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ABSTRACT
We present novel, efficient, model based kernels for time
series data rooted in the reservoir computation framework.
The kernels are implemented by fitting reservoir models shar-
ing the same fixed deterministically constructed state tran-
sition part to individual time series. The proposed kernels
can naturally handle time series of different length without
the need to specify a parametric model class for the time
series. Compared with other time series kernels, our kernels
are computationally efficient. We show how the model dis-
tances used in the kernel can be calculated analytically or
efficiently estimated. The experimental results on synthetic
and benchmark time series classification tasks confirm the
efficiency of the proposed kernel in terms of both generaliza-
tion accuracy and computational speed. This paper also in-
vestigates on-line reservoir kernel construction for extremely
long time series.
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1. INTRODUCTION
Kernel methods have received considerable attention in the
machine learning community dealing with structured data,
such as image, graphs, texts or voice signals. However, as an
important ubiquitous data type in science and engineering,
time series has received relatively less research in the kernel
literature [4].

There has been active research on quantification of the ‘sim-
ilarity’ or the ‘distance’ between time series. However, these
measures are not always applicable for kernel approaches as
many of such similarity measures are not positive definite,
which is a necessary basis for the reproducing kernel Hilbert
space.

A simple way to distinguish between two time series of the

same length is to treat the time series as vectors and simply
employ a linear kernel or Radial basis kernel. This method
can be simple and efficient provided the time series are short
and of equal length. However, in many real-world applica-
tions, the time series of interest are of variable-length and
can be quite long. It is therefore desirable to construct ker-
nels capable of handling possibly long time series of vari-
able length. For example, in dynamic time warping [1] time
series similarity is quantified through finding an alignment
between variable-length multivariate time series.

Another possibility is to use a generative probabilistic model
of the time series data and then define the time series ker-
nel through model parameters corresponding to different
sequences, e.g. probability product kernel [12], Kullback-
Leibler (KL) divergence based kernels [19, 2] and Autore-
gressive kernel [4]. These approaches depend on the partic-
ular parametric model class. For example, Fisher kernel [10]
maps individual time series into score functions of the sin-
gle generative model that is assumed to be able to ‘explain’
most of the data. Often a Hidden Markov Model (HMM)
with a fixed number of states is employed. In some situations
the assumption of the particular generative model ‘behind’
the data can be too strong. In addition, Fisher kernels [10]
are computationally demanding because of the calculation
of metric tensor (inverse of Fisher information matrix) on
the tangent space of the generative model manifold. The
‘practical’ Fisher kernel used in most of the time replaces
the metric tensor with identity matrix. This can result in
a loss valuable information in the data [25]. The require-
ment of using a single generative model in kernel calculations
is relaxed e.g. in the Autoregressive kernel [4]. Sequences
are judged to be similar/dissimilar according to the corre-
sponding likelihood profile of a Vector Autoregressive Model
(VAR) under a variety of parameter settings (controlled by
the prior). In this case it is less crucial that the VAR model
is a faithful model of the data since the base VAR model
class is used as a ‘feature extractor’.

Due to the requirements of many time series applications,
the kernel evaluation should happen in real-time. Therefore,
computational complexity of kernel construction and eval-
uation can play a critical role in applying kernel methods
to time series data. However, many of the existing time se-
ries kernels are computationally demanding. For example
Auto-correlation Operators (DACO) kernel [8] proposed re-
cently by Gaidon et al. for action recognition, compares the
dynamic aspects of two time series by using the difference



between their auto-correlations. The kernelized DACO in-
evitably needs to invert a matrix of size related to the time
series length. Thus the kernel can be used for relatively
short time series only.

To address the problems mentioned above, we propose novel
general time series kernels that can naturally and efficiently
handle long time series data of variable length. The core
idea is to transform the time series into a higher dimen-
sional “dynamical feature space” via reservoir computation
models [17] and then represent varying aspects of the signal
through variation in the linear readout models trained in
such dynamical feature spaces. In this way each time series
will be represented by the corresponding readout model of
the same fixed reservoir. Hence, unlike in the Fisher kernel,
there will be a different dynamic model for each time series,
but all such models will share the same dynamical reser-
voir. The sequence-specific dynamic models will differ only
in the corresponding linear readout models from the reser-
voir. The intuition is that while the general fixed dynamic
reservoir will provide a unique and rich pool of dynamic
features for the whole data set, the individual readout mod-
els bring enough flexibility to represent specifics of different
time series, thus providing a platform for wide applicability
across time series of different characteristics and origins.

