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PPM training and test samples 

We used data from: 1) a research cohort (The Alzheimer’s Disease Neuroimaging Initiative, 

ADNI) for PPM training, within-sample cross-validation (n = 256) and independent test (n = 

419), 2) AstraZeneca Randomized Clinical Trial cohort as independent test dataset for out-

of-sample validation: Amaranth (n = 1354).  

Alzheimer’s Disease Neuroimaging Initiative  

We trained the PPM on baseline (defined as the date of Florbetapir, (FBP) PET scan) data (n = 

256) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 2/GO cohort, following 

our previous work 1. We determined two classes for training the algorithm defined by baseline 

and longitudinal syndromic labels from clinical diagnosis independent of biomarker status, 

with baseline defined as the evaluation closest to the first FBP PET scan acquired in ADNI: (a) 

Clinically Stable (n = 100; 18 Aß+ at baseline, APOE 4(+/-)=21/79, Age mean = 73.7+-

std = 6.3 years, Education mean = 16.7+-std = 2.7 years, Sex (M/F) = 51/49): CN individuals 

who remain stable for 4+ years following baseline (mean = 5.7+-std = 1.1 years), (b) Clinically 

Declining (n = 156; 130 Aß+ at baseline, APOE 4(+/-) = 95/61, Age mean=74.9+-std = 7 years, 

Education mean = 15.9+-std = 2.7 years, Sex (M/F) = 88/68): individuals have a baseline 

diagnosis (at date of FBP scan) of either CN (n = 17) or MCI (n = 139) but received a diagnosis 

of dementia in future clinical evaluation (i.e., progressed to dementia (n = 75)), or had been 

diagnosed with dementia in a clinical evaluation prior to baseline (i.e., reverted (n = 81)). We 

included individuals in the Clinically Declining group who were MCI at baseline but have 

received a diagnosis of dementia prior to baseline (i.e., reverted) in this group as we anticipate 



they are likely affected by AD pathology but are at an earlier stage of AD than the Alzheimer’s 

Clinical Syndrome (i.e., late AD) group. For all individuals, MRI data were collected across 

multiple acquisition sites with 1.5T and 3T scanners (GE, Philips, Siemens scanners). We 

regressed out age, sex, and education from the training features (MTL GM density, Aβ burden, 

APOE4) to account for potential confounding differences in these covariates across classes. 

To validate the PPM longitudinal predictions on data that were not included in model training, 

we selected an independent validation sample (n = 419) including individuals with normal 

cognition (CN, n = 119), Mild Cognitive Impairment (MCI, n = 150; i.e. individuals who 

consistently received MCI diagnosis withing a period of 3 years) and Alzheimer’s Disease 

(AD, n = 150).  

AMARANTH 

AMARANTH is a phase 2/3, multicenter, randomized, double-blind, placebo-controlled, 

global clinical trial of Lanabecestat target2. Patients who completed AMARANTH could elect 

to enter a separate 104-week delayed-start (DS) extension study, AMARANTH-EXT. 

AMARANTH formally entered into phase 3. Lanabecestat is a brain-permeable inhibitor of 

human Beta-site amyloid precursor protein-cleaving enzyme 1 (BRACE1/β-secretase). It was 

developed for the modification of the clinical course of AD by slowing disease progression 

in patients diagnosed with early AD (i.e. patients with mild cognitive impairment, MCI due 

to AD) and patients diagnosed with mild dementia of the Alzheimer’s type. BRACE1 is a 

type I transmembrane aspartic acid protease related to the pepsin and retroviral aspartic 

protease families. BRACE1 cleaves amyloid precursor protein (APP) at the β-secretase site, 

and APP is then cleaved by γ-secretase generating Aβ peptides. Based on its key role in the 

amyloid cascade, BACE1 was considered as promising therapeutic target for slowing disease 

progression in AD by preventing the generation of Aβ peptides and, consequently, reducing 

the detrimental effects of Aβ toxicity and the formation of amyloid plaques in the brain. As 



potent inhibitor of BACE1, lanabecestat is a potential disease-modifying therapy for the 

treatment of AD. Lanabecestat has been shown to reduce Aβ1-40 and Aβ1-42 in mice, rats, 

guinea pigs, dogs, and humans. At sufficient exposures, lanabecestat reduces Aβ levels in the 

brain and cerebrospinal fluid (CSF). 

The study included a 60-day screening period and a safety follow-up 4 to 6 weeks after 

treatment. The protocol, patient information, consent form, and other relevant study 

documentation were approved by the ethics committees or institutional review boards of each 

site before study initiation. The study was conducted in accordance with ethical principles 

originating from the Declaration of Helsinki and was consistent with good clinical practice 

and applicable regulatory requirements. Before enrollment, all patients provided written 

informed consent. The trial protocols are available in 2. This study followed the Consolidated 

Standards of Reporting Trials (CONSORT) reporting guidelines. Patients with a florbetapir 

positron emission tomography (PET) scan or CSF sample conducted as part of the study 

screening process could participate in the florbetapir PET imaging and/or the CSF substudy. 

