
1

A Framework for the Analysis of Process Mining

Algorithms
Philip Weber, Behzad Bordbar, Peter Tiňo

Abstract—There are many process mining algorithms and
representations, making it difficult to choose which algorithm to
use or compare results. Process mining is essentially a machine
learning task, but little work as been done on systematically
analysing algorithms to understand their fundamental properties,
such as how much data is needed for confidence in mining.

We propose a framework for analysing process mining al-
gorithms. Processes are viewed as distributions over traces of
activities, and mining algorithms as learning these distributions.
We use probabilistic automata as a unifying representation to
which other representation languages can be converted.

We present an analysis of the Alpha algorithm under this
framework, and experimental results which show that from the
sub-structures in a model and behaviour of the algorithm, the
amount of data needed for mining can be predicted. This allows
efficient use of data and quantification of the confidence which
can be placed in the results.

Index Terms—Process mining, business processes, probabilistic
automata, Petri nets, machine learning.

I. INTRODUCTION

BUSINESS processes describe activities carried out to

fulfil a business function, such as providing a service

or producing a product. Processes may be designed to dictate

work patterns, or result de facto from working practice. Either

way, as activities take place, systems involved record informa-

tion in workflow logs. Process mining [1], [2] uses these logs

to discover and analyse models of business processes.

Fig.1 shows the ‘control flow’ of a simple example process,

as a Petri net. An order is received, stock checked, and the item

is picked from the warehouse, or the order rejected. Despatch

and billing take place in parallel. After checking payment, a

receipt is issued or payment chased, before closing the order.

Abstracting from detail, the ‘trace’ of one possible enactment

of the process might be recorded in a workflow log as a string

‘iabdefgo’. We use this process as a running example.

Process discovery algorithms use logs of such traces to

produce models of process control flow. Process mining also

addresses performance analysis [3], troubleshooting, auditing

conformance [4]–[6], mining decision rules [7], or interaction

between resources [8]. A current focus is on managing com-

plex processes or logs, by abstracting from detail or separating

multiple processes recorded together [3], [9]–[13].

Process mining is therefore a wide-ranging tool-set, interfac-

ing between business users and the highly complex and multi-

faceted real-world behaviour of businesses. This behaviour

Manuscript received The authors are with the School of
Computer Science, University of Birmingham, B15 2TT, UK. Email:
{p.weber,b.bordbar,p.tino}@cs.bham.ac.uk. P. Weber is supported by a Doc-
toral Training Grant funded by EPSRC and the School of Computer Science.

Fig. 1. Simplified business process for fulfilling an order (Petri net N0).

is manifested in designed or de facto business processes,

evidence for which is found in possibly complex, detailed

logs. Process mining aims to enable understanding of process

behaviour, and in this way to facilitate decision-making to

control and improve that behaviour.

Process discovery is essentially a machine learning task.

However, little work has been done on systematically

analysing process mining algorithms in this context, to dis-

cover their fundamental properties, or to answer questions

such as how much data is necessary for mining. Yet such

understanding is of critical importance to give confidence that

a log file is an adequate sample of the true behaviour, and thus

in the correctness of the mined model.

There are many process discovery algorithms, e.g. [14]–

[20], and various representation notations. Since the core

interest is in process control flow, many algorithms learn

only the process structure, without attempting to recover

probabilities. Probabilities in the model may be of interest, as

where business rules restrict the frequency of costly patterns of

activity. However even where there is no interest in producing

a probabilistic model, it must be appreciated that traces are

generated randomly according to an underlying probability

distribution unknown to the mining algorithm. Not all activities

or decisions are equally likely, and their probabilities may have

a dramatic effect on the amount of data needed for mining.

Because of this diversity of algorithms and representations,

methods are needed for analysing the behaviour of algorithms.

This paper aims to introduce a framework for one such

method. Given a probability and a process mining algorithm,

how much data of a given, finite process do we need to, with a

stated probability, produce a business process ‘close enough’

to the original? There are two main prerequisites to answering

this question. Firstly, a unifying view of processes to allow ob-

jective, language-independent analysis, and secondly a notion

of ‘closeness’ to evaluate how similar two processes are.

To satisfy these requirements, we consider business pro-

cesses as probability distributions over traces of activities,

and mining algorithms in terms of their ability to learn such

distributions. We use probabilistic automata (PDFA [21]) as

a unifying representation, as these represent a large class of

probability distributions over sequences, and act as a lowest

2

common denominator to which to convert models in other

languages. The distance between processes can be calculated

from PDFA with various metrics. In this paper we use the d2
distance, and metrics based on the Bhattacharyya Coefficient

[22], [23] and on the Kullback-Leibler Divergence.

Sections II and III introduce relevant concepts and our

view of business processes. In section IV we describe our

framework, and apply it in section V to the Alpha Algorithm

[14]. We show how a process model can be broken down

into sub-structures and the probability of correct mining of

those sub-structures, and thus of the full model, accurately

calculated. In section VI we apply the analysis to our running

example, and to a larger model to illustrate larger systems and

show that our method gives insights into the behaviour of the

Alpha algorithm when mining these models. In section VII we

support our probabilistic view of processes with a comparison

of the distances which we use to compare processes, with

existing metrics. Section VIII concludes the paper.

II. PRELIMINARIES AND RELATED WORK

A. Business Processes and Their Representations

A business process describes the activities which take

place to fulfil a particular function, from various perspectives

[1] including relationships between activities (control-flow),

timing, resources, decision rules. In this paper we focus on

the control flow perspective.

We assume that processes have single input (start) and

output (end) activities (or tasks), and the events of activities’

occurrence are recorded as they occur. Events are atomic (take

no time), and are uniquely labelled, the same label always

referring to the same event, and vice versa. No use is made of

additional information (such as timing) about events, merely

the order in which they are recorded. The underlying process

model is assumed to be fixed (unlikely in reality, but change is

assumed to be slow enough to be ignored over the period that

data is collected). These restrictions are equivalent to those

used elsewhere in the literature, e.g. [14], [24], [25].

Traditionally, business processes have been viewed as lan-

guages over activities, with no probabilistic structure. Various

representational mechanisms have been suggested for captur-

ing process control flow. BPMN [26] is widely used for busi-

ness process modelling. It uses an extensive notation to allow

description of complex, hierarchical, executable processes, but

has not been used for process mining. Early process mining

work [25], [27] used simple directed graphs which did not

specify the types of splits and joins. More recently, Simple

Precedence Diagrams [3] are similar, loosely capturing process

structure to semi-formally describe processes. Nodes describe

activities or groups of activities. Workflow Schemas [9] model

structures such as splits and joins in acyclic processes, while

Block-Structured Diagrams [17] enforce rigid nesting of sub-

structures, and focus on the description of concurrency. Other

languages which support concurrency and complex synchroni-

sation structures [28] include Adonis [29] and Petri nets [30].

Causal Nets [15] have been proposed to allow flexible

definition of splits and joins using logical expressions, with-

out introducing constructs such as hidden transitions, needed

Fig. 2. Reachability graph for Petri net N0 (Fig.1).

by Petri nets. Petri nets however remain the most common

representation employed in the process mining community to

describe processes under this view (e.g. [14], [16], [19]). We

introduce Petri nets in the following section.

B. Petri Nets

There are various types of Petri net, details of which with

their properties and executable behaviour can be found in [30].

For a discussion of Workflow Nets, a restriction of Petri nets

used in business processes, see [14], [31].

In general, a Petri Net is a 4-tupleN = (S, T,W,M), where

T and S are finite sets of transitions and places respectively,

such that T ∩S = ∅. W ⊆ (S×T)∪(T×S) is a flow relation,

defining the directed arcs of the graph, connecting places and

transitions. M is a multi-set over S called a marking M : S →
N, describing the distribution of tokens over places, defining

the state of the process.

