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Abstract. Several manifold learning techniques have been developed to
learn, given a data, a single lower dimensional manifold providing a com-
pact representation of the original data. However, for complex data sets
containing multiple manifolds of possibly of different dimensionalities, it
is unlikely that the existing manifold learning approaches can discover
all the interesting lower-dimensional structure. We therefore introduce
a hierarchical manifolds learning framework to discover a variety of the
underlying low dimensional structures. The framework is based on hier-
archical mixture latent variable model, in which each submodel is a latent
variable model capturing a single manifold. We propose a novel multiple
manifold approximation strategy used for initialization of our hierarchi-
cal model. The technique is first verified on artificial data with mixed 1-,
2- and 3-dimensional structures. It is then used to automatically detect
lower-dimensional structures in disrupted satellite galaxies.

1 Introduction

In the current machine learning literature, the manifold learning has been pre-
dominantly understood as learning (a single) underlying low-dimensional man-
ifold embedded in a high dimensional data space, where the data points are
assumed to be aligned (up to some noise) along the manifold. Typical repre-
sentatives of such approaches are principal component analysis (PCA)[1], self-
organizing mapping (SOM)[2], locally linear embedding (LLE)[3] and Isomap
[4]. In these methods, intrinsic (manifold) dimension d is either treated as a
prior knowledge given by user or as a parameter to be estimated. Estimating the
intrinsic dimension of a data set (without the structure learning considerations)
is discussed e.g. in [5] [6], [7]. To our best knowledge, there has been no sys-
tematic work on dealing with situations when the data is aligned along multiple
manifolds of various dimensionalities, potentially corrupted by noise.

In this paper we propose a a framework for learning multiple manifolds. With
each manifold we associate a probability density (generative model), so that the
collection of manifolds can be represented by a mixture of their associated density
models. These generative models are formulated as latent variable model along
the lines of [8] or [9].



The latent variable models are trained using the Expectation-Maximization
algorithm (E-M) which is known to be sensitive to parameter initialization. An
appropriate initialization is particularly critical in manifold learning. We will
describe a initialization procedure which first partitions the data set according
to the likely embedding dimension of the manifold each point belongs to. We
then initialize the manifolds in isolation in their respective partitions. Finally
a full hierarchy of manifold models is trained. In this paper, we illustrate our
framework on learning multiple manifolds with dimension d = 1 and d = 2
embedded in a 3-dimensional space.

The paper is organized as follows: the next section briefly reviews related
work on manifold learning, intrinsic dimension estimation and hierarchical la-
tent variable modeling; Section 3 describes our framework of learning multiple
manifolds based on probability density modeling; Section 4 contains experimen-
tal results on artificial data and a data set produced by realistic galaxy collision
models. Finally, section 5 concludes the paper and discusses the directions of our
future work.

2 Related Work

Some manifold learning algorithms are designed to find a single function y =
g(x,U) representing the mapping between high dimensional observation x and
its low dimensional representation y. Principal component analysis (PCA) im-
plement the transformation function by linear projection Ux. The d orthonor-
mal principal axes vectors ui in the observation (data) space form the matrix
U = (u1,u2, . . . ,ud). In contrast, the Generative Topographic Mapping (GTM)
[9] is a probabilistic reformulation of the self-Organizing Map (SOM) [2]. It
represents the non-linear mapping from a low-dimensional latent space to the
high-dimensional data space as a generalized linear regression model WΦ(y),
where Φ(y) consists of M fixed basis functions φj(y), W is D ×M weights ma-
trix of outputs of basis functions (D is the dimensionality of the data space).
A probabilistic generative model of PCA called probabilistic principal compo-
nent analysis (PPCA) was also proposed in [8]. Other approaches, like locally
linear embedding (LLE) [3], Isomap [4] and Laplacian eigenmaps [10], learn the
embedding without formulating an explicit mapping. LLE and Laplacian eigen-
maps compute the low dimensional representation preserving the local neighbor-
hood structure in data space. Isomap applies multidimensional scaling (MDS)
to estimated geodesic distance between points. To generalise the results of LLE,
Saul and Roweis proposed in [11] a probabilistic model for the joint distribu-
tion p(x,y) over the input and embedding spaces, which also provides a way to
generalise the results from Isomap or Laplacian eigenmaps.

