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Abstract—In many classification scenarios, the data to be ana-
lyzed can be naturally represented as points living on the curved
Riemannian manifold of symmetric positive-definite (SPD) matri-
ces. Due to its non-Euclidean geometry, usual Euclidean learning
algorithms may deliver poor performance on such data. We
propose a principled reformulation of the successful Euclidean
generalized learning vector quantization (GLVQ) methodology to
deal with such data, accounting for the nonlinear Riemannian
geometry of the manifold through log-Euclidean metric (LEM).
We first generalize GLVQ to the manifold of SPD matrices by
exploiting the LEM-induced geodesic distance (GLVQ-LEM). We
then extend GLVQ-LEM with metric learning. In particular, we
study both 1) a more straightforward implementation of the met-
ric learning idea by adapting metric in the space of vectorized
log-transformed SPD matrices and 2) the full formulation of met-
ric learning without matrix vectorization, thus preserving the
second-order tensor structure. To obtain the distance metric in
the full LEM learning (LEML) approaches, two algorithms are
proposed. One method is to restrict the distance metric to be
full rank, treating the distance metric tensor as an SPD matrix,
and readily use the LEM framework (GLVQ-LEML-LEM). The
other method is to cast no such restriction, treating the distance
metric tensor as a fixed rank positive semidefinite matrix liv-
ing on a quotient manifold with total space equipped with flat
geometry (GLVQ-LEML-FM). Experiments on multiple datasets
of different natures demonstrate the good performance of the
proposed methods.

Index Terms—Generalized learning vector quantization
(GLVQ), log-Euclidean metric (LEM), metric learning,
Riemannian geodesic distance, Riemannian manifold.

Manuscript received December 26, 2021; revised April 8, 2022; accepted
May 24, 2022. This work was supported in part by the National Natural
Science Foundation of China under Grant 61803369; in part by the State Key
Laboratory of Robotics under Grant 2022-Z02; in part by the Foundation
for Innovative Research Groups of the National Natural Science Foundation
of China under Grant 61821005; and in part by the European Commission
Horizon 2020 Innovative Training Network SUNDIAL under Project 721463.
This article was recommended by Associate Editor D. Wang. (Corresponding
authors: Fengzhen Tang; Haibin Yu.)

Fengzhen Tang and Haibin Yu are with the State Key Laboratory of
Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences,
Shenyang 110016, China, and also with the Institutes for Robotics and
Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169,
China (e-mail: tangfengzhen@sia.cn; yhb@sia.cn).
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I. INTRODUCTION

LEARNING vector quantization (LVQ) is a simple but
powerful classification scheme [1], [2]. It is attractive due

to several reasons. First, the LVQ system, different from deep
networks or kernel methods, is straightforward to interpret.
They construct a classifier parametrized by several labeled
prototypes that live in the same space as the data space. The
classification rule follows a winner-takes-all scheme, that is,
assigning a new instance the class label of its closest prototype
according to the related distance. Second, the LVQ method is
implemented and realized in an intuitive and simple way, since
it follows the intuitive Hebbian learning rule. Third, LVQ can
naturally handle any number of classes with no modification
on the learning rule, which is different from many alternatives
like support vector machines (SVMs), whose basic form is
confined to deal with only two classes.

Generalized LVQ (GLVQ) proposed in [3] constructs the
LVQ system using an explicit cost function that aims at margin
maximization, showing good generalization performance. The
cost function has been extended to incorporate metric learning.
A simple adaptive diagonal matrix of relevance is considered
in generalized relevance LVQ (GRLVQ) [1], allowing differ-
ent scaling of the features according to their relevance. A
global adaptive full matrix of relevance [parameterized general
Euclidean metric (EM)] is used in generalized matrix LVQ
(GMLVQ) [4], accounting for pairwise correlations of fea-
tures. Furthermore, local adaptive matrices are constructed to
attach to individual prototypes, leading to localized GMLVQ
(LGMLVQ) [4]. These LVQ methods are designed to analyze
vector-formed data living in the Euclidean space.

However, in many learning scenarios, the data to be ana-
lyzed are naturally symmetric positive-definite (SPD) matrices.
For instance, in medical image analysis, diffusion-weighted
images obtained by diffusion tensor magnetic resonance imag-
ing (DT-MRI or simply DTI) are entirely characterized by
the “diffusion tensors,” which are essentially SPD matri-
ces [5]–[7]; in computer vision, covariance region descrip-
tors (also SPD matrices) are often used to characterize
images [8], [9]; and in brain–computer interface (BCI), spa-
tial covariance matrix (SPD matrix) representation becomes
very popular in the classification of motor imagery electroen-
cephalogram (EEG) data [10], [11]. Unlike usual vector-valued
data distributed in the Euclidean space, SPD matrices can
form a nonlinear Riemannian manifold if equipped with an

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

https://orcid.org/0000-0002-4654-9440
https://orcid.org/0000-0003-2330-128X
https://orcid.org/0000-0002-1663-2956


2 IEEE TRANSACTIONS ON CYBERNETICS

appropriate metric (e.g., affine-invariant Riemannian metric
(AIRM) [5] or log-Euclidean metric (LEM) [12]). Due to the
non-Euclidean geometry of Riemannian manifolds, classical
Euclidean LVQ methods result in inferior performance on such
manifold-valued data as shown in [13].

In this article, we provide two key contributions to
prototype-based learning on Riemannian manifolds.

1) Section IV: While in [13], the core GLVQ method was
extended to the manifold of SPD matrices equipped with
AIRM (GLVQ-AIRM), here we generalize the GLVQ
method to the manifold of SPD matrices by employing
the LEM (GLVQ-LEM). Arsigny et al. [12] provided
a good discussion and comparison of LEMs and other
choices for defining the Riemannian structure on SPD
matrices. In particular, while LEMs are not affine invari-
ant, they do possess useful invariance properties. For
example, the distances are not changed by the matrix
inversion operation, logarithmic multiplication (transla-
tion in the log domain), or orthogonal transformation
and scaling (similarity). Crucially, compared with affine-
invariant metrics, the evaluation of geodesic distances
under the LEM is much more computationally efficient.
Thus, the methods developed in this article are expected
to be much faster than GLVQ-AIRM.

2) Section V: Taking advantage of the Euclidean vec-
tor space structure of the log-transformed SPD matri-
ces,1 we further extend GLVQ-LEM with metric learn-
ing. Indeed, it has been shown that distance-based
approaches can be greatly improved with an adap-
tive distance measure (metric learning) [14]–[16]. In
particular, we study both a) a more straightforward
implementation of the metric learning idea by adapt-
ing metric in the space of vectorized (log-transformed)
matrices and b) the full formulation of metric learn-
ing without matrix vectorization, thus preserving the
second-order tensor structure.

The remainder of this article is organized as follows.
Section II briefly presents LVQ. Section III describes the
LEM. In Sections IV and V, we derive the proposed methods.
Section VI gives experimental results. Section VII summarizes
main findings and gives conclusions.

II. LEARNING VECTOR QUANTIZATION

In this section, we briefly introduce the LVQ methods
involved in this article.

Given m training instances xi ∈ R
n labeled by yi ∈

{1, . . . , C}, i = 1, . . . , m, where n denotes the input dimen-
sion and C represents the number of classes, a standard LVQ
classifier consists of M (M ≥ C) prototypes wj ∈ R

n, labeled
by cj ∈ {1, . . . , C}, j = 1, 2, . . . , M. The classification rule
takes the winner-takes-all scheme. The new instance x ∈ R

n

is assigned with the class of its closest prototype: that is,
ŷ(x) := cj∗ such that j∗ = arg minj d(x, wj), where d(·, ·) is
a distance measure in R

n. The set of data points selecting the
prototype wj as their winner is defined as the receptive field
of wj. The prototypes are learned automatically such that the

1Representing the tangent space at the origin.

data points in each prototype’s receptive field with a different
label are as few as possible.