One can, of course, argue that our approach is yet another
variation on model-based kernel construction for time series
based on a particular class of dynamic (reservoir) models.
However, unlike parametric time series models of a partic-
ular from, reservoir models have been extensively shown to
be ‘generic’ in the sense that they are able to represent a
wide variety of dynamical features of the input signals, so
that given a task at hand only the linear readout on top of
the reservoir needs to be retrained [17]. As stated above,
in our formulation, the underlying dynamic reservoir will
be the same for all time series - the differences in the signal
characteristics in different time series will be captured solely
by the linear readout models and will be quantified in the
function space of such models.

There are several advantages of such reservoir based time
series kernels:

1. The proposed kernels can naturally handle time series
of different length;

2. General reservoir model is flexible enough so that it
can be used for a variety of data types without the
need to specify a particular parametric model class for
the time series;

3. Since only the linear readout on top of the reservoir
needs to be trained, compared with most time series
kernels, our kernels are computationally very efficient;

4. With recursive least squares algorithm to train read-
out mapping of reservoir models, our kernels can be
operating in an on-line fashion, with the ability to ef-
ficiently handle extremely long time series;

5. Under some assumptions, the model distances between
linear readouts can be formulated analytically.

The rest of this paper is organized as follows. Section 2 re-
views the related work on kernels for time series. Section 3
introduces deterministic reservoir computing and proposes
time series kernels based on reservoir models. The experi-
mental results and analysis are reported in Section 4. Sec-
tion 5 studies on-line reservoir kernel construction for ex-
tremely long time series. Finally, Section 6 discusses and
concludes the paper.

2. BACKGROUND
In this section, we will review some of the related work on
time series kernels.

Dynamic time warping (DTW) tries to “warp” the time axis
of one (or both) sequences to achieve a better alignment
[1]. DTW has been successfully used in many applications.
However, DTW can generate un-intuitive alignments by map-
ping a single point on one time series onto a large subsection
of another time series, leading to inferior results [14]. A time
series kernel motivated by DTW has been proposed in [6],
with an efficient version presented in [5].

Probability product kernel [12] and Binet-Cauchy kernel [26]
are based on probabilistic models of the time series data.
The kernels are constructed in two steps: each time series
is first mapped to the corresponding set of model parame-
ters, the kernel is then defined on those parameter settings.
These kernels depend on the particular model class and the
parametrization used.

Autoregressive kernel [4] is another probabilistic kernel for
time series. In autoregressive kernel, VAR model class of a
given order is used to generate an infinite family of features
from the time series. For a given time series s, the likelihood
profile pθ(s) across all possible parameter setting (under a
matrix normal-inverse Wishart prior ω(θ)) forms a repre-
sentation of s. Given two time series si and sj , the kernel
is defined as the dot product of the corresponding sequence
representations:

KAR(si, sj) =

Z

θ

pθ(si)pθ(sj)ω(dθ).

Fisher kernel [10] was proposed to combine the power of
generative modelling with discriminant classifiers such as
Support Vector Machines. It has been successfully used in
numerous applications. Fisher kernel assumes that the gen-
erative model p(s|θ) can explain all the data. The Fisher
kernel maps each individual data into a vector in the gradi-
ent log-likelihood space specified by this generative model.
The feature vector (Fisher score) Us is the gradient of the
log-likelihood of the generative model (fit on the data set)
for the time series s:

Us = ∇θ log P (s|θ).

The Fisher kernel is then defined as follows:

K(si, sj) = UT
si
I−1Usj

,

where I is the Fisher information matrix. As mentioned
above, calculation of I−1 can be computationally expensive.
A routinely used practical ‘trick’ is to use the identity matrix



in place of I [23], which speeds up the computation at the
cost of losing some important information [23].