The workings of the Petri net are defined by the marking

and the firing of transitions. A transition t may fire when

there is a token in each of its input places, whereupon a

token is removed from each of the input places of t and

a token added to each of the output places of t. Fig.1

shows a Petri net N0. S = {p0, p1, . . .}, T = {i, a, . . .},

W = {(p0, i), (i, p1), . . .}, M = (1, 0, . . .). Solid rectangles

represent transitions, modelling process activities. Places are

shown by circles, and tokens by black dots in places. Only

transition i can fire, consuming the token in p0 and creating

one in p1, thus enabling transition a. The Reachability Graph

of Petri net N is the state space of the net, the set of markings

reachable fromM0 by firing a series of transitions. Fig.2 shows

the reachability graph of Petri net N0 (Fig.1), as a transition

system. Each reachable marking is represented by a state,

labelled with the places of the Petri net which contain tokens

in that marking. The arcs are labelled by the transitions which

are fired to move from one state to the next.

Sometimes business processes are constrained to a conve-

nient subset of Petri Nets, called Sound Workflow (WF) Nets

[6], [14]. A Sound WF-Net is a Petri net with a single start

and single end place and every transition on a path between

these two places. Its marking is a mapping S → {0, 1}, i.e.

any place may hold at most one token. Initial marking M0

is a single token in the start place, and final marking MF

a single token in the end place. When a process is started

from M0, all transitions must be potentially executable, and

the process must terminate properly, i.e. in marking MF .

Sound WF-nets allow for all the basic routing constructs found

in business processes. Structured WF-Nets [14] restrict the

allowed structure of places and transitions to ensure each split

corresponds with a join of the same type. Fig.1 is both a Sound

and a Structured WF-Net, in its initial marking M0.

3

Different measures have been proposed to quantify how well

a given Petri net N conforms to a WF log W . For example,

‘Token-based fitness’ [6], used as a recall metric in process

mining, measures the ability of N to support the traces in W :

f =
1

2

(

1−

∑n
i=1mi

∑n
i=1 ci

)

+
1

2

(

1−

∑n
i=1 ri

∑n
i=1 pi

)

,

where n is the number of traces in W , pi the number of tokens

produced during replay of trace i, ci the number consumed,

mi the number of tokens missing (had to be artificially created

to enable trace to be replayed), and ri the number remaining

after replay of the trace. Behavioural Appropriateness a′B [6]

measures the precision of the model, penalising behaviour

supported by the model but not the log.

C. Process Mining

Process mining algorithms aim to reconstruct the underlying

business process structure based on a sample WF log. They are

broadly split into ‘local’ and ‘global’ approaches [1]. ‘Local’

build models from relations between activities, e.g. Alpha [14],

Alpha++ [16], Heuristics Miner [15]; while ‘global’ methods

start with and refine a full model, e.g. genetic [32], [33]

and region mining [18], [19]. Recent approaches aim to mine

complex or noisy processes using clustering and abstraction

at the level of traces [9]–[11], or activities [3], [12], [13].

Other work includes artificially generating negative examples

to improve learning [34], and mining from logs lacking case

IDs [20] to identify process instances. Process mining has also

been used as an assistive tool, e.g. with distributed workflow

execution [35] or detection of anomalous event behaviour [36].

The Alpha algorithm [14] can mine processes representable

by Structured WF-Nets, from noise-free logs. A net is inferred

based on local relations between pairs of activities recorded

in a workflow log W . Transitions represent atomic activities.

Single start and end places are assumed; the remaining places

are inferred using the basic relations:

• a > b (b directly follows a in at least one trace),

• a→ b (b always follows a, never vice-versa),

• a#b (a and b never follow each other), and

• a ‖ b (both ab and ba occur in the log).

Two activities are always related by either →, →−1, # or ‖,

and these partition the set of activities [14, Property 3.1].

Various methods have been proposed for comparing process

models, often based on the syntax of the representations used.

Examples are replaying training or reference logs [9], [12],

[15], [32], measuring Petri net token behaviour [4], [34] or

string edit distances [37], comparing incidence matrices [38] or

coding costs using the Minimum Description Length principle

[39]. Measures may be along different ‘dimensions’ [5], [6]

depending on the type of differences to be measured.

The review in [2] concludes ‘more research is required to

enable the production of a generic framework for the quantified

comparison of processes’. In [5] an architectural framework

is proposed, to include algorithms, methods for comparison,

and a repository of logs and tools. Existing metrics and a

method of assessing algorithms using a k-fold cross-validation

method are compared. Metrics have the advantage of allowing

TABLE I
NOTATION FOR BUSINESS PROCESS.

A A set of business activities.
M ‘Ground truth’ model (may be unknown).
Σ Alphabet of symbols encoding business

activities.
{a, b, . . .} ∈ Σ Valid business activities in the process.

{x, y, . . .} ∈ Σ+ Non-empty strings representing sequences of
activities.

T The set of all valid process traces (cases).
xy The concatenation of strings x and y.
xΣ∗,Σ∗x, The set of strings with x as prefix, suffix,
Σ∗xΣ∗ . . . or sub-string. (rest of string may be empty).

W ⊂ {x|x ∈ Σ+} Workflow log, a bag or multi-set of traces.

different aspects of models’ behaviour to be compared, and

differences localised in the representation in use, but do not

provide a common basis for comparing models in different

representations, or upon which to objectively discuss other

process mining tasks such as generalisation, clustering or

abstraction. The k-fold approach uses an experimental method

from machine learning, and allows the significance of dif-

ferences to be quantified. However, it does not provide a

theoretical foundation for analysing the learning behaviour of

algorithms and predicting how much data is needed for mining.

The paper concludes that more research is needed.

Alpha is one of many process mining algorithms imple-

mented as plug-ins in ProM [40]. Commercial tools include

Fujitsu’s Automated Process Discovery, while many products

address business process modelling and automation.

III. BUSINESS PROCESSES AS DISTRIBUTIONS OVER

TRACES

We propose to view business processes as probability dis-

tributions over strings of symbols a ∈ Σ representing activ-

ities. In this paper such distributions will be described using

stochastic automata. In other words, a business process can be

considered a stochastic regular language M that describes the

probability distribution PM over Σ+ (the set of all non-empty

strings of activities):
∑

x∈Σ+ PM(x) = 1. Each trace begins

with the start activity i and finishes with the end activity o.

The finite (we are not considering cycles) set of valid process

traces T consists of strings x ∈ Σ+ such that no activity a ∈ Σ
occurs more than once in x, and x = iwo, w ∈ (Σ \ {i, o})∗

(w may be empty). A overview of our notation is presented in

table I. The next section introduces our main representational

framework for describing PM (see also [20], [29]).

A. Probabilistic Automata

To provide a ‘common denominator’ to which processes

in other modelling languages can be converted and analysed,

we use transition-labelled Probabilistic Deterministic Finite

Automata (PDFA) [21] to represent the probability distri-

butions as process models. Briefly, a PDFA is a five-tuple

A = (QA,Σ, δA, q0, qF):

• QA is finite set of states;

• Σ is an alphabet of symbols;

• δA : QA × Σ × QA → [0, 1] is a mapping defining the

conditional transition probability function between states,

4

Fig. 3. PDFA A0 corresponding to Petri net N0 (Fig.1), with the addition
of transition probabilities.

δA(q1, a, q2) = Pr(q2, a|q1), i.e. the probability to parse

symbol a and arrive in state q2 given currently in q1;

• q0 ∈ QA is a single start state; and

• qF ∈ QA is a single end state; such that:

∀q ∈ QA,
∑

q′∈QA,a∈Σ

δA(q, a, q
′) = 1, and Pr(q′|a, q) = 1.

The probabilities on arcs outgoing from a state sum to 1, and

given a current state and symbol, the next state is certain.

There is a unique state path through the automaton for any

string x that it can parse.

Example PDFA A0 (Fig.3) represents the same model as

Petri net N0 (Fig.1). It has the same structure as the reach-

ability graph, with the addition of probabilities of following

each arc, or parsing each symbol. Here Q = {q0, q1, . . .},

Σ = {i, a, . . .}, δ = {(q0, i, q1) → 1.0, (q1, a, q2) → 1.0, . . .},

q0 =‘q0’, qF =‘q9’. States are shown by circles, the start state

is indicated by an arrow and the final state by a double border.