All randomized patients in the study also had serial magnetic resonance imaging (MRI) of the 

brain. 

Patients, Randomization, and Blinding: An interactive web and voice response system was 

used to randomize patients centrally. In AMARANTH (n = 1354, placebo: 53.8% female, 

20mg: 53.5% female, 50mg: 52% female) eligible patients were randomized 1:1:1 to once-

daily oral doses of 20mg lanabecestat, 50mg lanabecestat, or placebo, stratified by disease 

status at baseline (MCI attributable to AD or mild AD). 

In AMARANTH, the 20mg lanabecestat, 50mg lanabecestat, and placebo tablets were 

identical. Blinding of the study treatment was achieved using the double-dummy technique. 

In this study, all patients, investigators, and sponsor staff were blinded to treatment allocation 



with limited exceptions as specified in the protocols. Study treatment was dispensed during 

site visits, and eligible patients were instructed to take study treatment once daily orally. 

Adherence to study treatment was assessed by direct questioning and by counting returned 

tablets at each visit. Patients who consumed at least 80% of their study treatment over the 

course of the study were considered to be adherent. 

Outcomes: The primary objective in the study was to evaluate the efficacy of lanabecestat 

20mg and lanabecestat 50mg compared with placebo in slowing cognitive decline as 

measured by change from baseline to the end of double-blind, placebo-controlled periods on 

the 13-item Alzheimer Disease Assessment Scale–cognitive subscale (ADAS-Cog13) 3. The 

ADAS-Cog13 measures severity of impairment in various cognitive domains (memory, 

language, orientation, praxis, and executive functioning). The scale has a score range of 0 to 

85 points, with higher scores indicating worse performance. The scale is analyzed as a 

continuous measure. 

Secondary objectives included efficacy evaluations of lanabecestat vs placebo on the change 

from baseline to the end of the placebo-controlled treatment periods on cognitive outcomes 

including Clinical Dementia Rating–sum of boxes (CDR-SOB), and Mini-Mental State 

Examination (MMSE). In AMARANTH, a time-to-event analysis was performed to evaluate 

the efficacy of lanabecestat to prolong time in the current disease state. This was measured by 

the CDR global score.  

Further, biomarker objectives included evaluation of the effect of lanabecestat on amyloid 

markers (CSF Aβ1-42 and Aβ1-40), amyloid burden (florbetapir PET), and hippocampal 

volume (MRI). 

Safety and tolerability of lanabecestat were evaluated in the study using the following key 

assessments: spontaneously reported adverse events, laboratory tests, vital signs and body 



weight, and physical examinations, including neurological examinations and 

electrocardiograms (ECGs). Additional safety assessments included eye examinations, 

dermatological examinations, MRI to examine for any possible amyloid-related imaging 

abnormalities, and administration of the Columbia–Suicide Severity Rating Scale (C-SSRS) 

to assess any potential suicidality. 

 

Diagnostic criteria 

ADNI: Diagnosis in ADNI was based on MMSE, CDR, and Logical Memory for each 

diagnostic category as well as Geriatric Depression Scale score less than 6. AD cases were 

identified based on the following criteria: a) NINCDS/ADRDA criteria for probable AD, b) 

clinical tests: Clinical Dementia Rating = 0.5 or 1.0, and MMSE score between 20 and 26, c) 

memory function tests: Abnormal memory function documented by scoring below education 

adjusted cut-offs on the Logical Memory II subscale (Delayed Paragraph Recall, Paragraph A 

only) from the Wechsler Memory Scale – Revised (≤ 8 for 16 or more years of education b. ≤ 

4 for 8-15 years of education c. ≤ 2 for 0-7 years of education), d) subjective memory concern, 

e) others: Stability of Permitted Medications for at least 12 weeks. MCI cases were identified 

based on the following criteria: a) clinical tests: Mini-Mental State Exam score between 24 and 

30, b) memory function tests: Abnormal memory function documented by scoring below 

education adjusted cut-offs on the Logical Memory II subscale (Delayed Paragraph Recall, 

Paragraph A only) from the Wechsler Memory Scale – Revised (< 11 for 16 or more years of 

education, ≤ 9 for 8-15 years of education, ≤ 6 for 0-7 years of education), c) ) subjective 

memory concern. CN cases were identified based on the following criteria: a) clinical tests: 

Mini-Mental State Exam score between 24 and 30, b) memory function tests: Abnormal 

memory function documented by scoring below education adjusted cut-offs on the Logical 

Memory II subscale (Delayed Paragraph Recall, Paragraph A only) from the Wechsler Memory 



Scale – Revised (9 for 16 or more years of education, >=5 for 8-15 years of education,  >=3 

for 0-7 years of education), c) With or without subjective memory concern. 