Recently, Gaidon et. al proposed Auto-correlation Operators
(DACO) kernel [8] in the context of (video) action recogni-
tion. DACO kernel compares the dynamic aspects of two
time series si and sj by using the difference between their
auto-correlations. In the kernelized version the time series
are mapped into the feature space on an element-by-element
basis [8]. Such kernelization makes the kernel more expres-
sive but at the cost of computational complexity (ℓ×ℓ matrix
inversion, where ℓ is the length of the time series).

3. RESERVOIR BASED KERNELS
In this paper we will introduce new time series kernels based
on a general “temporal filter” implemented by Echo State
Network (ESN) with a simple deterministically constructed
reservoir architecture. Reservoir models [17] have been ex-
tensively shown to be able to successfully process and model
time series of a surprisingly wide variety of types (from
deeper memory deterministic chaotic systems, to shorter
memory stochastic sequences) [22, 24]. Liquid State Ma-
chines [18] and Echo State Networks (ESN) [11] are two
popular RC methods.

The ESN reservoir model with N reservoir (state) units rep-
resents a parameterized input driven state space model for-
mulated as:

x(t) = g(R x(t − 1) + V s(t)), (1)

y(t) = Wx(t) + a = f(x(t)), (2)

where x(t) = [x1, · · · , xN ]T ∈ ℜN is the state vector of
reservoir activations, s(t) is the input time series element at
time t, g(·) is element-wise application of the tanh transfer
function and y(t) is the output of the linear readout from the
reservoir. The state transition and output parts of the state
space model are described by eqs. (1) and (2), respectively.

The main idea is that, provided the reservoir is able to rep-
resent a rich set of features of the input time series, the
model-based representation of a particular time series s will
be given by the linear readout mapping f(x) (2) operat-
ing on reservoir activations x, specifically fitted to s on the
next-item prediction task y(t) ∼ s(t + 1) by minimizing the
normalized mean square error (NMSE) between the model
predictions y(t) and targets s(t + 1). We will denote the
readout f(x) fitted to sequence s by h(x; s).

The kernel between a pair of time series si and sj will then
be calculated using a model distance d(h(x; si), h(x; sj)) be-
tween the corresponding readouts h(x; si) and h(x; sj) from
the same ‘fixed’ general reservoir (1).

3.1 Deterministically Constructed Reservoir
This paper will focus on specific forms of ESN since they
constitute one of the simplest, yet effective forms of RC.
ESN has a “non-trainable” recurrent part (“the reservoir”)
(1) and a simple linear readout (2). Typically, the reser-
voir weights R and the input weights V to the reservoir are
randomly generated so that the “Echo State Property” is
satisfied. Loosely speaking, this means that the reservoir
output would be independent of the initial conditions [11].
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Figure 1: Illustration of the time series kernel in the
deterministic reservoir model space. The first stage
is to train the readout mapping of reservoir models
using time series, i.e. generate individual points in
the model space to represent time series. The sec-
ond stage is to construct the kernel by investigating
the model distance.

Training of ESN can be efficiently performed through linear
regression. For more details we refer the interested reader
to e.g. [17].

The downside of reservoir models is that their construction
is largely driven by a series of randomized model building
stages. Recently, Rodan et al. [22] proposed to use a sim-
ple deterministic reservoir construction (DRC) algorithm for
ESN. This reservoir architecture has been shown to be com-
parable (or better) than the traditional ESN on a wide va-
riety of time series modeling and prediction tasks [22]. In
DRC the reservoir nodes are connected in a uni-directional
cycle with bi-directional shortcuts (jumps) (Figure 1). All
cyclic reservoir weights have the same value; all jumps share
the same weight and the input connections have the same
absolute value with an aperiodic sign pattern. This results in
a sparse and deterministically constructed and simple cou-
pling reservoir weight matrix R.

The reservoir forms a fixed non-linear high-dimensional non-
autonomous dynamical system with fading memory that
acts as a general temporal filter on top of which it is usually
sufficient to train a linear readout mapping. As mentioned
above, it is natural to represent individual time series by
the linear readouts from the fixed dynamic filter that fits
the series well.

3.1.1 Distance in the Reservoir Model Space: Uni-
form State Distribution

Using Euclidean metric on the readout parameters to cal-
culate the distance between two readout mappings is not
satisfying since one should be interested in the model dis-



tance in the function space of the readout models, rather
than the distance between the model parameterizations.

