Map, andNon-linear Communication
Channeldatasets.
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Fig. 4. Test set performance of ESN, SCR, DLR, and DLRB topologies with tanh transfer function on10th-order, random 10th-orderand 20th-order
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Fig. 5. Test set performance of ESN, SCR, DLR, and DLRB topologies on theIsolated Digits (speech recognition) task using two ways of generating input
connection sign patterns; using initial digits ofπ (A), and random generation (i.i.d. Bernoulli distributionwith mean 1/2) (B). Reservoir nodes withtanh
transfer functionf were used.

TABLE I
MEAN NMSE FOR ESN, DLR, DLRB,AND SCRACROSS10 SIMULATION RUNS (STANDARD DEVIATIONS IN PARENTHESIS) ON THE IPIX RadarAND

SunspotSERIES. THE RESULTS ARE REPORTED FOR NONLINEAR RESERVOIRS OF SIZEN = 80 (IPIX Radar) AND LINEAR RESERVOIRS WITHN = 200
NODES (Sunspot series).

Dataset prediction horizon ESN DLR DLRB SCR

1 0.00115 (2.48E-05) 0.00112 (2.03E-05) 0.00110 (2.74E-05) 0.00109 (1.59E-05)
IPIX Radar 5 0.0301 (8.11E-04) 0.0293 (3.50E-04) 0.0296 (5.63E-04) 0.0291 (3.20E-04)

Sunspot 1 0.1042 (8.33E-5) 0.1039 (9.19E-05) 0.1040 (7.68E-05) 0.1039 (5.91E-05)
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TABLE II
MEAN NMSE FOR ESN, DLR, DLRB,AND SCRACROSS10 SIMULATION RUNS (STANDARD DEVIATIONS IN PARENTHESIS) ON THE Nonlinear System

with Observational NoiseDATA SET. RESERVOIRS HADN = 100 INTERNAL NODES WITH tanh TRANSFER FUNCTIONf .

var w var v ESN DLR DLRB SCR
1 1 0.4910 (0.0208) 0.4959 (0.0202) 0.4998 (0.0210) 0.4867 (0.0201)
10 1 0.7815 (0.00873) 0.7782 (0.00822) 0.7797 (0.00631) 0.7757 (0.00582)
1 10 0.7940 (0.0121) 0.7671 (0.00945) 0.7789 (0.00732) 0.7655 (0.00548)
10 10 0.9243 (0.00931) 0.9047 (0.00863) 0.9112 (0.00918) 0.9034 (0.00722)

at 4.5, e.g. if0 ≤ dn ≤ 4 and 5 ≤ dn ≤ 9, then the
n-th input connection sign (linking the input to then-th
reservoir unit) will be− and+, respectively,

2) the input signs are determined by the firstN iterates in
binary symbolic dynamics of the logistic mapf(x) =
4x(1 − x) in a chaotic regime (initial condition was
0.33, generating partition for symbolic dynamics with
cut-value at 1/2).

The results shown in figures 6 (NARMA, laser, Hénon
Map andNon-linear Communication Channeldata sets), 5(B)
(Isolated Digits), and tables III and IV (IPIX Radar, Sunspot,
andNonlinear System with Observational Noise), indicate that
comparable performances of our SCR topology can be ob-
tained without any stochasticity in the input weight generation
by consistent use of the same sign generating algorithm across
a variety of data sets.

We tried to use these simple deterministic input sign gener-
ation strategy for the other simplified reservoir models (DLR
and DLRB). The results were consistent with our findings
for the SCR. We also tried to simplify the input weight
structure by connecting the input to a single reservoir unit
only. However, this simplification either did not improve, or
deteriorated the model performance.

E. Sensitivity Analysis

We tested sensitivity of the model performance on 5-step
ahead prediction with respect to variations in the (construction)
parameters12. The reservoir size isN = 100 for NARMAand
Laserdata sets; andN = 80 for the IPIX Radardata set.

In the case of ESN we varied the input scaling, as well as
the spectral radius and connectivity of the reservoir matrix.
In figures 7(A), 8(A) and 9(A) we show how the performance
depends on the spectral radius and connectivity of the reservoir
matrix. The input scaling is kept fixed at the optimal value
determined on the validation set. Performance variation with
respect to changes in input scaling (while connectivity and
spectral radius are kept fixed at their optimal values) are
reported in table V.

For the SCR and DLR models figures 7(C,D), 8(C,D) and
9(C,D) illustrate the performance sensitivity with respect to
changes in the only two free parameters - the input and
reservoir weightsv andr, respectively.

In the case of DLRB model, figures 7(B), 8(B) and 9(B)
present the performance sensitivity with respect to changes in
the reservoir weightsr andb, while keeping the input weight
fixed to the optimal value.

12We are thankful to the anonymous reviewer for making the suggestion

All the studied reservoir models show robustness with
respect to small (construction) parameter fluctuations around
the optimal parameter setting.

TABLE V
BEST CONNECTIVITY AND SPECTRAL RADIUS FORESN WITH DIFFERENT

INPUT SCALING FOR10th order NARMA, laserAND IPIX RadarDATASETS.