GLVQ updates the prototypes through minimization of a
well-delineated cost function by steepest gradient descent [3].
During the training process, a pair of prototypes is updated
each time. Given an input xi with label yi, its closest cor-
rect prototype wJ (with the same label yi) is propelled toward
xi, while its closest incorrect prototype wK (with a different
label) is moved away from xi. The cost function of GLVQ
is formulated as sum of normalized differences between the
distances of instances to their correct prototypes and incorrect
prototypes as follows:

E(w) =
m∑

i=1

�

(
d(xi, wJ)− d(xi, wK)

d(xi, wJ)+ d(xi, wK)

)
(1)

where �(·) is a scaling function that increases monotonically,
for example, the logistic function �(x) = 1/(1+ e−x) [3].

The above cost function of classic GLVQ takes the squared
Euclidean distance, that is, d(xi, wJ) = (xi − wJ)

T(xi − wJ).
Then, the learning rules are given as follows:

�wJ = α · 2μK(xi − wJ) (2)

�wK = −α · 2μJ(xi − wK) (3)

where μK = ([2�′dK]/[(dJ + dK)2]), μK =
([2�′dJ]/[(dJ + dK)2]), dJ = d(xi, wJ), dK = d(xi, wK), and
0 < α < 1 is the learning rate. According to the learning
rules, the correct prototype wJ is dragged toward the instance
xi along the straight line connecting wJ with xi, while the
incorrect prototype wK is pushed away from the instance xi

along the straight line passing through xi and wK .
GLVQ has been extended to incorporate metric learning.

A diagonal matrix of relevance is considered in GRLVQ [1],
while an adaptive matrix of relevance is used in GMLVQ [4].
Furthermore, local adaptive matrices are constructed to attach
to individual prototypes, leading to LGMLVQ [4]. However,
GLVQ and these extensions so far are only applicable to data
points living in the Euclidean space.

The work presented in [17] extends GLVQ to directly deal
with matrix data without any vectorization. The matrix data
involved there are general matrices without any special proper-
ties and thus are still located in a Euclidean space. In contrast,
we deal with SPD matrix data living on a curved Riemannian
manifold. GLVQ has been extended to the manifold of SPD
matrices equipped with AIRM, showing superior classification
performance [13]. In the following sections, we extend GLVQ
to data points living in an SPD Riemannian manifold with
LEM.

III. LOG-EUCLIDEAN METRIC

Let S+(n) represent the space of all real-valued n× n SPD
matrices. It makes a Riemannian manifold if endowed with
a Riemannian metric. LEM is a commonly used Riemannian
metric on the SPD manifold S

+(n). It is derived by exploiting
the Lie group structure under the group operation S1 � S2 =
exp(log S1 + log S2), for S1, S2 ∈ S

+(n), where exp and
log represent the matrix exponential function and the matrix
logarithm, respectively.
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The well-studied LEM on Lie group of SPD matri-
ces [6], [12] leads to the EM in the logarithm domain of SPD
matrices. The geodesic between two points X1, X2 ∈ S

+(n) is
the convex combination in the logarithmic domain

γ (t) = exp(log X1 + t(log X2 − log X1)), t ∈ [0, 1]. (4)

By differentiating the above geodesic at t = 0, we can obtain
the expression of the corresponding Riemannian logarithmic
map, which gives the initial speed vector of the geodesic curve

LogX1
(X2) = X1(log X2 − log X1). (5)

With the initial speed vector V = X1(log X2 − log X1),
the Riemannian exponential map returns to the point X2 on
the manifold, that is, ExpX1

(V) = γ (1) = X2. Then, the
exponential map induced by the LEM is given as follows:

ExpX1
(V) = exp(log X1 + X−1

1 V). (6)

The LEM is defined as follows [6]:

〈V1, V2〉X =
〈
X−1V1, X−1V2

〉

I

= Tr
(

X−1V1X−1V2

)
(7)

where Tr represents the trace operator. Under LEM, the
squared geodesic distance between two SPD matrices is

δLE(X1, X2) = 〈LogX1
(X2), LogX1

(X2)〉X1

= Tr
[
(log X2 − log X1)

2
]
. (8)

which corresponds to the Euclidean distance in the logarithmic
domain.

Based on (4) and (6), the geodesic emitted at the point X in
the direction of V ∈ TXS

+(n), that is, γLE(0) = X, γ̇LE(0) =
V, can be expressed as

γLE(t) = exp
(

log X+ tX−1V
)
, t ∈ [0, 1]. (9)

IV. GLVQ WITH LEM ON THE SPD MANIFOLD

Although S+(n) is a convex subset of a vector space R
n2

, it
is not a vector space since the negation of a positive-definite
matrix [a simple scalar multiplication on elements of S+(n)]
is not positive definite. Instead, S+(n) forms a manifold as it
is locally homeomorphic to Rn(n+1)/2. The homeomorphism is
provided by the vec operator that vectorizes the upper triangle
of the SPD matrix. S+(n) forms a curved manifold rather than
a linear one as the boundary of the convex cone is curved.

Since S+(n) is a convex set, there is no obvious harm in
evaluating distances in S+(n) with the usual Euclidean distance
(e.g., when computing a set mean). However, the Euclidean
distance cannot provide appropriate prototype updates. The
prototype learning rule involves minus and so the applica-
tion of the usual Euclidean distance may result in prototypes
that are not positive definite. The work presented in [13] has
already shown the inappropriateness of using EM for SPD
matrices. Thus, we develop a new method, called GLVQ-LEM,
by altering GLVQ to deal with SPD matrices under LEM.

Consider a training dataset {(Xi, yi)}mi=1, where Xi ∈ S
+(n)

represents the ith training instance and yi ∈ {1, . . . , C} denotes

the class of this instance. Assume the classifier is made of M
(M ≥ C) prototypes Wj ∈ S

+(n) with labels cj ∈ {1, . . . , C}.
As the data points are SPD matrices, the squared log-Euclidean
distance is used to measure the difference between a prototype
Wj and a training example Xi, leading to the following cost
function:

E(W) =
m∑

i=1

�(μ(Xi, W)) (10)

μ(Xi, W) = δLE(Xi, WJ)− δLE(Xi, WK)

δLE(Xi, WJ)+ δLE(Xi, WK)
(11)

where WJ ∈ S
+(n) represents the closest correct prototype to

the training instance Xi ∈ S
+(n), and WK ∈ S

+(n) denotes its
closest incorrect prototype under the distance measure δLE.