We will use the L2 distance in the model space, although
our framework is general and can be applied to any appro-
priate function distance between the readouts. To simplify
the notation, we will denote the readout h(x; si) fitted to
sequence si by fi(x). Consider two mappings f1(x) and
f2(x), f1, f2 : ℜN → ℜO, where N is the number of reser-
voir units, O is the output dimensionality. Their L2 distance
is defined as:

L2(f1, f2) =

„
Z

C

‖f1(x) − f2(x)‖2 dµ(x)

«1/2

, (3)

where µ(x) is the probability density function on the input
(reservoir) domain C. Recall that in (1) we use tanh transfer
function and so C = [−1, +1]N .

We will first assume that x is uniformly distributed. Later
we will relax this assumption by considering non-uniform
µ(x) to reflect the fact that state space activations x in the
reservoir can follow a more complex distribution.

The readout model takes the form of an affine mapping:

f(x) = Wx + a, (4)

where x = [x1, · · · , xN ]T is the state vector, W is the pa-
rameter matrix (O × N) and a = [a1, · · · , ao] is the bias
vector.

Consider two readouts from the same reservoir

f1(x) = W1x + a1,

f2(x) = W2x + a2.

Then,

L2(f1, f2) =

„
Z

C

‖Wx‖2 + 2a
T Wx + ‖a‖2 dx

«1/2

where W = W1 − W2, and a = a1 − a2.

Note that since C = [−1, 1]N , for any fixed a and W

Z

C

a
T Wx dx = 0.

Therefore, it can be shown that

L2(f1, f2) =

 

2N

3

N
X

j=1

O
X

i=1

w2

i,j + 2N ‖a‖2

!1/2

(5)

where wT
i is the i-th row of W , wi,j is the (i, j)-th element

of W .

Scaling of the squared model distance (L2

2(f1, f2)) by 2−N

we obtain

1

3

N
X

j=1

O
X

i=1

w2

i,j + ‖a‖2 ,

which differs from the squared Euclidean distance on the

readout parameters

N
X

j=1

O
X

i=1

w2

i,j + ‖a‖2 ,

by the factor 1/3 applied to the differences in the linear part
W of the affine readouts. Hence, more importance is given
to the ‘offset’ than ‘orientation’ of the readout mapping.

3.2 Non-uniform State Distribution
In the above, we assumed that the distribution of reservoir
states x is uniform in C. As mentioned before, it is likely
that the state distribution µ(x) will be non-uniform. We
will introduce two approaches for allowing general µ(x) -
modelling of µ by a mixture of Gaussians and numerical
approximation of the integral (3) by sampling using boot-
strapped input series.

For non-uniform state distribution µ(x), a K-component
Gaussian mixture model can be employed to approximate
the distribution:

µ(x) =
K
X

i=1

αi µi(x|ηi, Σi),

µi(x|ηi, Σi) =
exp

`

− 1

2
(x − ηi)

T Σ−1

i (x − ηi)
´

(2π)N/2 |Σi|
1/2

,

where αi are mixture coefficients with
PK

i=1
αi = 1.

Then, the distance L2(f1, f2) can be obtained as follows:

L2(f1, f2) =

„
Z

C

x
T W T Wx + 2a

T Wx + a
T
a dµ(x)

«

1/2

According to [20] (page 42), for a Gaussian variable X ∼

N(η, Σ),

E(XT W T WX) = trace(W T WΣ) + η
T W T Wη.

Therefore, the distance can be obtained as follows:

L2

2(f1, f2) =
K
X

i=1

αi



trace(W T WΣi) + aT a

+ ηT
i W T Wηi + 2aT Wηi

ff

. (6)

We employed the mixture model construction proposed by
Figueiredo et. al [7] that automatically selects the appropri-
ate number of mixture components in a top-down manner.

Alternatively, the integral can be numerically approximated
by using reservoir activations collected while processing the
input time series. Assume that for a given time series s, after
the initial wash-out [11], m state activations are collected
x(1), ..., x(m). Then,

L2

2(f1, f2) ≈
1

m

m
X

i=1

‖f1(x(i)) − f2(x(i))‖2 . (7)

However, in some applications the length of the time series
is not sufficient to yield a good approximation. We therefore
adopted the circular block bootstrap for time series [16] to
construct sufficiently long input series. The block length in
bootstrapping was automatically determined following [21].