AMARANTH: Patients with mild AD dementia were eligible to be included in the study only 

if they met all of the following criteria at screening 4. 

General Criteria: 1. Provision of signed and dated informed consent form from patient (or legal 

representative if required) and from study partner prior to any study-specific procedures being 

performed. 2. Male or Female, aged 55 to 85 years inclusive at the time of signing the consent 

form. 

Diagnostic criteria: 3. Patients must meet the National Institute on Aging (NIA) and the 

Alzheimer’s Association (AA) (NIA-AA) criteria for probable AD dementia. 4. Mini-Mental 

State Examination (MMSE) score of 20 to 26 inclusive at screening visit. 5. For a diagnosis of 

mild AD dementia, patient must have a Clinical Dementia Rating (CDR) global score of 0.5 or 

1, with the memory box score ≥0.5 at screening. 6. Florbetapir F 18 positron emission 

tomography (PET) or CSF Aβ1-42 positive by central assessor for presence of amyloid. 

Contraception: 7. Women must be postmenopausal, surgically sterile, or having infertility due 

to congenital anomaly. A postmenopausal woman is defined as either having an intactuterus 

with at least 6 months of spontaneous amenorrhea or a diagnosis of menopause prior to starting 

hormone replacement therapy. Surgically sterile women are defined as those who have had a 

hysterectomy, bilateral ovariectomy (oophorectomy), or bilateral tubal ligation. 8. Men with 

pregnant partners should use condoms from the first day of dosing until 3 months after the last 

dose of study treatment and abstain for 24 hours after dose administration of the florbetapir, 

AV-1451 or fludeoxyglucose (FDG) PET tracer. Men with partners of childbearing potential 

must abstain or use condoms plus an additional effective form of contraception from the first 

day of dosing until 3 months after the last dose of study treatment and abstain for 24 hours after 

dose administration of the florbetapir, AV-1451 or FDG PET tracer. For this protocol, sexual 



abstinence is defined as refraining from heterosexual intercourse during the entire period of 

risk associated with the study treatment. True abstinence is only acceptable when it is in line 

with the patient’s usual and preferred lifestyle. 

Concomitant Medication Criteria: 9. All medication dosing should be stable for at least 30 days 

before screening, and between screening and randomization (does not apply to medications 

discontinued) 

Procedural Criteria: 10. Must have completed 6 years of formal education and/or have a history 

of academic achievement and/or employment sufficient to exclude lifelong intellectual 

disability. 11. The patient must have a reliable study partner with whom he/she cohabits or 

hasregular contact (combination of face-to-face visits/ telephone contact acceptable). If at all 

possible, the same study partner should be willing to participate in study visits to provide 

meaningful input into the rating scales administered in this study, where study partner input is 

required or be available by telephone and must have sufficient patient interaction. As guidance, 

the ability for a study partner to meet his/her expected responsibilities for this study would 

normally be possible when the study partner spends no less than 10 hours per week with the 

subject, divided over multiple days.12. Patient and study partner must be able to read, write, 

and speak the language in which psychometric tests are provided, with acceptable visual and 

auditory acuity (corrected). 13. Study partner must be cognitively able to fulfill the 

requirements of the study, in the opinion of the investigator. Patients were excluded for 

unstable medical conditions or medication use, significant cerebrovascular pathologic findings, 

or a history of vitiligo and/or current evidence of post inflammatory hypopigmentation.  

MRI acquisition 

ADNI: Structural MRIs for the ADNI samples were acquired at ADNI-GO, ADNI2 and ADNI3 

sites equipped with 1.5T and 3T MRI scanners (GE, Philips, Siemens) using a 3D MP-RAGE 



or IR-SPGR T1-weighted sequences, as described online 

(http://adni.loni.usc.edu/methods/documents/mri-protocols).   

AMARANTH: Structural MRIs for the AMARANATH samples were acquired at different sites 

among Australia, Belgium, Canada, USA, France, Germany, United Kingdom, Italy, Japan, 

Poland  equipped with 1.5T and 3T MRI scanners ('Philips', 'Siemens', 'GE', 'DicomCleaner', 

'Ingenia') using a 3D T1-weighted sequences.  

