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Abstract—Reservoir computing (RC) refers to a new class of reservoir units [13], support vector machine [14], filteunens
state-space models with a fixed state transition structure (the with delay&sum readout [15] etc. However, there are still

“reservoir’) and an adaptable readout form the state space. The
reservoir is supposed to be sufficiently complex so as to capture
a large number of features of the input stream that can be
exploited by the reservoir-to-output readout mapping. The field é
RC has been growing rapidly with many successful applications.
However, RC has been criticized for not being principled enough.
Reservoir construction is largely driven by a series of randomized
model building stages, with both researchers and practitioners
having to rely on a series of trials and errors. To initialize
a systematic study of the field, we concentrate on one of the
most popular classes of reservoir computing methods - Echo
State Network (ESN) - and ask: What is the minimal complexity
of reservoir construction for obtaining competitive models and
what is the memory capacity of such simplified reservoirs? On a
number of widely used time series benchmarks of different origin
and characteristics, as well as by conducting a theoretical analis
we show: A simple deterministically constructed cycle reservoir
is comparable to the standard echo state network methodology.
The (short term) memory capacity of linear cyclic reservoirs can
be made arbitrarily close to the proved optimal value.

Index Terms—Reservoir computing, Echo state networks, Sim-

serious problems preventing ESN to become a widely accepted
too

l:

1) There are properties of the reservoir that are poorly
understood [12],

specification of the reservoir and input connections
require numerous trails and even luck [12],

strategies to select different reservoirs for differapt
plications have not been devised [16],

imposing a constraint on spectral radius of the reservoir
matrix is a weak tool to properly set the reservoir
parameters [16],

the random connectivity and weight structure of the
reservoir is unlikely to be optimal and does not give
a clear insight into the reservoir dynamics organization
[16].

Indeed, it is not surprising that part of the scientific
community is skeptical about ESNs being used for

2)
3)

4)

5)

ple recurrent neural networks, Memory capability, Time series Practical applications [17].

prediction

Typical model construction decisions that an ESN user

must make include: setting the reservoir size; setting the

I. INTRODUCTION

R ECENTLY there has been an outburst of research activi{

in the field of reservoir computing (RC) [1]. RC models

are dynamical models for processing time series that mag
a conceptual separation of the temporal data processing irel}n

two parts: 1) representation of temporal structure in thmuin
stream through a non-adaptable dynarm@servoir”, and 2)
a memoryless easy-to-adamadout from the reservoir. For
a comprehensive recent review of RC see [2]. Perhaps

0
simplest form of the RC model is the Echo State Netwo$
(ESN) [3]-[6]. Roughly speaking, ESN is a recurrent neur%l

network with a non-trainable sparse recurrent part (reserv
and a simple linear readout. Connection weights in the ES
reservoir, as well as the input weights are randomly geedrat
The reservoir weights are scaled so as to ensure'Eoho
State Property”(ESP): the reservoir state is &acho” of the
entire input history. Typically, spectral radius of theepgir's
weight matrix W is made< 1. ESN has been successfully
applied in time-series prediction tasks [6], speech reitmgn
[7], noise modeling [6], dynamic pattern classification,[5]
reinforcement learning [8], and in language modeling [9].

sparsity of the reservoir and input connections; setting th
ranges for random input and reservoir weights; and setting
Me reservoir matrix scaling parameter The dynamical part

the ESN responsible for input stream coding is treated as

$lack box which is unsatisfactory from both theoretical an

pirical standpoints. First, it is difficult to put a fingen o

what it actually is in the reservoir's dynamical organipati
that makes ESN so successful. Second, the user is required

tune parameters whose function is not well understood. In

s paper we would like to clarify by systematic investigat
e reservoir construction, namely we show that in fact g ver
imple ESN organization is sufficient to obtain performance

mparable to those of the classical ESN. We argue that for
ariety of tasks it is sufficient to consider:

1) a simple fixed non-random reservoir topology with full
connectivity from inputs to the reservoir ,

2) a single fixed absolute weight valuefor all reservoir
connections and

3) a single weight valuev for input connections, with
(deterministically generated) aperiodic pattern of input
signs.

Many extensions of the classical ESN have been suggesteth contrast to the complex trial-and-error ESN construgtio

in the literature, e.g. intrinsic plasticity [10], [11], deupled
reservoirs [12], refined training algorithms [6], leakyteégrator

our approach leaves the user with only two free parameters
to be set;r andv. This not only considerably simplifies the

ESN construction, but also enables a more thorough theateti

The authors are with the School of Computer Science, The lBitye
of Birmingham, Birmingham B15 2TT, United Kingdom, (e-mail: sodan,
P.Tino@cs.bham.ac.uk).

INote that this is not the necessary and sufficient conditmrESP

analysis of the reservoir properties. The doors can be open
for a wider acceptance of the ESN methodology amongst
both practitioners and theoreticians working in the field of
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time series modeling/prediction. In addition, our simpéged- parameter [5].

ministically constructed reservoir models can serve asuiseESN memoryless readout can be trained both offline (Batch)
baselines in future reservoir computing studies. The pa&perand online by minimizing any suitable loss function. We use
organized as follows. Section Il gives an overview of Echthe Normalized Mean Square Error (NMSE) to train and
state network design and training. In Section Il we preseavaluate the models:

our simplified reservoir topologies. Experimental residte (gt — y(@)|2)

presented in Section IV. We analyze both theoretically and NMSE = @ = N 3)
empirically the short term memory capacity (MC) of our

simple reservoir in Section V. Finally, our work is discugsewhere g(t) is the readout outputy(t) is the desired output

and concluded in Sections VI and VII, respectively. (target),||.| denotes the Euclidean norm ard- > denotes
the empirical mean.

Il. ECHO STATE NETWORKS

Echo state network is a recurrent discrete-time neur@ Offline (Batch) Training
network with K input units, N internal (reservoir) units, and |t consist of first running the network on the training set,
L output units. The activation of the input, internal, andpuit and then computing the output weights such that the training
units at time step are denoted bys(n) = (s1(t), ..., sk (t))”, Normalized Mean square Err¢V M SE) is minimized.
z(t) = (x1(t),...,an@)T, and y(t) = (yo(t), ...,y ()T The Offline Training can be done in the following detailed
respectively. The connections between the input units aggps:
the internal units are given by aN x K weight matrixV', 1 |nitialize W with a scaling parameter < 1 and run the
connections between the internal units are collected in an * ggN on the training set.
N x N weight matrix/, and connections from internal units ) pismiss data from initialwashout period and collect

to output units are given i, x N weight matrixU. remaining network states(t) row-wise into a matrix
X5,
Dynamical Reservoir 3) The target values from the training set are collected in
K Input units N int:(rln)al units L output units a VeCtory'
s(t) y(®) 4) The output unit weights are computed using ridge re-
gression [18]:
; Q U=(XTX+N1)""XTy, 4)
where I is the identity matrix,\ is the regularization
factor.