3.3 Time Series Kernels via Reservoir Models
In the above sections, the function distance between readout
mappings of reservoir models is formulated. Therefore, the
three kernels can be defined as follows:

K(fi, fj) = exp
˘

−γ · L2

2(fi, fj)
¯

,

where L2

2(fi, fj) can be Equations (5), (6) and (7) as reser-
voir kernel (RV ), Gaussian mixture model based reservoir
kernel (GMMRV ), and sampling based reservoir kernel (Sam-
plingRV ). The parameter γ will be tuned by cross validation.
The main algorithm is summarized below:

Algorithm 1 Model based Kernel Algorithm

1: Input: time series s1, · · · , st, V is the number of signal
inputs; parameters (σ and ν) of CRJ;

2: Output: Kernel for time series K.
3: for each time series s(t) do
4: Generate input-output pair from s(t)
5: Fit the deterministic reservoir computing model with

the input-output pair.
6: Extract the readout weights w from each CRJ.
7: end for
8: Calculate the pairwise model distance matrix

L2(fi, fj), 1 ≤ i, j ≤ t + 1 − m according to Equation
(1).

9: The kernel matrix can be calculated as K = exp{−σ ·
L2}.

3.4 Fisher Kernel Based on Reservoir Model
Besides the model distance based kernels introduced above,
we also considered the Fisher kernel obtained with the reser-
voir model (FisherRV ).

Endowing the readout with a noise model yields a generative
time series model of the form:

x(t) = g(R x(t − 1) + V s(t)),

s(t + 1) = Wx(t) + a + ε(t),

Assume the i.i.d. noise model ε(t) follows a Gaussian distri-
bution,

ε(t) = N (0, σ2I).

Then,

P ((s(t + 1) | s(1..t)) = P ((s(t + 1) | x(t))

= (2πσ2)−O/2 exp



−
‖s(t + 1) − Wx(t) − a‖2

2σ2

ff

,

where s(1..t) denotes the time series s(1), s(2), · · · , s(t).

Slightly abusing mathematical notation, the model likeli-
hood p(s(1..ℓ)) given the time series s of length ℓ can be
written as follows:

p(s(1..ℓ)) =
ℓ
Y

t=1

P (s(t) | s(1 · · · t − 1))

=

ℓ
Y

t=1

(2πσ2)−O/2 exp



−
‖s(t) − Wx(t − 1) − a‖2

2σ2

ff

.

Therefore, the partial derivative of log likelihood log p(s(1..ℓ))
can be obtained as

U =
∂ log p(s(1..ℓ))

∂W

=

ℓ
X

t=1

(s(t) − a) x(t − 1)T − Wx(t − 1)x(t − 1)T

σ2
.

Note that the partial derivative U is an (O × N) matrix.
The “practical” Fisher kernel for two time series si and sj

with scores Ui and Uj , respectively, can be formulated as

K(si, sj) =
O
X

o=1

N
X

n=1

(Ui ◦ Uj)o,n,

where ◦ is Hadamard (element-wise) product. In practice,
the noise variance σ2 can be estimated from the original time
series and the output of the fitted readout model.

4. EXPERIMENTAL STUDIES
This section presents experimental results of the proposed
kernels, RV, GMMRV, SamplingRV, FisherRV, and other
existing time series kernels, including autoregressive (AR)
kernel, Fisher kernel with hidden Markov models (Fisher),
and dynamic time warping (DTW ).

All hyperparameters, such as the kernel width γ and order p
in the AR kernel, number of hidden states in the HMM based
Fisher kernel etc. have been set by 5-fold cross-validation
on the training set. The search ranges for parameters of
each algorithm are detailed in Table 1.

In the reservoir based kernels, we used a fixed topology reser-
voir (cycle with jumps) [22] for all data sets: N = 100, 15
jumps. The cycle weight rc, jump weight rj , input weight ri

and readout were obtained on the training set. The readout
mapping was trained via Ridge regression (hyperparameter
λ tuned via cross-validation). To evaluate the readout model
distance in the SamplingRV kernel, except for long time se-
ries in the PEMS data set (Section 5), the bootstrapped
time series were 5 times longer than the original ones.