MRI analysis: extracting medial temporal grey matter density 

All imaging pre-processing was performed using Statistical Parametric Mapping 12 in 

MATLAB (SPM12, http://www.fil.ion.ucl.ac.uk/spm/) following our previously published 

pipeline5. Structural images were reoriented and segmented into grey matter, white matter and 

cerebrospinal fluid. We used the DARTEL toolbox 6 to generate a study-specific template to 

which all scans were normalised. Individual grey matter segmentation volumes were 

normalised to MNI space without modulation. The unmodulated values for each voxel 

represent grey matter density at the voxel location. All images were then smoothed using a 

3mm3 isotropic kernel and resliced to MNI resolution 1.5 × 1.5 × 1.5 mm voxel size.  

We then generated an index of medial temporal grey matter density (MTL GM density). In 

particular, subspace learning— that forms the backbone of the GMLVQ methodology— cannot 

be directly applied in the MRI voxel space due to the prohibitive number of free parameters 

that would need to be inferred from the sample size used for model training. Therefore, as 

reported in our previous work5, to reduce dimensionality we first performed feature 

construction in the whole brain T1-weighted MRI voxel space using partial least squares 

regression with recursive feature elimination (PLSr-RFE) on ADNI (ADNI-GO ADNI-2) data. 

In particular, we tested for grey matter voxels that predicted memory decline (i.e. annualized 

change in ADNI memory composite), iteratively removing predictors (voxels) that had weak 

predictive values and resulting in a bilateral cluster of voxels in MTL that predict cognitive 



decline. That is, this reduced set of new orthogonal features span the voxel subspace that 

maximises covariance with the relevant response variable (i.e. memory decline). Using this 

method, we determined an ROI defined by a matrix of voxel weights in the medial temporal 

lobe and extracted grey matter density. This grey matter density score was shown to predict 

memory decline, relate to individual tau burden and discriminate stable vs. progressive patients  

1,5. PPM was trained on this reduced set of features (grey matter density score) that is obtained 

in a data-driven way without the need to infer a prohibitive number of free parameters. We then 

used this predefined ROI to extract MTL grey matter density independently from 

AMARANTH data that was used for testing the PPM (i.e. out-of-sample validation).  

PET acquisition and preprocessing 

ADNI:  PET imaging was performed at each ADNI site according to standardised protocols. 

The FBP-PET protocol entailed the injection of 10 mCi with acquisition of 20 min of emission 

data at 50–70 min post injection. The FTP-PET protocol entailed the injection of 10 mCi of 

tracer followed by acquisition of 30 min of emission data from 75–105 min post injection.  

Imaging analysis -PET: FBP (florbetapir PET) Aβ: FBP data were realigned, and the mean of 

all frames was used to co-register FBP data to each participant’s structural MRI. Cortical 

Standardised Uptake Value Ratios (SUVR)s were generated by averaging FBP retention in a 

standard group of ROIs defined by FreeSurfer v5.3 (lateral and medial frontal, anterior and 

posterior cingulate, lateral parietal, and lateral temporal cortical grey matter) and dividing by 

the average uptake from the whole cerebellum to create an index of global cortical FBP burden 

(Aβ) for each subject 7  Finally, we converted the SUVR to the centiloid scale 8  using the 

following conversion taken from the LONI website CL = (FBP SUVR × 196.9) – 196.03 

(http://adni.loni.usc.edu/methods/documents/, PET Protocols: ADNI Centiloids). To assign 

individuals as Aß positive we used the widely published threshold for ADNI FBP; SUVR = 1.1 

or CL = 22.5 9 . 



Image analysis-PET: FTP (Flortaucipir PET) tau: FTP data were realigned and the mean of 

all frames used to co-register FTP to each participant’s MRI acquired closest to the time of the 

FTP-PET. FTP SUVR images were generated by dividing voxel wise FTP uptake values by 

the average value within a mask of eroded subcortical white matter regions 10 . MR images 

were segmented and parcellated into 72 ROIs taken from the Desikan–Killiany atlas using 

Freesurfer (V5.3). These ROIs were then used to extract regional SUVR data from the 

normalised FTP-PET images. Left and right hemisphere ROIs were averaged to generate 36 

ROIs for further analysis. We calculated the future annualised rate of tau accumulation for each 

of the 36 ROIs either by taking the difference between the follow-up and baseline FTP-PET 

scans divided by the time interval in years from baseline (when only 2 FTP scans were taken), 

or fitting a linear least squares fit to 3 or more FTP-PET scans and extracting the parameter 

estimate for the slope of the ROI SUVR vs. time in years from baseline (when 3 or more FTP 

scans were taken). In the ADNI3 sample the average time between FTP-PET scans is 1.22+- 

std: 0.38 years with the number of follow-up FTP-PET scans n (2 FTP-PET scans) = 93, n (3 

FTP-PET scans) =17, n (4 FTP-PET scans) = 5.  