B. Online Training

I

I

I
4 |
* O Standard recursive algorithms (like Least Mean Square
(LMS) and Recursive Least Square (RLS)) for NMSE min-
imization known from adaptive liner signal processing can b
applied to online ESN estimation. According to [19] LMS
converges slowly, but RLS algorithms which are widely used
in linear signal processing when fast convergence is of @rim
importance work fine. RLS training starts after initiakshout
x(t+1)=f(Vs(t+1)+Wa(t)+2(t+1)), (1) steps. Output weights are updated every time stapcording
to the following equations:

O---0 O

Fig. 1. Echo state network (ESN) Architecture

The internal units are updated according: to

where f is the reservoir activation function (typicaltyinh or
some other sigmoidal function{t+1) is an optional uniform
i.i.d. noise. The linear readout is computed:as

y(t+1)=Ux(t+1). 2

Elements ofi¥ andV are fixed prior to training with random
values drawn from a uniform distribution over a (typically) )
symmetric interval. To account for ESP, the reservoir caane Ut)=U(t—1)+ k() [yt) — ()] (7

ti)(\)n ma_trith I typiclallyfj_st;:alfed asv’ dH aW/ |>‘"_“””|’ whle_re wherefk stands for the innovation vectay;andy correspond
|[Amaz| is the spectral radiuf W and0 < a <1 s a scaling to the desired and calculated (readout) output unit atsit/
is the vector of output weights (weights from input and hidde

P(t—1) z(t)
2T (t) P(t—1) =(t) +

k(t) = ®)

P(t) =7 (P(t=1) = k(t) 2" () P(t=1))  (6)

2There are no feedback connections from the output to theveiseand

no direct connections from the input to the output. units); P is the error covariance matrix initialized with large
3The reservoir activation vector is extended with a fixed elenaecounting
for the bias term. 5In case of direct input-output connections, the matkixcollects inputs

4The largest among the absolute values of the eigenvalugg .of s(t) as well.
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diagonal values. ‘Forgetting parameter’is usually set to a 1) NARMA SystemThe Nonlinear Auto-Regressive Mov-
value smaller that.0. The first value of reservoir activationing Average NARMA system is a discrete time system. This
vectorz is set to a constant (e.g.0) to account for the bias system was introduced in [22]. The current output depends on
term. both the input and the previous output. In general, modeling
this system is difficult, due to the non-linearity and polssib
long memory.

- fixed order NARMA time series: NARM#stems of order

To simplify the reservoir construction, we propose sever& = 10,20 given by equations 8, and 9, respectively.

IIl. SIMPLE ECHO STATE NETWORK RESERVOIRS

easy structured typology templates and we compare them to 9
those of the classical ESN.. Wg con_sider pﬁmlegar reserv_oirs y(t+1) = 0.3y (t)+0.05y(t) Z y(t—i)+1.55(t—9)s(t)+0.1,
that consist of neurons with identity activation functicas =0
well as non-linear reservoirsconsisting of neurons with the (8)
commonly used tangent hyperbolic (tanh) activation fuorcti 19
Linear reservoirs are fast to simulate but often lead toriofe y(t + 1) =tanh(0.3y(t) + 0.05y(t) Z y(t —1)
performance when compared to non-linear ones [20]. i=0

+ 1.5s(t — 19)s(t) + 0.01), 9)
A. Reservoir Typology wherey(t) is the system output at time s(¢) is the system

Besides the classical ESN reservoir introduced in the I%!s:(f; :]t 2:] ?r';?:ri/;ﬁg '0'; s[tlr(;?rrgzgg values generated uniformly

section Figure. 1, we consujer _the foIIowmg thre.e reseEr\'/o-'random 10th order NARMA time seriehis system is
templates (model classes) with fixed topologies Figure. 2:

. _ . generated by:
« Delay Line Reservoir (DLR} composed of units or-

anized in a line. Only elements on the lower sub- 2 )
giagonal of the reservoirymatriW have non-zero valuesy(t+1) = tanh(ay(t)+Fy(t) Zy(t_z)+73(t_9)s(t)+<p)’
Wit1: =r fori = 1..N — 1, wherer is the weight of =0 (10)
all the feedforward connections. where o, 3, and ¢ are assigned random values taken from
o DLR with backward connections (DLRB)the same +50% interval around their original values in eq. (8) [19].
structure as DLR but each reservoir unit is also connectSihce the system is not stable, we used a non-linear samrati
to the preceding neuron. Nonzero elementsiif are function tanh [19]. The inputs(t) and target data(t) are
on the lowerW;,,,; = r and upperW; ;1 = b sub- shifted by -0.5 and scaled by 2 as in [10]. The networks were
diagonals, wheré) is the weight of all the feedback trained on system identification task to outpiit) based on
connections. s(t), with Ly, = 2000, L,y = 3000, L;;; = 3000 and
» Simple Cycle Reservoir (SCR)nits organized in a cycle. 1, = 200.
Nonzero elements oft” are on the lower sub-diagonal 2) Laser Dataset: The Santa Fe Laser dataset [13] is a
Wiy1,: = r and at the upper-right corné¥; y = r. cross-cut through periodic to chaotic intensity pulsagiaf
a real laser. The task is to predict the next laser activation
y(t+ 1), given the values up to timg Ly, = 2000, L,y =
3000, L:s; = 3000 and L,, = 200.
The input layer is fully connected to the reservoir. For ESN 3) Hénon Map: Hnon Mapdataset [23] is generated by:
the input weights are (as usual) generated randomly from a 9
uniform distribution over an intervgt-a, a]. In case of simple y(t) =1—14y(t —1)" 4+ 0.3y(t — 2) + z2(t), (11)
reservoirs (DLR, DLRB and SCR), all input connections haughere y(t) is the system output at timg z(¢) is a normal
the same absolute weight value > 0; the sign of each white noise with standard deviation 605 [24]. We used
input weight is determined randomly by a random draw from,,.,, = 2000, L., = 3000, L;s; = 3000 and L,, = 200. The
Bernoulli distribution of meari /2 (unbiased coin). The valuesdataset is shifted by -0.5 and scaled by 2. Again, the task is
v anda are chosen on the validation set. to predict the next valug(t + 1), given the values up to time
t.
4) Non-linear Communication Channelfhe dataset was
created as follows [6]: First, an i.i.d. sequentté) of symbols
A. Datasets transmitted through the channel is generated by randomly

We use a range of timeseries covering a wide spectrum gjo0sing values from{—3, —1,1,3} (uniform distribution).
memory structure and widely used in the ESN literature [3],N€Md(?) values are used to form a sequenge) through a
[4], [6], [10], [11], [L9]-[21]. For each data set, we dente near filter
length of the training,_ validation _and test sequencesL_p_yL, q(t) =0.08d(t +2) — 0.12d(t + 1) + d(t) + 0.18d(t — 1)
L, and Ly, respectively. The firsL, values from training, —0.1d(t — 2) + 0.09d(t — 3) — 0.05d(t — 4)

validation and test sequences are used as the initial washou
period. +0.04d(t — 5) + 0.03d(t — 6) + 0.01d(t — 7). (12)

B. Input Weight Structure

IV. EXPERIMENTS
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(A) Dynamical Reservoir (B) Dynamical Reservoir (C) Dynamical Reservoir
N internal units N internal units N internal units

x(t) x(t) x(t)

output unit Input unit

output unit
L YO s(t) N

Input unit
Tl V()

-w,,.\‘ output unit Input unit
e YO A

Fig. 2. (A) Delay Line Reservoir(DLR). (B) Delay Line Reseivwith Feed-Back connections (DLRB). (C) Simple Cycle Resi (SCR).

Finally, a nonlinear transformation is applied tgn) to frequency channels. Following the ESN literature using thi
produce the signad(n) : dataset, the model performance will be evaluated using the
) 3 Word Error Rate (WER), which is the number of incorrect
s(t) = q(t) +0.0036¢(¢)" — 0.11¢(1)". (13)  (lassified words divided by the total number of presented

Following [6], the inputs(¢) signal was shifted +30. The taskwords. The 10_ output _classifiers are trained to output 1if
is to outputd(t — 2) when s(¢) is presented at the networkthe corresponding digit is uttered and -1 otherwise. Fathow
iNPUL. Ly = 2000, Lya = 3000, Lys; = 3000 andL, = 200. [28] the temporal mean over complete sample of each spoken

5) IPIX Radar: The sequence (used in [12]) contains 2008igit is calculated for the 10 output classifiers. The Winner
values with L;,, = 800, Lys = 500, Lis; = 700 and Take-All (WTA) methodology is then applied to estimate the
L, = 100. The target signal is the sea clutter data (the rad8Poken digit's identity. We use this data set to demonstree
backscatter from an ocean surface). The task was to predgdeling capabilities of different reservoir models on thig
y(t+1) andy(t +5) (1 and 5 step ahead prediction) whesflimensional (86 input channels) time series.

y(t) is presented at the network input.