The implementation of AR kernel was obtained from Marco
Cuturi’s website1. Fisher kernel was obtained Maaten’s
website2.

We employ a well-known, widely accepted and used imple-
mentation of SVM – LIBSVM [3]. In LIBSVM, we use cross
validation to tune the regularization parameter C. After
model selection using cross-validation on the training set,
the selected model class representatives were retrained on
the whole training set and were evaluated on the test set.
Multi class classification is performed via the one-against-
one strategy (default in LIBSVM).

4.1 Synthetic Data

1http://www.iip.ist.i.kyoto-u.ac.jp/member/cuturi/AR.html
2http://homepage.tudelft.nl/19j49/Software.html

http://www.iip.ist.i.kyoto-u.ac.jp/member/cuturi/AR.html
http://homepage.tudelft.nl/19j49/Software.html


Table 1: Parameters for all kernels. γ is the parameter in RBF function, ξ in AR kernel is the weight of the
negative definite kernel [4], p is the order of the vector autoregressive model, state is the number of states for
HMM in Fisher kernel, λ is the ridge regression parameter.

Kernel Parameters Parameter range

DTW γ γ ∈ {10−6, 10−5, · · · , 101},
AR γ, ξ, p γ ∈ {10−6, 10−5, · · · , 101}, ξ ∈ {0.1, 0.2, · · · , 0.9},

p ∈ {1, 2, · · · , 10}
Fisher state state ∈ {1, 2, · · · , 10}

RV, FisherRV, GMMRV, SamplingRV γ, λ γ ∈ {10−6, 10−5, · · · , 101}, λ ∈ {10−5, 10−4, · · · , 101}
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Figure 2: Illustration of three NARMA sequences
with different orders (10, 20 and 30).

We employed three NARMA time series models of orders
10, 20 and 30, given by:

s(t+1) = 0.3s(t)+0.05s(t)
9
X

i=0

s(t−i)+1.5u(t−9)u(t)+0.1,

s(t + 1) = tanh(0.3s(t) + 0.05s(t)
19
X

i=0

s(t − i) +

+1.5u(t − 19)u(t) + 0.01) + 0.2,

s(t+1) = 0.2s(t)+0.004s(t)
29
X

i=0

s(t−i)+1.5u(t−29)u(t)+0.201,

where s(t) is the output at time t, u(t) is the input at time t.
The inputs u(t) form an i.i.d stream generated uniformly in
the interval [0, 0.5). We use the same input stream for gener-
ating the three long NARMA time series (60,000 items), one
for each order. The three sequences are illustrated in Figure
2. The time series are challenging due to non-linearity and
long memory.

For each order, the series of 60,000 numbers is partitioned
into 200 non-overlapping time series of length 300. The first
100 time series for each order are used as training set, and
the other 100 time series form the test set.

As apparent from Figure 2, distinguishing the three NARMA
models using the original time series may be challenging.
However, when viewing the time series through the model
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Figure 3: Illustration of MDS on the model distance
among reservoir weights

space of fitted reservoir models, the three time series classes
become separated, as illustrated in Figure 3 showing 2-dimensional
multi-dimensional scaling3 representation of the pair-wise
readout model distances.

In order to study robustness of the kernels we corrupt the
time series with additive Gaussian noise (zero mean, stan-
dard derivation varies in [0.1,0.5]). Figure 4 shows the test
set classification accuracy against the noise level. As a base-
line we also include results by SVM operating on the time
series directly (300-dimensional inputs) - NoKernel. The
RV reservoir based kernel outperforms the baseline and the
other time series kernels.

4.2 Benchmark Data
We used 9 data sets from UCR Time Series Repository [13].
Each data set has already been split into training and test
sets (see Table 2).

Table 3 reports performance of the time series kernels on the
benchmark data in terms of test set classification accuracy.
SamplingRV kernel outperforms the other kernels on 7 data
sets; RV is superior on 2 data sets and DTW outperforms
the other kernels on 1 data set. In terms of computation
time4, the reservoir kernels are clearly the most efficient.