Every PDFA A describes a distribution PA over Σ+:

PA(x) = δA(q0, s0, qs0)×
(

n−2
∏

i=1

δA(qsi−1
, si, qsi)

)

× δA(qsn−2
, sn−1, qF),

where x is a string of symbols s0s1 . . . sn−1 which can be

parsed by the automaton to the unique final state qF ; qsi
denotes the state reached after symbol si is parsed. PA(x) = 0
for strings which cannot be parsed.

In A0 (Fig.3), PA(iaco) = δA(q0, i, q1) × δA(q1, a, q2) ×
δA(q2, c, q8)× δA(q8, o, q9) = 1.0× 1.0× 0.1× 1.0 = 0.1.

Note that the structure of allowed traces defined by sound

WF-Nets can be naturally captured by the support structure of

distributions described by PDFA in the sense that

• there is a single start and end state,

• all states are accessible (reachable from the initial state),

• from any state, it is possible to reach the final state,

• for any given string x, the sequence of state transitions

to generate x is unique, and

• given a state and a symbol, the next state is certain.

A sound WF-Net does not hold any probability information,

but has finite state space, so the net’s structure can be converted

to an automaton with a finite number of states1, via its reach-

ability graph, e.g. [30]. Transitions can be allocated uniform

probabilities, or estimated maximum likelihood probabilities

from a log file. The structure of a PDFA may be converted to

a Petri net using the theory of regions, e.g. [18, Section 4].

1The ‘state space explosion’ may be a problem, especially in the conversion
of large Petri nets with high concurrency (although the structural and marking
limitations of sound WF-Nets should alleviate this).

B. Distances Between Probability Measures

Viewing business processes as probability distributions, we

can quantify differences between two business processes P1

and P2 (e.g. the ‘ground truth’ and its inferred proxy) via

distances on the space of distributions over traces, e.g.

Euclidean Distance

d2(P1, P2) =

√

∑

x

(

P1(x) − P2(x)
)2
,

Bhattacharyya Distance [22]

dBhat(P1, P2) =

√

1−
∑

x

√

P1(x)P2(x),

Kullback-Leibler Divergence

dKL(P1, P2) =
∑

x

P1(x) log
P1(x)

P2(x)
.

Note that Kullback-Leibler Divergence is not a distance mea-

sure since it is not symmetric. Also it requires P1 and P2 to

have the same support. This is straightforward to work around,

e.g. by postulating the Jensen-Shannon Divergence [41]

dJSD(P1, P2) = dKL(P1, ψ) + dKL(P2, ψ),

where ψ(x) = 1
2

(

P1(x) + P2(x)
)

.

C. Process Mining: A Machine Learning View

We formalise a machine learning view of process mining,

noting that some of these ideas are implicit in other work,

e.g. [25], [29]. In particular, in [20] a stream of symbols

representing activities is produced by multiple random sources.

We rather consider a single source generating traces.

A process discovery algorithm is essentially a learning

machine, whose task is to model the control flow of a business

process, using traces of the execution of the process, recorded

in a workflow log W , which is a multi-set over traces. Each

trace represents a single run through the process from start to

end. Traces can be encoded as strings x ∈ Σ+, where Σ is an

alphabet of symbols representing activities.

We assume that an unknown probability distribution D over

traces (from Σ+) is responsible for generating the traces in the

log W . Although various factors affect what activities take

place, such as business needs or user preferences, different

traces in fact occur with specific probabilities, and thus it can

be argued that the underlying process is inherently stochastic.

From the machine learning point of view, the primary task of

the process mining algorithm is to construct a model M of D
from a finite sample of traces (workflow log W).

The log file W will contain only a finite number of

process traces, and therefore is a stochastic sample drawn i.i.d.

(independently and identically distributed) from the unknown

distribution D (the ‘ground truth’). In other words, each trace

occurs with probability according to the same distribution D,

and one trace occurring does not change the probability of

others. Since the log is of finite size, we expect the frequency

of traces in the log to vary from their probabilities under D.

The challenge for the learning machine (process discovery

algorithm) is to use this finite sample to construct a model M

5

of D which does not simply represent the data in the finite log,

but is as ‘close’ as possible to the true generating source D, i.e.

generalises well. This raises questions such as: How much data

is needed to do this with certain (given) confidence and preci-

sion2? How to quantify the learning machine’s performance?

Since both D and M are distributions, it is natural to assess the

learning machine’s performance by quantifying how ‘close’

M is to D, for which there are various measures. This allows

direct comparison of the ‘reality’ represented by the models,

rather than similarity/dissimilarity of syntactic representations

of M and D in the modelling language in use, which seems

to be a common theme [4], [9], [32], [38].

Machine learning theory is concerned with the convergence

properties of machine learning algorithms, in terms of the

circumstances in which they can be expected to converge

to the ground truth, and the amount of data needed. While

different process discovery algorithms have different strengths

and weaknesses, they can be compared under this unifying

framework, i.e. in terms of their convergence properties within

the restrictions within which they operate. From the ground

truth and an understanding of the behaviour of an algorithm,

one can predict, and experimentally verify, how fast the mined

model will converge to the ground truth model.

While in real applications the process discovery algorithm

will not have access to the ground truth distribution governing

trace generation, it is standard practice in machine learning

[42], [43] to study learning algorithms by imposing a certain

class of ground truth distributions and then to verify empiri-

cally and/or theoretically how fast and how well the ground

truth can be ‘learnt’ by the algorithm from finite samples. In

this framework, the algorithm does not know the ground truth,

but because we have access to it, the success of the learning

algorithm as more samples become available can be measured.

IV. FRAMEWORK FOR THE ANALYSIS OF PROCESS

MINING ALGORITHMS

In this section we outline a framework within which to

analyse process mining algorithms with regard to their prob-

abilistic behaviour, process sub-structures, and number of

traces; in the context of their ability to discover a probability

distribution over traces, which converges to a ‘ground truth’.

The steps below describe the approach taken here to analyse

and experimentally validate process mining algorithms.

Step 1. Analyse the algorithm to develop formulae for the

probability of discovery of all important process sub-

structures (e.g. splits and joins, or parallel action flows).

Step 2. Extend to aggregate the sub-structure results (joining

sub-structures from the previous step into the full model)

to enable calculation of overall discovery probability of

arbitrary models.

Step 3. Analyse the algorithm’s characteristics, such as rate

of convergence, issues affecting convergence, possible

relation to other algorithms, etc.

Theoretical analysis will be complemented by empirical

investigations as follows:

2this corresponds to e.g. the so-called PAC (Probably Approximately
Correct) framework.

Fig. 4. Example of process sub-structures in Petri net N0 and PDFA A0.

1) Design ‘ground truth’ test models with varying topolog-

ical and probability structures.

2) From the test models generate multiple sample sets of

workflow logs of various sizes, to test for convergence.

3) Run process mining algorithms under investigation on

such data, converting mining results to PDFA as neces-

sary (section III-A), and compare distributions of traces

represented by these automata with the ‘ground truth’3.

In the following we introduce the important process sub-

structures and in section V we apply the framework to an

analysis of the Alpha algorithm [14].

A. Process Sub-Structures

Business processes are composed of sub-structures [17],

[28]. We consider only acyclic structures in this paper. A

few basic structures are sufficient, although more complex

patterns exist [28]. The sub-structures in our example process

are highlighted in Fig.4. We next define process sub-structures

in terms of the set T of valid process traces starting with i

and ending with o.

1) Sequences: If tasks a and b form a sequence (e.g. Fig.4,

sub-structure A), then if a occurs, it is immediately followed

by task b, and no other, in the model. In the log, other parallel

tasks may ‘interfere’, so the following will hold: if a occurs

in a trace, b will occur before the end of the trace, i.e.:

if uav ∈ T , then v = wbq,

where a, b ∈ Σ, and u,w, q ∈ {Σ \ {a, b}}∗.

2) Exclusive-OR Split: An m-way XOR split (Fig.5(a))

occurs where there is a choice between m mutually exclusive

paths through the model after task a, each path starting with

a task t ∈ {bi|1 ≤ i ≤ m}. If a occurs in a trace, then exactly

one t ∈ {bi|1 ≤ i ≤ m} will occur in the rest of the trace:

if uav ∈ T , then ∃i : 1 ≤ i ≤ m, such that v = wbiq,

where a, bi ∈ Σ, and u,w, q ∈ {Σ \ {a, b1, . . . , bm}}∗.

