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Abstract
We present a novel model-metric co-learning
(MMCL) methodology for sequence classification
which learns in the model space – each data item
(sequence) is represented by a predictive model
from a carefully designed model class. MMCL
learning encourages sequences from the same class
to be represented by ‘close’ model representations,
well separated from those for different classes. Ex-
isting approaches to the problem either fit a single
model to all the data, or a (predominantly linear)
model on each sequence. We introduce a novel
hybrid approach spanning the two extremes. The
model class we use is a special form of adap-
tive high-dimensional non-linear state space model
with a highly constrained and simple dynamic part.
The dynamic part is identical for all data items and
acts as a temporal filter providing a rich pool of dy-
namic features that can be selectively extracted by
individual (static) linear readout mappings repre-
senting the sequences. Alongside learning the dy-
namic part, we also learn the global metric in the
model readout space. Experiments on synthetic and
benchmark data sets confirm the effectiveness of
the algorithm compared to a variety of alternative
methods.

1 Introduction
Classification of structured data, such as time series, is an im-
portant problem in many application domains [Sha and Saul,
2007; Ghanem and Ahuja, 2010]. One popular approach,
termed Dynamic time warping (DTW), measures ‘similarity’
between two sequences of variable-length by ‘warping’ the
time axis of one (or both) sequences to achieve a better align-
ment [Berndt and Clifford, 1994]. DTW can sometimes gen-
erate unintuitive alignments (e.g. mapping a single point in
one time series onto a large subsection of another time se-
ries), leading to inferior results [Keogh and Pazzani, 2001].
Since the DTW similarity measure is not essentially positive
definite it cannot be directly used in a kernel machine. A time
series kernel based on global alignment, motivated by DTW,
has been proposed in [Cuturi et al., 2007], with an efficient
version presented in [Cuturi, 2011].

In this context, a new trend has emerged in the machine
learning community, using models that are fitted on parts of
data as more stable and parsimonious data representations.
Learning is then performed directly in the model space, in-
stead of the original data space. For example, Brodersen
et al. [Brodersen et al., 2011] used a generative model of
brain imaging data to represent fMRI measurements of dif-
ferent subjects through subject-specific models. They subse-
quently employed SVM on the models’ parameters to distin-
guish aphasic patients from healthy controls.

Prior to these developments, some aspects of learning
in the model space occurred in different forms in the ma-
chine learning community. For example, the use of gen-
erative kernels for classification (e.g. the P-kernel [Shawe-
Taylor and Cristinanini, 2004] or Fisher kernel [Jaakkola and
Haussler, 1999]) can be viewed as a form of learning in a
model induced feature space (see e.g. [Jebara et al., 2004;
Bosch et al., 2008]). The Fisher kernel maps individual time
series into score functions of a single generative model that
is assumed to be able to ‘explain’ most of the data. The gen-
erative model employed in a Fisher kernel is often a Hid-
den Markov Model (HMM) with a fixed number of states.
In some situations the assumption of the particular genera-
tive model underlying the data can be too strong. In addition,
Fisher kernels are computationally expensive because of the
calculation of metric tensor (inverse of the Fisher information
matrix) in the tangent space of the generative model mani-
fold. The often used ‘practical’ Fisher kernel replaces the
metric tensor with an identity matrix. This can result in a loss
of valuable information in the data [Van der Maaten, 2011].
Yet another approach based on an Autoregressive kernel [Cu-
turi and Doucet, 2011] uses a vector autoregressive (VAR)
model of a given order to generate an infinite family of fea-
tures from the time series. Each time series is represented
by its likelihood profile of VAR across all possible parameter
settings (under a matrix normal-inverse Wishart prior). The
kernel is then defined as the dot product of the corresponding
likelihoods.

In the context of time series classification, several ap-
proaches have used a generative probabilistic model of time
series to define a time series kernel through models corre-
sponding to each of the sequences (as opposed to a sin-
gle model for all sequences employed in the Fisher ker-
nel), e.g. the probability product kernel [Jebara et al., 2004]
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or Kullback-Leibler (KL) divergence based kernels [Moreno
et al., 2004]. [Chan and Vasconcelos, 2005] proposed a
probabilistic kernel based on KL divergence between spatio-
temporal linear systems fitted on video sequences. [Saisan
et al., 2001], while also using linear systems to model indi-
vidual image sequences, suggested three novel distances be-
tween the models, in particular: principal angles between spe-
cific subspaces derived from the models, Martin and geodesic
distances. Binet-Cauchy kernels [Vishwanathan and Smola,
2006] formed a general family of kernels on linear systems
subsuming several existing time series kernels. Vishwanathan
et al. derived explicit formulae for efficient kernel computa-
tion. Staying within the linear dynamics domain, [Chan and
Vasconcelos, 2007] allowed for a non-linear readout (obser-
vation function) from the (hidden) states.