3Multidimensional scaling (MDS) aims to preserve the pair-
wise distance between points, which is suitable to preserve
the model distance for visualization.
4The computational environment is Windows XP with Intel
Core 2 Duo 1.66G CPU and 4G RAM.



Table 3: Comparison of DTW, AR, Fisher (with hidden Markov models), RV, FisherRV, GMMRV, and
SamplingRV kernels on nine benchmark data sets by accuracy. The best performance for each data set has
been boldfaced.

Dataset DTW AR Fisher RV FisherRV GMMRV SamplingRV
Symbols 94.77 91.15 94.42 98.08 95.96 97.31 95.77
OSULeaf 74.79 56.61 54.96 69.83 64.59 56.55 63.33
Oliveoil 83.33 73.33 56.67 86.67 83.33 84.00 90.00

Lighting2 64.10 77.05 64.10 77.05 75.41 78.69 80.33
Beef 66.67 78.69 58.00 80.00 68.00 79.67 86.67
Car 58.85 60.00 65.00 76.67 72.33 78.33 86.67
Fish 69.86 60.61 57.14 79.00 74.29 78.00 85.71

Coffee 85.71 100.00 81.43 100.00 92.86 96.43 100.00
Adiac 65.47 64.45 68.03 72.63 71.61 74.94 76.73

Table 4: CPU Time (in seconds) of DTW, AR, Fisher (with hidden Markov models), RV, FisherRV, GMMRV,
and SamplingRV kernels on nine benchmark data sets.

Dataset DTW AR Fisher RV FisherRV GMMRV SamplingRV
Symbols 1,318 2,868 2,331 202 236 374 808
OSULeaf 6,030 1,375 3,264 98 111 186 447
Oliveoil 295 113 832 11 19 27 43

Lighting2 918 151 1,143 33 46 61 95
Beef 107 54 87 10 17 23 40
Car 679 442 902 27 42 50 84
Fish 3,353 495 1,998 81 96 159 286

Coffee 21 25 145 3 3 7 19
Adiac 550 8131 1,122 201 213 394 699
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Figure 4: Illustration of the performance of com-
pared kernels with different noise levels.

Table 4 shows the average CPU time taken to evaluate the
kernels in seconds5. SamplingRV kernel is obviously the
most expensive among the reservoir kernels. Still, it is faster
than its state-of-art competitors.

To further compare the computational effectiveness of the
kernels, a relatively large data set, InlineSkate from UCR
time series repository, has been employed. The data set con-
tains 650 time series (100 training, 550 test) of length 1882,
belonging to 7 classes. The influence of time series length

5We do not record the cross validation time for SVM.

Table 2: Description of the data sets
Dataset Length Classes Train Test
Symbols 398 6 25 995
OSULeaf 427 6 200 242
Oliveoil 570 4 30 30

Lighting2 637 2 60 61
Beef 470 6 30 30
Car 576 4 60 60
Fish 463 8 175 175

Coffee 286 2 28 28
Adiac 176 37 390 391

on the classification performance and computational com-
plexity was studied by considering from each training time
series only the first ℓ elements, with ℓ growing from 300 to
1800 in increments of 300. The resulting accuracy and CPU
times are shown in Figure 5. Relatively to the other kernels,
the reservoir RV kernel has the lowest computational cost,
while achieving competitive performance.

4.3 Multivariate Time Series

Table 5: Summary of multivariate (variable length)
time series classification problems.

Dataset dim length classes train test
Libras 2 45 15 360 585

handwritten 3 60-182 20 600 2258
AUSLAN 22 45-136 95 600 1865

Data sets used so far involved univariate time series. In this
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Figure 5: Comparison of generalization accuracy
(top) and CPU time (bottom) in seconds of RV, AR,
DTW and Fisher kernels on InlineSkate data set.

section, we perform classification on three multivariate time
series - Brazilian sign language (Libras), handwritten char-
acters and Australian language of signs (AUSLAN ). Unlike
the other data sets, the handwritten characters and AUS-
LAN data sets contain time series of variable length. Fol-
lowing [4] (previous AR kernel study) we split the data sets
into training and test sets as detailed in Table 5.

The results are shown in Figure 6. SamplingRV is superior
on all three data sets. RV kernel is outperformed by DTW
and AR kernels on Libras and AUSLAN data sets, respec-
tively. In terms of CPU time, RV kernel usually uses the
least and AR consumes the most computation time.