3) Exclusive-OR Join: An m-way XOR join (e.g. Fig.4,

structure F) occurs where m mutually exclusive paths rejoin

before task c. The final task in each path prior to c is a task

t ∈ {bi|1 ≤ i ≤ m}. If c occurs in a trace, then exactly one

task t ∈ {bi|1 ≤ i ≤ m} will be in the trace before c:

if ucv ∈ T , then ∃i : 1 ≤ i ≤ m, such that u = wbiq,

where c, bi ∈ Σ, and v, w, q ∈ {Σ \ {c, b1, . . . , bm}}∗.

3Where algorithms produce non-probabilistic models, heuristic methods can
be used to allocate uniform or maximum likelihood probabilities to transitions.

6

(a) XOR split.

(b) Parallel (AND) split.

(c) Complex splits and joins (sub-structures A and B)
and ‘extra’ parallel activities (dotted ellipses).

Fig. 5. Petri net and PDFA fragments depicting various sub-structures.

4) Parallel Split: An m-way AND split (Fig.5(b)) occurs

where m paths through the model proceed in parallel, follow-

ing task a, each path starting with a task t ∈ {bi|1 ≤ i ≤ m}.

If each path contains only a single task bi, and there are no

restrictions on the order of the tasks, and no other parallel

parts of the model, then the next m tasks in the trace will

be b1, b2, . . . , bm, in one of m! permutations. Otherwise, there

will be more possibilities for the trace following a. In reality,

it is likely that only a subset of the possible orderings will be

highly probable. If a occurs in a trace, then the remainder of

the trace following a will contain each t ∈ {bi|1 ≤ i ≤ m}:

if uav ∈ T , then ∀i : 1 ≤ i ≤ m,

(∃w, q ∈ {Σ \ {a, bi}}
∗ : v = wbiq),

where a, bi ∈ Σ, u ∈ {Σ \ {a, b1, . . . , bm}}∗.

A PDFA fragment to depict a parallel split is visually

more complex than its Petri net equivalent, as all possible

task sequences are shown explicitly (Fig.5(b)). After the first

parallel task there are
(

m
1

)

states,
(

m
2

)

after the second, to
(

m
m−1

)

states before the last parallel task.

5) Parallel Join: An m-way AND join occurs where m

parallel paths rejoin (synchronise) before a task c. The final

task in each path is one of b1, b2, . . . , bm. If c occurs in a trace,

then the trace up to c will contain each t ∈ {bi|1 ≤ i ≤ m}:

if ucv ∈ T , then ∀i : 1 ≤ i ≤ m,

(∃w, q ∈ {Σ \ {c, bi}}
∗ : u = wbiq),

where c, bi ∈ Σ, v ∈ {Σ \ {c, b1, . . . , bm}}∗.

6) Non-Exclusive OR Splits and Joins: These occur where

one or many of several paths may be taken. They can be

modelled as combinations of XOR and parallel structures.

V. APPLICATION TO THE ALPHA ALGORITHM

The Alpha algorithm [14] is relatively simple and forms the

basis for several other algorithms, so is appropriate for a first

analysis under this framework. The four relations →, →−1, #
and ‖, on a pair of tasks a, b partition the set of all logs of n

traces (Fig.6(a)). In this paper we write the relations as a >n b,

etc., to indicate discovery within n traces. The event space Ω
is the set of all logs of n traces, A the set of these logs that

include at least one trace containing sub-string ab (a >n b),

and B those with at least one trace with ba (b >n a). Then

• A \ B is the set of logs that cause Alpha to infer the

causal relation a→n b,

• B \A those for which Alpha infers b→n a,

• A ∩B those for which Alpha infers a ‖n b, and

• ¬(A ∪B) those for which Alpha infers a#nb.

We next apply the steps described in section IV to Alpha.

A. Step 1: Probability Formulae for Basic Sub-Structures

To analyse algorithms’ behaviour, we assume that we have

access to the ground truth and know probabilities of all strings

(sequences of tasks). We give formulae for the probability of

discovery of the Alpha relations and process sub-structures,

based on these string probabilities, agnostic of whether these

sub-structures are ‘correct’, i.e. assuming nothing about the

underlying model, save that it is acyclic, and traces are

generated according to an unknown probability distribution.

Given an underlying source M, let PM(a|x) denote the

probability that after seeing the sequence of tasks given by

string x, the next symbol to be seen will be a:

PM(a|x) =
PM(xaΣ∗)

PM(xΣ∗)
.

This extends naturally to sub-strings y ∈ Σn:

PM(y|x) =
PM(xyΣ∗)

PM(xΣ∗)
, where

∑

y∈Σn

PM(y|x) = 1.

We also introduce some shorthand notation: We write π(ab)
for PM(iΣ∗abΣ∗o), the probability of ab occurring in a trace,

and π(b|→a) for PM(b|iΣ∗a), the conditional probability that

given that a occurs in a trace, the next symbol will be b. We

define πn(E) as ‘the probability of complex event E holding

true in a log of n traces’. For example, πn(A) for set A in

Fig.6(a), is ‘the probability that at least one trace in a log of

n traces contains sub-string ab’. Finally, Pα(a >n b) means

‘the probability that Alpha infers the relation a >n b over n

traces’, and similarly for the other Alpha relations.

1) Activity Ordering Relations: These are the basic rela-

tions between tasks in the log which Alpha uses to construct a

Petri net model4. The following Propositions give the probabil-

ity of Alpha inferring these relations between two tasks a and

b, from a log of n traces, based on the sub-string probabilities

described above. We give the proofs in the appendix.

Proposition 1. The probability that Alpha infers a >n b is

Pα(a >n b) = 1−
(

1− π(ab)
)n
.

Proposition 2. The probability that Alpha infers a#nb is

Pα(a#nb) =
(

1− π(ab)− π(ba)
)n
.

4Alpha+ , which is implemented in the ProM framework [40] as Alpha,
modifies these to allow for short loops.

7

(a) (b)

Fig. 6. (a) The Alpha relations on a pair of tasks partition the possible logs
of n traces, (b) illustration of (C ∩D) \ (A ∪ B) for Proposition 5.

Proposition 3. The probability that Alpha infers a→n b is

Pα(a→n b) =
(

1− π(ba)
)n

−
(

1− π(ab)− π(ba)
)n
. (1)

Proposition 4. The probability that Alpha infers a ‖n b is

Pα(a ‖n b) =1−
(

1− π(ab)
)n

−
(

1− π(ba)
)n
+

(

1− π(ab)− π(ba)
)n
.

2) Sequences: Discovery of a basic sequence of two tasks

a and b simply requires discovery of a→n b.

3) Splits and Joins: Alpha uses the relations a→n b, a#nb

and a ‖n b to identify Petri net places, which determine the

types of splits and joins (XOR or AND). Since the events of

the discovery of these relations between several tasks arise

from Alpha’s interpretation of a log of n traces, they are not

independent: any, all or no relations may be discovered. Thus

Pα

(

(a →n b) ∧ (a →n c)
)

≤ Pα(a →n b) × Pα(a →n c).
Therefore for exact probabilities for discovery of splits and

joins, the basic sub-string probabilities (probabilities of task

pairs which must/must not be seen in the log) must be used.

4) Exclusive Choice: XOR Split: To discover an m-way

XOR split from a to b1, b2, . . . , bm (Fig.5(a)), denoted a →n

(b1# . . .#bm): Alpha must infer the relations a→n b1, a→n

b2, . . . , a →n bm, b1#nb2, b1#nb3, . . . , bm−1#nbm [14,

Defn 4.3 step 4]. So over a log of n traces, Alpha must:

• see at least one of each of m sub-strings representing

pairs of tasks ab1, ab2, . . . , abm; and

• not see any of the m ‘reverse’ pairs b1a, b2a, . . . , bma,

or any of mP2 pairs of ‘post-split’ tasks: b1b2, b2b1, . . .,

bm−1bm, bmbm−1

(

where mP2 , m!
(m−2)!