As in the case of manifold learning, most intrinsic dimensionality estimators
assume that all the data points are aligned along a single ’manifold’. In [6], local
PCA is applied to each node of the optimal topology preserving map (OPMT),
intrinsic dimension is the average over the number of eigenvalues which approx-
imates the intrinsic dimensionality at data clusters. Levina and Bickel [5] also



average the estimated dimension over all observation. A point level dimensional-
ity estimator proposed in [7] is appealing due to the ability to deal with manifolds
of different dimensionality. The authors first represent data point by a second or-
der, symmetric, non-negative definite tensor, whose eigenvalues and eigenvectors
fully describe the local dimensionality and orientation at each point. A voting
procedure accumulates votes from its neighbors and provides an estimate of local
dimensionality.

Finally, we review some examples of hierarchical model and its structure
estimation strategy. To reveal the interesting local structures in a complex data
set, a hierarchical visualization algorithm based on a hierarchical mixture of
latent variable models is proposed in [12]. The complete data set is visualized
at the top level with clusters and subclusters of data points visualized at deeper
level. Tino and Nabney [13] extended this visualization by replacing the latent
variable model by GTM (generative topographic mapping) so that the non-
linear projection manifolds could be visualized. Structures of the hierarchy in
these visualization systems are built interactively. A non-interactive hierarchy
construction was proposed in [14].

3 Multiple manifolds learning framework

In this section, a multiple manifolds learning framework is proposed to learn
from the dataset of points aligned along different manifolds of different dimen-
sionalities, as shown in figure 1. Although the methods presented in the previous
section could easily learn manifolds from either the first or the second set, no
methods have been developed for learning their mixture. To identify these man-
ifolds, we (1) cluster them by their intrinsic dimensions d; (2) use the data with
same intrinsic dimension to discover and construct the d dimensional surfaces
by the multi-manifolds learning algorithm presented later, then initialize a la-
tent variable model for each manifold, (3) build a hierarchical mixture model
consisting of the generative model for manifolds.

+ + =

Fig. 1. Multiple manifolds example: 700 3D points aligned along a 1D manifold, 2000
3D points from lying on a 2D manifold and 600 3D points generated form a mixture
of 3 Gaussians.



3.1 Intrinsic dimension estimation

In the first step, we estimate each point’s intrinsic dimension and cluster the
entire dataset according to the intrinsic dimensions found. With the assumption
that manifold is locally linear, we represent each data point by its K nearest
neighbors and decompose its (local) covariance matrix as

∑D
i λiuiu

T
i , where ui

is eigenvector and λi is its corresponding eigenvalue rescaled so that
∑D

i λi = 1.
The intrinsic dimension is estimated by a variation of the approach in [7], where
in contrast to [7], we operate directly on the tangents spaces to the underlying
manifold. In our 3D data example, the covariance matrix of K nearest neighbors
can be written as

3
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where S1 = λ1 −λ2, S2 = 2(λ2 −λ3) and S3 = 3λ3. Note that S1 + S2 + S3 = 1.
Intrinsic dimension the point is then d = arg maxi Si.

Figure 2 demonstrates the performance of our intrinsic dimension estima-
tor on multiple manifolds dataset in figure 1. Therefore the whole set ζ =
{x1,x2, . . . ,xN} is substituted by a partition ζ1 ∪ . . . ζd . . . ∪ ζD with d indi-
cating the intrinsic dimension of the subset.

+ +

Fig. 2. Three intrinsic-dimension-filtered subsets of data from figure 1.

3.2 Multi-manifolds learning algorithm

The goal of our multiple manifolds learning algorithm is to represent manifolds
contained in each set ζd(d < D) by latent variable models, respectively. We use
the notation Md to denote the set of manifolds’ generative models p(x|d, q),
where q is the index for the manifold found with dimension d. In the proposed
work, the latent variable model we used is GTM [9]. In the following, we first
briefly introduce GTM and then demonstrate the local optima problem in GTM’s
training. This motivates us to propose a novel robust manifold learning algorithm
which provides a better initialization aligned along the non-linear manifold.