To the best of our knowledge, previous model-based time
series kernel formulations have been based on linear dynami-
cal systems, predominantly with linear observation functions.
[Vishwanathan and Smola, 2006] discussed extension to non-
linear dynamics, but only for the case of fully observable
states. Direct extension of the previous work to non-linear
dynamics may be highly non-trivial and computationally ex-
pensive, perhaps requiring approximation techniques.

Existing approaches to model based sequence classifica-
tion either use a single model fitted on the full data/individual
classes, or fit a full linear dynamic model on each sequence.
Models fitted on the full data/classes can be more complex
than those fitted on individual sequences. The price is to be
paid is the potential inadequacy of such a model to capture in-
dividual variations among the data items. Hence on the other
hand, individual sequence models have to be relatively sim-
ple (e.g. with linear dynamics) to keep the model estimation
stable. We propose a new hybrid approach spanning the two
extremes in an attempt to keep the best of both worlds. As the
core model class used to represent individual sequences we
use a special form of adaptive high-dimensional non-linear
state space model with a highly constrained dynamic part.
The dynamic part is the same for all data items and acts as
a temporal filter providing a rich pool of dynamic features
that can be selectively extracted by individual (static) lin-
ear readout mappings representing the sequences. Alongside
learning the dynamic part, we also learn the global metric
in the readout model space. The overall goal is to adapt the
shared dynamical system and metric tensor on the readout
maps (standing for the sequences) so that sequences from the
same class are represented by ‘close’ readouts, while readouts
of sequences from different classes are well-separated. We
term our methodology model-metric co-learning (MMCL).

The MMCL framework for sequence classification builds
on ideas of model based representation for sequences [Chen
et al., 2013; Chan and Vasconcelos, 2005] and discriminative
learning [Brodersen et al., 2011; Van der Maaten, 2011] but
differs mainly in three aspects: First, the final representation
of the sequences is a linear readout mapping, but the full un-
derlying model is non-linear dynamic system. In this way
our methodology reduces the computational demands with-
out the loss of the computational ability of non-linear models.
Second, it treats the model parameters adaptation and model
distance definition jointly rather than adapting the model pa-

rameters first and defining the model distance afterwards in
two independent steps. Third, it has a similar motivation as
other discriminative kernels [Van der Maaten, 2011], but dif-
fers in its goal of utilizing models that both represent the time
series well and at the same time best separate the time series
classes.

The paper has the following organization: We introduce
our methodology in the following section, then report the ex-
perimental results and analysis. Finally, the last section dis-
cusses and concludes the paper.

2 Model Metric Co-learning
As the core model class for sequence representation we use a
high-dimensional parameterized non-linear state space model
rooted in Echo State Networks (ESN) with a simple deter-
ministically constructed dynamic coupling structure [Rodan
and Tiňo, 2012]. As explained above, each sequence is repre-
sented by the corresponding linear readout mapping acting on
top of the common shared non-linear dynamical system. The
difference between two sequences is measured through the
distance of their linear readout weights weighted by a metric
tensor. The shared dynamical system, as well as the metric
tensor in the readout space are learned simultaneously.

The N -dimensional dynamical model we employ has the
following form:

x(t) = tanh(R x(t− 1) + V s(t)), (1)
f(t) = Wx(t) (2)

where x(t) ∈ <N , s(t) ∈ <O and f(t) ∈ <O are the state
vector, input vector and output at time t, respectively; R is
a (N × N) dynamic coupling matrix; V ∈ <N×Oand W
∈ <O×N are the input and output weight matrices1, respec-
tively. We refer to (1) as the state transition mapping (STM).