6) Sunspot seriesThe dataset (obtained from [25]) con-B. Training

tains 3100 sunspots numbers from Jan 1749 to April 2007 \z\ie trained a classical ESN, as well as SCR, DLR, and

where L, = 1600, Lya = 500, L¢s; = 1000 and L, = 100.  p| RB models (with linear and tanh reservoir nodes) on the
The task was to predict the next valy¢f + 1) based on the time series described above with the NMSE to be minimized.
history of y up to timet. The model fitting was done using both offline (Batch) and
7) Nonlinear System with Observational Noiskhis sys- online training. For offline training we used ridge regreséj
tem was studied in [26] in the context of Bayesian Sequentighere the regularization factor was tuned per reservoir and
State estimation. The data is generated by: per dataset on the validation set. For online training weduse
s(t—1) RLS with forgetting factor ofy = 0.9999995 [19], and we
s(t) = 0~55(t—1)+25m+8 cos(1.2(t—1))+w(t), add uniform noise:(t) to the updated internal unit activations
(14) [19], where the noise level (a form of regularization) was
optimized per reservoir and per dataset using the validatio
set. For each model we calculate the average NM&Er

y(t) = 20 10 simulation runs. Our experiments are organized along five
where the initial condition is(0) = 0.1; w(t) andv(t) are degrees of freedom: 1) reservoir topology; 2) reservoir
zero-mean Gaussian noise terms with variances taken fréffivation function; 3) input weight structure; 4) readout
{1,10}, i.e. (62, 02) € {1,10}2. Lyyp = 2000, Lyqr = 3000, learning and 5) reservoir size.
L;s; = 3000 and L,, = 200. The task was to predict the value
y(t + 5), given the values from — 5 up to timet¢ presented C. Results

at the network input. . For each data set and each model class (ESN, DLR, DLRB,
8) Isolated Digits: This datasétis a subset of the TI48 gCR) we picked on the validation set a model representative t

dataset which contains 500 spokésolated Digits (zero 10 pe evaluated on the test set. Ten randomizations of eachimode

nine), where each digit is spoken 10 times by 5 femalgpresentative were then tested on the test set. For the DLR,

speakers. These 500 digits are randomly split into training RB and SCR architectures the model representatives are
(N¢rn = 250) and test {Vy;s: = 250) sets. Because of the

limited amount of data, model selection was performed using’We also tried other forms of offline readout training, such &ener-

_ _vali ; i Res hopf methodology (e.g. [16]), pseudoinverse solution (8] &nd singular
10-fold cross-validation on the training set. The Lyon S value decomposition (e.g. [21]). Ridge regression lead ¢obtist results. We

Ear model [27] is used to convert the spoken digits into 8Qe thankiul to the anonymous referee for suggesting theisimh of ridge
regression in our repertoire of batch training methods.
Sobtained from http://snn.elis.ugent.be/rctoolbox 8word error Rate (WER) in the case tsfolated Digitsdataset

s*(t)

+o(t), (15)
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defined by the method for readout learning (offline or online) The results for the high-dimensional data kselated Digits
the input weight value and the reservoir weight (for DLRB are presented in figure 5(A). Except for the reservoir size
network we also need to specify the valuef the backward 50, the performances of all studied reservoir models are
connection). The randomization was performed solely kstatistically the same (see table VIl in [Appendix A]). When
randomly generating the signs for individual input weidhts compared to ESN, the simplified reservoir models seem to
the reservoir itself was intact. For the ESN architecture t work equally well on this high dimensional input series.
model representative is specified by the method for readoutFor IPIX Radar, Sunspot SerieandNonlinear System with
learning, input weight scaling, reservoir sparsity andcs@ Observational Noist¢he results are presented in tables | and Il,
radius of the weight matrix. For each model setting (e.g. foespectively. On these data sets, the ESN performance did no
ESN - readout learning, input weight scaling, reservoirsipa always monotonically improve with the increasing reservoi
and spectral radius), we generate 10 randomized models aime. That is why for each data set we determined the best
calculate their average validation set performance. The beerforming ESN reservoir size on the validation s&t+ 80,
performing model setting on the validation set is then uged N = 200, N = 100 for IPIX Radar, SunspotSeries and
generate another set of 10 randomized models that are fittiddnlinear System with Observational Nqisespectively). The
on the training set and subsequently tested on the test setperformance of the other model classes (DLR, DLRB and

More details on the experiments, such as the chosen readdGR) with those reservoir sizes was then compared to that of
learning method, input and reservoir weights, spectralusad ESN. In line with most RC studies using tiseinspalata set
of the reservoir weight matrix etc. can be found in [Appendife.g. [29]), we found that linear reservoirs were on'panith
Al. the nonlinear ones. For all three data sets, the SCR artlviéec

Figures 3, 4 and 5(A) show the average test set NMJErform slightly better than standard ESN, even though the
(across ten randomizations) achieved by the selected modiierences are in most cases not statistically significant
representatives. Figure 3 presents results for the foureinod Ganguli, Huh and Sompolinsky [30] quantified and theo-
classes using non-linear reservoir on tlaser, Henon Map retically analyzed memory capacity of non-autonomousaline
and Non-linear Communication Channelatasets. On those dynamical systems (corrupted by a Gaussian state noisg usi
time series, the test NMSE for linear reservoirs were of drisher information between the state distributions atadist
order of magnitude worse than the NMSE achieved by tfignes. They found out that the optimal Fisher memory is
non-linear ones. While the ESN architecture slightly outpechieved for so called non-normal networks with DLR or
forms the simplified reservoirs on tHaser and Henon Map DLRB topologies and derived the optimal input weight vector
time series, for theNon-linear Communication Channghe for those linear reservoir architectures. We tried setting
best performing architecture is the simple delay line nekwoinput weights to the theoretically derived values, but the
(DLR). The SCR reservoir is consistently the second-begerformance did not improve over our simple strategy of
performing architecture. Even though the differences betw randomly picked signs of input weights followed by model
NMSE are in most cases statistically significant, from thgelection on the validation set. Of course, the optimal inpu
practical point of view, they are minute. Note that tNen- Wweight considerations of [30] hold for linear reservoir netsl
linear Communication Channatan be modeled rather wellonly. Furthermore, according to [30], the linear SCR bekng
with a simple Markovian delay line reservoir and no comple$e the class of so called normal networks which are shown
ESN reservoir structure is needed. Nonlinearity in themgse to be inferior to the non-normal ones. Interestingly enqugh
activation and the reservoir size seem to be two importaifit our experiments, the performance of linear SCR was not
factors for successful learning on those three datasets. ~ worse than that of non-normal networks.

Figure 4 presents results for the four model classes on
the threeNARMAtime series, namely fixeNARMAof order D. Further Simplifications of Input Weight Structure
10, 20 and randonNARMA of order 10. The performance The only random element of the SCR architecture is the

of linear reservoirs do not improve with increasing res@mvogistribution of the input weight signs. We found out that any

size. I_nterestingly, _within the studigd reservoir rangé-(5 attempt to impose a regular pattern on the input weight signs
200), linear reservoirs beat the nonlinear ones20rth order (g g. a periodic structure of the form — + — ..., or + — — +

NARMA®. For all NARMAseries, the SCR network is either_ — otc ) lead to performance deterioration. Interestingly

the best performing architecture or is not worse than the besough, it appears to be sufficient to relate the sign pattern
performing architecture in a statistically significant man 5 singledeterministicallygenerated aperiodic sequence. Any
Note that NARMA time series constitute one of the moskjmple pseudo-random generation of signs with a fixed seed
important and widely used benchmark datasets used in {8&ine. Such sign patterns worked universally well across al
echo state network literature (e.g. [3], [4], [6], [10], [L119]-  penchmark data sets used in this study. For demonstratien, w
[21]). generated the universal input sign patterns in two ways:

) ) ) o 1) the input signs are determined from decimal expansion
9strictly speaking we randomly generated the signs for inpeights and

input biases. However, as usual in the neural network titleeathe bias terms do'dl@d?’“' of '.rratlon_a! numbers (in our caseande).

can be represented as input weights from a constant input +1. The first N decimal digitsd;, da, ..., d are thresholded
10The situation changes for larger reservoir sizes. For exampbnlinear

ESN and SCR reservoirs of size 800 lead to the average NMSE0468 Uand sometimes better (within the range of reservoir sizesideres in

(std 0.0087) and 0.0926 (std 0.0039), respectively. our experiments)
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Laser Henon map
o. 0.012

c10” Nonlinear communication channel

*
001151«

0,010 ~ B

0.009

0.0085

o. 0.008 o0s
5 50

Reservoir size Reservoir size Reservoir size

Fig. 3. Test set performance of ESN, SCR, DLR, and DLRB topgebwithtanh transfer function on th&aser, Henon Map andNon-linear Communication
Channeldatasets.