Generative model for noisy manifolds Generative topographic mapping
(GTM) represents the non-linear transformation by a generalized linear regres-
sion model fd,q = Wd,qΦd,q(yd,q). The latent variable space is a d-dimensional
(hyper)cube and is endowed with a (prior) probability distribution p(yd,q) - a
set of delta functions. Noise model p(x|yd,q) is a radially-symmetric Gaussian
distribution with mean fd,q(yd,q) and covariance 1/βd,qI, where βd,q > 0. The
generative model p(x|d, q) can be obtained by integrating over the latent vari-
ables

p(x|d, q) =
1

Zd,q

Zd,q

∑

z=1

p(x|yd,q
z ,Wd,q, βd,q)

=
1

Zd,q
(
βd,q

2π
)(D/2) exp{−

βd,q

2
||fd,q(yd,q

z ) − x||2}

(1)

where Zd,q denotes the number of the latent variable yd,q, the map fd,q is defined
above and φ(yd,q

k ) is a column vector

Φd,q(yd,q
z ) = [φ1(y

d,q
z ), φ2(y

d,q
z ), . . . , φd,q

M (yd,q
z )]T (2)

We can in principle determine Wd,q and βd,q by maximizing the log likelihood
function through E-M. But the optimization procedure cannot guarantee the
global optimum in case of a strong non-linear manifold structure, because original
GTM is typically initialized through a linear global PCA.

We demonstrate the performance of GTM on a strong non-linear manifold
data, spiral dataset. This set of 700 points were generated from the following
distribution of two dimensional (x1, x2) points:

x1 = 0.02t sin(t) + 0.3 + ǫx1
; x2 = 0.02t cos(t) + 0.3 + ǫx2

(3)

where t ∼ U(3, 15), ǫx1
∼ N (0, 0.01), ǫx2

∼ N (0, 0.01), U(a, b) is the uniform
distribution over the interval (a, b) and N (0, δ) is the zero-mean Gaussian dis-
tribution with standard deviation δ.

In figure 3(a), we illustrate the initialization and training result of classical
GTM on the dataset described above. The initial Gaussian centers are obtained
by mapping the one dimensional latent variables pre-defined through global
PCA. The training result with this initialization approximates the non-linear
spiral data manifold poorly. In contrast to figure 3(a), in figure 3(b) we show an
improved fit by the GTM initialized by the method described below.

Identifying the manifolds In our proposed framework, we describe the low
dimensional latent manifold by an oriented graph G = (Y, E), where Y represents
the graph vertices and E represents the edges. We label the i-th vertex in Y
by a d-dimensional point yi ∈ Rd. The directed edges from the vertex yi are
collected in Ei that can be also thought of as the set of destination vertices. The
coordinates of these destination vertices can be calculated as

Ch(yi) = yi + l × eo

i (4)
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(a) Initialization and learning result of
classical GTM
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(b) GTM initialized with the new manifold
learning approach

Fig. 3. Learning results from different GTM initializations

where Ch(yi) denotes the destination vertices from yi (children of the source/parent
vertex), eo

i is a collection of unit directional vectors of the outgoing edges, and
l represents the length of the edge (fixed to be 1 in our implementation). We
denote the outgoing edges from vertex yi as Ei = {eo

i } for short.
An example of a graph structure for d = 2 is presented in figure 4. We

describe our manifold learning approach based on this case. Clustering all the
vertices according to the number of their parents, we obtain Y = Y0 ∪ Y1 ∪ Y2,
where Y0, Y1, Y2 represent collections of vertices with 0-, 1− and 2− parents,
respectively. There is a single vertex in Y0, set to be the origin of the graph with
the coordinate 0 ∈ Rd. The edges from it are 2d = 4 orthonormal outgoing edges
in E0 = {eo1

0 , eo2
0 , eo3

0 , eo4
0 }, where eo are specified as (1, 0), (−1, 0), (0, 1), (0,−1)

in our implementation. Since all the vertices’ coordinates can be retrieved from
their parents and the connected edges by eq. (4), we could also obtain the edges
Ei by the following equation:

Ei =















E0 yi ∈ Y0

E0/E
I
i yi ∈ Y1&Pa(i) = Y0

EPa(i) yi ∈ Y1&Pa(i)! = Y0

EI
i yi ∈ Y2

(5)

where EI
i denotes the directions of the incoming edges of vertex yi, and Pa(i)

stands for vertex yi’s only parent when yi ∈ Y1.
A mapped graph Gm = (Ym, Em) = F (G) in high dimensional space RD

(here D = 3) is illustrated in figure 4. The vertices and directed edges in the
high dimensional graph are obtained by mapping the vertices Y and the edges
E respectively. The vertex mapping Fy(Y) is described as follows:

Fy(Y0) = X0

Fy(Ch(yi)) = Fy(yi + l × eo
i ) = Fy(yi) + L × Fe(Ei,yi) (6)



where X0 is the origin of the mapped graph Gm. Fe is the edge mapping and
L is the fixed edge length in the mapped graph. The mapped edges in the data
space are then obtained via the mapping

Fe(Ei,yi) =















MFy(yi)E
m
0 yi ∈ Y0

MFy(yi)E
m
0 \EmI

i yi ∈ Y1&Pa(i) == Y0

MFy(yi)E
m
Pa(i) yi ∈ Y1&Pa(i)! = Y0

MFy(yi)E
mI
i yi ∈ Y2

(7)

where MFy(yi) is the projection matrix onto the manifold patch around the point
Fy(yi) and given by

MFy(yi) = BFy(yi)B
T
Fy(yi)

, (8)

where BFy(yi) denotes the matrix of basis vectors which are the first d eigenvec-
tors with largest eigenvalues corresponding to principle directions of the neigh-
borhood of the vertex Fy(yi). In eq. (7), Em

0 denotes the orthonormal outgoing
edges of the mapped origin X0.

Mapping

Fig. 4. The directed graph representing 2-dimensional latent space and its mapped
graph lying on 2 dimensional manifold in the 3 dimensional data space

We present an algorithm to simultaneously learn the graph G and the asso-
ciated mapped graph Gm from a dataset ζd. simultaneously.

– Initialization
Specify X0 in eq. (6), Em

0 in eq. (7) and L.

α1K (0 < α1 < 1) is the threshold used to detect a suitable origin on the
manifold. α2K (α2 > 0) is the new neighborhood size for doing local PCA
expansions.



Initialization

1. For all xi ∈ ζd do:
(a) Collect K nearest neighbours of xi: K(xi) in dataset ζ and count the

presence of K(xi) in dataset ζd, i.e., k =the size of {K(xi) ∩ ζd},
(b) If k > α1K, then X0 = xi, break;

2. EndFor
3. If X0! = null, then

(a) Collect α2K nearest neighbours α2K(X0) of X0 in ζd.
(b) Em

0 = {u1, . . . ,ud,−u1, . . . ,−ud}, where {u1, . . . ,ud} are the first d

eigenvectors of the principal directions of the α2K(X0).
(c) L is set to be the average of the distance from the neighbours.

4. EndIf

– Recursive learning procedure
After the initialization step, the origins Y0 and X0 are set to be the current
generations (CG and CGm) of graphs G and Gm. The learning procedure
learns iteratively from the current generation to the next generation (NG
and NGm) until the boundary of the manifold is detected.

Learning procedure

• While CG! = null do:
1. (a) For all yi ∈ CG

i. NG = {NG; Ch(yi,Ei)};
ii. NGm = {NGm; Fy(Ch(yi,Ei))}

(b) EndFor
2. [NG, NGm] = Redun remove(NG, NGm)
3. [CG, CGm] = Boud check(NG, NGm)
4. Y = {Y; CG};
5. Ym = {Ym; CGm};

• EndWhile

• [NG,NGm] = Redun remove(NG,NGm)
This procedure removes duplicate vertices in NG and NGm. In the graph
G, vertex ys ∈ Y2 can be a child of several parents. It is learnt as a set
of vertices {ys1,ys2} ∈ NG from the current generation. Since these
vertices have the same coordinates, we replace this set by ys. The cor-
responding mapped set {ym

s1,y
m
s2} ∈ NGm should also be replaced by a

single vertex ym
s ∈ Ym even though the mapped vertices may not over-

lap in the data space. We replace the mapped set of vertices by its mean
Fy(ys).



Procedure Learning procedure::Redun remove(NG, NGm)

1. For all {ys1,ys2} ∈ NG of the same coordinate
(a) Replace them by ys with the same coordinate.
(b) Collapse the corresponding ym

s1,y
m
s2 into its mean and with the nota-

tion Fy(ys).
(c) Collect incoming edges of ys and ym

s by their directions in EI
s and

EIm
s

2. EndFor

• [CG,CGm] = Boud check(NG,NGm)
This procedure checks for the manifold boundary. The learning procedure
should stop when the boundary is reached. Close to the boundary, the
local density of points around the current point decreases rapidly. In such
situations the set of nearest neighbors overlaps significantly (determined
by parameter α3) with the set of already visited points on the manifold.