Data set Inp Con Spec NMSE

10th 0.05 0.18 0.85 0.1387 (0.0101)
order 0.1 0.18 0.85 0.1075 (0.0093)

NARMA 0.5 0.18 0.85 0.2315 (0.0239)
1 0.18 0.85 0.6072 (0.0459)

0.05 0.08 0.99 0.2738 (0.0128)
Laser 0.1 0.08 0.99 0.1827 (0.0222)

0.5 0.08 0.99 0.1058 (0.0070)
1 0.08 0.99 0.0983 (0.0064)

0.05 0.2 0.7 0.0297 (0.00043)
IPIX 0.1 0.2 0.7 0.0311 (0.00087)

Radar 0.5 0.2 0.7 0.0341 (0.0010)
1 0.2 0.7 0.0378 (0.0014)

V. SHORT TERM MEMORY CAPACITY OF SCR
ARCHITECTURE

In his report [4] Jaeger quantified the inherent capacity
of recurrent network architectures to represent past events
through a measure correlating the past events in an i.i.d. input
stream with the network output. In particular, assume that the
network is driven by a univariate stationary input signals(t).
For a given delayk, we consider the network with optimal
parameters for the task of outputtings(t− k) after seeing the
input stream...s(t − 1)s(t) up to time t. The goodness of
fit is measured in terms of the squared correlation coefficient
between the desired output (input signal delayed byk time
steps) and the observed network outputy(t):

MCk =
Cov2(s(t− k), y(t))

V ar(s(t)) V ar(y(t))
, (16)

where Cov denotes the covariance andV ar the variance
operators. The short term memory (STM) capacity is then
given by [4]:

MC =

∞
∑

k=1

MCk. (17)

Jaeger [4] proved that forany recurrent neural network
with N recurrent neurons, under the assumption of i.i.d. input
stream, the STM capacity cannot exceedN . We prove (under
the assumption of zero-mean i.i.d. input stream) that the STM
capacity of linear SCR architecture withN reservoir units can
be made arbitrarily close toN .
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Fig. 6. Test set performance of SCR topology using four different ways of generating pseudo-randomized sign patterns; using initial digits ofπ , andExp ;
logistic map trajectory, and random generation (i.i.d. Bernoulli distribution with mean 1/2). The result are reported for 20th NARMA, laser, Hénon Map, and
Non-linear Communication Channeldatasets. Reservoir nodes withtanh transfer functionf were used.

TABLE III
NMSE FOR ESN (MEAN ACROSS10 SIMULATION RUNS, STANDARD DEVIATIONS IN PARENTHESIS) AND SCRTOPOLOGIES WITH DETERMINISTIC INPUT

SIGN GENERATION ON THEIPIX RadarAND SunspotSERIES. THE RESULTS ARE REPORTED FOR NONLINEAR RESERVOIRS OF SIZEN = 80 (IPIX Radar)
AND LINEAR RESERVOIRS WITHN = 200 NODES (SunspotSERIES).

Dataset prediction horizon ESN SCR-PI SCR-EX SCR-Log

1 0.00115 (2.48E-05) 0.00109 0.00109 0.00108
IPIX Radar 5 0.0301 (8.11E-04) 0.0299 0.0299 0.0297

Sunspot 1 0.1042 (8.33E-5) 0.1063 0.1065 0.1059

TABLE IV
NMSE FOR ESN (MEAN ACROSS10 SIMULATION RUNS, STANDARD DEVIATIONS IN PARENTHESIS) AND SCRTOPOLOGIES WITH DETERMINISTIC INPUT

SIGN GENERATION ON THENonlinear System with Observational Noise. NONLINEAR RESERVOIRS HADN = 100 NODES.

var w var v ESN SCR-PI SCR-EX SCR-Log
1 1 0.4910 (0.0208) 0.5011 0.5094 0.5087
10 1 0.7815 (0.00873) 0.7910 0.7902 0.7940
1 10 0.7940 (0.0121) 0.7671 0.7612 0.7615
10 10 0.9243 (0.00931) 0.8986 0.8969 0.8965

Since there is a single input (univariate time series),
the input matrix V is an N -dimensional vectorV =
(V1, V2, ..., VN )T . Consider a vector rotation operator rot1

that cyclically rotates vectors by 1 place to the right, e.g.
rot1(V ) = (VN , V1, V2, ..., VN−1)

T . For k ≥ 1, the k-fold
application of rot1 is denoted by rotk. The N × N matrix
with k-th column equal to rotk(V ) is denoted byΩ, e.g.
Ω = (rot1(V ), rot2(V ), ..., rotN (V )).

Theorem 1:Consider a linear SCR network with reservoir
weight 0 < r < 1 and an input weight vectorV such that the
matrix Ω is regular. Then the SCR network memory capacity
is equal to

MC = N − (1− r2N ).