10th order NARMA 10th order random NARMA 20th order NARMA
017

o

015

014

o013l

012

oa1f

NMSE
°

Reservoir size Reservoir size reservoir size

Fig. 4. Test set performance of ESN, SCR, DLR, and DLRB togekavith tanh transfer function onlOth-order, random 10th-ordeand 20th-order
NARMAdatasets.

Isolated digits Isolated digits

Reservoir size Reservoir size

(A) (B)

Fig. 5. Test set performance of ESN, SCR, DLR, and DLRB topgekgn thelsolated Digits (speech recognition) task using two ways of generatingtinpu
connection sign patterns; using initial digits ®f(A), and random generation (i.i.d. Bernoulli distributievith mean 1/2) (B). Reservoir nodes witanh
transfer functionf were used.

TABLE |
MEAN NMSE FORESN, DLR, DLRB,AND SCRACROSS10 SIMULATION RUNS (STANDARD DEVIATIONS IN PARENTHESI9 ON THE IPIX RadarAND
SunsSpoBERIES THE RESULTS ARE REPORTED FOR NONLINEAR RESERVOIRS OF SI2E = 80 (IPIX Radal) AND LINEAR RESERVOIRS WITHN = 200
NODES (Sunspot serigs

Dataset [ prediction horizon] ESN [ DLR [ DLRB [ SCR
1 0.00115 (2.48E-05) 0.00112 (2.03E-05) 0.00110 (2.74E-05) 0.00109 (1.59E-05)
IPIX Radar 5 0.0301 (8.11E-04)| 0.0293 (3.50E-04)| 0.0296 (5.63E-04)| 0.0291 (3.20E-04)
Sunspot 1 0.1042 (8.33E-5) | 0.1039 (9.19E-05)| 0.1040 (7.68E-05)| 0.1039 (5.91E-05)
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TABLE I
MEAN NMSE FORESN, DLR, DLRB,AND SCRACROSS10 SIMULATION RUNS (STANDARD DEVIATIONS IN PARENTHESI9 ON THE Nonlinear System
with Observational NoisBATA SET. RESERVOIRS HADN = 100 INTERNAL NODES WITH tanh TRANSFER FUNCTIONf.

varw | varwv ESN DLR DLRB SCR
1 1 0.4910 (0.0208) | 0.4959 (0.0202) | 0.4998 (0.0210) | 0.4867 (0.0201)
10 1 0.7815 (0.00873)| 0.7782 (0.00822)| 0.7797 (0.00631)| 0.7757 (0.00582)
1 10 0.7940 (0.0121) | 0.7671 (0.00945)| 0.7789 (0.00732)| 0.7655 (0.00548)
10 10 0.9243 (0.00931)| 0.9047 (0.00863)| 0.9112 (0.00918)| 0.9034 (0.00722)

at 4.5, e.g. if0 < d, < 4 and5 < d, <9, then the
n-th input connection sign (linking the input to theth
reservoir unit) will be— and +, respectively,

2) the input signs are determined by the fibétiterates in CABLE v

blnary Symb0||C dynam|CS of the |Og|St|C ma‘)ﬁx) = BEST CONNECTIVITY AND SPECTRAL RADIUS FORESNWITH DIFFERENT

4z(1 — x) in a chaotic regime (initial condition was |ypyt scaLiNG FOR10th order NARMAlaserAND IPIX RadarDATASETS.
0.33, generating partition for symbolic dynamics with

cut-value at 1/2).

All the studied reservoir models show robustness with
respect to small (construction) parameter fluctuationsirzao
the optimal parameter setting.

Data set] Inp | Con | Spec] NMSE

PR . 10th | 0.05] 0.18 [ 0.85 | 0.1387 (0.0101)

The results. shown in f|ggre§ ANARMA laser, HeEnon order [ 0.1 [0.18 [ 0.5 | 01075 (0.0093)
Map andNon-linear Communication Channédata sets), 5(B) NARMA [05 [ 0.18 | 0.85 | 0.2315 (0.0239)
(Isolated Digit9, and tables Il and IVIPIX Radar, Sunspat 1 [018[ 0.85 ] 0.6072 (0.0459)
andNonlinear System with Observational NJisedicate that 0.05] 0.08 | 0.99 | 0.2738 (0.0128)
comparable performances of our SCR topology can be ob--3%¢" 8:; 8:82 8:33 8:132; Eg:gg%
tained without any stochasticity in the input weight getiera 1 | 0.08| 0.99 | 0.0983 (0.0064)
by consistent use of the same sign generating algorithnsscro 0.05] 0.2 | 0.7 | 0.0297 (0.00043)
a Variety Of data sets. IPIX 0.1 0.2 0.7 0.0311 (0.00087)

We tried to use these simple deterministic input sign gener-"2%%" 05 | o { o7 | oo Eg:ggigg

ation strategy for the other simplified reservoir models FOL
and DLRB). The results were consistent with our findings
for the SCR. We also tried to simplify the input weight

structure by connecting the input to a single reservoir unit
only. However, this simplification either did not improve;, o
deteriorated the model performance.

V. SHORT TERM MEMORY CAPACITY OF SCR
ARCHITECTURE

In his report [4] Jaeger quantified the inherent capacity
of recurrent network architectures to represent past svent
through a measure correlating the past events in an i.ipditin
E. Sensitivity Analysis stream with the network output. In particular, assume that t

We tested sensitivity of the model performance on 5-stéjgtwork is driven by a univariate stationary input sigag).
ahead prediction with respect to variations in the (corsion) For & given delayk, we consider the network with optimal
parameter®. The reservoir size isV = 100 for NARMAand Parameters for the task of outputtingt — k) after seeing the
Laserdata sets; andV = 80 for the IPIX Radardata set.  input stream...s(t — 1)s(t) up to timet. The goodness of

In the case of ESN we varied the input scaling, as well 4 is measured in terms of the squared correlation coefficien
the spectral radius and connectivity of the reservoir matribetween the desired output (input signal delayedkbme
In figures 7(A), 8(A) and 9(A) we show how the performancéteps) and the observed network outp(t):

depends on the spectral radius and connectivity of theveser
matrix. The input scaling is kept fixed at the optimal value
determined on the validation set. Performance variatioth wi

MCy,

B Cov?(s(t — k), y(t))

-~ Var(s(t)) Var(y(t))’

(16)

respect to changes in input scaling (while connectivity arihere Cov denotes the covariance aridar the variance
spectral radius are kept fixed at their optimal values) agperators. The short term memory (STM) capacity is then
reported in table V. given by [4]:
For the SCR and DLR models figures 7(C,D), 8(C,D) and
9(C,D) illustrate the performance sensitivity with respéz
changes in the only two free parameters - the input and
reservoir weights andr, respectively.
In the case of DLRB model, figures 7(B), 8(B) and 9(E;?Ni\]aeger [4] proved that foany recurrent neural network

present the performance sensitivity with respect to chaiige Mt rehcug?rr"\; neurons, under the assg\r/nvptlon of ""da'npm
the reservoir weights andb, while keeping the input weight stream, the ) capacity can_n_ot e_xcdé e prove (under
fixed to the optimal value. the assumption of zero-mean i.i.d. input stream) that thl ST

capacity of linear SCR architecture wifti reservoir units can
be made arbitrarily close tdV.