Provided the non-autonomous dynamics (1) is able to rep-
resent a rich set of features of the given time series, a par-
ticular time series s can be represented by the linear readout
mapping parameterized byW (eq. (2)) operating on reservoir
activations x, specifically fitted to s on the next-item predic-
tion task f(t) ∼ s(t + 1) by minimizing the mean squared
error (MSE) between the model predictions f(t) and targets
s(t+ 1).

Recently, [Rodan and Tiňo, 2012] proposed a highly con-
strained and simple dynamic coupling (cycle reservoir with
jumps - CRJ) with dynamic representational capabilities com-
parable to those of the traditional randomized ESN models.
Viewing (1) as a recurrent neural network, the structure of R
in CRJ has the following form: state units are connected in
a uni-directional cycle with bi-directional shortcuts (jumps).
All cyclic connections have the same weight rc > 0. Like-
wise, all jumps share the same weight rj > 0. The input
weight matrix is also highly constrained: the input connec-
tions have the same absolute value ri > 0; the sign pattern
needs to be aperiodic, see [Rodan and Tiňo, 2011] for details.
The non-linear state space model used in this paper is illus-
trated in Figure 1.

1As usual, the state vector x(t) can be extended with a constant
element (e.g. 1) and W with a column to account for the bias term.
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Figure 1: Illustration of the parameterized state space models
used in this work. The parameterized state space model has a
fixed topology, i.e. a uni-directional cycle with bi-directional
jumps. There are only three parameters in this model: the
cyclic connection weight rc > 0; the jumps weight rj > 0;
and the input weight ri > 0. The input weight matrix V only
contains ri, and the state transition matrix R contains rc and
rj .

In the original CRJ, the weights rc, rj , ri were determined
by cross-validation using grid search, which is computation-
ally extensive in practice. In this contribution, given a se-
quence classification task, we aim to learn these parameters
(common for the whole data set) so that (1) a faithful mod-
elling of individual sequences is achieved (by allowing indi-
vidualized readout mappings from the common state transi-
tion mapping), (2) the sequence classes in the space of read-
out models are well separated. We will learn the weights
(rc, rj , ri) using Real-Time Recurrent Learning [Williams
and Zipser, 1989] and a metric tensor2 on an appropriate cost
functional reflecting (1) and (2) above.

2.1 Cost Functional

We vectorize3 parametersW of the readout mapping (eq. (2))
into the parameter vector w. Assume we are given a set ofM
labelled sequences {sm, ym}Mm=1. Using the fixed common
state transition mapping (eq. (1)), each sequence sm will be
represented by the linear readout mapping parameterized by
wm. The readout is trained on the next item prediction on sm
via ridge regression. The readout weights wm are thus deter-
mined by the model parameters r = (ri, rc, rj), as well as
the sequence sm. To simplify the notation, this dependence4

will not be made explicit.
Representability: A good non-linear state space model

parameterized by r = (ri, rc, rj) should minimize the repre-

2This can be viewed as metric learning [Xing et al., 2002] in the
readout model space.

3For multivariate time series with dimensionality O, the linear
readout weight matrix W is a O × N matrix. In this case, we vec-
torize the matrix W into a column vector.

4The readout weight wm is a function of the model parameters
r and the sequence sm as the variables.

sentability cost with respect to all (i.e. M ) training sequences:

Qp(r) =
M∑
m=1

(

Lm−1∑
t=1

‖fm(t)−sm(t+1)‖2+η||Wm||2), (3)

where Lm is the length of sequence sm, and fm is the output
mapping (eq. (2)) determined by wm. This equation aims
to minimize the difference between actual output f(t) and
desired output s(t+ 1).

Separability: We aim to learn a global metric A such that
sequences from the same class are close to each other in the
readout model space and sequences in different classes are far
away in the readout model space. Given a training sequence
sm, following [Globerson and Roweis, 2006], we introduce
a conditional distribution over training sequence indexes q 6=
m:

pA(q|m) =
e−dA(m,q)∑
k 6=m e

−dA(m,k)
,m 6= q,

where

dA(m, q) = (wm −wq)
TA(wm −wq) (4)

is the squared distance between readout parameter wm and
wq under the (global) positive semi-definite metric A. If all
readouts in the same class were mapped to a single point and
infinitely far from points in different classes, we would have
the ideal distribution [Globerson and Roweis, 2006]:

p0(q|m) ∝
{

1 if ym = yq
0 if ym 6= yq

.