The proof can be found in [Appendix B, C].
We empirically evaluated the short-term memory capac-

ity (MC) of ESN and our three simplified topologies. The
networks were trained to memorize the inputs delayed by
k = 1, 2, ..., 40. We used one input node, 20 linear reservoir
nodes, and 40 output nodes (one for eachk). The input con-
sisted of random values sampled from a uniform distribution
in the range [-0.5, 0.5]. The input weights for ESN and
our simplified topologies have the same absolute value0.5
with randomly selected signs. The elements of the recurrent
weight matrix are set to 0 (80% of weights), 0.47 (10% of
weights), or -0.47 (10% of weights), with0.2 reservoir weights
connection fraction and spectral radiusλ = 0.9 [16]. DLR
and SCR weightr was fixed and set to the valuer = 0.5.
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Fig. 7. Sensitivity of ESN (A), DLRB (B), DLR (C), and SCR (D) topologies on the10th order NARMAdataset. The input sign patterns for SCR, DLR,
and DLRB non-linear reservoirs were generated using initial digits of π.

(A) (B)

(C) (D)

Fig. 8. Sensitivity of ESN (A), DLRB (B), DLR (C), and SCR (D) topologies on thelaser dataset. The input sign patterns for SCR, DLR, and DLRB
non-linear reservoirs were generated using initial digitsof π.

For DLRB r = 0.5 and b = 0.05. The output weights
were computed using pseudo-inverse solution. The empirically
determined MC values for ESN, DLR, DLRB and SCR models
were (averaged over 10 simulation runs, standard dev. in
parenthesis) 18.25 (1.46), 19.44 (0.89), 18.42 (0.96) and 19.48
(1.29), respectively. Note that the empirical MC values for
linear SCR are in good agreement with the theoretical value
of 20− (1− 0.540) ≈ 19.

VI. D ISCUSSION

A large number of models designed for time series process-
ing, forecasting or modeling follows astate-space formulation.

At each time stept, all ‘relevant’ information in the driving
stream processed by the model up to timet is represented
in the form of astate(at time t). The model output depends
on the past values of the driving series and is implemented
as a function of the state - the so-calledread-out function.
The state space can take many different forms, e.g. a finite
set, a countably infinite set, an interval etc. A crucial aspect
of state-space model formulations is an imposition that the
state at timet + 1 can be determined in a recursive manner
from the state at timet and the current element in the driving
series (state transitionfunction). Depending on the application
domain, numerous variations on the state space structure, as
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Fig. 9. Sensitivity of ESN (A), DLRB (B), DLR (C), and SCR (D) topologies on theIPIX Radardataset. The input sign patterns for SCR, DLR, and DLRB
non-linear reservoirs were generated using initial digitsof π.

well as the state-transition/readout function formulations have
been proposed.

One direction of research into a data-driven state space
model construction imposes a state space structure (e.g. an
N -dimensional interval) and a semi-parametric formulationof
both the state-transition and readout functions. The parameter
fitting is then driven by a cost functionalE measuring the
appropriateness of alternative parameter settings for thegiven
task. Recurrent neural networks are examples of this type
of approach [22]. IfE is differentiable, one can employ the
gradient ofE in the parameter fitting process. However, there
is a well known problem associated with parameter fitting in
the state-transition function [31]: briefly, in order to ‘latch’
an important piece of past information for the future use,
the state-transition dynamics should have an attractive set.
In the neighborhood of such a set the derivatives vanish and
hence cannot be propagated through time in order to reliably
bifurcate into a useful latching set.

A class of approaches referred to asreservoir computingtry
to avoid this problem by fixing the state-transition function
- only the readout is fitted to the data [2], [32]. The state
space with the associated state transition structure is called the
reservoir. The reservoir is supposed to be sufficiently complex
so as to capture a large number of features of the input stream
that can potentially be exploited by the readout.

The reservoir computing models differ in how the fixed
reservoir is constructed and what form the readout takes.
For example,echo state networks(ESN) [3] typically have
a linear readout and a reservoir formed by a fixed recurrent
neural network type dynamics.Liquid state machines(LSM)
[33] also mostly have a linear readout and the reservoirs are

driven by the dynamics of a set of coupled spiking neuron
models.Fractal prediction machines(FPM) [34] have been
suggested for processing symbolic sequences. Their reservoir
dynamics is driven by fixed affine state transitions over anN -
dimensional interval. The readout is constructed as a collection
of multinomial distributions over next symbols. Many other
(sometimes quite exotic) reservoir formulations have been
suggested (e.g. [11], [35]–[37]).

The field of reservoir computing has been growing rapidly
with dedicated special sessions at conferences and special
issues of journals [38]. Reservoir computing has been suc-
cessfully applied in many practical applications [3]–[6],[9],
[39]. However, reservoir computing is sometimes criticized
for not being principled enough [17]. There have been several
attempts to address the question of what exactly is a ‘good’
reservoir for a given application [16], [40], but no coherent
theory has yet emerged. The largely black box character of
reservoirs prevents us from performing a deeper theoretical
investigation of the dynamical properties of successful reser-
voirs. Reservoir construction is often driven by a series of
(more-or-less) randomized model building stages, with both
the researchers and practitioners having to rely on a series
of trials and errors. Sometimes reservoirs have been evolved
in a costly and difficult to analyze evolutionary computation
setting [8], [14], [41], [42].

In an attempt to initialize a systematic study of the field,
we have concentrated on three research questions:

1) What is the minimal complexity of the reservoir topol-
ogy and parametrization so that performance levels
comparable to those of standard reservoir computing
models, such as ESN, can be recovered?
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2) What degree of randomness (if any) is needed to con-
struct competitive reservoirs?