To obtain the learning rules of prototypes, the above cost
function is minimized through stochastic gradient descent on
the manifold S

+(n). The Riemannian gradient of the cost func-
tion with respect to the prototype on the manifold S

+(n) can
be computed by calculating the classical derivative of the com-
posite function composed of the cost function and the geodesic
emitting from the prototype [13]. The gradient of the cost func-
tion associated with a training instance Xi can be computed as
follows. Denote γJ(t) as a geodesic curve that connects Xi with
its closest correct prototype WJ , starting from the prototype
WJ with an initial speed vector VJ ∈ TWJS

+(n) [see (9)]

γJ(t) = exp
(

log WJ + tWJ
−1VJ

)
. (12)

Then, we can obtain the cost function with respect to the
instance Xi along this curve as follows:

Ei(γJ(t), WK)

= �

(
δLE(Xi, γJ(t))− δLE(Xi, WK)

δLE(Xi, γJ(t))+ δLE(Xi, WK)

)
. (13)

Let δJ and δK denote the distances δLE(Xi, WJ) and
δLE(Xi, WK), respectively, and gK = 2�′δK/(δJ + δK)2 . The
Riemannian gradient of Ei in the direction VJ evaluated at WJ

denoted by ∇VJ Ei is given as follows:

∇VJ Ei = −2gKWJ(log Xi − log WJ). (14)

The detailed derivation of ∇VJ Ei is given in Appendix A-A.
Let γK(t) be a geodesic curve that connects Xi with its clos-

est incorrect prototype WK , starting from the prototype WK

with an initial speed vector VK ∈ TWKS
+(n). The Riemannian

gradient of Ei in the direction VK evaluated at WK , denoted
by ∇VK Ei can be obtained similarly

∇VK Ei = 2gJWK(log Xi − log WK) (15)

where gJ = 2�′δJ/(δJ + δK)2.
Then, the prototypes WJ and WK are updated using the

exponential map as follows:

Wnew
J = ExpWJ

(−α∇VJ Ei
)

(16)

Wnew
K = ExpWK

(−α∇VK Ei
)
. (17)

Equation (16) indicates that the correct prototype WJ is
dragged toward the instance Xi along the geodesic curve
emitted from WJ in the direction of −∇VJ Ei (VJ), which
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Fig. 1. Illustration of GLVQ on the SPD manifold endowed with LEM. The
movements of prototype along the geodesic curve on the manifold corresponds
to the movements along the straight line in the logarithm domain of the SPD
matrices.

corresponds to the geodesic curve connecting WJ and Xi.
Analogously, (17) means that the incorrect prototype WK is
propelled away from the instance Xi in continuation of the
geodesic curve connecting Xi with WK .

Taking the matrix logarithm on both left- and right-hand
sides of (16) and (17), and denoting Ti = log Xi, UJ = log WJ ,
and UK = log WK , the updating rule for prototypes can be
rewritten in the logarithmic domain of SPD matrices

Unew
J = UJ + α · 2gK(Ti − UJ) (18)

Unew
K = UK − α · 2gJ(Ti − UK) (19)

which exactly coincides with the update equations for the
vector-valued data given by (2) and (3). The prototypes in
the logarithm domain move toward or away from the instance
in the logarithm domain along the straight line passing through
the instance and the prototype.

As we mentioned before, LEM for SPD matrices cor-
responds to the EM in the logarithm domain of the SPD
matrices. Therefore, under the LEM framework, the movement
of the prototype along the geodesic curve on the manifold sug-
gested in [13] corresponds to the movement of the prototype
along the straight line in the logarithm domain of the SPD
matrices, as shown in Fig. 1. Consequently, for the data of
SPD matrices, we can transform it into the logarithmic domain
and apply the standard GLVQ algorithm on the transformed
data.

V. METRIC LEARNING

In this section, we will enhance the discriminative power
of our classifiers by further adapting the distance metric in
the vector space of log-transformed SPD matrices. We will
present two approaches. The first simplified approach adopts
the usual ideas of metric learning in spaces of vectors as
first-order tensors, obtained by vectorizing the log-transformed
SPD matrices. However, this may distort the geometrical struc-
ture of the logarithm space derived from SPD matrices, as well
as increase the computational complexity as it needs to learn a
much larger distance metric than the data dimension. The sec-
ond approach involves a full formulation of metric learning in
the space of (log-transformed) SPD matrices, preserving their
second-order tensor structure.

A. GMLVQ With LEM on the SPD Manifold

As we demonstrated in Section IV, the logarithm operation
transforms the curved manifold into a flat space, where the

Fig. 2. Illustration of LEML [19]. LEML directly works on the logarithm
of SPD matrices and learns a tangent map f : TXS

+(n) → TXS
+(r) from

the original tangent space TXS
+(n) to a possibly more discriminative tan-

gent space TXS
+(r). From this mapping, we can derive a manifold map

F : S
+(n) → S

+(r). Thus, it implicitly maps the original manifold to a
target one with more separability.

classical Euclidean learning algorithm is applicable. Following
this principle, we can also extend GMLVQ to the SPD man-
ifold. The Mahalanobis distance function we need to learn
is [18]

δ�
LE(X, W) = (vec(log X)− vec(log W))T ·�

· (vec(log X)− vec(log W)) (20)

where X ∈ S
+(n) represents a training instance, W ∈ S

+(n)

denotes a prototype, vec(·) denotes the operator that concate-
nates the upper triangular elements of the argument matrix
into a vector, and � ∈ S

+(l) with l = ([n(n+ 1)]/2) is the
adaptive Mahalanobis matrix. The difference between the vec-
torized instance and prototype is weighted by the adaptive
Mahalanobis matrix �, enabling separate weighting of indi-
vidual dimensions, as well as accounting for pairwise interplay
between the dimensions.

Following [18], we map the original SPD manifold S
+(n) to

the vector space {vec(log X)|X ∈ S
+(n)}. Different from [18],

which learns the Mahalanobis distance using information-
theoretic metric learning in the vector space, we incorporate
the distance learning in the LVQ system, more precisely, we
apply standard GMLVQ in the vector space.

Similarly, we can restrict the global metric � to be a diago-
nal matrix and adapting GRLVQ for the classification of SPD
matrices. We can also learn a local �j for each prototype,
extending LGMLQ for the classification of SPD matrices.

B. GLVQ With Log-Euclidean Metric Learning on the
SPD Manifold

As shown in Fig. 2, we, following [19], learn a tangent
map f : TXS

+(n)→ TXS
+(r) projecting the original tangent

space TXS
+(n) to a possibly more discriminative tangent space

TXS
+(r) via f (log X) = �T log(X)� with transformation � ∈

R
n×r of full rank in column, that is, rank(�) = r, where

r ≤ n. With such �, the transformed point �T log(X)� is a
real symmetric matrix to form a valid tangent space. Then, the
original manifold map F : S+(n)→ S

+(r) can be derived.
The geodesic distance between transformed data on the new

resulting SPD manifold S
+(r) can be defined as follows:

δ�
LE(X, W) = ∥∥�T log(X)�−�T log(W)�

∥∥2
F (21)

which is the Frobenius norm of the difference matrix between
the transformed instance and prototype in the logarithm
domain.
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The above distance function can be reparametrized as

δ
Q
LE(X, W) = Tr

[
Q(log X− log W)(log X− log W)

]
(22)

where Q = (��T)2 is an n×n symmetric positive semidefinite
matrix of rank r, taking a role of “reduced rank Mahalanobis
matrix.” The difference between the instance and prototype
in the logarithm domain is weighed by the adaptive matrix
Q, casting different importances on each dimension of the
difference matrix, as well as accounting for pairwise interplays
between the dimensions. Note that when r = n, Q becomes
an SPD matrix.

One crucial advantage of metric learning introduced in (22)
over that in (20) is in that the dimensionality of Q is much
smaller than that of �. Thus, it is more computationally effi-
cient. Moreover, (22) always results in a valid tangent space,
while (20) may not always and thus may distort the geo-
metrical structure of the logarithm space derived from SPD
matrices, resulting in degenerated performance.