MC = iMCk.
k=1

7

12\e are thankful to the anonymous reviewer for making the suges
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Fig. 6. Test set performance of SCR topology using four diffémways of generating pseudo-randomized sign patternsg usitial digits of = , and Exp ;
logistic map trajectory, and random generation (i.i.d. Betth distribution with mean 1/2). The result are reported 20th NARMA laser, Henon Map and
Non-linear Communication Channdhtasets. Reservoir nodes wittinh transfer functionf were used.

TABLE Il
NMSE FORESN (MEAN ACROSS10 SIMULATION RUNS, STANDARD DEVIATIONS IN PARENTHESI9 AND SCRTOPOLOGIES WITH DETERMINISTIC INPUT
SIGN GENERATION ON THEIPIX RadarAND SunspoBERIES THE RESULTS ARE REPORTED FOR NONLINEAR RESERVOIRS OF SI2E = 80 (IPIX Radai)
AND LINEAR RESERVOIRS WITHN = 200 NODES (SUNSPOBERIES.

Dataset [ prediction horizon] ESN [ SCR-PI'] SCR-EX| SCR-Log
1 0.00115 (2.48E-05)] 0.00109| 0.00109 | 0.00108

IPIX Radar 5 0.0301 (8.11E-04)| 0.0299 0.0299 0.0297
Sunspot 1 0.1042 (8.33E-5) | 0.1063 0.1065 0.1059

TABLE IV
NMSE FORESN (MEAN ACROSS10 SIMULATION RUNS, STANDARD DEVIATIONS IN PARENTHESI9 AND SCRTOPOLOGIES WITH DETERMINISTIC INPUT
SIGN GENERATION ON THENonlinear System with Observational NQi®&ONLINEAR RESERVOIRS HADN = 100 NODES.

varw | varwv ESN SCR-PI | SCR-EX | SCR-Log
1 1 0.4910 (0.0208) | 0.5011 | 0.5094 0.5087
10 1 0.7815 (0.00873)| 0.7910 | 0.7902 0.7940
1 10 0.7940 (0.0121) | 0.7671 | 0.7612 0.7615
10 10 0.9243 (0.00931)| 0.8986 | 0.8969 0.8965

Since there is a single input (univariate time series), The proof can be found in [Appendix B, C].

the input matrix V' is an N-dimensional vectorV
(V1,Va,...,Vn)T. Consider a vector rotation operator rot

We empirically evaluated the short-term memory capac-
ity (MC) of ESN and our three simplified topologies. The

that cyclically rotates vectors by 1 place to the right, e.gnetworks were trained to memorize the inputs delayed by

roty (V) = (Vw, Vi, Va,...,Vy_1)T. For k > 1, the k-fold
application of rot is denoted by rgt The N x N matrix
with k-th column equal to rfV) is denoted by{, e.g.
Q = (rot (V), rotz(V), ..., roty (V)).

k=1,2,...,40. We used one input node, 20 linear reservoir
nodes, and 40 output nodes (one for eayhThe input con-
sisted of random values sampled from a uniform distribution
in the range [-0.5, 0.5]. The input weights for ESN and
our simplified topologies have the same absolute valiie

Theorem 1:Consider a linear SCR network with reservoiwith randomly selected signs. The elements of the recurrent

weight0 < r» < 1 and an input weight vectdr’ such that the

weight matrix are set to 0 (80% of weights), 0.47 (10% of

matrix €2 is regular. Then the SCR network memory capacityeights), or -0.47 (10% of weights), with2 reservoir weights

is equal to
MC =N —(1-r*N).

connection fraction and spectral radins= 0.9 [16]. DLR
and SCR weight- was fixed and set to the value= 0.5.
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Spectral radius . 0.15 Connactivity

Fig. 7. Sensitivity of ESN (A), DLRB (B), DLR (C), and SCR (Dygologies on thelOth order NARMAdataset. The input sign patterns for SCR, DLR,
and DLRB non-linear reservoirs were generated using Indigits of .

Fig. 8. Sensitivity of ESN (A), DLRB (B), DLR (C), and SCR (Dypologies on thdaser dataset. The input sign patterns for SCR, DLR, and DLRB
non-linear reservoirs were generated using initial digitsr.

For DLRB » = 0.5 and b = 0.05. The output weights At each time steg, all ‘relevant’ information in the driving
were computed using pseudo-inverse solution. The empiyricastream processed by the model up to timé represented
determined MC values for ESN, DLR, DLRB and SCR models the form of astate(at time¢). The model output depends
were (averaged over 10 simulation runs, standard dev. dn the past values of the driving series and is implemented
parenthesis) 18.25 (1.46), 19.44 (0.89), 18.42 (0.96) &8l as a function of the state - the so-callezhd-out function.
(1.29), respectively. Note that the empirical MC values fofFhe state space can take many different forms, e.g. a finite
linear SCR are in good agreement with the theoretical valget, a countably infinite set, an interval etc. A crucial aspe
of 20 — (1 — 0.5%%) ~ 19. of state-space model formulations is an imposition that the
state at timef + 1 can be determined in a recursive manner
from the state at time and the current element in the driving
series $tate transitiorfunction). Depending on the application

A large number of models designed for time series procestsmain, numerous variations on the state space structare, a
ing, forecasting or modeling followsstate-space formulation

VI. DISCUSSION
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Fig. 9. Sensitivity of ESN (A), DLRB (B), DLR (C), and SCR (Djgologies on théPIX Radardataset. The input sign patterns for SCR, DLR, and DLRB
non-linear reservoirs were generated using initial digitsr.

well as the state-transition/readout function formulasidnave driven by the dynamics of a set of coupled spiking neuron
been proposed. models. Fractal prediction machinegFPM) [34] have been

One direction of research into a data-driven state spa@éggested for processing symbolic sequences. Their @serv
model construction imposes a state space structure (e.g.d¥Ramics is driven by fixed affine state transitions overnan
N-dimensional interval) and a semi-parametric formulatin dimensional interval. The readout is constructed as aciiie
both the state-transition and readout functions. The patam Of multinomial distributions over next symbols. Many other
fitting is then driven by a cost functional measuring the (sometimes quite exotic) reservoir formulations have been
appropriateness of alternative parameter settings fogiven suggested (e.g. [11], [35]-[37]).
task. Recurrent neural networks are examples of this typeThe field of reservoir computing has been growing rapidly
of approach [22]. If£ is differentiable, one can employ thewith dedicated special sessions at conferences and special
gradient of€ in the parameter fitting process. However, therigsues of journals [38]. Reservoir computing has been suc-
is a well known problem associated with parameter fitting igessfully applied in many practical applications [3]-[],
the state-transition function [31]: briefly, in order tottd’ [39]. However, reservoir computing is sometimes criticize
an important piece of past information for the future usé@r not being principled enough [17]. There have been sévera
the state-transition dynamics should have an attractite saitempts to address the question of what exactly is a ‘good’
In the neighborhood of such a set the derivatives vanish afg$ervoir for a given application [16], [40], but no coheren
hence cannot be propagated through time in order to reliaiyeory has yet emerged. The largely black box character of
bifurcate into a useful latching set. reservoirs prevents us from performing a deeper theoletica

A class of approaches referred toraservoir computingry ~ Investigation of the dynamical properties of successfgere
to avoid this problem by fixing the state-transition funatio VOIrS- Reservoir construction is often driven by a series of
- only the readout is fitted to the data [2], [32]. The statinore-or-less) randomized model building stages, witthbot
space with the associated state transition structure lisctite the researchers and practitioners having to rely on a series
reservoit The reservoir is supposed to be sufficiently comple® trials and errors. Sometimes reservoirs have been egolve
so as to capture a large number of features of the input streifht costly and difficult to analyze evolutionary computatio
that can potentially be exploited by the readout. setting [8], [14], [41], [42].