3) If simple competitive reservoirs constructed in a com-
pletely deterministic manner exist, how do they compare
in terms of memory capacity with established models
such as recurrent neural networks?

On a number of widely used time series benchmarks of
different origin and characteristics, as well as by conducting
a theoretical analysis we have shown:

1) A very simple cycle topology of reservoir is often suffi-
cient for obtaining performances comparable to those
of ESN. Except for theNARMA datasets, nonlinear
reservoirs were needed.

2) Competitive reservoirs can be constructed in a com-
pletely deterministic manner: The reservoir connections
all have the same weight value. The input connections
have the same absolute value with sign distribution
following one of the universal deterministic aperiodic
patterns.

3) The memory capacity of linear cyclic reservoirs with a
single reservoir weight valuer can be made to differ
arbitrarily close from the proved optimal value ofN ,
where N is the reservoir size. In particular, given an
arbitrarily smallǫ ∈ (0, 1), for

r = (1− ǫ)
1

2N ,

the memory capacity of the cyclic reservoir isN − ǫ.
Even though the theoretical analysis of the SCR has been

done for the linear reservoir case, the requirement that all
cyclic rotations of the input vector need to be linearly inde-
pendent seems to apply to the non-linear case as well. Indeed,
under the restriction that all input connections have the same
absolute weight value, the linear independence condition trans-
lates to the requirement that the input sign vector follows an
aperiodic pattern. Of course, from this point of view, a simple
standard basis pattern (+1,-1,-1,...,-1) is sufficient. Interestingly
enough, we found out that the best performance levels were
obtained when the input sign pattern contained roughly equal
number of positive and negative signs. At the moment we have
no satisfactory explanation for this phenomenon and we leave
it as an open question for future research.

Jaeger argues [4] that if the vectorsW iV , i = 1, 2, ..., N ,
are linearly independent, then the memory capacityMC of
linear reservoir withN units is N . Note that for the SCR
reservoir

rotk(V ) =
W kV

rk
, k = 1, 2, ..., N,

and so the condition thatW iV , i = 1, 2, ..., N , are linearly
independent directly translates into the requirement thatthe
matrix Ω is regular. Asr → 1, the MC of SCR indeed
approaches the optimal memory capacityN . According to
Theorem 1, theMC measure depends on the spectral radius of
W (in our case,r). Interestingly enough, in the verification ex-
periments of [4] with a reservoir of sizeN = 20 and reservoir
matrix of spectral radius 0.98, the empirically obtainedMC
value was 19.2. Jaeger commented that a conclusive analysis
of the disproportion between the theoretical and empirical

values ofMC was not possible, however, he suggested that
the disproportion may be due to numerical errors, as the
condition number of the reservoir weight matrixW was about
50. Using our result,MC = N − (1 − r2N ) with N = 20
and r = 0.98 yields MC = 19.4. It is certainly true that
for smaller spectral radius values, the empirically estimated
MC values of linear reservoirs decrease, as verified in several
studies (e.g. [20]), and this may indeed be at least partially
due to numerical problems in calculating higher powers of
W . Moreover, empirical estimates ofMC tend to fluctuate
rather strongly, depending on the actual i.i.d. driving stream
used in the estimation (see e.g. [16]). Even though Theorem 1
suggests that the spectral radius ofW should have an influence
on theMC value for linear reservoirs, its influence becomes
negligible for large reservoirs, since (providedΩ is regular)
the MC of SCR is provably bounded within the interval
(N − 1, N).

Memory capacityMC of a reservoir is a representative
member from the class of reservoir measures that quantify the
amount of information that can be preserved in the reservoir
about the past. For example, Ganguli, Huh and Sompolinsky
[30] proposed a different (but related) quantification of mem-
ory capacity for linear reservoirs (corrupted by a Gaussian
state noise). They evaluated the Fisher information between
the reservoir activation distributions at distant times. Their
analysis shows that the optimal Fisher memory is achieved
for the reservoir topologies corresponding e.g. to our DLR
or DLRB reservoir organizations. Based on the Fisher mem-
ory theory, the optimal input weight vector for those linear
reservoir architectures was derived. Interestingly enough, when
we tried setting the input weights to the theoretically derived
values, the performance in our experiments did not improve
over our simple strategy for obtaining the input weights. While
in the setting of [30], the memory measure does not depend
on the distribution of the source generating the input stream,
theMC measure of [4] is heavily dependent on the generating
source. For the case of i.i.d. source (where no dependencies
between the time series elements can be exploited by the
reservoir) the memory capacityMC = N−1 can be achieved
by a very simple model: DLR reservoir with unit weightr = 1,
one input connection with weight 1 connecting the input with
the 1st reservoir unit, and fork = 1, 2, ..., N − 1 one output
connection of weight 1 connecting the(k+1)-th reservoir unit
with the output. The linear SCR, on the other hand, can get
arbitrarily close to the theoretical limitMC = N . In cases
of non i.i.d. sources, the temporal dependencies in the input
stream can increase the memory capacity beyond the reservoir
sizeN [4]. The simple nature of our SRC reservoir can enable
a systematic study of theMC measure for different kinds
of input stream sources and this is a matter for our future
research.