With the distance function δ
Q
LE, we obtain the cost function

E(W, Q) =
m∑

i=1

�(μ(Xi, W, Q)) (23)

μ(Xi, W, Q) = δ
Q
LE(Xi, WJ)− δ

Q
LE(Xi, WK)

δ
Q
LE(Xi, WJ)+ δ

Q
LE(Xi, WK)

. (24)

Again, we can derive the learning rule of prototypes through
minimization of the above cost function via stochastic deepest
gradient descent on the manifold S

+(n).
The cost function of example Xi along the curve γJ(t) is

EQ
i (γJ(t), WK, Q)

= �

(
δ

Q
LE(Xi, γJ(t))− δ

Q
LE(Xi, WK)

δ
Q
LE(Xi, γJ(t))+ δ

Q
LE(Xi, WK)

)
. (25)

Let δ
Q
J and δ

Q
K denote the distances δ

Q
LE(Xi, WJ) and

δ
Q
LE(Xi, WK), respectively. Let fK = 2�′δQ

K /(δ
Q
J + δ

Q
K )2 and

fJ = 2�′δQ
J /(δ

Q
J + δ

Q
K )2. The Riemannian gradient of EQ

i in
the direction VJ evaluated at point WJ denoted by ∇VJ EQ

i is
given as follows:

∇VJ EQ
i = −2fKWJQ(log Xi − log WJ) (26)

The detailed derivation of ∇VJ EQ
i is given in Appendix A-B.

Similarly, we can calculate the Riemannian gradient ∇VK EQ
i

utilizing the composite function composed of the cost function
EQ

i and the curve γK(t), and obtain

∇WK EQ
i = 2fJWKQ(log Xi − log WK). (27)

Then, we can have the learning rule for the prototypes in
the logarithmic domain as follows:

Unew
J = UJ + α · 2fKQ(Ti − UJ) (28)

Unew
K = UK − α · 2fJQ(Ti − UK) (29)

The above prototype updating rules are different from those
given by (18) and (19). The difference between the exam-
ple and prototype in the logarithm domain is weighted by

Q, hopefully achieving better prototype position with more
discriminative data-driven distance measure.

We then derive the learning rule for the distance matrix Q.
Two situations are considered and detailed here. We first
restrict Q to be of full rank n, making it be an SPD matrix,
where the LEM framework can be directly used. We then cast
no such restriction on Q, leaving it be a fixed-rank symmet-
ric positive semidefinite matrix, where the quotient geometry
with total space equipped with flat metric is utilized.

1) Learning Q Using LEM: Here, we consider Q to be
an SPD matrix. The Riemannian gradient of the cost function
with respect to Q can then be calculated by the same way as
that with respect to the prototypes.

Let γQ(t) be a geodesic emitted from Q with initial speed
VQ ∈ TQS

+(n)

γQ(t) = Exp(log(Q)+ tQ−1VQ). (30)

The cost function of example Xi along the curve γQ(t) reads

EQ
i

(
WJ, WK, γQ(t)

)

= �

(
δ
γQ
LE(Xi, WJ)− δ

γQ
LE(Xi, WK)

δ
γQ
LE(Xi, WJ)+ δ

γQ
LE(Xi, WK)

)
. (31)

The Riemannian gradient of the cost function in the direc-
tion VQ evaluated at point Q denoted by ∇VQ EQ

i is given as

∇VQ EQ
i = fKQ(log Xi − log WJ)

2Q

− fJQ(log Xi − log WK)2Q. (32)

The detailed derivation of ∇VQEQ
i is given in Appendix A-C.

Once we have the gradient, we can have the learning rule

Qnew = exp
{

log Q− ηfK(Ti − UJ)
2Q

+ ηfJ(Ti − UK)2Q
}

(33)

where 0 < η < 1 is the learning rate. The metric tensor Q
is updated by moving along the geodesic curve emitted at Q
in the direction of −fK(Ti −UJ)

2Q+ fJ(Ti −UK)2Q. In this
way, the gradient of the distances from both the closest correct
prototype and the closest incorrect prototype provides updating
force for Q. The gradient of the distance from the closest cor-
rect prototype contributes a negative (scale with −1) driving
force. Thus, the elements of Q are modified so that the dis-
tance from the closet correct prototype becomes smaller. The
gradient of the distance from the closest incorrect prototype
contributes a positive driving force. Thus, it forces elements
of Q to change so that the distance from the closest incorrect
prototype is increased.

2) Learning Q Using Quotient Geometry With Flat Metric:
In the above section, the distance matrix Q is confined to be of
full rank n, such that we can readily use the LEM framework
to learn Q. However, in some applications, the dimension of
the input SPD matrices can be very high and some dimen-
sions of the input may barely contribute to the classification
task. For instance, in the BCI research, the number of elec-
trodes used to record the brain signals can be very high [20],
producing SPD matrices of very high dimensions. However,
not all the electrodes contribute greatly for the identification
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of brain states. In this case, we can restrict the rank of Q to
be smaller than n, speeding up the computation and possibly
improving the generalization performance. In this section, we
consider Q of rank r, where r ≤ n. Q then becomes a point in
the space of S

+(r, n) containing all n× n fixed-rank positive
semidefinite matrices of rank r.

The space of S+(r, n) can be identified as a quotient man-
ifold [21]. The quotient geometry comes from the matrix
factorization Q = GGT with G ∈ R

n×r∗ , where R
n×r∗ rep-

resents all invertible n × r matrices. Matrix factorization is
invariant under rotation. In other words, multiplying G by
a rotation matrix O produces the same Q. Let O(r) repre-
sent the space containing all rotation matrices (linear operators
preserving the norm). Then, we can have a set of equivalence
classes [G] = {GO, s.t. G ∈ O(r)} which can be identified
by the quotient S+(r, n) � R

n×r∗ /O(r).
The tangent space T[G]S

+(r, n) at [G] contains all direc-
tions that induces no displacement in the equivalence class
[G]. A tangent vector ξ[G] ∈ T[G]S

+(r, n) corresponds to a
unique horizontal vector ξG ∈ TGR

n×r∗ that is orthogonal to
the equivalence class [G]. The EM bestowed on the total space
R

n×r∗ induces a Riemannian metric in the quotient space [21]

g[G]
(
ξ[G], ζ[G]

)
� gG

(
ξG, ζ G

) = Tr
(
ξ

T
G ζG

)
. (34)

Here, the inner product of two tangent vectors in the quotient
space is the standard inner product of their correspond-
ing horizontal vectors. With this geometry, the exponential
mapping is

ExpG
(
ξ̄G

) = [
G+ ξ̄G

] = G+ ξ̄G (35)

leading to a straight geodesic expressed as follows:

γG(t) = ExpG
(
tξ̄G

) = G+ tξ̄G. (36)

The horizontal gradient of a function g defined in the
quotient space is the unique vector ∇g(G) satisfying

ḡG

(
ξ̄G,∇g(G)

)
= d

dt
g(γG(t))|t=0. (37)

The calculation of the horizontal gradient can then be per-
formed through computation of the classical derivative of the
composite function g ◦ γ .

Since Q is decomposed as the matrix factorization of
G, the geodesic distance δ

Q
LE parametrized by Q can be

reparameterized by G as

δ
Q
LE(X, W) = δGGT

LE (X, W) = Tr
[
GGT(T− U)(T− U)

]

where T = log X and U = log W. Using the formula of the
above geodesics, the distance along the geodesic

δ
γQ
LE = δ

γGγ T
G

LE = Tr
[
γG(t)(γG(t))T(T− U)(T− U)

]
. (38)

The horizontal gradient of the cost function EQ
i at G is given

as follows:

∇ξ̄G
EQ

i = 2fK(Ti − UJ)
2G− 2fJ(Ti − UK)2G. (39)

The detailed derivation of ∇ξ̄G
EQ

i is given in Appendix A-D.