We optimize the non-linear state space model (eq. (1)) and the
metricA such that pA(q|m) is as close as possible to p0(q|m)
with respect to KL divergence:

min
A

M∑
m=1

DKL [p0(q|m)‖pA(q|m)] ,

s.t.A is positive semi-definite.

This results in a separability cost5 Qs(r,A) equal to

∑
{(m,q):yq=ym}

dA(m, q) +
M∑
m=1

log
∑
k 6=m

e−dA(m,k). (5)

Overall cost functional:
Using the representation (3) and separation costs (5), we con-
struct the cost functional to be minimized by the state space
model with parameters r and metric A:

Q(r, A) = Qs(r,A) + λQp(r) (6)

where parameter λ > 0 controls the tradeoff between the rep-
resentability Qp and the separability Qs. Wm is obtained by
minimizing Qp(r). However, since Qp(r) is quadratic with
respect to Wm, enforcing the derivatives of Qp(r) with re-
spect to Wm to be 0 will give an closed-form solution of Wm

as presented in Eq(9).
In practice we first minimize Q(r, A) (via gradient de-

scent) and then project the resulting A onto the space of posi-
tive semi-definite matrices (minimizing L2 norm) [Globerson
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Figure 2: Outline of the MMCL framework.

and Roweis, 2006]. The gradients of Q with respect to STM
parameters r and metric tensor A are obtained as (θ stands
for ri, rc or rj):

∂Q

∂θ
=

M∑
m,q

(p0(q|m)− pA(q|m)) (wq −wm)
T (7)

·
(
A+AT

)(∂wq

∂θ
− ∂wm

∂θ

)
+λ

M∑
m=1

Lm−1∑
t=1

2 (fm(t)− sm(t+ 1))
T ∂fm(t)

∂θ

∂Q

∂A
=

M∑
m,q

(p0(q|m)− pA(q|m)) ·

(wq −wm) (wq −wm)
T
. (8)

Using ridge regression, the readout parameters Wm (wm =
vec(Wm)) representing sequence sm are obtained:

Wm = s̃m XT
m(Xm XT

m + ηI)−1. (9)

where Xm = [xm(1), · · · ,xm(Lm − 1)] is the (N × (Lm −
1)) STM state matrix storing state activations obtained while
processing sm as columns, s̃m = [sm(2), · · · , sm(Lm)] is
the target matrix for the next-item prediction task and η > 0
is a regularization parameter. To ease the presentation, we
omit the sequence index m in the following derivations. We
have

5assuming equally probable classes and ignoring constant terms.

∂W

∂θ
= s̃

∂XT

∂θ
(XXT + ηI)−1 + s̃XT ·

∂(XXT + ηI)−1

∂θ

= s̃

(
∂X

∂θ

)T
(XXT + ηI)−1 − s̃XT

(XXT + ηI)−1
∂(XXT + ηI)

∂θ
(XXT + ηI)−1

= s̃

(
∂X

∂θ

)T
(XXT + ηI)−1 − s̃XT

(XXT + ηI)−1

(
∂X

∂θ
XT +X

(
∂X

∂θ

)T)
·

(XXT + ηI)−1 (10)

where

∂X

∂θ
=

[
∂x(1)

∂θ
,
∂x(2)

∂θ
, ...,

∂x(L− 1)

∂θ

]
Adopting real time recurrent learning, we have:

∂x(t)

∂θ
= sech2(Rx(t− 1) + V s(t))

. ∗
(
∂V

∂θ
s(t) +R

∂x(t− 1)

∂θ

)
, (11)

where .∗ stands for element-wise matrix multiplication
(MATLAB notation). Finally,

∂f(t)

∂θ
=W

∂x(t)

∂θ
+
∂W

∂θ
x(t), (12)

and ∂W
∂θ can be obtained by combining Equations (10–12).

Hence, state space model learning (eq. (7)) can be obtained
by combining eq. (12) and eq. (10). MMCL can be achieved
by alternating between performing state space model learning
(eq. (7)) and metric learning in the readout model space (eq.
(8)) to obtain a tradeoff between representability and separa-
bility.