Compared with traditional ESN, recent extensions and
reformulations of reservoir models often achieved improved
performances [11], [12], [36], at the price of even less transpar-
ent models and less interpretable dynamical organization.We
stress that the main purpose of this study is not a construction
of yet another reservoir model achieving an (incremental
or more substantial) improvement over the competitors on
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the benchmark data sets. Instead, we would like to propose
as simplified as possible reservoir construction, without any
stochastic component, that while competitive withstandard
ESN, yields transparent models, more amenable to theoretical
analysis than the reservoir models proposed in the literature
so far. Such reservoir models can potentially help us to
answer the question just what is it in the organization of
the non-autonomous reservoir dynamics that leads to often
impressive performances of reservoir computation. Our simple
deterministic SCR model can be used as a a useful baseline
in future reservoir computation studies. It is the level of
improvement over the SCR baseline that has a potential to
truly unveil the performance gains achieved by the more (and
sometimes much more) complex model constructions.

VII. CONCLUSION

Reservoir computing learning machines are state-space
models with fixed state transition structure (the ‘reservoir’)
and an adaptable readout form the state space. The reservoir
is supposed to be sufficiently complex so as to capture a large
number of features of the input stream that can be exploited by
the reservoir-to-output readout mapping. Even though the field
of reservoir computing has been growing rapidly with many
successful applications, both researchers and practitioners have
to rely on a series of trials and errors.

To initialize a systematic study of the field, we have
concentrated on three research issues:

1) What is the minimal complexity of the reservoir topol-
ogy and parametrization so that performance levels
comparable to those of standard reservoir computing
models, such as ESN, can be recovered?

2) What degree of randomness (if any) is needed to con-
struct competitive reservoirs?

3) If simple competitive reservoirs constructed in a com-
pletely deterministic manner exist, how do they compare
in terms of memory capacity with established models
such as recurrent neural networks?

On a number of widely used time series benchmarks of
different origin and characteristics, as well as by conducting
a theoretical analysis we have shown:

1) A simple cycle reservoir topology is often sufficient for
obtaining performances comparable to those of ESN.

2) Competitive reservoirs can be constructed in a com-
pletely deterministic manner.

3) The memory capacity of simple linear cyclic reservoirs
can be made to be arbitrarily close to the proved optimal
MC value.
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APPENDIX A
EXPERIMENTAL SETUP AND DETAILED RESULTS

General description of the experimental setup is summarized
in table VI, with details on selected model parameters for
different data sets presented in table VII. Detailed results
including standard deviations across repeated experiments (as
described in section IV) are shown in tables VIII and IX.

APPENDIX B
NOTATION AND AUXILIARY RESULTS

We consider a ESN with linear reservoir endowed with
cycle topology (SCR). The reservoir weight is denoted by
r. Since we consider a single input, the input matrixV
is an N -dimensional vectorV1..N = (V1, V2, ..., VN )T .
By VN..1 we denote the ‘reverse’ ofV1..N , e.g. VN..1 =
(VN , VN−1, ..., V2, V1)

T .
Consider a vector rotation operator rot1 that cyclically

rotates vectors by 1 place to the right, e.g. given a vector
a = (a1, a2, ..., an)T , rot1(a) = (an, a1, a2, ..., an−1)

T . For
k ≥ 0, the k-fold application of rot1 is denoted by13 rotk.

13rot0 is the identity mapping.

The N × N matrix with k-th column equal to rotk(VN..1)
is denoted byΩ, e.g.

Ω = (rot1(VN..1), rot2(VN..1), ..., rotN (VN..1)).

We will need a diagonal matrix with diagonal elements
1, r, r2, ..., rN−1:

Γ = diag(1, r, r2, ..., rN−1).

Furthermore, we will denote the matrixΩT Γ2 Ω by A,

A = ΩT Γ2 Ω

and (providedA is invertible)

(rotk(V1..N ))T A−1 rotk(V1..N ), k ≥ 0,

= (rot
k(mod)N (V1..N ))T A−1 rot

k(mod)N (V1..N ),

by ζk.

Lemma 1: If Ω is a regular matrix, thenζN = 1 andζk =
r−2k, k = 1, 2, ..., N − 1.

Proof: Denote the standard basis vector(1, 0, 0, ..., 0)T

in ℜN by e1. It holds:

rotk(V1..N ) = ΩT rotk(e1), k = 1, 2, ..., N − 1.

This can be easily shown, asΩT rotk(e1) selects the(k +
1)st column ofΩT ((k + 1)st row of Ω), which is formed
by (k + 1)st elements of vectors rot1(VN..1), rot2(VN..1), ...,
rotN (VN..1). This vector is equal to thek-th rotation ofV1..N .

It follows that for k = 1, 2, ..., N − 1,

(rotk(V1..N ))T Ω−1 = (rotk(e1))
T

and so

ζk = (rotk(V1..N ))T A−1 rotk(V1..N )

= (rotk(V1..N ))T Ω−1 Γ−2 (Ω−1)T rotk(V1..N )

= (rotk(e1))
T Γ−2 rotk(e1).

= r−2k.