)

.

Let N = {Ni = (ti, t
′
i)|1 ≤ i ≤ (m +mP2), ti 6= t′i} be

the set of task pairs which must not be seen in the log, and

Y = {Yi = (ti, t
′
i)|1 ≤ i ≤ m, ti 6= t′i} be the set of task pairs

which must be seen in the log.

We define Sn(X) → [0, 1], where X = {Xi = (ti, t
′
i)|1 ≤

i ≤ |X |} as the probability of not seeing any of the |X | task

pairs (ti, t
′
i) ∈ X in n traces, and π(Xi) = π(tit

′
i).

Proposition 5. Probability that Alpha infers an XOR split is

Pα

(

a→n (b1# . . .#bm)
)

=

Sn(N)−
∑

1≤i≤m

Sn

(

N ∪ {Yi}
)

+
∑

1≤i<j≤m

Sn

(

N ∪ {Yi, Yj}
)

−

. . .+ (−1)mSn(N ∪ Y), where (2)

Sn(X) =

(

1−
∑

1≤i≤|X|

π(Xi) +
∑

1≤i<j≤|X|

π(Xi ∧Xj)−

. . .+ (−1)|X|π(X1 ∧X2 ∧ . . . ∧X|X|)

)n

. (3)

Given knowledge about the underlying model, many of the

terms may be zero, significantly simplifying the formulae.

Nevertheless, they can become cumbersome to work with,

requiring knowledge of many probabilities. Nor do they relate

intuitively to the working of the algorithm. However, these

formulae can be effectively simplified without loss of accuracy

to give formulae which intuitively follow from the working of

the Alpha algorithm, and are simpler to calculate. Theorem 1

illustrates for Proposition 5, the discovery of an XOR split.

Theorem 1. The probability of discovery of an XOR split may

be approximated by assuming independence between discovery

of Alpha relations over n traces. The probability is over-stated

but error rate decreases exponentially with increasing n:

Pα

(

a→n (b1# . . .#bm)
)

≤
∏

1≤i≤m

Pα(a→n bi)×
∏

1≤i<j≤m

Pα(bi#nbj). (4)

The proof is given in the appendix. In what follows we

use the approximation in Theorem 1 to derive formulae for

discovery of XOR joins, and analogous results (not presented

here) for AND splits and joins.

5) Exclusive Choice: XOR Join: To discovery of an m-way

XOR join can be approximated in a similar way:

Pα

(

(b1# . . .#bm) →n c
)

≤
∏

1≤i≤m

Pα(bi →n c)×
∏

1≤i<j≤m

Pα(bi#nbj). (5)

6) Parallelism: AND Split: The behaviour of the Alpha

algorithm when mining an AND split is similar to that when

mining an XOR split, with more ‘must see’ and fewer ‘must

not see’ sub-strings. To discover a m-way parallel split from a

to b1, b2, . . . , bm, denoted a →n (b1 ‖ . . . ‖ bm): Alpha must

infer the relations a →n b1, a →n b2, . . . , a →n bm, b1 ‖n
b2, b1 ‖n b3, . . . , bm−1 ‖n bm [14, Defn 4.3 step 4]. Thus

Pα

(

a→n (b1 ‖ . . . ‖ bm)
)

≤
∏

1≤i≤m

Pα(a→n bi)×
∏

1≤i<j≤m

Pα(bi ‖n bj). (6)

7) Parallelism: AND Join: Similarly,

Pα

(

(b1 ‖ . . . ‖ bm) →n c
)

≤
∏

1≤i≤m

Pα(bi →n c)×
∏

1≤i<j≤m

Pα(bi ‖n bj). (7)

B. Step 2: Aggregation of Sub-Structures to Full Model

Having dealt with sub-structures, we now need to derive

probability ψ(M) of correctly mining the full process model

M (e.g. Fig.4 with sub-structures labelled A . . . F). For exact

calculation the approach of Proposition 5 could be extended

to consider the probabilities of all the sub-strings which Alpha

must/must not see in the log to construct the Petri net correctly,

as these probabilities are not independent (section V-A3). This

is infeasible, and does not reduce the problem complexity.

8

As discussed (Theorem 1), we can treat sub-structures

as built from independent Alpha relations rather than from

individual sub-strings. Three further areas then need to be

considered in analysing full models.

1) Compound Splits/Joins: A single Workflow net sub-

structure as mined by Alpha may combine both join and split

(Fig.5(c) sub-structure B) or combine parallel and exclusive

behaviour (Fig.5(c) sub-structure A). In general, if m paths of

which p are XOR (the remainder parallel) join and then split

to n paths of which q are XOR, the probability of discovery is

approximated using the approach of Theorem 1, multiplying

probabilities for the relevant →n, #n and ‖n relations.

2) Extra Parallelism: Where parallel paths contain more

than one task, such as a, b, c, d in Fig.5(c), for each pair of

tasks a, b not part of the split or join, either a ‖n b or a#nb

must be discovered, to prevent extra dependencies from being

inferred. Let a=n b denote (a ‖n b)∨(a#nb). These are inde-

pendent (Fig.6(a)), so Pα(a=n b) = Pα(a ‖n b)+Pα(a#nb).
3) Combining Probabilities for Sub-Structures: Let PS(X)

be the probability of discovering sub-structureX . Intuitively, if

a split has been mined correctly, then mining the corresponding

join is ‘almost certain’, as each path between the split and join

should be in the log. So sub-structures in the model can be

considered as dependent on ‘previous’ sub-structures, e.g.

ψ(M) =PS(A)× PS(B|A)× PS(C|B)×

PS(D|C) × PS(E|D)× PS(F |B,E).

PS(F |B,E) indicates the probability of discovering F

conditional that B and E have been mined correctly. This

affects the formulae from section V-A in two ways. For each

event (such as ‘see no ab in the log of n traces’),

1) the probabilities of the sub-strings are conditioned by the

probabilities of the prefix strings leading up to those sub-

strings, i.e. π(ab) becomes π(b|→a)); and

2) we only consider the traces within which those sub-

strings are expected to occur.

To illustrate, for Alpha, the relation a >n b becomes:

Pα(a >n b) = 1−
(

1−
π(ab)

π(→a)

)n·π(→a)

. (8)

C. Step 3: Analysis of Alpha Algorithm

We look briefly at some of the behaviour of Alpha shown

by the probability formulae.

Fig.7(a) shows Pα(a →n b) increasing sharply with in-

creasing π(ab) (probability of trace including string ab), but

reducing sharply with any probability of the ‘reverse’ string,

π(ba). The effect is stronger as n increases, since this also

increases the chance of at least one ba in the log. Non-zero

probability of ba may be due to errors in logging, or indicate

that the real relation is parallel but with ab more likely than ba.

In Fig.7(b), the parallel relation a ‖n b, for which both ab and

ba must be seen, is seen to be most likely when the probability

of either order is similar (note that here, π(ba) = 1− π(ab)).
This is important, since when multiple activities are allowed

to occur in any order (parallel), in practice certain orderings

may be more likely, reducing the probability of discovering

the true parallelism, and necessitating more data.

Fig.7(c) shows the behaviour of Alpha when mining a 3-

way XOR split. All possible combinations of probabilities are

indicated by points on the triangular base, with each edge

representing the range of probabilities from 0 to 1 of one of

the three exclusive tasks, such that the probabilities sum to

1. The graph shows the number of traces required to achieve

95% probability of discovery. The greatest number of traces

is needed where the probabilities are most imbalanced, i.e.

around the edges, with the peaks at each corner showing where

only one path has a non-negligible probability. The corre-

sponding graph for the parallel split shows similar behaviour.

VI. ANALYSIS OF EXAMPLE PROCESS MODELS

We used the presented methods to predict the number of

traces needed for the probability of successful mining of

the running example5 (Fig.1) to exceed various thresholds.

Automaton A0 (Fig.3) was specified as the ground truth, and

simulated by random walk to produce 30 sets of MXML

format workflow log files of increasing size from 1 to 45
traces. A ‘ground truth’ log of 1000 traces was also simulated.