Algorithm 1 GLVQ With LEML for SPD Matrices
Input: m training instances (X1, y1), . . . , (Xm, ym), where

Xi ∈ S
+(n) and yi ∈ {1, . . . , C}

Output: M labeled prototypes (U1, c1), . . . , (UM, cM), where
Ui ∈ S(n), and ci ∈ {1, . . . , C}, and metric Q ∈ S

+(n)

(GLVQ-LEML-LEM) or Q ∈ S
+(r, n) (GLVQ-LEML-

FM)
1: for i=1 to m do
2: Ti = log Xi

3: end for
4: Randomly initialize Uj, and initialize Q as identity matrix
5: while a stopping criterion is not reached do
6: Choose an instance (Ti, yi) randomly
7: Identify the closest correct UJ and incorrect prototypes

UK respectively, utilizing the distance measure δ
Q
LE =

Tr[Q(Ti − U)(Ti − U)]
8: Update prototypes UJ and UK according to Eqs. (28)

and (29), respectively
9: Update distance matrix Q according to Eq. (33), lead-

ing to the implementation of the GLVQ-LEML-LEM
method, or according to Eqs. (40) and (41), resulting in
the realization of the GLVQ-LEML-FM method

10: end while

Consequently, the updating rule of Q is given as follows:

G← G− 2η
(

fK(Ti − UJ)
2 − fJ(Ti − UK)2

)
G (40)

Q← GGT . (41)

Similarly, the matrix Q is updated along geodesic due to the
matrix factorization. The factor G is updated along a straight
line. It changes so that the distance from the closest correct
prototype becomes smaller, while the distance from the clos-
est incorrect prototype increases. Note that this updating rule
for Q is quite similar to the way the metric is learned in
GMLVQ [4].

The learning procedure of GLVQ-LEML (including both
GLVQ-LEML-LEM and GLVQ-LEML-FM) is summarized in
Algorithm 1.

VI. EXPERIMENTS

The proposed methods were verified on multiple datasets
of different natures, including two synthetic datasets, three
image datasets, and one motor imagery dataset. In this arti-
cle, the scaling function � was set as �(x) = 1/(1 + e−x).
Continuously decreasing learning rates in the learning pro-
cess were used. The learning rate of prototypes followed the
decreasing schedule α(t) = (nξ/100)0.01t/T , where ξ repre-
sents the number of prototypes per class, n denotes the rank of
the input matrix, T represents the number of training epochs,
and t = 1, . . . , T . The learning rate of metric Q followed the
schedule: η(t) = (n/1000)0.01t−t0/T−t0 , where t0 represents
the time when to start learn Q. To make the learning algo-
rithm stable, we used smaller learning rates for Q compared
to that of prototypes and started to learn Q when the learning
of prototypes was stable. In this article, we set t0 = 1.
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(a) (b)

Fig. 3. Accuracy comparison between different metrics in the framework of
LVQs on synthetic datasets. (a) SynI. (b) SynII.

A. Synthetic Data

To directly compare our proposed methods with the method
presented in [13], two synthetic datasets created in [13] were
used, namely: 1) SynI and 2) SynII. Both synthetic datasets
contain four categories consisting SPD matrices of size 10×10.
For SynI, class 1 and class 2 shared a set of eigenvalues, class
3 and class 4 shared another set of eigenvalues, class 1 and
class 3 shared a set of eigenvectors, while class 2 and class
4 shared another set of eigenvectors. For SynII, all classes
shared one set of eigenvectors but each class had its own set of
eigenvalues. Both of the two datasets contain three subsets, for
training, validation, and test, respectively. Each subset contains
250 data points per class. The generating process was repeated
for 30 times. Averaged results over the 30 runs were reported.
The detailed generating process can be found in [13].

All algorithms involved in this section were realized in
MATLAB and run using a single core Intel 3.4-GHz CPU
under a 64-bit Linux system. They were all trained for 100
epochs. The number of prototypes per class was chosen from
1 to 5 based on the performance on the validation dataset, if
not specified.

We first compared LVQs under LEM with those under EM
for classifying SPD matrices. As mentioned in [13], under EM,
the learned prototypes cannot always stay positive definite.
In this case, whenever a prototype update leaves S+(n), we
project it back onto S+(n) by setting the nonpositive eigenval-
ues to a tiny positive value. The results are depicted in Fig. 3,
showing that LEM significantly improves the classification
performance.

We then compared our proposed methods developed under
LEM with GLVQ-AIRM [13] in terms of both performance
and computational time. Table I shows the mean accuracy of
the studied Riemann GLVQ methods across 30 runs together
with standard derivation (±).

Table I suggests that the proposed methods under LEM
obtained comparable performance to GLVQ-AIRM on the
synthetic datasets.

As shown in Table I, GLVQ-LEML-LEM obtained slightly
better classification accuracy than GLVQ-LEML-FM. To bet-
ter understand the difference between the two approaches,
we compared their learned metrics. Fig. 4 shows the eigen-
values of the two metrics, respectively. The eigenvalues of
the metric learned in GLVQ-LEML-FM spread more broadly
than that in GLVQ-LEML-LEM. This suggests that GLVQ-
LEML-FM is more likely to drive the weights of some

TABLE I
MEAN TEST ACCURACY OF THE RIEMANN GLVQ METHODS ACROSS 30

RUNS TOGETHER WITH STANDARD DERIVATION (±). THE

PERFORMANCE BETTER THAN GLVQ-AIRM IS MARKED IN BOLDFACE

(a) (b)

Fig. 4. Eigenvalues of the learned metric on synthetic datasets, with five
prototypes per class. (a) SynI dataset. (b) SynII dataset.

dimensions toward 0 and it may obtain better performance
if the dimensions of the data are large and some dimensions
of the data contribute little to the classification task. However,
GLVQ-LEML-LEM restricts the metric to be positive definite,
confining the weight of each dimension within a small range.
Therefore, GLVQ-LEML-LEM obtained better performance
when the dimensionality of the data is small and all dimensions
contribute greatly to the classification task.

Fig. 5 presents the classification accuracy, training time, and
test time of the methods as a function of the number of pro-
totypes per class. As we can see from Fig. 5(a) and (b), the
methods appear to be remarkably robust to the danger of over-
fitting caused by the increased number of class prototypes,
with the exception of GMLVQ With LEM (GMLVQ-LEM).

Fig. 5(c) and (d) shows that the proposed methods were
computationally efficient. Both training and test time of all
the algorithms linearly depend on the number of prototypes
per class. The training of GLVQ-LEML (using either LEM
or FM) and GMLVQ-LEM were both slower than that of
GLVQ-LEM, as they need to learn the metric besides the pro-
totypes. As we expected, the training of GLVQ with LEM
learning (GLVQ-LEML) is faster than GMLVQ-LEM, since
the metric in GLVQ-LEML is of size n× n, while the metric
in GMLVQ-LEM is of size ([n(n+ 1)]/2) × ([n(n+ 1)]/2).
However, the test of GLVQ-LEML is slightly slower than
the other approaches under LEM, as the computation of the
geodesic distance δ

Q
LE is more complicated than δLE. As we

expected, the computational time of our methods under LEM is
much faster than that of GLVQ-AIRM, except LGMLVQ-LEM
which leans one local metric for each prototype.
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(a) (b)

(d)(c)

Fig. 5. Performances as a function of the number of prototypes per class.
(a) Accuracy for SynI. (b) Accuracy for SynII. (c) Training time for SynI.
(d) Test time for SynI.

Experiments on two synthetic datasets indicate the
proposed GLVQ methods under LEM can achieve compara-
ble performance to that under AIRM. Moreover, the proposed
methods under LEM are much faster than GLVQ-AIRM.

B. Image Classification

The ETH-80 dataset [22] was used to evaluate our meth-
ods. It contains eight categories. Each category consists of ten
objects. Each object has 41 images.