The reservoir computing models differ in how the fixed In an attempt to initialize a systematic study of the field,
reservoir is constructed and what form the readout take¥® have concentrated on three research questions:
For example,echo state network6ESN) [3] typically have 1) What is the minimal complexity of the reservoir topol-
a linear readout and a reservoir formed by a fixed recurrent ogy and parametrization so that performance levels
neural network type dynamic&iquid state machine$LSM) comparable to those of standard reservoir computing
[33] also mostly have a linear readout and the reservoirs are  models, such as ESN, can be recovered?
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2) What degree of randomness (if any) is needed to covalues of M C was not possible, however, he suggested that
struct competitive reservoirs? the disproportion may be due to numerical errors, as the
3) If simple competitive reservoirs constructed in a comeondition number of the reservoir weight matiiX was about
pletely deterministic manner exist, how do they compar. Using our result,MC = N — (1 — 72¥) with N = 20
in terms of memory capacity with established modeland » = 0.98 yields MC = 19.4. It is certainly true that
such as recurrent neural networks? for smaller spectral radius values, the empirically esteda
On a number of widely used time series benchmarks 8fC values of linear reservoirs decrease, as verified in several
different origin and characteristics, as well as by conigct Studies (e.g. [20]), and this may indeed be at least paytiall
a theoretical analysis we have shown: due to numerical problems in calculating higher powers of
1) A very simple cycle topology of reservoir is often suffi-V- Moreover, empirical estimates of/C' tend to fluctuate
cient for obtaining performances comparable to thod@ther strongly, depending on the actual i.i.d. drivingean

of ESN. Except for theNARMA datasets, nonlinear Used in the estimation (see e.g. [16]). Even though Theorem 1
reservoirs were needed. suggests that the spectral radiud®fshould have an influence

2) Competitive reservoirs can be constructed in a corfll tI_ﬂgMC value for linear .reser_voirs, its ir_1ﬂue_nce becomes
pletely deterministic manner: The reservoir connectiorfigligible for large reservoirs, since (providétis regular)
all have the same weight value. The input connectiod® MC of SCR is provably bounded within the interval
have the same absolute value with sign distributiofV — 1, V). . o .
following one of the universal deterministic aperiodic Memory capacityMC' of a reservoir is a representative
patterns. member from the class of reservoir measures that quantfy th

3) The memory capacity of linear cyclic reservoirs with &mount of information that can be prgserved in the resgrvoir
single reservoir weight value can be made to differ about the past. qu example, Ganguli, Huh.e}nd _Sompohnsky
arbitrarily close from the proved optimal value of, [30] propo;ed a d'lfferent (but related) guantification ofrme'
where N is the reservoir size. In particular, given arPfy capacity for linear reservoirs (corrupted by a Gaussian

arbitrarily smalle € (0,1), for state noise). They evaluated the Fisher information betwee
N the reservoir activation distributions at distant timedeir
r=(1-¢)°~, analysis shows that the optimal Fisher memory is achieved

the memory capacity of the cyclic reservoir 6 — e. for the reservoir topologies corresponding e.g. to our DLR

Even though the theoretical analysis of the SCR has be%rnDI‘RB reservoir organizations. Based on the Fisher mem-

done for the linear reservoir case, the requirement that sy theory, the optimal input weight vector for those linear

cyclic rotations of the input vector need to be linearly indereservowarch|tectures was derived. Interestingly emougen

pendent seems to apply to the non-linear case as well. Inde\gﬁ trledtrs],ettln?fthe Input .We|ghts o the th(taor(;a.gcalli/ Ml
under the restriction that all input connections have tmaesa V2!UES, € periormance in our experiments did not improve

absolute weight value, the linear independence conditanst overour simple strategy for obtaining the input weights. W/hi
lates to the requirement that the input sign vector follows a the setting of [30], the memory measure does not depend

L : . : on the distribution of the source generating the input strea
aperiodic pattern. Of course, from this point of view, a sienp . ) .
standard basis pattern (+1,-1,-1,...,-1) is sufficierteriestingly the M C' measure of [4] is heavily dependent on the generating

enough, we found out that the best performance levels w qurce. For the case of i.i.d. source (where no dependencies

obtained when the input sign pattern contained roughly quuaetween the time series elements can be exploited by the

number of positive and negative signs. At the moment we h (?servow) the memory capacify C = N —1 can be achieved

e ) o L
no satisfactory explanation for this phenomenon and weelez\]?/y a very simple model: DLR reservoir with unit weight= 1,

it as an open question for future research. one input connection with weight 1 connecting the input with

Jaeger argues [4] that if the vecto&'V, i = 1,2,..., N, the 1stt_reser;/0|r.u?]|tt,land fdft.: 1’3%‘"’1]\]% 1 one o_utpq:
are linearly independent, then the memory capadity’ of connection of welg connecting tiie+1)-th reservoir uni

linear reservoir withN units is N. Note that for the SCR W'th th? output. The linear SC.R’ on Fhe other hand, can get
reservoir arbitrarily close to the theoretical limid/C = N. In cases

L of non i.i.d. sources, the temporal dependencies in thetinpu
rot, (V) = ka’ k=1,2,...,N, stream can increase the memory capacity beyond the reservoi
r size N [4]. The simple nature of our SRC reservoir can enable
and so the condition that’*V, i = 1,2,..., N, are linearly a systematic study of tha/C measure for different kinds
independent directly translates into the requirement that of input stream sources and this is a matter for our future
matrix Q is regular. Asr — 1, the MC of SCR indeed research.
approaches the optimal memory capacity According to Compared with traditional ESN, recent extensions and
Theorem 1, the\/ C measure depends on the spectral radius céformulations of reservoir models often achieved imptbve
W (in our caser). Interestingly enough, in the verification ex-performances [11], [12], [36], at the price of even less $p=r-
periments of [4] with a reservoir of siz& = 20 and reservoir ent models and less interpretable dynamical organizatidm.
matrix of spectral radius 0.98, the empirically obtain®fl” stress that the main purpose of this study is not a consbructi
value was 19.2. Jaeger commented that a conclusive analydisyet another reservoir model achieving an (incremental
of the disproportion between the theoretical and empirical more substantial) improvement over the competitors on
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the benchmark data sets. Instead, we would like to proposg
as simplified as possible reservoir construction, withouwy a
stochastic component, that while competitive wgtandard
ESN, yields transparent models, more amenable to thealetigs)
analysis than the reservoir models proposed in the litezatu
so far. Such reservoir models can potentially help us t
answer the question just what is it in the organization 0?7
the non-autonomous reservoir dynamics that leads to often
impressive performances of reservoir computation. Oupim g
deterministic SCR model can be used as a a useful baseIiI’u]-:
in future reservoir computation studies. It is the level of
improvement over the SCR baseline that has a potential to
truly unveil the performance gains achieved by the more (an ]
sometimes much more) complex model constructions.

[10]

VIl. CONCLUSION

Reservoir computing learning machines are state-spgce
models with fixed state transition structure (the ‘reseryoi
and an adaptable readout form the state space. The reserygir
is supposed to be sufficiently complex so as to capture a large
number of features of the input stream that can be exploiyed B3]
the reservoir-to-output readout mapping. Even though #id fi
of reservoir computing has been growing rapidly with many 41
successful applications, both researchers and praaitdmve
to rely on a series of trials and errors.

To initialize a systematic study of the field, we havé™!
concentrated on three research issues: [16]
1) What is the minimal complexity of the reservoir topol-
ogy and parametrization so that performance level
comparable to those of standard reservoir computing
models, such as ESN, can be recovered? [18]
What degree of randomness (if any) is needed to con-

struct competitive reservoirs?

If simple competitive reservoirs constructed in a com-
pletely deterministic manner exist, how do they compafé®]
in terms of memory capacity with established models
such as recurrent neural networks? [20]

On a number of widely used time series benchmarks of
different origin and characteristics, as well as by coniigct 54
a theoretical analysis we have shown:

1) A simple cycle reservoir topology is often sufficient for

obtaining performances comparable to those of ESN. 3

2) Competitive reservoirs can be constructed in a com-

pletely deterministic manner.