AMARANTH: The PET images acquired in the study were processed using previously 

mentioned methods 11. At baseline, standard uptake value ratio (SUVR) was calculated using 

as a ratio of the composite summary region that is an average of 6 different cortical regions 

(anterior cingulate, posterior cingulate, medial orbital frontal, lateral temporal, lateral parietal, 

precuneus) with whole cerebellum as a reference region. However, post-baseline SUVR values 

were calculated using 2 different reference regions: whole cerebellum and a correction factor 

using atlas based white matter (AWM). The SUVR with whole cerebellum was calculated as a 

ratio of composite summary region to whole cerebellum as a reference region, similar to the 

calculation at baseline. The SUVR values using AWM correction factors were calculated by 

dividing the composite summary ratio by an AWM correction factor. This correction factor is 



a ratio of SUV values of AWM to whole cerebellum from baseline to post-baseline. Finally, 

we converted SUVR to the centiloid scale 8 using the following conversion taken from the 

LONI website CL = (FBP SUVR × 196.9) – 196.03 

(http://adni.loni.usc.edu/methods/documents/, PET Protocols: ADNI Centiloids). To assign 

individuals as Aß positive we used the widely published threshold for ADNI FBP; SUVR = 1.1 

or CL = 22.59. 

Predictive Prognostic Model 

The Generalized Matrix LVQ 

In the LVQ family of algorithms the notion of a distance (metric) in the input space plays a 

crucial role. It governs what input points are assigned to which prototypes. The Generalized 

Metric LVQ (GMLVQ) is an extension of the LVQ algorithm that besides appropriate 

positioning of the prototypes also learns the metric to be used in the input space that enhances 

the class separation. The learnt metric is determined through the corresponding metric tensor. 

The metric tensor is a positive definite matrix Λ that incorporates feature scaling, as well as 

axis rotation accounting for the interplay between original input features.  

More formally, given a positive definite matrix Λ, Λ > 0, the generalized form of the squared 

distance between an input vector x and a class prototype w takes the quadratic form dΛ(x, w) = 

(x-w)TΛ(x-w). 

Positive definiteness of Λ is ensured by defining Λ as ΩTΩ, where Ω ∈ R(m×m) is a learnable 

full-rank matrix. It is important to note that only the relative distances of input points to the 

prototypes are significant. Therefore, the metric tensor can be multiplied by any positive real 

number without affecting the classifier’s performance. To address this inherent ambiguity and 

ensure algorithm stability, the metric tensor Λ is normalized after each learning step, so that its 

trace is fixed throughout the learning process.  



Using the steepest descent method, the cost function to be minimized through online learning 

is  
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where  

µ&(𝑥') = 	
𝑑&(𝑥' , 𝑤,) − 𝑑&(𝑥' , 𝑤-)
𝑑&(𝑥' , 𝑤,) + 𝑑&(𝑥' , 𝑤-) 

where φ is a monotonic function (in our case identify φ(l) = l), dΛ(xi, w+) and dΛ(xi, w-) are the 

distances between the sample vector xi and the closest correct and incorrect prototypes, 

respectively. We assessed the model performance by classification accuracy, true positive rate, 

true negative rate and macro averaged error (MAE). 

While an average of symmetric matrices will be symmetric, the challenge in averaging 

symmetric positive definite matrices is maintaining positive definiteness. Metric tensors are 

expected to be symmetric and positive definite, meaning all their eigenvalues are positive. It is 

important to ensure the averaged matrix remains positive definite. This can be achieved by 

calculating the mean metric tensor on the manifold of symmetric positive definite matrices (as 

opposed to performing a simple average). 

Further, we introduced ensemble learning, combining multiple models to make more accurate 

predictions, and enhance robustness. In particular, for each cross-validation, we split the data 

into training-fold and test-fold. To mitigate any potential biases due to class imbalance in the 

dataset (Clinically Stable (n = 100), Clinically Declining (n = 156)), we resampled the data to 

generate balanced classes. For each training-fold, we repeatedly (n = 400) randomly down-

sampled the majority class (i.e. Clinically Declining) to match the size of the minority class 

(i.e. Clinically Stable). For each resampling, we generated a new GMLVQ model that was 

trained on the resampled data in the training-fold (i.e. the model learned the metric tensor and 

prototype locations specific to each resampled training set) and validated on the test-fold. From 



this ensemble of models, we selected the top 20% (n = 80) classifiers based on their training 

set performance. Note that this selection could not be done based on the out-of-sample 

performance, as this could lead to biased models; that is, the ensemble members would be 

selected on the same sets the ensemble generalization performance is assessed on. However, 

as we employ one prototype per class, under the global metric tensor, all classification decision 

boundaries are linear. Hence, the risk of overfitting the training set is minimized and the 

training set classification accuracies are reasonable proxies for the out-of-sample ones: the 

ensemble member selection can be performed on the training sets without needing to 

compromise the out-of-sample sets. We then estimated the class balanced accuracy based on 

a) majority vote 12, i.e. the class label that receives the most votes from the ensemble models 

is selected as the final prediction, b) the average performance across the selected classifiers 13. 