We mined Petri net models from these files using Alpha

as implemented in ProM [40], and calculated the Fitness (f)

[6] and Behavioural Appropriateness (a′B) [4] values using the

Conformance Analysis plugin. The Petri nets were converted

to PDFA by labelling their reachability graphs with maximum

likelihood probability estimates derived from the ground truth

log file. The d2 and Bhattacharyya (dBhat) distances, and

Jensen-Shannon Divergence (dJSD) were calculated between

the distributions represented by these PDFA and the ground

truth distribution represented by A0.

The graph in Fig.8(a) shows the average approximate cor-

rectness of the models mined by Alpha from logs of increasing

size, as measured by the metrics and distances, plotted against

the number of traces in the log. The numbers of traces

predicted for 90%, 95% and 99% confidence in correct mining

are indicated by the vertical rules. The graph shows:

1) Probability distance measures converge in a similar way

to f , but the distances from the ground truth are dis-

tributed over a clearer scale, from almost 1 for the

very unfit models produced by few traces, through to 0,

whereas f ranges from approx 0.8 to 1 (see section VII).

2) The distance measures show convergence to approximate

correctness at the predicted points.

3) Irregularities may indicate points of interest in the be-

haviour of the algorithm, worthy of further investigation.

4) a′B was 1 for each model, indicating that none of the

models allowed behaviour not found in the logs.

Note that close convergence to predictions is possible, because

the distribution to be learnt is known in advance, and test data

drawn from that distribution. Also, exact formulae rather than

bounds are used to predict the numbers of traces.

The graph in Fig.8(b) shows the probability of mining

an approximately correct model, measured by f exceeding

0.9, 0.95 and 0.99, and dBhat not exceeding 0.1, 0.05 and

0.01. A single data point is calculated for each size log; the

5This model has not been benchmarked, but designed for this test.

9

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

π(ba)π(ab)

P
α
(a

 →
 b

)

(a)

0
5

10
15

20

0

0.5

1
0

0.2

0.4

0.6

0.8

1

n tracesπ(ab)

P
α
(a

 |
|
b

)

(b)

−0.5
0

0.5
1

1.5

−0.5

0

0.5

1
0

10

20

30

40

3 path probabilities3 path probabilities

n
 t

ra
c
e

s

(c)

Fig. 7. Probabilistic behaviour of Alpha relations. (a) Probability of discovery of a →n b for 10 traces, varying π(ab), π(ba), (b) probability of discovery
of a ‖n b for varying numbers of traces and π(ab) (π(ab) +π(ba) = 1.0), (c) number of traces for 95% discovery probability of 3-way XOR sub-structure.

TABLE II
METRICS AND NUMBERS OF TRACES AT THRESHOLD POINTS FOR

MINING EXAMPLE MODELS.

Probability of Success 50% 90% 95% 99%

Running Example (Petri net Fig.1, PDFA A0 Fig.3)

Predicted/Actual Traces 11/10 25/23 31/29 44/45

f 0.992 0.998 1.000 1.0
a′
B

1.0 1.0 1.0 1.0

1− d2/
√
2 0.935 0.974 0.984 1.0

1− dBhat 0.866 0.950 0.978 1.0
1− dJSD/2 0.962 0.991 0.998 1.0

Larger Example (Petri net Fig.9, PDFA A3 Fig.10)

Predicted/Actual Traces 37/− 63/65 75/75 100/115

f 0.984 0.989 0.998 1.0
a′
B

0.962 0.984 0.998 1.0

1− d2 0.951 0.983 0.997 1.0
1−DBhat 0.766 0.881 0.980 1.0
1− JSD 0.768 0.903 0.983 1.0

percentage of mined models for which f was above, or dBhat

was below the threshold. The probability distance (solid lines)

is less sensitive to the threshold used (all three lines are super-

imposed), due to operating over a greater range, whereas f

(dashed lines) indicates convergence too soon.

Table II (top part) shows the predicted and actual numbers

of traces, and corresponding values of the metrics.

A. Larger Example Process

The running example is rather simple. To validate the

methods and probabilistic analysis of Alpha, we used a larger

example (Petri net Fig.9, ‘ground truth’ PDFA Fig.10), which

permits more detailed analysis and interpretation. This model

is a sound WF-net, and so is mineable by Alpha. It shows

the handling of a request placed with a technical support call

centre. After the call is received (task i), three streams of

activity run in parallel, synchronised at η6 Next either g or

h occurs, followed by a series of nested choices (e.g. various

actions to resolve the call), before the call is closed (o).

This model has been artificially designed as a realistic

process with a mix of simple, compound and nested sub-

structures, and ‘extra’ parallelism (parallel activities not part of

a split or join sub-structure). Splits in the PDFA were allocated

6a ‘hidden’ transition, not recorded in the log, which simplifies the depiction
of the net. Alpha produces a behaviourally equivalent net without η.

5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90% 95% 99%

Number of Traces

M
e
a
s
u
re

 o
r

D
is

ta
n
c
e

Fitness
Beh. Approp. a’

B

d
2

d
Bhat

d
JSD

(a) Average metrics against number of traces

5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90% 95% 99%

Number of Traces

P
ro

b
a

b
ili

ty
 o

f
A

p
p

ro
x
im

a
te

ly
 C

o
rr

e
c
t

M
o

d
e

l

Fitness f ≥ 0.9

Fitness f ≥ 0.95

Fitness f ≥ 0.99

d
Bhat

 ≤ 0.1

d
Bhat

 ≤ 0.05

d
Bhat

 ≤ 0.01

(b) Probability of approximately correct model.

Fig. 8. Results showing convergence of Alpha to the ground truth, mining
from logs of increasing size simulated from PDFA A0.

uniform probabilities. The PDFA was simulated to produce

event logs from 5 to 150 traces in increments of 5 traces.

Table III shows for each sub-structure in the model, the

number of traces needed for 95% probability of mining the

sub-structure correctly. ’Global’ indicates the number of traces

calculated using the ground truth probabilities for each sub-

10

Fig. 9. Petri Net N3 representing more complex example process with a selection of basic sub-structures and ‘extra’ parallel relations.

Fig. 10. PDFA A3 corresponding to Petri net N3, with the addition of
transition probabilities, used for producing simulated event logs.

TABLE III
PREDICTED NUMBERS OF TRACES TO MINE SUB-STRUCTURES IN N3 .

Structure Global Local Context

A: AND/XOR split 49 49 49
B: Sequence 5 5 5
C: XOR join 13 6 6
a = f, c = e, d = e 26, 51, 60 26, 34,36 26, 34, 36
D: AND/XOR join/split 56 56 56
E: XOR join 6 1 1
F,G,H: XOR splits 6, 13, 28 6, 6,6 6,12,24
I: Sequence 23 1 9

J : XOR join. 28 1 1

string, e.g. π(km) in the XOR split G. ‘Local’ gives the

number of traces using the local probabilities in each sub-

structure, assuming traces that include that part of the model,

e.g. π(km|→k). ‘Context’ shows the number of traces given

the sub-structure in its context in the model, i.e. for G, only

p(→k) of the traces are expected to reach k, so the number of

traces estimated in the ‘Local’ column is divided by p(→k).

The graphs (Fig.11) again show convergence as predicted

(table II). The shapes of the graphs suggest correspondence

with the numbers of traces predicted for discovery of sub-

structures (table III), e.g. the ‘plateaus’ between 30−35, 40−
45, and 50 − 55 traces. By 30 traces a = f (and XOR

split H) will be mined correctly, with high confidence. By 40

traces all the ‘extra parallelism’ will be, and by 50 traces A

should be discovered, giving confidence that most of the first

(complex) part of the model will be correct. Finally by 60
traces, with 95% confidence all sub-structures will be mined

correctly. Between these points (35, 45, 55 traces) there are no

additional structures which are expected to be mined correctly.

Fitness and Behavioural Appropriateness are both below 1 at

low numbers of traces, indicating that the mined models do not

fit all the traces in the log, and are also too general, allowing

behaviour not seen in the log. This is captured in the shape

of the distance graphs at low numbers of traces; showing that

convergence is initially slow.