3) The memory capacity of simple linear cyclic reservoirgm]

can be made to be arbitrarily close to the proved optimgl]
MC value.

2)

3)
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APPENDIXA = :
EXPERIMENTAL SETUP AND DETAILED RESULTS APPENDIXC
General description of the experimental setup is summeirize PROOF OF THEOREML

e, i Gl on Selce Mol TSRS 9 G an 1.z mean realaed it ses)
including standard dgviations across repeat.ed expersri@st . s(t—2) s(t—1) 5(t) emitted by a sourc®, the activations
described in section 1V) are shown in tables VIII and IX. of the reservoir units at time are given by

ri(t) = Vis{t)+rVyst—1)+r*Vy_q s(t—2)

APPENDIXB + P Vy g st =3)4+ ..+, s(t— (N - 1))
NOTATION AND AUXILIARY RESULTS v NV s(t— N) N Vst — (N 4+ 1) + ...
We consider a ESN with linear reservoir endowed with borPNTL YL st — (2N — 1)) + 72N 1, s(t— 2N)
cycle topology (SCR). The reservoir weight is denoted by 2N+ ON + 1
r. Since we consider a single input, the input matfix T T v s(t— (2N +1)+ ..
is an N-dimensional vectorV; x = (Vi,Vs,...,Vn)T.
By V.1 we denoteTthe reverse’ ot n, €.0. Vy.1 = wo(t) = Vas(t)+r Vis(t— 1)+ 72 Vy s(t —2)
(VN VN1, Vo, Vi) T 3y N-1 v N
Consider a vector rotation operator yothat cyclically + ot Vver st =3) o 5 s(t— (N —1))
rotates vectors by 1 place to the right, e.g. given a vector + N Vo st = N)+ VTV st — (N +1)) + ...
a = (a17a27 "'7an)T1 r0t1(a) = (an.a ay, a2, -"aan71>T' For =+ T2N71 ‘/3 S(t - (2N — 1)) + 'I"ZN ‘/2 S(t - 2N)
k > 0, the k-fold application of rof is denoted b¥? rot,,. 4+ p2NEL Y s(t— (2N +1)) + p2N+2 s(t— (2N +2))
Broty is the identity mapping. +
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TABLE VI
EXPERIMENTAL SETUP

Datasets

IPIX Radar, Nonlinear System with Observational Noise, &sulated Digits

NARMA (of different orders), Santa Fe Laserghon Map
Nonlinear Communication Channel, Sunspots

Model class topologies

ESN, DLR, DLRB, and SCR

Readout learning

RLS with dynamic noise injection , and Ridge Regression

Reservoir weights

DLR, DLRB , and SCR:« = [0.05 : 0.05 : 1], b = [0.05 : 0.05 : 1] )

ESN: (random weights with spectral radius= [0.05 : 0.05 : 1],
and connectivitycon = [0.05 : 0.05 : 0.5])

whereb e 1 —r <b<1/(4r)

reservoir sizes

[50 : 50 : 200] In case ofIPIX Radarand sunspotsV = 80 and N = 200, respectively.

input scale

[0.01 : 0.005 : 1]

input sign generation

(1) random draw from Bernoulli distribution (mean=1/2),
(2) decimal expansion of irrational numbers énde),
(3) binary symbolic dynamics of the logistic map

noise size for RLS

0:107 0% .10~

generalization factor for Ridge regressign 0:10792%5 :10°15
TABLE VII
SELECTED MODEL PARAMETERS BASED ON THEVALIDATION SET PERFORMANCE
Dataset [ Item I ESN [ DLR T DLRB [ SCR
Input weight connection| uniform over (-0.1,0.1) +0.1 +0.1 +0.1
NARMA reservoir weights a=0.95 r=0.8 r=0.8 and b=0.05] r=0.8
N =100 Sparseness of W 0.1 - - -
Input weight connection| uniform over (-1,1) +0.6 +0.6 +0.6
Laser reservoir weights a = 0.95 r=1 r=1 and b=0.01 r=1
N =100 Sparseness of W 0.5 - - -
Input weight connection| uniform over (-1,1) +0.95 +0.95 +0.95
Hénon Map reservoir weights a=0.3 r=0.95 || r=0.95 and b=0.05|] r=0.95
N =100 Sparseness of W 0.5 - - -
Nonlinear Input weight connection|| uniform over (-0.025,0.025)| 40.025 +0.025 +0.025
Communication Channe reservoir weights a=0.5 r=0.95 || r=0.95 and b=0.05|| r=0.95
N =100 Sparseness of W 0.2 - - -
Input weight connection| uniform over (-1,1) +1 +1 +1
Sunspots reservoir weights a=0.75 r=0.3 r=0.3 and b=0.1 r=0.3
N =200 Sparseness of W 0.2 - - -
Nonlinear System Input weight connection uniform over (-0.1,0.1) +0.025 +0.025 +0.025
with Observational Noisy| reservoir weights o = 0.65 r=0.65 r=0.65 and b=0.2 || r=0.65
N =100 Sparseness of W 0.2 - - -
Input weight connection|| uniform over (-0.04,0.04) +0.04 +0.04 +0.04
IPIX Radar reservoir weights a=0.7 r=0.65 r=0.6 and b=0.05] r=0.65
N =80 Sparseness of W 0.13 - - -
Input weight connection| uniform over (-1,1) +1 +1 +1
Isolated Digits reservoir weights a=1 r=0.1 r=0.1 and b=0.05 r=0.1
N =100 Sparseness of W 0.8 - - -

l‘N(t)

+ + + + +

+

For the task of recalling the input fror time steps back,
the optimal least-squares readout vedibis given by

where

VN S(t) +r Vn_1 S(t — 1)
2 Vn_o s(t—2) 4 ...

NV s(t— (N = 1) + 7Y Viy s(t — N)
PN VN g s(t— (N +1)) + ...
2Ny s(t— (2N — 1)) + 72N Vi s(t — 2N)
PN+ Yy

N2 Vo s(t— (2N 4+ 2)) + ...

L s(t— (2N + 1))

U= Ril Pk,

R = Ep(s(.tyz(t) a7 (t)]

is the covariance matrix of reservoir activations and

Pe = Ep(s.aylz(t) s(t—k)].

The covariance matri can be obtained in an analytical form.
For example, because of the zero-mean and i.i.d. natureeof th
sourceP, the element?; , can be evaluated as follows:

Ry 2 Ep(s(..m[w(t)wT(tH

E[ Vi Vo s2(t) + 7% Vy V1 s2(t — 1)
r Vo, Vv s2(t—2) + ...
N0V, Va s2(t— (N — 1))

N Vi Vp s2(t — N)

PPN vy vy s2(t— (N + 1))

e P2END Y v 2 (E— (2N — 1))
N VL Vo 2 (t—2N) + ... ],

(18)