This ensemble learning approach with cross-validation helps mitigate for potential individual 

model biases, resulting in more robust and accurate predictions. 

GMLVQ-Scalar Projection 

Moving beyond binary classifications, we extended the GMLVQ framework to generate 

continuous predictions from baseline cognitive data and structural MRI data (temporal lobe 

GM density). In particular, we employed GMLVQ-Scalar Projection 5  that extracts distance 

information from the sample vector and the learnt prototypes (representing Clinically stable vs. 

Declining). GMLVQ-Scalar Projection measures the distance in the learnt space, after applying 

the learnt metric tensor, between an individual and the prototype representing Clinically Stable 

along the direction separating Clinically Stable vs. Declining (the line connecting stable and 

progressive class prototypes). We extracted the scalar projection using the average prototypes 

and metric tensors of the selected top 20% classifiers to capture robust information across the 

ensemble of trained classifiers (note, majority voting does not support extraction of scalar 

projection), resulting in similar performance as majority voting (Table S1).  



In particular, following the learning process in GMLVQ, we transformed the sample vector x 

and prototypes w(stable, progressive) into the learned space using the metric tensor Λ. The geometric 

effect of the metric tensor on the original data vectors x can be interpreted as change of basis 

and rescaling: Xi = Λ1/2xi. Under such transformation, the learnt distances between data points 

xi are equal to the usual Euclidean distance between the transformed points Xi. Hence, we 

accordingly transformed the data points and class prototypes: 𝑊(/01234,678974//':4) = Λ1/2 

𝑤(/01234,678974//':4). 

To further analyze the separation of each vector x from the prototype W along the given 

direction, we centered the coordinate system on the prototype 𝑊/01234 	and calculated the 

orthogonal projection of each vector x onto the direction vector. The direction vector is defined 

as the difference between the stable and the progressive prototypes: 

𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 = 	
𝑋3𝑊/01234;;;;;;;;;;;;;;;;;;;⃗ 	 ∙ 𝑊678974//<:4𝑊/01234;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;⃗

>𝑊678974//<:4𝑊/01234;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;⃗ >
 

To normalize the projections with respect to the position of the prototype 𝑊678974//':4, we 

divided each projection by the norm of the direction vector. This normalization step allows us 

to determine the relative separation of a test point from the stable prototype.  

𝑆𝑐𝑎𝑙𝑎𝑟	𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 = 	
𝑋3𝑊/01234;;;;;;;;;;;;;;;;;;;⃗ 	 ∙ 𝑊678974//<:4𝑊/01234;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;⃗

>𝑊678974//<:4𝑊/01234;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;⃗ >
=  

The resulting value indicates the separation of a test point from the prototype 𝑊/01234 along the 

direction of 𝑊678974//<:4𝑊/01234;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;⃗ . A large positive value suggests a significant separation from 

the stable prototype 𝑊/01234in the direction, while a large negative value indicates a substantial 

separation in the opposite direction. A value of 1 signifies that a sample is incident to the 

prototype 𝑊678974//':4, while a value of 0 indicates that a sample is incident to the prototype 

𝑊/01234, representing the stable class. The decision boundary separating the two classes within 

the binary classification framework is located at a value of 0.5. The scalar projection, obtained 



by performing these calculations, yields a large positive value for Clinically Declining 

individuals and a zero or negative value for Clinically Stable individuals. This scalar projection 

index serves as a discriminative indicator of the classification task, where higher positive 

values correspond to a higher likelihood of being classified as Clinically Declining. That is, the 

scalar projection index captures information about how far an individual is from the Clinically 

Stable prototype, serving as an individualized PPM-derived prognostic index. We have 

previously shown that this index relates significantly to the rate of memory decline, allowing 

us to estimate how fast an individual progresses from Clinically Stable to AD  1,5. 

 

Non-parametric Statistical Analyses 

Treatment outcomes based on PPM-stratification: To account for deviations from normality 

for the PPM-derived index data (Figure S2), we repeated the statistical analysis using Analysis 

of Covariance (ANCOVA), to test Treatment (placebo, 20 mg, 50mg) effects on outcomes (β-

Amyloid and cognitive scores: CDR-SOB and ADAS-Cog13) across timepoints (week 1, 52, 

104) for each PPM-stratified group (Slow vs. Rapid progressive).  