Following [9], we randomly chose 21 images of each object
to train the classifier and used the remaining images to ver-
ify the classification performance. A single 5 × 5 covariance
descriptor was used to represent each image. The features
[x, y, I, |Ix|, |Iy|] were used to calculate the covariance descrip-
tor, where x and y represent the locations of the pixel and I, Ix,
and Iy denote the corresponding intensity and derivatives. The
splitting of the training and test set was randomly and inde-
pendently repeated for 20 times, and thus the training and test
procedure was repeated for 20 runs. The averaged performance
over 20 runs is reported.

We compared our proposed methods with other LEM-based
methods in the literature, particularly, K-means with LEM
(KM-LEM) [9], kernel KM-LEM (KKM-LEM) [9], mini-
mum distance to Riemannian mean with LEM (MDRM-LEM),
and LEM learning (LEML) [19] on the ETH-80 dataset. The
training epochs and the number of prototypes per class were
selected by five-fold cross-validation on the training set. For
training epochs, we experimented with 20, 50, 100, 200, and
500 iterates, respectively, while for the number of prototypes
per class, we enumerated from 1 prototype per class to 10
prototypes per class. For LEML, the parameter η is chosen
from [0.01, 0.1, 1, 10, 100] and ζ is tuned from 0.1 to 0.5 by
five-fold cross-validation on the training set.

TABLE II
COMPARISON OF OUR PROPOSED METHODS WITH OTHER LEM-BASED

METHODS IN THE LITERATURE. THE RESULTS OF KM-LE, KKM-LE,
AND MDRM-LE ARE TAKEN FROM [9]. THE BEST PERFORMANCE IS

MARKED IN BOLDFACE

Fig. 6. Eigenvalues of the learned metrics on ETH-80. The analyzed number
of classes was 8. Five prototypes were learned for each class. The method
were trained epochs was 100.

Experimental results are given in Table II. The results show
that both GLVQ-LEML-LEM and GLVQ-LEML-FM obtained
significantly better performance than GLVQ-LEM, GRLVQ-
LEM, GMLVQ-LEM, and LGMLVQ-LEM, while obtained
slightly better performance than GLVQ-AIRM and LEML.
These methods are much better than KM-LEM, KKM-LEM,
and MDRM-LEM.

Table II also shows that the performance of GLVQ-LEML-
LEM is slightly better than that of GLVQ-LEML-FM. We
again compared the metrics learned by the two different
approaches. As we can see in Fig. 6, the eigenvalues of both
metrics are far from 0, indicating all dimensions of the data
contribute greatly to the task. This confirms the findings in the
experiments on the synthetic datasets, that GLVQ-LEML-LEM
will obtain better performance if all dimensions of the data
contribute greatly to the task. Again, the eigenvalues of the
metric learned by GLVQ-LEML-FM spread slightly broader
than those learned by GLVQ-LEML-LEM.

It can be argued that when the size of available training
data is large, specialized Riemannian manifold-based meth-
ods of the kind presented here may not be needed. Indeed,
for example, deep convolutional neural networks (CNNs) and
related approaches can implicitly learn to handle the under-
lying structure of the input space. However, there are still
situations where only limited sample sizes are available, for
instance, in EEG data classification [11]. In such situations,
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it is necessary to consider carefully the structure of the input
space. To support this argument, we performed a set of con-
trolled experiments on a downsampled large dataset, with a
gradually increasing sample size. The dataset, CIFAR-10 [23],
contains 50 000 training and 10 000 test images organized in
ten classes. We randomly drew 200, 500, 1000, 5000, and
10000 images from the training set (in a stratified manner)
to train our methods, as well as the VGG net [23], a repre-
sentative deep CNN method. The methods were then verified
on the hold-out set of 10 000 test images. The random down-
sampling of training images was repeated five times. Average
performance together with standard derivation across the five
runs was reported.

Each VGG network was trained for 100 epochs. The learn-
ing rate was annealed according to the exponential decay
schedule, that is, α(t) = 0.01 ∗ 0.99t. The architecture was
chosen from 11, 13, 16, and 19 layers (detailed configuration
is given by A in [23, Table 1]) via five-fold cross-validation
only using the training split. As for our methods, we used
GLVQ-LEML-LEM, since GLVQ-LEML-LEM obtained bet-
ter performance than others on the image dataset. We trained
for 100 training epochs. The number of prototypes per class
was picked from 1 to 5 also by five-fold cross-validation
on the training set. Following [18], each image is repre-
sented by 9 × 9 covariance descriptor calculated from the
features [x, y, R, G, B, |Ix|, |Iy|, |Ixx|, |Iyy|], where x and y are
pixel locations and I, Ix, and Iy are corresponding intensity and
derivatives, Ixx and Iyy are corresponding second-order partial
derivative.2

The mean test accuracy curves as functions of the number
of training examples, are presented in Fig. 7(a). As expected,
when the training sample size is small, our dedicated method
performs better than deep CNNs. However, as the size of
the training sample increases, the accuracy of the VGG net
increases sharply. We observed that the training accuracy of
VGG net on the small training sample (200 training instances)
is also very small (46.5%). Therefore, the inferior performance
is not due to overfitting. Note that CIFAR-10 contains ten
classes. Our proposed method trained with 20 examples per
class obtained an accuracy of 32.2%, three times as many as
the random guess (10%).

To further demonstrate the effectiveness of our proposed
methods in the case of small training samples, we compared
GLVQ-LEML-LEM with SVM. For SVM, both linear and
spherical Gaussian kernels were used. The penalty parame-
ter C and kernel width γ were both selected from {0.01, 0.1,
1, 10, 100,1000}, respectively, by five-fold cross-validation on
the training set. The inputs were normalized to zero mean
and unit variance per dimension. To provide a fair compar-
ison, the number of prototypes per class was either fixed to
one (in the Euclidean case, this setting corresponds to a linear
classification boundary between two classes), or was allowed
to be determined by cross-validation from {1, 2, 3, 4, 5}. We
refer to the former and latter cases as GLVQ-LEML-one and
GLVQ-LEML-multi, respectively. The models were trained

2We have tried using 5× 5 covariance descriptor. The performance of our
method gives better performance when using 9× 9 covariance descriptor.

(a) (b)

Fig. 7. Performance curves as functions of the number of training examples
on the CIFAR-10 dataset. GLVQ-LEML-one and GLVQ-LEML-multi refer
to our model with one and cross-validated number of prototypes per class,
respectively. SVM with linear and spherical Gaussian kernels are referred
to as SVM-linear and SVM-RBF, respectively. (a) Comparison with CNN.
(b) Comparison with SVM.

for 100 epochs. Fig. 7(b) shows that our GLVQ-LEML-LEM
model consistently outperformed SVM (linear or nonlinear),
confirming the effectiveness of our proposed methods.

The VGG net takes full raw images as inputs, while our
method takes highly summarized covariance structures of
images as inputs. To provide a thorough comparison, we
further compared our method with a deep network called
SPD matrix network (SPDNet) [24] that also takes covari-
ance descriptors as inputs. Following [24], the popular Acted
Facial Expression in Wild (AFEW) [25] was used. The AFEW
dataset consists of 1345 videos of seven facial expressions
performed by actors in movies in real-world scenarios. The
videos were divided into three subsets for training, validation,
and test, respectively. Ground-truth class labels of the test set
were unavailable. We therefore following [24] reported the
results on the hold-out validation set. We preprocessed the
data the same as in [24]. Training videos were segmented into
1747 small clips. Each clip was represented by a covariance
matrix of size 400× 400.

Since the SPD matrix is high dimensional, we used our
GLVQ-LEML-FM to perform the comparison experiments. As
for the SPDNet, the best architecture (SPDnet-3BiRe) reported
in [24] was used. The training epochs of both methods were set
as 100. The number of prototypes of our method was chosen
from 1 to 3 via five-fold cross-validation on the training set.