APPENDIX C
PROOF OF THEOREM1

Given an i.i.d. zero-mean real-valued input streams(..t) =
... s(t−2) s(t−1) s(t) emitted by a sourceP , the activations
of the reservoir units at timet are given by

x1(t) = V1 s(t) + r VN s(t− 1) + r2 VN−1 s(t− 2)

+ r3 VN−2 s(t− 3) + ... + rN−1 V2 s(t− (N − 1))

+ rN V1 s(t−N) + rN+1 VN s(t− (N + 1)) + ...

+ r2N−1 V2 s(t− (2N − 1)) + r2N V1 s(t− 2N)

+ r2N+1 VN s(t− (2N + 1)) + ...

x2(t) = V2 s(t) + r V1 s(t− 1) + r2 VN s(t− 2)

+ r3 VN−1 s(t− 3) + ... + rN−1 V3 s(t− (N − 1))

+ rN V2 s(t−N) + rN+1 V1 s(t− (N + 1)) + ...

+ r2N−1 V3 s(t− (2N − 1)) + r2N V2 s(t− 2N)

+ r2N+1 V1 s(t− (2N + 1)) + r2N+2 VN s(t− (2N + 2))

+ ...
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TABLE VI
EXPERIMENTAL SETUP

NARMA (of different orders), Santa Fe Laser, Hénon Map
Datasets Nonlinear Communication Channel, Sunspots

IPIX Radar, Nonlinear System with Observational Noise, andIsolated Digits
Model class topologies ESN, DLR, DLRB, and SCR

Readout learning RLS with dynamic noise injection , and Ridge Regression
ESN: (random weights with spectral radiusα = [0.05 : 0.05 : 1] ,

Reservoir weights and connectivitycon = [0.05 : 0.05 : 0.5])
DLR, DLRB , and SCR: (r = [0.05 : 0.05 : 1], b = [0.05 : 0.05 : 1] )

whereb ∈ 1 − r < b < 1/(4r)
reservoir sizes [50 : 50 : 200] In case ofIPIX Radarand sunspotsN = 80 andN = 200, respectively.

input scale [0.01 : 0.005 : 1]

input sign generation (1) random draw from Bernoulli distribution (mean=1/2),
(2) decimal expansion of irrational numbers (π ande),

(3) binary symbolic dynamics of the logistic map
noise size for RLS [0 : 10−0.25 : 10−15]

generalization factor for Ridge regression [0 : 10−0.25 : 10−15]

TABLE VII
SELECTED MODEL PARAMETERS BASED ON THEVALIDATION SET PERFORMANCE

Dataset Item ESN DLR DLRB SCR

Input weight connection uniform over (-0.1,0.1) ±0.1 ±0.1 ±0.1
NARMA reservoir weights α = 0.95 r=0.8 r=0.8 and b=0.05 r=0.8
N = 100 Sparseness of W 0.1 - - -

Input weight connection uniform over (-1,1) ±0.6 ±0.6 ±0.6
Laser reservoir weights α = 0.95 r=1 r=1 and b=0.01 r=1

N = 100 Sparseness of W 0.5 - - -

Input weight connection uniform over (-1,1) ±0.95 ±0.95 ±0.95
Hénon Map reservoir weights α = 0.3 r=0.95 r=0.95 and b=0.05 r=0.95
N = 100 Sparseness of W 0.5 - - -

Nonlinear Input weight connection uniform over (-0.025,0.025) ±0.025 ±0.025 ±0.025
Communication Channel reservoir weights α = 0.5 r=0.95 r=0.95 and b=0.05 r=0.95

N = 100 Sparseness of W 0.2 - - -

Input weight connection uniform over (-1,1) ±1 ±1 ±1
Sunspots reservoir weights α = 0.75 r=0.3 r=0.3 and b=0.1 r=0.3
N = 200 Sparseness of W 0.2 - - -

Nonlinear System Input weight connection uniform over (-0.1,0.1) ±0.025 ±0.025 ±0.025
with Observational Noisy reservoir weights α = 0.65 r=0.65 r=0.65 and b=0.2 r=0.65

N = 100 Sparseness of W 0.2 - - -

Input weight connection uniform over (-0.04,0.04) ±0.04 ±0.04 ±0.04
IPIX Radar reservoir weights α = 0.7 r=0.65 r=0.6 and b=0.05 r=0.65
N = 80 Sparseness of W 0.13 - - -

Input weight connection uniform over (-1,1) ±1 ±1 ±1
Isolated Digits reservoir weights α = 1 r=0.1 r=0.1 and b=0.05 r=0.1

N = 100 Sparseness of W 0.8 - - -

xN (t) = VN s(t) + r VN−1 s(t− 1)

+ r2 VN−2 s(t− 2) + ...

+ rN−1 V1 s(t− (N − 1)) + rN VN s(t−N)

+ rN+1 VN−1 s(t− (N + 1)) + ...

+ r2N−1 V1 s(t− (2N − 1)) + r2N VN s(t− 2N)

+ r2N+1 VN−1 s(t− (2N + 1))

+ r2N+2 VN−2 s(t− (2N + 2)) + ...

For the task of recalling the input fromk time steps back,
the optimal least-squares readout vectorU is given by

U = R−1 pk, (18)

where
R = EP (s(..t))[x(t) xT (t)]

is the covariance matrix of reservoir activations and

pk = EP (s(..t))[x(t) s(t− k)].