VII. DISCUSSION OF MEASURES FOR ASSESSMENT OF

PROCESS MINING RESULTS

The experimentation (section VI) showed that distances

between distributions give a clearer view of how different two

process models are, than do the existing Petri net metrics.

In this section we discuss this further using the running

example. Let PDFA A0 (Fig.3) describe the ground truth

distribution over process traces for a simple process. Fig.12(a)

shows PDFA A1 produced by a hypothetical process mining

algorithm L1, mining from a particular log W1, a finite sample

from the ground truth distribution. The trace frequencies in W1

vary from the ground truth probabilities, preventing L1 from

creating PDFA A1 with the exact ground truth probabilities.

Petri net N0 (Fig.1) models the same process without

probability information, in that it supports the same set of

traces as the ground truth. The Petri net can be compared

with the ground truth by converting to a PDFA by labelling

its reachability graph (Fig.3) with probabilities (section III-A).

Another algorithm L2 might mine a Petri net directly,

producing net N1 (Fig.12(b)). This algorithm has failed to

discover the parallelism, instead using an XOR split/join. This

net, and its corresponding PDFA A2 (Fig.12(c)), are struc-

turally different from the ground truth, therefore supporting a

different set of traces. This is a serious problem, as this model

does not allow for both despatch of the product and billing.

Table IV shows the distances between these PDFA and the

ground truth, using the distance measures described (scaled

and subtracted from 1 to allow comparison with Fitness f).

Models A0, A1 are measured as quite similar, but A0, A2 as

almost 100% different. Although structurally ‘similar’, they

support fundamentally different behaviour since the split/join

type has been changed. What is more, this part of the model

accounts for 90% of the probable traces. Conversely, Fitness

11

20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90% 95% 99%

Number of Traces

M
e
a
s
u
re

 o
r

D
is

ta
n
c
e

Fitness
Beh. Approp. a’

B

d
2

d
Bhat

d
JSD

(a) Average metrics against number of traces

20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

90% 95% 99%

Number of Traces

P
ro

b
a

b
ili

ty
 o

f
A

p
p

ro
x
im

a
te

ly
 C

o
rr

e
c
t

M
o

d
e

l

Fitness f ≥ 0.9

Fitness f ≥ 0.95

Fitness f ≥ 0.99

d
Bhat

 ≤ 0.1

d
Bhat

 ≤ 0.05

d
Bhat

 ≤ 0.01

(b) Probability of approximately correct model.

Fig. 11. Results showing convergence of Alpha to the ground truth, mining
from logs of increasing size simulated from larger process model (PDFA A3).

f measures A2 as relatively well fitting. Although it takes

account of the frequency of non-fitting traces, it penalises

traces only (approximately) at the level of the non-fitting

events. Thus, effectively, only event d or e is penalised in

a non-fitting trace, while i, a, b, c, f, g, h, o are not. This leads

to a misleading picture of the correctness of this model.

This can be seen further in the graph in Fig.13. Here we

varied the probability of the part of the model containing the

parallel sub-structure. The graph shows the closeness of the

mined model to the ground truth, for the various metrics, as

the probability of the parallel part of the model varies from

very low, to very high. Fig.13 suggests the distance metrics to

be more analysable [6] than Fitness (f), measuring the mined

model to be almost optimal where the parallel sub-structure

is unlikely to be involved (where the error in the model does

not affect many traces), reducing to zero as traces involving

the parallel sub-structure form the majority of the behaviour.

(a) PDFA A1 differing from A0 (Fig.1) in probabilities only.

(b) Petri net N1 structurally different from N0 (Fig.1).

(c) PDFA A2 corresponding to Petri net N1.

Fig. 12. PDFA and Petri nets produced by various mining algorithms.

TABLE IV
ILLUSTRATION OF DISTANCES BETWEEN PROCESS MODELS.

Models 1−dBhat 1− d2/
√
2 1−dJSD/2 Fitness f

A0 : A1 0.897 0.926 0.985 1.0
A0 : A2 0.051 0.413 0.1 0.893

VIII. CONCLUSION AND FUTURE WORK

Many process discovery algorithms assume complete logs

or only recreate the behaviour in the log, and do not recover

model probabilities. However, real processes are probabilistic,

so a log is only a sample of the true behaviour. The amount

of data needed to be confident in mining depends on the

underlying distribution, and on the behaviour of the algorithm.

We discussed process mining from a machine learning

viewpoint, and introduced a probabilistic framework for con-

sidering processes and mining algorithms. We proposed that

the primary task of mining the control-flow of the process

is to learn the ground truth distribution over process traces,

from a finite random sample of process traces drawn from the

ground truth. Process mining algorithms secondarily address

additional requirements such as the representation language7

to use, abstraction from detail, etc. Within this framework,

process models may be compared using distances between the

distributions which they generate, rather than representation-

dependent methods, and the behaviour of algorithms consid-

ered in terms of their convergence to the ground truth.

We applied this framework to the Alpha algorithm [14],

developing formulae for the probability of discovery of process

sub-structures, and using these to give the probability of

mining a correct model of a specified accuracy. This analysis

was then applied to two example models, confirming experi-

mentally that the number of traces required to mine to a stated

accuracy can be predicted.

We plan to extend this framework to other algorithms, to

allow for models involving arbitrary sub-structures including

7For example, [20] constructs probabilistic models of observed traces in
the form of stochastic automata.

12

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Probability of Parallel Structure in Model

M
e
a
s
u
re

 o
r

D
is

ta
n
c
e

Fitness f
1−d

2
/√2

1−d
Bhat

1−d
JSD

/2

Fig. 13. Comparison of metrics: varying probability of parallel sub-structure.

cycles, and to simplify the prediction mechanism. This will

allow us to apply the framework to the comparison of the

behaviour of different process mining algorithms, and to

develop deeper learning theory relating to process mining.

REFERENCES

[1] W. M. P. van der Aalst and A. J. M. M. Weijters, “Process mining: a
research agenda,” Comput. Ind., vol. 53, no. 3, pp. 231–244, 2004.

[2] A. Tiwari, C. Turner, and B. Majeed, “A review of business process
mining: state-of-the-art and future trends,” Bus. Process Manage. J.,
vol. 14, no. 1, pp. 5 – 22, 2008.

[3] B. F. van Dongen and A. Adriansyah, “Process mining: Fuzzy clus-
tering and performance visualization,” in BPM Workshops, ser. LNBIP,
S. Rinderle-Ma, S. W. Sadiq, and F. Leymann, Eds., vol. 43. Springer,
2009, pp. 158–169.

[4] A. K. Alves de Medeiros, W. M. P. van der Aalst, and A. J. M. M.
Weijters, “Quantifying process equivalence based on observed behavior,”
Data Knowl. Eng., vol. 64, no. 1, pp. 55–74, 2008.

[5] A. Rozinat, A. K. Alves de Medeiros, C. W. Günther, A. J. M. M.
Weijters, and W. M. P. van der Aalst, “Towards an evaluation framework
for process mining algorithms,” BPM Center Report BPM-07-06, 2007.

[6] A. Rozinat and W. M. P. van der Aalst, “Conformance checking of
processes based on monitoring real behavior,” Information Systems,
vol. 33, no. 1, pp. 64–95, 2008.

[7] ——, “Decision Mining in ProM,” in Business Process Management,
ser. LNCS, S. Dustdar, J. L. Fiadeiro, and A. P. Sheth, Eds., vol. 4102.
Springer, 2006, pp. 420–425.

[8] W. M. P. van der Aalst, H. A. Reijers, and M. Song, “Discovering
social networks from event logs,” Computer Supported Cooperative

Work, vol. 14, no. 6, pp. 549–593, 2005.

[9] G. Greco, A. Guzzo, and L. Pontieri, “Discovering expressive process
models by clustering log traces,” IEEE Trans. Knowl. Data Eng., vol. 18,
no. 8, pp. 1010–1027, 2006.

[10] M. Song, C. W. Günther, and W. M. P. van der Aalst, “Trace clustering
in process mining,” in BPM Workshops, ser. LNBIP, D. Ardagna,
M. Mecella, and J. Yang, Eds., vol. 17. Springer, 2008, pp. 109–120.