Analogously to our previous experiment, we gradually
increased the training sample size starting from 350, through
525, 700, 875, to 1050 randomly subsampled instances from
the training set. Each random downsampling process was
repeated for five times. We reported the mean accuracy on
the hold-out validation set over five runs together with stan-
dard deviations. The hold-out validation set results are given
in Fig. 8. Note that, in Fig. 8, the accuracy of the SPDNet that
was trained with the entire 1747 training instances was taken
from [24], thus no standard derivation was provided.

Fig. 8 shows that the performance discrepancy between our
method and the SPDnet is rather small. Our method provided
slightly better performance when the training sample is small.
The overall performance of our method was comparable to that
of the SPDNet method. Note that the AFEW dataset contains
seven classes. The proposed method trained with 50 examples
per class, obtained an accuracy of 28.4%, twice as many as
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Fig. 8. Performance changes as a function of the number of training examples
on the AFEW dataset.

the random guess (1/7). Given that the data is complex and
high dimensional, the performance of our proposed method
is acceptable. More importantly, the SPDNet did not provide
better performance than that of our method either.

C. Motor Imagery Datasets

We finally evaluated our proposed approaches on the dataset
2a in BCI competition IV (IV-2a) [26]. This dataset consists
of EEG signals recorded from nine healthy subjects using 22
electrodes at a sampling rate of 250 Hz. During recording, the
subject was cued to execute one of four motor imagery tasks
for 4 s, including imagining left-hand movement, right-hand
movement, both feet movement, and tongue movement. For
each subject, two sessions were recorded on different days.
Each session contains 288 trials with 72 trials per class. In
each trial, the segment of 2 s starting from 0.5 s after the
presence of the cue was extracted for analysis. The extracted
segments were bandpass filtered by a fifth-order Butterworth
filter in the 10–30-Hz frequency band and then transformed
into spatial covariance matrices of size 22× 22 following the
same procedure as in [13] and [27].

The performance of our proposed methods was compared
with three winning results in terms of kappa value distributed
at the website of BCI competition IV and other existing
results presented in the literature. Kappa is a widely used
performance metric in motor imagery classification tasks [28].
It is calculated as K = (Pa − Pc)/(1 − Pc), where Pa is the
classification accuracy and Pc is the classification accuracy of
random guess. Since the data contains four balanced classes,
we have Pc = 1/4.

For our presented methods, the number of prototypes per
class and training epochs were chosen from {1, 2, 3} and
{20, 50, 100}, respectively, by five-fold cross-validation on the
training fold.

Table III compares our proposed methodologies with the
state-of-the-art methods. The methods labeled by 1st, 2nd, and
3rd represent the three winning results on the IV-2a dataset dis-
tributed on the website of BCI competition IV [29]. Minimal
distance to Riemannian mean (MDRM) [30] learns a clus-
ter center for each class of instances by computing their
Riemannian geometric mean under the AIRM. The class label
of an unknown instance is obtained by finding its AIRM-
closest center. Apart from using a different Riemannian metric,
our proposed methods can learn multiple representatives for
each class. Thus, our methods are more flexible and potentially

more powerful than MDRM. Tangent space linear discrim-
inant analysis (TSLDA) [30] is an extension of Euclidean
LDA to the Riemannian manifold of SPD matrices equipped
with the AIRM. TSLDA projects SPD matrices from the train-
ing set onto the tangent space at their Riemannian mean and
then applies the standard Euclidean linear discriminant anal-
ysis in the tangent space. This treatment of mapping data
to a tangent space at a particular point gives a first-order
approximation of the data manifold, which can introduce sig-
nificant distortions, especially in regions that are far from the
origin of the tangent space. Our proposed methods do not uti-
lize this global tangent space projection. Instead, our methods
utilize the Riemannian stochastic gradient descent algorithm,
which only involves local tangent space projections and thus
can avoid large-scale distortions. Moreover, TSLDA inherits
the binary nature of LDA. To deal with multiclass classifica-
tion of SPD matrices, TSLDA needs to decouple the problem
into multiple binary classification problems using appropri-
ate heuristics (e.g., one-versus-one). Instead, our methods can
naturally deal with multiclass classification problems. Tangent
space of submanifold learning followed by linear discrimi-
nant analysis (TSSM+LDA) [31] is an extension of TSLDA
with submanifold learning. This method first learns an optimal
map from the original Riemannian space of SPD matrices
to the Riemannian submanifold through jointly diagonalizing
the Riemannian geometric means of the two class data. The
optimal map transforms the original SPD matrices into lower
dimensional SPD matrices where tangent space projection is
performed and then Euclidean LDA is applied. Wavelet-spatial
convolution network (WaSF ConvNet) [28] is a deep learning
approach that learns joint space–time–frequency features using
Morlet wavelet-like kernels and spatial kernels. To enable the
deep nets work for small training data, cropped training, early
stopping, and subject-to-subject weight transfer were used.

Table III shows that our proposed methods obtained
comparable performance to the state-of-the-art methods.
Interestingly, the proposed GLVQ-LEML-FM method
obtained the best performance among our proposed
approaches, significantly beating the proposed GLVQ-
LEML-LEM method. We observed that many eigenvalues of
the learned metric using GLVQ-LEML-FM were close to 0
(see Fig. 9), indicating that only a few dimensions of the data
contributed greatly to the classification task. This confirms the
finding that not all the recorded electrodes provided signifi-
cantly useful information [32]. However, GLVQ-LEML-LEM
restricted the distance metric to be positive definite, violating
the nature of the data. Consequently, it obtained inferior
performance to that of the GLVQ-LEML-FM method.

Compared to the three winning results distributed on the
website of BCI competition IV, our methods obtained superior
performance. The performance of our proposed GLVQ-LEML-
FM method was significantly better than the 1st winner of
BCI competition IV. The GLVQ-LEML-FM method outper-
formed the 1st winner on five subjects over the nine sub-
jects. The GLVQ-LEML-LEM method obtained slightly worse
performance than the 1st winner, but obtained marginally bet-
ter performance than the 2nd winner. Our other proposed
methods are all marginally better than the 3rd winner.
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TABLE III
PERFORMANCE COMPARISON BETWEEN OUR METHODS AND EXISTING RESULTS IN TERMS OF KAPPA VALUE ON THE IV-2A DATASET. METHODS ARE

ARRANGED IN A DESCENDING ORDER ACCORDING TO THEIR PERFORMANCES. 1ST, 2ND, AND 3RD REPRESENT THE THREE WINNING RESULTS

DISTRIBUTED ON THE WEBSITE OF BCI COMPETITION IV [29]. OUR METHODS ARE MARKED IN BOLDFACE

Fig. 9. Eigenvalues of the learned metric on subject 1 of the BCIIV2a dataset.
Three prototypes were learned for each class. The method were trained for
100 epochs.

Compared to other manifold-related methods in the lit-
erature, particularly, GLVQ-AIRM, TSLDA, MDRM, and
TSSM+LDA, our proposed method obtained comparable
results. The aforementioned methods are all developed on the
SPD manifold equipped with AIRM. The GLVQ-LEM method
obtained worse performance than that of the GLVQ-AIRM
method, suggesting that AIRM is more suitable for EEG
data. The AIRM preserves the geodesic distance in different
domains. To be more specific, the distance between two EEG
trials will be the same in both the signal domain and source
domain. Then, the calculation using the spatial covariance
matrix computed from the recorded EEG signal is equivalent
to that from the real source. The noise or artifact will not affect
the computation. However, LEM does not have such nice prop-
erty. Thus, AIRM is more suitable than LEM when dealing
with EEG data. Incorporating metric learning in the GLVQ
based on LEM, that is, GLVQ-LEML-FM, the method reaches
comparable performance to that of GLVQ-AIRM. Moreover,
the LEM-based method is much computationally efficient than
AIRM-based methods.