Procedure Learning procedure::Boud check(NG, NGm)

1. For all ym
j ∈ NGm

(a) Find α2K(ym
j ) and OL = is the size of {α2K(ym

j ) ∩ α2K(CGm)}.
(b) If OL < α3K, then

i. C̃G = {C̃G,yj};
ii. C̃G

m
= {C̃G

m
,ym

j }
(c) EndIf

2. EndFor

Initializing GTM with learnt graphs We use the graphs G and Gm to
initialize the GTM. We initialize the parameters Wd,q of the latent variable
model, so that each latent variable model initially approximates the mapped
vertices Ym. Therefore, we determine Wd,q by minimizing the error

Err =
1

2

Zd,q

∑

z=1

||Wd,qΦ(yd,q
z ) − Fy(yd,q

z )||2. (9)

The parameter βd,q is initialized to be the larger of the average of the d + 1
eigenvalues from PCA applied on each vertex in Ym and the square of half of
the grid spacing of the mapped vertices Ym in the data space.

As an example, figure 3(b) shows the result of GTM fitting the spiral data
after being initialized with our manifold learning technique. Little or no further
GTM training is required.

For datasets having more than one manifolds embedded, we propose an itera-
tive algorithm to learn the manifolds and initialize the corresponding generative



models one by one. We denote by ζ̃d the set of unvisited points after the first
run of our manifold learning algorithm. We then apply the algorithm recursively
to ζ̃d (ζ̃d modified after each run) until all the points are visited.

1. ζ̃d = ζd(1 ≤ d < D); q = 0
2. While ζ̃d > α2K

(a) Learn graphs G and Gm from ζ̃d; q = q + 1.
(b) Initialize Wd,q, βd,q in p(x|d, q) associating with the graphs G and

Gm.
(c) ζ̃d = ζ̃d\K(Ym)

3. EndWhile

3.3 Hierarchical mixture model

In this section, we formulate a two-level hierarchical model T and the EM algo-
rithm to fit T to the entire data set ζ = {x1,x2, . . . ,xN}.

Model formulation We formulate the hierarchical model T by first mixing the
models p(x|, d, q) ∈ Md at the second level hierarchy with πq|d, for each intrinsic
dimensionality d,

∑

q πq|d = 1 (q > 0). If Md = null, then we set q = 0 and
π0|d = 0. We the mix these intrinsic dimensionality groups with πd at the first
level hierarchy. Thus we obtain:

p(x|T ) =

D
∑

d=1

πd

∑

q∈Md

πq|dp(x|d, q). (10)

The probabilistic models in Md (1 ≤ d < D) are formulated in eq. (1). We
use a Gaussian mixture (11) to model the data points collected in ζD.

p(x|D, 1) =
ZD,1

∑

z=1

p(z)p(x|z;D, 1)

=

ZD,1

∑

z=1

p(z)
1

√

||2πΣz||
exp{−

1

2
(x − µz)

T Σ−1
z (x − µz)}

(11)

where ZD,1 is the number of Gaussian components, µz and Σz are the mean and
covariance of the z−th component, and p(z)’s are the mixing coefficients with
∑ZD,1

z=1 p(z) = 1.



EM algorithm The mixing coefficients at each hierarchical level and the pa-
rameters of each submodel can be determined by maximizing the log likelihood
function of the model (10).

L =

N
∑

n=1

ln p(xn|T ) (12)

We use binary assignment variables υn,d to represent that the data xn be-
longs to the group of manifolds having dimension d, and υn,q|d to represent the
situation that data xn is generated from q-th manifold in the group with dimen-
sion d. Even if this was known, we still need to decide which latent space center
yd,q

z ∈ Yd,q, z = 1, 2, . . . , Zd,q in the latent variable model p(x|d, q) (1 ≤ d < D)
corresponds to the Gaussian that generated xn, We represent this by indicator
variables υd,q

n,z.

For d = D, MD contains a single unconstrained Gaussian mixture model.
The complete data likelihood function reads

Lc =

N
∑

n=1

D
∑

d=1

υn,d

∑

q∈Md

υn,q|d

Zd,q

∑

z=1

υd,q
n,z ln{πq|dπdp(xn|d, q)} (13)

Taking the expectation (with respect to the posterior given the data) over
all types of hidden variables, we arrive at the expected complete-data likelihood

< Lc >=

N
∑

n=1

D
∑

d=1

Rd|n

∑

q∈Md

Rq|d,n

Zd,q

∑

z=1

Rz|q,d,n ln{πdπq|dp(xn, |d, q)} (14)