2.2 Sequence Classification
Having determined the appropriate STM and global metric
tensor on the readout parameters, we can use any convenient
distance-based classifier, e.g. k-Nearest Neighbour (kNN).
The (squared) distance between two sequences sm and sq
is simply dA(m, q) in eq. (4) , where, as explained above,
the feature vector wm of a sequence sm is obtained by ridge
regression from the dynamical system generated using the
learned parameters ri, rc and rj with the task of predicting
the next item of the sequence. Of course, one can also adopt a
kernel classification framework (e.g. SVM) using a sequence
kernel

K(sm, sq) = exp {−γ dA(m, q)} , (13)
where γ > 0 is a scale parameter. In our experiments we
employ both kNN operating in the readout space and SVM
with the kernel defined in (13).

3390



Figure 3: (a) illustration of 3 NARMA sequences. (b) the classification accuracies on the synthetic (test) data sets. (c) Parameter
search ranges for methods employed in the paper. p is the order of the vector autoregressive model, ξ is an AR kernel parameter
[Cuturi and Doucet, 2011], #states is the number of states for HMM in Fisher kernel, η is the ridge regression regularization
parameter, λ is the trade-off parameter. ri, rc and rj are parameters of the deterministic state space mode used in RV kernel.

3 Experimental Studies
We compare our MMCL framework with several state-of-
the-art methods for sequence classification such as Dynamic
time warping (DTW) [Berndt and Clifford, 1994], Autoregres-
sive kernel (AR) [Cuturi and Doucet, 2011], the Fisher kernel
(Fisher) [Jaakkola et al., 1999] and the Reservoir kernel (RV)
of [Chen et al., 2013]. The RV kernel can be viewed essen-
tially as the MMCL kernel, except for the dynamic parame-
ters ri, rc, rj are simply set by costly cross-validation with-
out any regard for class separability and metric tensor learn-
ing. The implementation of the AR kernel is from Cuturi’s
website6. The Fisher kernel was obtained Maaten’s website7.
The AR, Fisher, RV and DTW based kernels were used in a
SVM classifier.

In MMCL, the number of nodes was fixed to N = 50 and
10 jumps (making the jump length 5). The jump length could
be set by cross-validation as in [Rodan and Tiňo, 2012], but
to demonstrate the power of the framework, we simply fixed
the topology for all experiments without pre-testing.

All (hyper) parameters, such as the MMCL trade-off pa-
rameter λ, order p in the AR kernel, number of hidden states
in the HMM based Fisher kernel, regularization parameter
η for ridge regression etc. have been set by 5-fold cross-
validation on the training set. We employ a well-known,
widely accepted and used implementation of SVM – LIB-
SVM [Chang and Lin, 2011]. In LIBSVM, we use cross val-
idation to tune the slack-weight regularization parameter C.
After model selection using cross-validation on the training
set, the selected model class representatives were retrained
on the whole training set and were evaluated on the test set.
Multi class classification is performed via the one-against-one
strategy (default in LIBSVM). The SVM parameters, kernel
width γ in eq. (13) andC, were tuned in the following ranges:
γ ∈ {10−6, 10−5, · · · , 101}, C ∈ {10−3, 10−2, · · · , 103}.
We also tested our MMCL method using a k-NN classifier
where k ∈ {1, 2, · · · , 10}. We refer to SVM and kNN classi-
fiers built within the MMCL framework as MMCL-SVM and

6http://www.iip.ist.i.kyoto-u.ac.jp/member/cuturi/AR.html
7http://homepage.tudelft.nl/19j49/Software.html

MMCL-kNN, respectively. The search ranges for the param-
eters are detailed in Figure 3(c).

3.1 Synthetic Data
We employed 3 NARMA time series models of orders 10, 20
and 30, given by:

st+1 = 0.3st + 0.05st

9∑
i=0

st−i + 1.5ut−9ut + 0.1,

st+1 = tanh(0.3st + 0.05st

19∑
i=0

st−i + 1.5ut−19ut + 0.01)

+ 0.2,

st+1 = 0.2st + 0.004st

29∑
i=0

st−i + 1.5ut−29ut + 0.201,

where st is the output at time t, ut is the input at time t.
The inputs ut form an i.i.d stream generated uniformly in the
interval [0, 0.5). We use the same input stream for generat-
ing the three long NARMA time series (60,000 items), one
for each order. The time series are challenging due to non-
linearity and long memory (see Figure 3(a, b)).