Compared with WaSF ConvNet, our GLVQ-LEML-FM
obtained comparable performance. This may because the num-
ber of training instances per subject is small. More importantly,
our GLVQ-LEML-FM method is computationally faster than
WaSF ConvNet, especially during the test. During the situation
where a quick response is needed, such as real-time control,
our method might be a nicer choice.

VII. CONCLUSION

In this article, we have developed novel methods for the
classification of SPD matrix-formed data in the framework of
LVQ. We have first extended Euclidean GLVQ to the space
of SPD matrices by exploiting the LEM-induced geodesic
distance (GLVQ-LEM).

We then extend GLVQ-LEM with metric learning in two
different approaches. The first approach is simply to adapt
metric in the space of vectorized log-transformed SPD matri-
ces. This approach may distort the geometrical structure of
the logarithm space derived from SPD matrices, as well as
result in low computational efficiency since it needs to learn
a much larger distance metric than the data dimension. The
second approach learns a tangent map directly projecting the
matrix logarithms in the original tangent space to a possi-
bly more discriminative tangent space. The distance metric is
much smaller, leading to improved computational efficiency.

Empirical experiments conducted on multiple datasets of
different nature, that is, synthetic data, image data, and EEG
classification data, showed the good performance of our
methods. Our proposed methods, particularly, GLVQ-LEML,
obtained competitive performances compared to other existing
methods. This work, following our previous study of extend-
ing GLVQ to the manifold of SPD matrices equipped with
AIRM [13], shows that LVQ methods can be competitive
learning methods dedicated to Riemannian manifolds. In the
future, we, therefore, intend to follow two lines. One line is
to extend GLVQ to other types of Riemannian manifolds. The
other line is to extend other LVQ methods using the framework
presented in this article.

APPENDIX A
DERIVATION OF RIEMANNIAN GRADIENTS

A. Derivation of the Riemannian Gradient ∇VJ Ei

Since the trace operator is invariant under cyclic permuta-
tions, that is, Tr(A1A2A3) = Tr(A2A3A1) = Tr(A3A2A1), the
Riemannian gradient ∇VJ Ei can be calculated as follows:

〈
VJ,∇VJ Ei

〉
WJ
= d

dt
Ei(γJ(t), WK)

∣∣∣∣
t=0
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= gK
d

dt
δLE(Xi, γJ(t))

∣∣∣∣
t=0

= gK
d

dt
Tr

[
(log Xi − log γJ(t))

2
]∣∣∣∣

t=0

= −2gKTr

[
(log Xi − log γJ(t))

d

dt
log γJ(t)

]∣∣∣∣
t=0

= −2gKTr
[
(log Xi − log WJ)WJ

−1VJ

]

= −2gKTr
[
WJ
−1VJW−1

J WJ(log Xi − log WJ)
]

= 〈VJ,−2gKWJ(log Xi − log WJ)〉WJ
. (42)

Consequently, the gradient ∇VJ Ei is given as follows:

∇VJ Ei = −2gKWJ(log Xi − log WJ). (43)

B. Derivation of the Riemannian Gradient ∇VJ EQ
i

The Riemannian gradient ∇VJ EQ
i can be computed as

〈
VJ,∇VJ EQ

i

〉

WJ
= d

dt
EQ

i (γJ(t), WK, Q)

∣∣∣∣
t=0

= fK
d

dt
δ

Q
LE(Xi, γJ(t))

∣∣∣∣
t=0

= fK
d

dt
Tr

[
Q(log Xi − log γJ(t))

2
]∣∣∣∣

t=0

= −2fKTr

[
Q(log Xi − log γJ(t))

d log γJ(t)

dt

]∣∣∣∣
t=0

= −2fKTr
[
Q(log Xi − log WJ)WJ

−1VJ

]

= 〈VJ,−2fKWJQ(log Xi − log WJ)〉WJ
. (44)

Consequently

∇VJ EQ
i = −2fKWJQ(log Xi − log WJ). (45)

C. Derivation of the Riemannian Gradient ∇VQ EQ
i

The initial speed vector VQ is unknown. The minimum of
the cost function can be achieved when the initial speed vector
of the curve is parallel to the gradient of the cost function.
Hence, the Riemannian gradient of the cost function in the
direction VQ evaluated at point Q denoted by ∇VQ EQ

i can
still be computed as

〈
VQ,∇VQ EQ

i

〉

Q
= d

dt
EQ

i (WJ, WK, γQ(t)

∣∣∣∣
t=0

= fK
d

dt
δ
γQ
LE(Xi, WJ)

∣∣∣∣
t=0
− fJ

d

dt
δ
γQ
LE(Xi, WK)

∣∣∣∣
t=0

. (46)

Note that the curve γQ(t) at the t = 0 reaches the point Q,
that is, γQ(0) = Q. Thus, δ

γQ
LE(Xi, WJ) = δ

Q
J at t = 0.

As trace operator is invariant under cyclic permutations,
if the operatee is products of three symmetric matrices, any
permutation is allowed, we can have

d

dt
δ
γQ
LE(Xi, W)

∣∣∣∣
t=0

= d

dt
Tr

[
γQ(t)(log Xi − log W)2

]∣∣∣∣
t=0

= Tr

[
(log Xi − log W)2 dγQ(t)

dt

]∣∣∣∣
t=0

= Tr
[
(log Xi − log W)2VQ

]

= Tr
(

QQ−1VQQ−1Q(log Xi − log W)2
)

= Tr
(

Q−1VQQ−1Q(log Xi − log W)2Q
)

=
〈
VQ, Q(log Xi − log W)2Q

〉

Q
. (47)

Therefore, we can have
〈
VQ,∇VQ EQ

i

〉

Q

= fK
〈
VQ, Q(log Xi − log WJ)

2Q
〉

Q

− fJ
〈
VQ, Q(log Xi − log WK)2Q

〉

Q
.

Consequently

∇VQEQ
i = fKQ(log Xi − log WJ)

2Q

− fJQ(log Xi − log WJ)
2Q. (48)

D. Rimannian Gradient ∇ξ̄G
EQ

i

As T and U are both symmetric, ∂Tr(X) = Tr(∂X) and in
general for suitable B, ([∂Tr(BXXT)]/∂X) = (B + BT)X we
have

d

dt
δ
γQ
LE(Xi, W)

∣∣∣∣
t=0
= d

dt
δ
γGγ T

G
LE (Xi, W)

∣∣∣∣
t=0

= d

dt
Tr

[
γG(t)(γG(t))T(Ti − U)2

]∣∣∣∣
t=0

= Tr

[
2(γG(t))T(Ti − U)2 dγG(t)

dt

]∣∣∣∣
t=0

= Tr
[
2GT(Ti − U)2ξ̄G

]

= ḡG

(
ξ̄G, 2(Ti − U)2G

)
. (49)

Thus, the horizontal gradient of the cost function EQ
i at G

can be computed

ḡG

(
ξ̄G,∇ξ̄G

EQ
i

)
= d

dt
EQ

i (γJ(t), WK, Q)

∣∣∣∣
t=0

= fKḡG

(
ξ̄G, 2(Ti − UJ)

2G
)

− fJ ḡG

(
ξ̄G, 2(Ti − UK)2G

)
. (50)

Consequently, the horizontal gradient of the cost function
at G is given

∇ξ̄G
EQ

i = 2fK(Ti − UJ)
2G− 2fJ(Ti − UK)2G. (51)
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