In order to use E-M algorithm to maximize < Lc >, we rewrite eq. (14) as
follows:

< Lc >=

N
∑

n=1

D
∑

d=1

Rd|n lnπd + (15)

N
∑

n=1

D
∑

d=1

Rd|n

∑

q∈Md

Rq|d,n lnπq|d + (16)

N
∑

n=1

D−1
∑

d=1

Rd|n

∑

q∈Md

Rq|d,n

Zd,q

∑

z=1

Rz|q,d,n ln p(xn,yd,q
z ) + (17)

N
∑

n=1

RD|n

ZD,1

∑

z=1

Rz|D,n ln p(z) + (18)

N
∑

n=1

RD|n

ZD,1

∑

z=1

Rz|D,n ln p(xn|z) (19)



The M-step of the EM algorithm involves maximizing (15), (16) and (18)
w.r.t. the mixture coefficients πd, πq|d and p(z) respectively, and maximizing

(17) and (19) w.r.t. the parameters of p(xn,yd,q
z ) and parameters of p(x|z) re-

spectively.
We obtain the following updates:

π̃d =
1

N

N
∑

n=1

Rd|n (20)

π̃q|d =

∑N
n=1 Rd|nRq|d,n
∑N

n=1 Rd|n

(21)

p(z) =

∑N
n=1 RD|nRz|D,n

∑N
n=1

∑ZD,1

z=1 Rd|nRz|d,n

(22)

As for the manifold models, using eq. (1) and (2), we have

N
∑

n=1

Rnd

Zd,q

∑

z=1

Rz|d,qn(Wd,qΦ(yd,q
z ) − xn)ΦT (yd,q

z ) = 0 (23)

The responsibilities Rd|n and Rz|n,d,q are calculated with the current (old) weight
and inverse variance parameters of the probabilistic models p(x|d, q).

Written in matrix notation, we have to solve

(Φd,q)T Bd,q(Φd,q)T (Wd,q)T = (Φd,q)T Rd,qT (24)

for Wd,q.
The above system of linear equations involves the following matrices:

– Φ is a Zd,q × Md,q matrix with elements (Φd,q)ij = φj(y
d,q
z ).

– T is a N × D matrix storing the data points x1,x2, . . . ,xN as rows.
– Rd,q is a Zd,q × N matrix containing, for each latent space center yd,q

z , and
each data point xn, scaled responsibilities (Rd,q)zn = Rd|nRq|n,dRz|q,d,n

– Bd,q is a Zd,q × Zd,q diagonal matrix with diagonal elements corresponding
to responsibilities of latent space centers for the whole data sample ζ, where
(B)ii =

∑N
n=1 Rd|nRq|d,nRz|q,d,n.

The GTM mapping fd,q can be regularized by adding a regularization term
to the likelihood (1). Inclusion of the regularizer modifies eq.(24) to

[(Φd,q)T Bd,q(Φd,q)T +
αd,q

βd,q
I](Wd,q)T = (Φd,q)T Rd,qT (25)

where I is the Zd,q × Zd,q identity matrix.
Finally, maximizing (17) with respect to βd,q leads to the re-estimation for-

mulation

1

βd,q
=

∑N
n=1 Rd|nRq|d,n

∑Zd,q

z=1 Rz|n,d,q||W
d,qφ(yd,q

z ) − xn||2

D
∑N

n=1 Rd|nRq|d,n

(26)



where Wd,q is the “new” weight matrix computed by solving (24) in the last
step.

Maximizing (19) with respect to µz and Σz, we obtain

µz =

∑N
n=1 RD|nRz|D,nxn

∑D
n=1 RD|n

(27)

ΣD
z =

∑N
n=1 RD|nRz|D,n(xn − µz)(xn − µz)

T

∑N
n=1 RD|n

(28)

In the E-step of the EM algorithm, we estimate the latent space responsi-
bilities Rz|n,d,q in submodels for manifolds and component responsibilities Rz|D

in Gaussian mixture model. Model responsibilities in each group Rq|n,d and the
group responsibilities Rd|n(1 ≤ d ≤ D) are specified as well.