+ 4+ + + 4+ +
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TABLE VIII
TEST SET PERFORMANCE OESN, SCR, DLRAND DLRB TOPOLOGIES ON DIFFERENT DATASETS FOR INTERNAL NODES WITtinh TRANSFER
FUNCTION.
Data set [ reservoir size] ESN [ DLR DLRB [ SCR
10th 50 0.166 (0.0171) 0.163 (0.0138) 0.158 (0.0152) 0.160 (0.0134)
order 100 0.0956 (0.0159) 0.112(0.0116) 0.105 (0.0131) 0.0983 (0.0156)
NARMA 150 0.0514 (0.00818) 0.0618 (0.00771) 0.0609 (0.00787) 0.0544 (0.00793)
200 0.0425 (0.0166) 0.0476 (0.0104) 0.0402 (0.0110) 0.0411 (0.0148)
10th 50 0.131 (0.0165) 0.133 (0.0132) 0.130 (0.00743) 0.129 (0.0111)
order 100 0.0645 (0.0107) 0.0822 (0.00536) 0.0837 (0.00881) 0.0719 (0.00501)
random 150 0.0260 (0.0105) 0.0423 (0.00872) 0.0432 (0.00933) 0.0286 (0.00752)
NARMA 200 0.0128 (0.00518) 0.0203 (0.00536) 0.0201 (0.00334) 0.0164 (0.00412)
20th 50 0.297 (0.0563) 0.232 (0.0577) 0.238 (0.0507) 0.221 (0.0456)
order 100 0.235 (0.0416) 0.184 (0.0283) 0.183 (0.0196) 0.174 (0.0407)
NARMA 150 0.178 (0.0169) 0.171 (0.0152) 0.175 (0.0137) 0.163 (0.0127)
200 0.167 (0.0164) 0.165 (0.0158) 0.160 (0.0153) 0.158 (0.0121)
50 0.0184 (0.00231) 0.0210 (0.00229) 0.0215 (0.00428) 0.0196 (0.00219)
laser 100 0.0125 (0.00117) 0.0132 (0.00116) 0.0139 (0.00121) 0.0131 (0.00105)
150 0.00945 (0.00101) 0.0107 (0.00114) 0.0112 (0.00100) 0.0101 (0.00109)
200 0.00819 (5.237E-04) 0.00921 (9.122E-04) 0.00913 (9.367E-04) 0.00902 (6.153E-04))
50 0.00975 (0.000110)| 0.0116 (0.000214) 0.0110 (0.000341) 0.0106 (0.000185)
Hénon 100 0.00894 (0.000122)[ 0.00982 (0.000143)| 0.00951 (0.000120)| 0.00960 (0.000124)
Map 150 0.00871 (4.988E-05) 0.00929 (6.260E-05) 0.00893 (6.191E-05) 0.00921 (5.101E-05)
200 0.00868 (8.704E-05) 0.00908 (9.115E-05) 0.00881 (9.151E-05) 0.00904 (9.250E-05)
50 0.0038 (4.06E-4) 0.0034 (2.27E-4) 0.0036 (2.26E-4) 0.0035 (2.55E-4)
Non-linear 100 0.0021 (4.42E-4) 0.0015 (1.09E-4) 0.0016 (1.07E-4) 0.0015 (1.23E-4)
communication 150 0.0015 (4.01E-4) 0.0011 (1.12E-4) 0.0011 (1.08E-4) 0.0012 (1.23E-4)
channel 200 0.0013 (1.71E-4) 0.00099 (6.42E-5) 0.0010 (7.41E-5) 0.0010 (7.28E-5)
50 0.0732 (0.0193) 0.0928 (0.0177) 0.1021 (0.0204) 0.0937 (0.0175)
Isolated 100 0.0296 (0.0063) 0.0318 (0.0037) 0.0338 (0.0085) 0.0327 (0.0058)
Digits 150 0.0182 (0.0062) 0.0216 (0.0052) 0.0236 (0.0050) 0.0192 (0.0037)
200 0.0138 (0.0042) 0.0124 (0.0042) 0.0152 (0.0038) 0.0148 (0.0050)

TABLE IX

TEST SET PERFORMANCE OSCRTOPOLOGY ON DIFFERENT DATASETS USING THREE DIFFERENT WAYSFOGENERATING PSEUDGRANDOMIZED INPUT

SIGN PATTERNS INITIAL DIGITS OF ™ AND Ezp; SYMBOLIC DYNAMICS OF LOGISTIC MAP.

Data set [ reservoir size] ESN [ SCR-PI [ SCR-Ex [ SCR-Log
20th 50 0.297 (0.0563) 0.233 (0.0153) 0.232 (0.0175) 0.196 (0.0138)
order 100 0.235 (0.0416) 0.186 (0.0166) 0.175 (0.0136) 0.169 (0.0172)

NARMA 150 0.178 (0.0169) 0.175 (0.00855) 0.158 (0.0103) 0.156 (0.00892)

200 0.167 (0.0164) 0.166 (0.00792) 0.157 (0.00695) 0.155 (0.00837)
50 0.0184 (0.00231) 0.0204 0.0187 0.0181
laser 100 0.0125 (0.00117) 0.0137 0.0153 0.0140
150 0.00945 (0.00101) 0.0115 0.0111 0.0126
200 0.00819 (5.237E-04 0.00962 0.00988 0.0107
50 0.00975 (0.000110) 0.00986 0.00992 0.00998
Hénon 100 0.00894 (0.000122) 0.00956 0.00985 0.00961
Map 150 0.00871 (4.988E-05 0.00917 0.00915 0.00920
200 0.00868 (8.704E-05 0.00892 0.00883 0.00898
50 0.0038 (4.06E-4) | 0.0036 (1.82E-04)| 0.0026 (6.23E-05)] 0.0033 (1.09E-04)
Non-linear 100 0.0021 (4.42E-4) | 0.0016 (7.96E-05)| 0.0017 (1.04E-04)| 0.0015 (8.85E-5)
communication 150 0.0015 (4.01E-4) | 0.0012 (7.12E-05)| 0.0011 (6.10E-05)| 0.0012 (4.56E-05)
channel 200 0.0013 (1.71E-4) | 0.00088 (2.55E-05) 0.00090 (3.05E-05) 0.00093 (3.33E-05)

meaning that

R, =

Vi Vo Var[s(t)] +r* Vy Vi Var[s(t — 1)]

+ " Vn_1 Vn Var[s(t —2)] + ...

i+ NV Va Var[s(t — N)] + ...

= o> MVa+r?VaVi + 7V 1V + ...
+r2 N DYV 4 2NV, + L)

= o° (V1V2 +7‘2VNV1 + T4VN_1VN + ...

+7'2(N_1)‘/2‘/3) ZTQNj-

Jj=0

whereo? is the variance ofP.
The expression (19) foR; » can be written in a compact

(19)

Rij=

form as

2

R =
1,2 1—r

In general,

2

1

7 (rot (Viv.1))T T roty(Viy.1).

(20)

g .
1-,2v (rot;(Vy.1))" T%rot;(Vy.1), 4,5 =1,2,.., N,

(21)
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and Hence,
2
_ g T 12 N-1
B= 1w I8 MC = [Zr% Ck]—(l—rw)go
02 k=0
= 12N A. (22) N N-1 .
= 1—(1—
By analogous arguments, G L= @=r"0] + ;T G
— N—-1
Pk = rk o? rotk(Vl N) (23) - (2N n 2k G
Hence, the optimal readout vector reads (see (18)): 1
— (1= 2Ny kg1 . 24 -
U=01-r"")r rot, (V1. n) (24) — vV oy 2k ¢,
The ESN output at time is k=1
N
yt) = =)’ U = ZT% Ck-

(1 — 2N) ’I“k l‘(t)T A_l rotk(Vl N)

Covariance of the ESN output with the target can be By lemma 1, »?* ¢, = 1 for k = 1,2,..,N — 1, and
evaluated as: r2N ¢y =2V, It follows that MC = N — 1 + 72V,

Cov(y(t),s(t — k)) (1- T‘QN) rk Cov(z(t)T, s(t — k)

x  A7brot (Vi)
— g2k (1- TQN) o2 (rOtk(Vl..N))T
X A_l I’Otk(VlN)

2k (1 —12N) 62 .

Variance of the ESN output is determined as:
Var(y(t)) = ur Elx(t) x(t)T] U
= UT'RU
= pp R py
= ¢ (6%)% (roty (V1. n))T R7Y rote (Vi)
= Cou(y(t),s(t — k)).
We can now calculate the squared correlation coefficient

between the desired output (input signal delayedkbyme
steps) and the network outpytn):

Cov(s(t — k), y(t))

Var(s(t)) Var(y(t))
Var( (1))

02
= 1 -r) .
The memory capacity of the ESN is given by

MC = MCso — MCy,

MCY,

where
MCso = > MCy
k=0
N—-1 2N—-1 3N—-1
B l SR DI
k=0 k=N k=2N
N—-1 )
_ (1 o 7"2N) [ 7,2k Ck [ 7,2k‘|
k=0 k=0
N—-1