Treatment effects on β-Amyloid: Consistent with the MMRM analysis, ANCOVA analysis 

including fixed effects for treatment, timepoint, PPM-stratified group showed significant main 

effect of Timepoint (F(2, 840) = 61.21, p < 0.001) and PPM-stratified group (F(1, 840) = 

704.95, p < 0.001), significant interactions for Treatment × Timepoint (F(4, 840) = 15.49, p < 

0.001) and PPM-stratified group x Timepoint (F(2, 840) = 9.06, p < 0.001). Post-hoc 

comparisons showed that this PPM-stratified group x Timepoint interaction was significant for 

the lanabecestat 20mg (F(2, 302) = 5.72, p < 0.01) and lanabecestat 50mg (F(2, 250) = 3.77, p 

= 0.02) but not the placebo (F(2, 261) = 1.33, p = 0.27) group. 

Treatment effects on CDR-SOB: Consistent with the MMRM analysis, ANCOVA analysis 

including fixed effects for treatment, timepoint, PPM-stratified group showed: a) significant 



interactions: PPM-stratified group x Treatment x Timepoint (F(4, 2850) = 2.76, p = 0.03), 

PPM-stratified group x Timepoint  (F(2, 2850) = 17.29, p < 0.001); b) significant main effects 

of PPM-stratified group (F(1, 2850) = 176.36, p < 0.001), Treatment (F(2, 2850) = 5.43, p < 

0.01), Timepoint (F(2, 2850) = 462.77, p < 0.001). Post-hoc comparisons showed that PPM-

stratified group x Timepoint interaction was significant for the lanabecestat 20mg (F(2, 939) = 

4.86, p < 0.01) and lanabecestat 50mg (F(2, 921) = 18.84, p <0.001) but not the placebo (F(2, 

958) = 1.44, p = 0.23) group. 

Treatment effects on Alzheimer's Disease Assessment Scale - Cognitive subscale 13 (ADAS-

Cog13): Consistent with the MMRM analysis, ANCOVA analysis including fixed effects for 

treatment, timepoint, PPM-stratified group showed a significant PPM-stratified group x 

Timepoint interaction (F(2, 2823) = 10.58, p < 0.0001). 

  



Supplementary Figures 

 

Figure S1: Treatment effects of lanabecestat in the AMARANTH trial on ADAS-Cog 13 
A. Mean ADAS-Cog13 scores over time for Slow, Rapid, and All Progressive individuals 
(sample size: Table S3) in the Placebo (grey dashed), lanabecestat 20mg (blue), and 
lanabecestat 50mg (purple) treatment groups. Error bars indicate the standard error of the mean 
across individuals (SEM). B. Box plots of change in ADAS-Cog13 (week 104 minus week 1) 
for Slow, Rapid, and All Progressive (sample size: Table S3) showing— similar with CDR-
SOB, albeit not significant— reduction in cognitive decline for the slow progressive 
individuals in the 50mg treatment group vs. placebo.  Black lines in the box plots indicate the 
median for placebo (grey), lanabecestat 20mg (blue), and lanabecestat 50mg (purple), solid 
black box represents the 25th to 75th percentile, the black vertical lines represent the range of 
the data, black circles indicate outliers. Source data are provided as a Source Data file. 
 



 

Figure S2. Data Distributions for: A. β-Amyloid in centiloids (Shapiro-Wilk test, W = 0.99, p 

< 0.001 ), B. CDR-SOB (Shapiro-Wilk test, W = 0.89, p < 0.001), C. ADAS-Cog13  (Shapiro-

Wilk test, W = 0.95, p < 0.001). 

 
 
 
 
 



Supplementary Tables 
 
Table S1. PPM class-balanced accuracy, sensitivity, specificity, AUC, F1-score, precision, 
Recall, for Clinically Stable vs. Clinically declining classification for ADNI training data (10 
repetitions x 10-fold cross-validation). 
Performance Majority voting  Performance Average of 

classifiers  
Accuracy = 91.1% 
AUC: 0.94 
sensitivity = 87.5% 
specificity = 94.2% 
Precision = 93.8% 
F1 score: 90.5% 

accuracy = 90.6% 
AUC = 0.94 
sensitivity = 87.1% 
specificity = 94.1% 
Precision = 95.7% 
F1 score = 91.2 % 

 
Table S2. AMARANTH sample size for β-Amyloid per treatment, PPM-derived group and 
timepoint (week 1, 52, 104). 
 

 

 
 
 
 
 
 
 
 

Table S3. AMARANTH sample size for: A. CDR-SOB, B. ADAS-Cog13 per treatment, PPM-
derived group and timepoint (week 1, 52, 104). 