For each order, the series of 60,000 numbers is partitioned
into 200 non-overlapping time series of length 300. The first
100 time series for each order are used as a training set, and
the other 100 time series form the test set. In order to study ro-
bustness of the kernels we also corrupt the time series with ad-
ditive Gaussian noise (zero mean, standard derivation varies
in [0.1,0.5]). Figure 3(b) shows the test set classification ac-
curacy against the noise level. As a baseline, we also include
results of SVM directly operating on the time series (300-
dimensional inputs) - NoKernel. The MMCL based kernel
method MMCL-SVM outperforms the baseline as well as all
the other methods. Although the RV kernel achieves the sec-
ond best performance in this noise data, it takes more time8

8The size of the search grid (for four parameters ri, rc, rj , and η)
is 109,375 in RV kernel, while it is 701 in the MMCL experimental
setting.
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Table 1: Description of the data sets (left) and the performances (best is boldfaced). Note that in 4 out of the 7 datasets
(OSULeaf, Oliveoil, Fish and Adiac) both MMCL techniques outperform others. Model stands for MMCL-SVM with model
learning only (without metric learning) and Decouple stands for MMCL-SVM with decoupled model and metric learning.

DATASET LENGTH CLASSES # TRAIN # TEST DTW AR Fisher RV Model Decouple MMCL-kNN MMCL-SVM
OSULEAF 427 6 200 242 74.79 56.61 54.96 69.83 70.25 77.69 88.02 85.12
OLIVEOIL 570 4 30 30 83.33 73.33 56.67 86.67 83.33 86.67 86.67 93.33
LIGHTNING2 637 2 60 61 64.10 77.05 64.10 77.05 75.41 75.41 70.49 75.41
BEEF 470 6 30 30 66.67 78.69 58.00 80.00 80.00 80.00 63.33 82.67
FISH 463 8 175 175 69.86 60.61 57.14 79.00 77.14 81.14 88.57 87.43
COFFEE 286 2 28 28 85.71 100.00 81.43 100.00 92.86 96.43 89.29 100.00
ADIAC 176 37 390 391 65.47 64.45 68.03 72.63 72.63 73.40 72.30 73.40

Table 2: Summary of multivariate (variable length) series classification problems (left) and the performances (best is boldfaced).
For the handwritten and AUSLAN datasets both MMCL variants outperform others. Model stands for MMCL-SVM with model
learning only (without metric learning) and Decouple stands for MMCL-SVM with decoupled model/metric learning.

DATASET DIM LENGTH CLASSES # TRAIN # TEST DTW AR Fisher RV Model Decouple MMCL-kNN MMCL-SVM
Libras 2 45 15 360 585 94.02 91.79 94.93 93.25 92.82 94.19 94.19 94.87
handwritten 3 60-182 20 600 2258 88.67 73.30 87.52 89.41 89.02 90.79 91.31 91.41
AUSLAN 22 45-136 95 600 1865 97.00 76.53 94.74 96.00 96.00 96.41 97.05 97.80

to select the three parameters ri, rc and rj by cross valida-
tion with grid search. In MMCL, the three parameters are
learned based on data instead of selecting by grid search,
which may achieve better performance and save the param-
eter tuning time.

3.2 Univariate Benchmark Data

We used 7 data sets from the UCR Time Series Repository
[Keogh et al., 2011]. Each data set has already been split into
training and test sets (see Table 1). Table 1 reports perfor-
mance of the studied methodologies on the benchmark data
in terms of test set classification accuracy. The MMCL meth-
ods outperform the other algorithms on most of the data sets,
except for being inferior to or on a par with AR kernel and
RV kernel on Lightning2 and Coffee data sets, respectively,
MMCL-SVM is superior to the simpler MMCL-kNN on 5 data
sets.

In order to investigate MMCL further, we performed model
learning only (without metric learning) using SVM in Tables
1 and 2, called model. We (as expected) observed similar per-
formance levels to those of RV (model parameters optimized
by cross validation). RV sometimes outperforms MMCL
(model learning only) because the model learning may be
trapped in the local optima. In Tables 1 and 2, we have also
decoupled the model and metric learning in MMCL, termed
decouple. This naturally resulted in an inferior performance.
Independent learning might ignore possible coupling between
the provider of dynamical features (dynamical system) and
the static readout models.