The covariance matrixR can be obtained in an analytical form.
For example, because of the zero-mean and i.i.d. nature of the
sourceP , the elementR1,2 can be evaluated as follows:

R1,2 = EP (s(..t))[x(t)xT (t)]

= E[ V1 V2 s2(t) + r2 VN V1 s2(t− 1)

+ r4 VN−1 VN s2(t− 2) + ...

+ r2(N−1) V2 V3 s2(t− (N − 1))

+ r2N V1 V2 s2(t−N)

+ r2(N+1) VN V1 s2(t− (N + 1))

+ ... + r2(2N−1) V2 V3 s2(t− (2N − 1))

+ r4N V1 V2 s2(t− 2N) + ... ],
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TABLE VIII
TEST SET PERFORMANCE OFESN, SCR, DLR,AND DLRB TOPOLOGIES ON DIFFERENT DATASETS FOR INTERNAL NODES WITHtanh TRANSFER

FUNCTION.

Data set reservoir size ESN DLR DLRB SCR

10th 50 0.166 (0.0171) 0.163 (0.0138) 0.158 (0.0152) 0.160 (0.0134)
order 100 0.0956 (0.0159) 0.112(0.0116) 0.105 (0.0131) 0.0983 (0.0156)

NARMA 150 0.0514 (0.00818) 0.0618 (0.00771) 0.0609 (0.00787) 0.0544 (0.00793)
200 0.0425 (0.0166) 0.0476 (0.0104) 0.0402 (0.0110) 0.0411 (0.0148)

10th 50 0.131 (0.0165) 0.133 (0.0132) 0.130 (0.00743) 0.129 (0.0111)
order 100 0.0645 (0.0107) 0.0822 (0.00536) 0.0837 (0.00881) 0.0719 (0.00501)

random 150 0.0260 (0.0105) 0.0423 (0.00872) 0.0432 (0.00933) 0.0286 (0.00752)
NARMA 200 0.0128 (0.00518) 0.0203 (0.00536) 0.0201 (0.00334) 0.0164 (0.00412)

20th 50 0.297 (0.0563) 0.232 (0.0577) 0.238 (0.0507) 0.221 (0.0456)
order 100 0.235 (0.0416) 0.184 (0.0283) 0.183 (0.0196) 0.174 (0.0407)

NARMA 150 0.178 (0.0169) 0.171 (0.0152) 0.175 (0.0137) 0.163 (0.0127)
200 0.167 (0.0164) 0.165 (0.0158) 0.160 (0.0153) 0.158 (0.0121)

50 0.0184 (0.00231) 0.0210 (0.00229) 0.0215 (0.00428) 0.0196 (0.00219)
laser 100 0.0125 (0.00117) 0.0132 (0.00116) 0.0139 (0.00121) 0.0131 (0.00105)

150 0.00945 (0.00101) 0.0107 (0.00114) 0.0112 (0.00100) 0.0101 (0.00109)
200 0.00819 (5.237E-04) 0.00921 (9.122E-04) 0.00913 (9.367E-04) 0.00902 (6.153E-04))

50 0.00975 (0.000110) 0.0116 (0.000214) 0.0110 (0.000341) 0.0106 (0.000185)
Hénon 100 0.00894 (0.000122) 0.00982 (0.000143) 0.00951 (0.000120) 0.00960 (0.000124)
Map 150 0.00871 (4.988E-05) 0.00929 (6.260E-05) 0.00893 (6.191E-05) 0.00921 (5.101E-05)

200 0.00868 (8.704E-05) 0.00908 (9.115E-05) 0.00881 (9.151E-05) 0.00904 (9.250E-05)

50 0.0038 (4.06E-4) 0.0034 (2.27E-4) 0.0036 (2.26E-4) 0.0035 (2.55E-4)
Non-linear 100 0.0021 (4.42E-4) 0.0015 (1.09E-4) 0.0016 (1.07E-4) 0.0015 (1.23E-4)

communication 150 0.0015 (4.01E-4) 0.0011 (1.12E-4) 0.0011 (1.08E-4) 0.0012 (1.23E-4)
channel 200 0.0013 (1.71E-4) 0.00099 (6.42E-5) 0.0010 (7.41E-5) 0.0010 (7.28E-5)

50 0.0732 (0.0193) 0.0928 (0.0177) 0.1021 (0.0204) 0.0937 (0.0175)
Isolated 100 0.0296 (0.0063) 0.0318 (0.0037) 0.0338 (0.0085) 0.0327 (0.0058)

Digits 150 0.0182 (0.0062) 0.0216 (0.0052) 0.0236 (0.0050) 0.0192 (0.0037)
200 0.0138 (0.0042) 0.0124 (0.0042) 0.0152 (0.0038) 0.0148 (0.0050)

TABLE IX
TEST SET PERFORMANCE OFSCRTOPOLOGY ON DIFFERENT DATASETS USING THREE DIFFERENT WAYS OF GENERATING PSEUDO-RANDOMIZED INPUT

SIGN PATTERNS: INITIAL DIGITS OF π AND Exp; SYMBOLIC DYNAMICS OF LOGISTIC MAP.