5. ON-LINE RESERVOIR KERNEL
Reservoir readouts can be trained in an on-line fashion, e.g.
using Recursive Least Squares. This enables us to construct
and refine reservoir kernels on-line, as more and more data
become available. This can be particularly convenient in sit-
uations where individual items to be classified (time series)
are not fixed, but appear in an on-line manner. After ob-
serving sufficiently long initial segments of the time series it
is possible to train the classifier and perform initial classifi-
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Figure 6: Comparison of generalization accuracy
(top) and CPU time (bottom) in seconds of AR,
Fisher, DTW, RV and SamplingRV kernels on 3
multivariate time series.

cation. As more and more data arrives, the reservoir kernels
can be updated recursively, without the need to re-construct
the kernels from scratch.

We illustrate this approach on a collection of long series
PEMS-SF (UCI machine learning repository) with 440 time
series of length 138,672. The data reports the occupancy
rate of different car lanes of San Francisco bay area freeways
within 15 months. The performance of on-line RV kernel is
reported in Figure 7 in terms of CPU time and generalization
accuracy. As expected, the generalization improves mono-
tonically with increasing amount of data. On full data RV
kernel achieves 86.13% accuracy. This compares favorably
with the best reported performance levels (82% ∼ 83%) [4]
among a variety of time series kernels, such as AR, global
alignment kernel [6], splines smoothing kernel [15] and Bag
of vectors kernel [9].

6. DISCUSSION AND CONCLUSION
In this paper efficient kernels have been proposed to tackle
the challenges in time series classification through kernel ma-
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Figure 7: Generalization accuracy of on-line RV ker-
nel on PEMS time series.

chines. Instead of constructing the kernel directly in the
original data space, this paper introduces a“kernel in the de-
terministically constructed reservoir model space” that rep-
resents each time series as a reservoir model with the com-
mon dynamic part.

We demonstrated the application of the distance definition
in the (function) model space of linear readout models. The
model distance is different from the Euclidean distance of
the readout parameters, indicating that more importance is
given to the ‘offset’ than ‘orientation’ of the readout map-
ping. We also estimated the model distance by using either
sampling methods or a Gaussian mixture model when the
reservoir state distribution is non-uniform.

The proposed kernels were compared with other competitors
on synthetic and benchmark data sets. The results con-
firm the effectiveness of reservoir based kernels. The on-line
reservoir kernels proposed in Section 5 can process extremely
long time series efficiently.

In general, the closed form simple reservoir (RV ) kernel is
the most efficient6. However, it is obtained under the (rather
unrealistic) assumption of uniform state distribution and the
tolerable increase in computational demand by the Samplin-
gRV kernel is well offset by the increase in the classification
accuracy. The GMMRV kernel can also be analytically ob-
tained via approximating the state distribution by a Gaus-
sian mixture. Of course, the quality of this kernel depends
on how well the state distribution is captured by the Gaus-
sian mixture model used.

It is interesting that the Fisher kernel based on the Reservoir
model achieves better performance than the Fisher kernel
based on the HMM model with continuous (Gaussian dis-
tributed) emissions. The principal difference between the
reservoir model and HMM is that in the reservoir model
the state space is infinite (uncountable) with deterministic

6It is worth noting that there also exist fast implementations
of non-kernelized variations on DACO and global alignment
kernels.

input-driven dynamics. In HMM the state space is finite
and latent, with probabilistic state transitions.

In conclusion, reservoir based time series kernels can achieve
superior performance in terms of both generalization accu-
racy and computation time, without the need for explicit
specification of the parameterized model class for the time
series data. This is potentially of great benefit in cases of
very large data sets of long time series where the underlying
parametric model is unknown. Of course, reservoir kernels
stand and fall on the ability of the particular dynamic reser-
voir to generate a rich pool of dynamical features sufficiently
representing the variety of time series occurring in a given
task. If the echo state property - a cornerstone of reservoir
modelling - is not an appropriate modelling assumption, the
reservoir kernels cannot be expected to perform well. How-
ever, as has been demonstrated numerous times, for most
real-world data the fading memory assumption (encapsu-
lated in the echo state property) is appropriate.
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