As shown in Table 1, our methodology was slightly inferior
to other algorithms on some datasets, e.g. Lightning2. Light-
ning2 contains time series of power spectra related lightning.
The classes can be characterized by pronounced low-memory
features of the power spectra series such as those correspond-
ing to sharp turn-on of radiation, gradual increase in power
series, or sudden spikes etc. Such time series features can
be naturally captured by AR models and thus we hypothesize
that the AR kernels provide a strong distinguishing platform
for lightning classification.

3.3 Multivariate Time Series
The data sets used so far involved univariate time series. In
this section, we perform classification on three multivariate
time series - Brazilian sign language (Libras), handwritten
characters and Australian language of signs (AUSLAN). Un-
like the other data sets, the handwritten characters and AUS-
LAN data sets contain variable length time series. Following
[Cuturi and Doucet, 2011] (previous AR kernel study) we split
the data into training and test sets (see Table 2).

Table 2 shows that the MMCL based MMCL-SVM is su-
perior on two data sets with slightly worse, but comparable
performance to Fisher kernel on the Libras dataset.

In terms of the learned parameters (ri, rc, rj), we have
checked their values on our data sets with and without met-
ric learning. Interestingly enough, in general, metric learn-
ing lead to increased ri, rj . Cycle weights rc differed by a
comparatively smaller amount. The increased input loads ri
force the dynamical system to operate in saturation regimes
of the tanh function (see eq. (1)). This can increase class
separability of state space representations of sequences from
different classes. Large jump weight rj in effect broadens fre-
quency spectrum of the non-autonomous dynamical system.
While a cyclic coupling only [Rodan and Tiňo, 2011] can cap-
ture slow dynamical regimes, introduction of jumps leads to
broadening the sensitivity of the system to faster changes in
the input stream.

4 Discussion and Conclusion
This paper focuses on the learning in the model space ap-
proach where each data item (sequence) is represented by the
corresponding model from a carefully designed model class
retaining both reasonable flexibility to represent a wide vari-
ety of sequences and a relatively small number of free param-
eters. The model class used is a special form of state space
model. The dynamic part of the model - state transition map-
ping - has only three free parameters that are learnt and then
fixed for each data set. Individual sequences in the data set are
then represented by the corresponding (static) linear readouts
from the state space (fixed STM).
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Given a particular data set, we learn both the appropriate
state space model and metric in the readout model space.
Since we consider sequence classification, learning is guided
by two criteria: representability and class separability of the
readout models.

On 11 sequence classification data sets the sequence ker-
nels constructed using our methodology (and applied in
SVM) were on a par or outperformed the other four studied
methods - Dynamic Time Warping based kernels, Autoregres-
sive kernel, the Fisher kernel based on Hidden markov model,
and the reservoir kernel with manually chosen state transition
parameters by cross validation using grid search and without
metric learning in the readout space.

Since in our framework each sequence is represented as a
model in the readout model space with a learnt global metric
tensor, any distance based classifier can be used. As a base-
line we employed kNN. Except for the Coffee, Lightning2
and Libras data sets, kNN achieved comparable or better per-
formance than the four alternatives.

Our results may seem surprising, especially given the
rather simple structure of the state transition part. We em-
phasize that the STM employed does not necessarily have
to provide a platform for the best sequence modelling. For
that, the imposition of the same fixed STM for the whole
data set may indeed be too restrictive. However, the task at
hand is sequence classification and the requirements on the
STM are of a different nature: allowing state space process-
ing of sequences so that the corresponding linear readouts co-
incide as much as possible for sequences of the same class,
while keeping the separation of the distinct classes. This, as
demonstrated in our experiments, is indeed possible using a
fixed STM. The optimal STM for the classification purposes
is learnt alongside the metric tensor on linear readouts from
the filter that enhances the within-class collapsed representa-
tions and between-class separation.

The superior performance of MMCL methodology comes
at a price - relatively high computational complexity. In each
iteration of gradient descent in MMCL, the complexity is
O(M2d2 + dML), where M is the number of sequences,
d is the dimensionality of the time series, and L is the length
of sequences. However, this tolerable computational cost is
well offset by the high classification accuracy and the saving
of effort for tuning parameters in the state space model using
cross validation with grid search.

Future work includes experiments using lag-p model, L1
norm, the computational cost and the situation to deal with
imbalanced data sets for MMCL.
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