Data set reservoir size ESN SCR-PI SCR-Ex SCR-Log

20th 50 0.297 (0.0563) 0.233 (0.0153) 0.232 (0.0175) 0.196 (0.0138)
order 100 0.235 (0.0416) 0.186 (0.0166) 0.175 (0.0136) 0.169 (0.0172)

NARMA 150 0.178 (0.0169) 0.175 (0.00855) 0.158 (0.0103) 0.156 (0.00892)
200 0.167 (0.0164) 0.166 (0.00792) 0.157 (0.00695) 0.155 (0.00837)

50 0.0184 (0.00231) 0.0204 0.0187 0.0181
laser 100 0.0125 (0.00117) 0.0137 0.0153 0.0140

150 0.00945 (0.00101) 0.0115 0.0111 0.0126
200 0.00819 (5.237E-04) 0.00962 0.00988 0.0107

50 0.00975 (0.000110) 0.00986 0.00992 0.00998
Hénon 100 0.00894 (0.000122) 0.00956 0.00985 0.00961
Map 150 0.00871 (4.988E-05) 0.00917 0.00915 0.00920

200 0.00868 (8.704E-05) 0.00892 0.00883 0.00898

50 0.0038 (4.06E-4) 0.0036 (1.82E-04) 0.0026 (6.23E-05) 0.0033 (1.09E-04)
Non-linear 100 0.0021 (4.42E-4) 0.0016 (7.96E-05) 0.0017 (1.04E-04) 0.0015 (8.85E-5)

communication 150 0.0015 (4.01E-4) 0.0012 (7.12E-05) 0.0011 (6.10E-05) 0.0012 (4.56E-05)
channel 200 0.0013 (1.71E-4) 0.00088 (2.55E-05) 0.00090 (3.05E-05) 0.00093 (3.33E-05)

meaning that

R1,2 = V1 V2 V ar[s(t)] + r2 VN V1 V ar[s(t− 1)]

+ r4 VN−1 VN V ar[s(t− 2)] + ...

... + r2N V1 V2 V ar[s(t−N)] + ...

= σ2 (V1V2 + r2VNV1 + r4VN−1VN + ...

... +r2(N−1)V2V3 + r2NV1V2 + ...)

= σ2 (V1V2 + r2VNV1 + r4VN−1VN + ...

... +r2(N−1)V2V3)

∞
∑

j=0

r2Nj . (19)

whereσ2 is the variance ofP .

The expression (19) forR1,2 can be written in a compact
form as

R1,2 =
σ2

1− r2N
(rot1(VN..1))

T Γ2 rot2(VN..1). (20)

In general,

Ri,j =
σ2

1− r2N
(roti(VN..1))

T Γ2 rotj(VN..1), i, j = 1, 2, ..., N,

(21)
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and

R =
σ2

1− r2N
ΩT Γ2 Ω

=
σ2

1− r2N
A. (22)

By analogous arguments,

pk = rk σ2 rotk(V1..N ). (23)

Hence, the optimal readout vector reads (see (18)):

U = (1− r2N ) rk A−1 rotk(V1..N ). (24)

The ESN output at timet is

y(t) = x(t)T U

= (1− r2N ) rk x(t)T A−1 rotk(V1..N ).

Covariance of the ESN output with the target can be
evaluated as:

Cov(y(t), s(t− k)) = (1− r2N ) rk Cov(x(t)T , s(t− k))

× A−1 rotk(V1..N )

= r2k (1− r2N ) σ2 (rotk(V1..N ))T

× A−1 rotk(V1..N )

= r2k (1− r2N ) σ2 ζk.

Variance of the ESN output is determined as:

V ar(y(t)) = UT E[x(t) x(t)T ] U

= UT R U

= pT
k R−1 pk

= r2k (σ2)2 (rotk(V1..N ))T R−1 rotk(V1..N )

= Cov(y(t), s(t− k)).

We can now calculate the squared correlation coefficient
between the desired output (input signal delayed byk time
steps) and the network outputy(n):

MCk =
Cov2(s(t− k), y(t))

V ar(s(t)) V ar(y(t))

=
V ar(y(t))

σ2

= r2k (1− r2N ) ζk.

The memory capacity of the ESN is given by

MC = MC≥0 −MC0,

where

MC≥0 =

∞
∑

k=0

MCk

= (1− r2N )

[

N−1
∑

k=0

r2k ζk +

2N−1
∑

k=N

r2k ζk +

3N−1
∑

k=2N

r2k ζk + ...

]

= (1− r2N )

[

N−1
∑

k=0

r2k ζk

] [

∞
∑

k=0

r2k

]

=
N−1
∑

k=0

r2k ζk.

Hence,

MC =

[

N−1
∑

k=0

r2k ζk

]

− (1− r2N )ζ0

= ζ0 [1− (1− r2N )] +

N−1
∑

k=1

r2k ζk

= ζ0 r2N +

N−1
∑

k=1

r2k ζk

= ζN r2N +

N−1
∑

k=1

r2k ζk

=
N

∑

k=1

r2k ζk.

By lemma 1, r2k ζk = 1 for k = 1, 2, ..., N − 1, and
r2N ζN = r2N . It follows thatMC = N − 1 + r2N .