Rz|d,q,n =
p(xn|yz, d, q)

∑Zd,q

z′=1 p(xn|y′
z, d, q)

(29)

Rz|D,n =
p(z)p(xn|z,D)

∑ZD

z′=1 p(z′)p(xn|z, d, q)
(30)

Rq|d,n =
πq|dp(xn|d, q)

∑

q′∈Md
πq′|dp(xn|d, q′)

(31)

Rd|n =
πd

∑

q∈Md
πq|dp(x|d, q)

∑D
d′=1 πd′

∑

q′∈Md′
πq′|d′p(xn|d′, q′)

(32)

Parameter initialization There are two groups of parameters to be initialized
before running EM algorithm to fit T to the data.

An unconstrained GMM is used to model the set ζD. The corresponding
parameters including Gaussian centers and covariance can be initialized e.g. by
a simple K-means algorithm. Parameters in latent variable model p(x|d, q), where
d < D are initialized using our multi manifold learning algorithm described in
the previous section.

4 Experiments

Multi-manifolds with varying dimensions We first present the multiple
manifolds learning results on the dataset illustrated in figure 1. Figure 2 shows
the filtered subsets of data points with respect to their intrinsic dimensionality.
Note that because the manifolds cross, there is a gap splitting the single 1d man-
ifold into two parts. The points in the gap were taken to the set of intrinsically
2-dimensional points. Given a strong prior knowledge concerning connectiveness
of the data manifolds, we could deal with such situations, however in the ab-
sence of such information we would prefer to have several isolated components
dictated by the data.



We use our multi manifold initialization alongside with EM algorithm to fit
the full hierarchical model to the dataset. The results shown in figure 5. The
manifolds of varying dimensionality and shape were correctly identified.

Fig. 5. Manifolds learnt from the artificial dataset dataset in figure 1. We use param-
eters K = 20, α1 = 0.8, α2 = 1, α3 = 0.6

Identifying streams and shells in disrupted galaxies Recent exciting dis-
coveries of low-dimensional structures such as shells and streams of stars in the
vicinity of large galaxies led the astronomers to investigate the possibility that
such structures are in fact remnants of disrupted smaller satellite galaxies. One
line of investigation models the disruption process using realistic particle models
of both the large galaxy (e.g. M31) and the disrupted one (e.g. M32) [15, 16]. Re-
alistic set of initial conditions are applied and the results of particle simulations
are compared with the observed structures for each initial condition setting.
This is of most importance for understanding the disruption process and pre-
diction of the future continuation of the satellite disruption. We will show that
our multi manifold learning methodology can be used for automatic detection of
low dimensional streams and shells in such simulations, thus enabling automated
inferences in large scale simulations.

Using one realistic setting of the particle model [15, 16] for satellite galaxy dis-
ruption by M31, we obtained several stages of the disrupted satellite, modeled
by approximately 30,000 particles (stars). In each stage we applied the multi
manifold learning. In figure 4 we show (along with the stars (particles)) the
detected two-dimensional manifold structures (”skeletons of the mixture compo-
nents) in an early and a later stage of the disruption process. 1- and 3-dimensional
structures are not shown. In the early stage a single stream was automatically
detected, whereas in the later stage a stream and two shells were correctly identi-
fied. Two-dimensional structures are of most importance in such investigations,



but our system can be used for investigation of structures across a variety of
dimensions. It can also be used to build a hierarchical mixture model for the full
system (large galaxy + a satellite) for the purposes of principled comparison of
the simulated system with the real observations (in the projected plane). The is
a matter for our future work.

(a) (b)

Fig. 6. Identified 2-dimensional manifolds in disrupted satellite galaxy at an early (a)
and later (b) stages of disruption by M31.

5 Conclusions and discussion

We presented a novel hierarchical model based framework to learn multiple mani-
folds of possibly different intrinsic dimensionalities. We first filter the data points
with respect to the intrinsic dimensionality of the manifold patches they lie on.
Then our new multi manifold learning algorithm is applied to each such filtered
dataset of dimensionality d to detect d-dimensional manifolds along which the
data are aligned. This is later used to initialize generative latent variable mod-
els representing noisy manifolds underlying the data set. The generative models
are combine in a hierarchical mixture representing the full data density. The
proposed approach is significantly different from the current manifold learning
approaches which typically assume that the whole data set is sampled from a
single low dimensional manifold, which may not always be realistic.

As with other manifold learning approaches, parameter selection (e.g. neigh-
borhood size) can be an issue. Model selection approaches can be used to select
the appropriate values for a given application, but obviously much more work
is required in this direction. In this paper we present a proof of concept and
shoe that our multi manifold learning framework can be potentially applied in
interesting application domains, such as astronomy.
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