 

 Rapid progressive Slow progressive 
Week 1 52 104 1 52 104 
Placebo 96 20 76 44 8 36 

20mg 114 34 80 45 14 31 

50mg 81 22 59 54 16 38 

Sum 291 76 215 143 38 105 

A. Rapid progressive Slow progressive 
Week 1 52 104 1 52 104 
Placebo 312 269 90 142 120 47 
20mg 313 270 99 133 110 36 

50mg 294 239 71 160 138 41 
Sum 919 778 260 435 368 124 

B. Rapid progressive Slow progressive 
Week 1 52 104 1 52 104 
Placebo 311 267 86 142 119 43 
20mg 313 266 87 133 108 32 
50mg 292 232 66 135 138 38 
Sum 916 765 239 410 365 113 



Table S4 : Statistical analyses (MMRM) for all outcomes 
 

Measure / 
Factor 

Timepoint Treatment PPM-
stratified 
group 

Treatment × 
Timepoint 

PPM-
stratified 
group x 
Treatment 

PPM-
stratified 
group x 
Timepoint 

PPM-
stratified 
group x 
Treatment x 
Timepoint 

β-Amyloid F(2, 485.43) = 
37.01,  
p < 0.001 
 

F(2, 
493.35) = 
2.65,  
p = 0.07 
 

F(1, 489.19) 
= 84.04,  
p < 0.001  
 

F(4, 484.87) = 
10.27,  
p < 0.001 
 

F(2, 492.95) = 
0.83, p = 0.43 
 

F(2, 485.46) = 
8.38, p < 0.001 
 
 

F(4, 485.01) = 
0.86, p < 0.49 
 

CDR-SOB F(2, 2190.7) = 
24.08,  
p < 0.001 

F(2, 
1870.5) = 
3.00.,  
p = 0.05 

F(1, 1809.1) 
= 35.70,  
p < 0.001 

F(4, 2172.8) = 
2.20, p = 0.067 

F(2, 1866.4) = 
2.51, p = 0.08 

F(2, 2163.7) = 
14.72,  
p < 0.001 

F(4, 2173.3) = 
2.62, p < 0.05 

ADAS-
Cog13 

F(2, 2152.3) = 
24.42,  
p < 0.001 
 

F(2, 
1903.7) = 
0.93,  
p < 0.39 
 

F(1, 1848.9) 
= 29.51,  
p < 0.001 
 

F(4, 2157.8) = 
0.94, p = 0.44 
 

F(2, 1903.3) = 
0.35, p = 0.71 
 

F(2, 2162.8) = 
10.37,  
p < 0.001 

F(4, 2157.9) = 
1.17, p = 0.32 

 
 

Factor Post hoc comparisons: PPM-stratified group x Timepoint 

 Placebo Lanabecestat 20mg 
 

Lanabecestat 50mg 
 

β-Amyloid F(2, 152.76) = 1.20 p= 0.30 F(2, 184.22) = 5.36, p< 0.01 
 

F(2, 146.80) = 3.47, p= 0.03 
 

CDR-SOB F(2, 720.26) = 0.96, p= 0.38 F(2, 716.64) = 4.301, p = 0.014 F(2, 709.67) = 15.28, p < 0.001 

ADAS-
Cog13 

F(2, 720.14) = 4.53, p=0.011 F(2, 719.95) = 3.31, p = 0.03 
 

F(2, 706.74) = 6.83, p < 0.001 
 

 
Table S5. Least Squares Mean from MMRM models per outcome. 
 

Outcome 
measure 

Group  Placebo Lanabecestat 
20mg 

Lanabecestat 
50mg 

β-Amyloid Trial sample -2.08 (1.86) -15.76 (1.89) -19.74 (1.97) 

All progressive -0.114 (2.38) -15.32 (2.46) -19.67 (2.43) 

Slow progressive 3.48 (3.21) -8.53 (3.43) -14.04 (3.10) 

Rapid 
progressive 

-3.71 (2.90) -22.15 (2.78) -25.38 (3.28) 

CDR-SOB Trial sample 3.02 (0.17) 3.17 (0.17) 3.17 (0.18) 

All progressive 2.51 (0.15) 2.52 (0.16) 1.97 (0.16) 

Slow progressive 2.21 (0.24) 1.90 (0.27) 1.03 (0.25) 

Rapid 
progressive 

2.74 (0.18) 3.04 (0.17) 2.86 (0.20) 

ADAS-Cog13 Trial sample 10.31 (0.55) 9.38 (0.56) 10.72 (0.58) 

All progressive 10.0 (0.55) 9.4 (0.59) 10.2 (0.59) 

Slow progressive 9.31 (0.85) 8.36 (0.95) 7.92 (0.89) 

Rapid 
progressive 

10.4 (0.65) 10.1 (0.65) 12.0 (0.73) 
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