[11] R. P. J. C. Bose and W. M. P. van der Aalst, “Context aware trace
clustering: Towards improving process mining results,” in SDM. SIAM,
2009, pp. 401–412.

[12] C. W. Günther and W. M. P. van der Aalst, “Fuzzy mining - adaptive
process simplification based on multi-perspective metrics,” in BPM,
ser. LNCS, G. Alonso, P. Dadam, and M. Rosemann, Eds., vol. 4714.
Springer, 2007, pp. 328–343.

[13] C. W. Günther, A. Rozinat, and W. M. P. van der Aalst, “Activity
mining by global trace segmentation,” in BPM Workshops, ser. LNBIP,
S. Rinderle-Ma, S. W. Sadiq, and F. Leymann, Eds., vol. 43. Springer,
2009, pp. 128–139.

[14] W. M. P. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
Discovering process models from event logs,” IEEE Trans. Knowl. Data

Eng., vol. 16, no. 9, pp. 1128–1142, 2004.

[15] A. J. M. M. Weijters, W. M. P. van der Aalst, and A. K. Alves de
Medeiros, “Process Mining with the HeuristicsMiner Algorithm,” BETA

Working Paper Series 166, pp. 1–34, 2006.

[16] L. Wen, W. M. P. van der Aalst, J. Wang, and J. Sun, “Mining process
models with non-free-choice constructs,” Data Mining and Knowledge

Discovery, vol. 15, no. 2, pp. 145–180, 2007.

[17] G. Schimm, “Mining exact models of concurrent workflows,” Computers

in Industry, vol. 53, no. 3, pp. 265 – 281, 2004.
[18] W. M. P. van der Aalst, V. Rubin, H. M. W. Verbeek, B. F. van Dongen,

E. Kindler, and C. W. Günther, “Process mining: a two-step approach
to balance between underfitting and overfitting,” Software and System

Modeling, vol. 9, no. 1, pp. 87–111, 2010.
[19] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser, “Process mining

based on regions of languages,” in BPM, ser. LNCS, G. Alonso,
P. Dadam, and M. Rosemann, Eds., vol. 4714. Springer, 2007, pp.
375–383.

[20] D. R. Ferreira and D. Gillblad, “Discovering process models from
unlabelled event logs,” in BPM, ser. LNCS, U. Dayal, J. Eder, J. Koehler,
and H. A. Reijers, Eds., vol. 5701. Springer, 2009, pp. 143–158.

[21] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C.
Carrasco, “Probabilistic finite-state machines - part I,” IEEE Trans.
Pattern Anal., vol. 27, no. 7, pp. 1013 – 25, 2005.

[22] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,”
IEEE Trans. on Pattern Anal., vol. 25, no. 5, pp. 564 – 77, 2003.

[23] A. Bhattacharyya, “On a measure of divergence between two statistical
populations defined by their probability distributions,” Bulletin of the

Calcutta Math. Society, vol. 35, pp. 99–109, 1943.
[24] J. E. Cook and A. L. Wolf, “Discovering models of software processes

from event-based data,” ACM Trans. Softw. Eng. Methodol., vol. 7, no. 3,
pp. 215–249, 1998.

[25] R. Agrawal, D. Gunopulos, and F. Leymann, “Mining process models
from workflow logs,” in EDBT, ser. LNCS, H.-J. Schek, F. Saltor,
I. Ramos, and G. Alonso, Eds., vol. 1377. Springer, 1998, pp. 469–483.

[26] OMG, “Business Process Model and Notation (BPMN),” 2009.
[Online]. Available: http://www.omg.org.

[27] A. Datta, “Automating the discovery of AS-IS business process mod-
els: probabilistic and algorithmic approaches,” Information Systems

Research, vol. 9, no. 3, pp. 275 – 301, 1998.
[28] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and

A. P. Barros, “Workflow patterns,” Distributed and Parallel Databases,
vol. 14, no. 1, pp. 5–51, 2003.

[29] J. Herbst, “A machine learning approach to workflow management,” in
ECML, ser. LNCS, R. L. de Mántaras and E. Plaza, Eds., vol. 1810.
Springer, 2000, pp. 183–194.

[30] J. L. Peterson, “Petri nets,” ACM Comput. Surv., vol. 9, no. 3, pp. 223–
252, 1977.

[31] W. M. P. van der Aalst, “The Application of Petri Nets to Workflow
Management,” Journal of Circuits, Systems, and Computers, vol. 8,
no. 1, pp. 21–66, 1998.

[32] A. K. A. de Medeiros, A. J. M. M. Weijters, and W. M. P. van der
Aalst, “Genetic process mining: an experimental evaluation,” Data Min.

Knowl. Discov., vol. 14, no. 2, pp. 245–304, 2007.
[33] C. J. Turner, A. Tiwari, and J. Mehnen, “A genetic programming ap-

proach to business process mining,” in GECCO, C. Ryan and M. Keijzer,
Eds. ACM, 2008, pp. 1307–1314.

[34] S. Goedertier, D. Martens, J. Vanthienen, and B. Baesens, “Robust
process discovery with artificial negative events,” Journal of Machine

Learning Research, vol. 10, pp. 1305 – 1340, 2009.
[35] S. Sun, Q. Zeng, and H. Wang, “Process-mining-based workflow model

fragmentation for distributed execution,” IEEE Trans. Syst., Man, Cy-
bern. A, Syst., Humans, vol. 41, no. 2, pp. 294–310, 2011.

[36] L. V. Allen and D. M. Tilbury, “Anomaly detection using model
generation for event-based systems without a preexisting formal model,”
IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. PP, no. 99, pp.
1–15, 2011.

[37] J. E. Cook and A. L. Wolf, “Software process validation: Quantitatively
measuring the correspondence of a process to a model,” ACM Trans.
Softw. Eng. Methodol., vol. 8, no. 2, pp. 147–176, 1999.

[38] J. Bae, L. Liu, J. Caverlee, L.-J. Zhang, and H. Bae, “Development of
distance measures for process mining, discovery, and integration,” Int’l

Journal of Web Serv. Res., vol. 4, no. 4, pp. 1–17, 2007.
[39] T. Calders, C. W. Günther, M. Pechenizkiy, and A. Rozinat, “Using

minimum description length for process mining,” in SAC, S. Y. Shin
and S. Ossowski, Eds. ACM, 2009, pp. 1451–1455.

[40] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M. M.
Weijters, and W. M. P. van der Aalst, “The ProM Framework: A New
Era in Process Mining Tool Support,” in ICATPN, ser. LNCS, G. Ciardo
and P. Darondeau, Eds., vol. 3536. Springer, 2005, pp. 444–454.

[41] J. Lin, “Divergence measures based on the shannon entropy,” IEEE

Transactions on Information Theory, vol. 37, no. 1, pp. 145–151, 1991.
[42] D. Angluin, “Computational learning theory: Survey and selected bibli-

ography,” in STOC. ACM, 1992, pp. 351–369.
[43] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.

13

APPENDIX

A. Proof of Proposition 1

Proposition 1. The probability that Alpha infers a >n b is

Pα(a >n b) = 1−
(

1− π(ab)
)n
.

Proof: To infer that b can follow a, at least one of the

n traces must contain sub-string ab, so the relation will be

discovered unless all traces do not contain ab. A single trace

contains ab with probability π(ab), so all n independent traces

fail to contain ab with probability
(

1− π(ab)
)n

.

B. Proof of Proposition 2

Proposition 2. The probability that Alpha infers a#nb is

Pα(a#nb) =
(

1− π(ab)− π(ba)
)n
.

Proof: To infer no relationship between a and b, each

trace in the log must contain neither ab nor ba. This is ¬(A∪
B) in Fig.6(a). Since we assume no cycles, a single trace

cannot contain both ab and ba, so π(ab ∧ ba) = 0.

C. Proof of Proposition 3

Proposition 3. The probability that Alpha infers a→n b is

Pα(a→n b) =
(

1− π(ba)
)n

−
(

1− π(ab)− π(ba)
)n
.

Proof: This is represented by the set A \ B in Fig.6(a),

which can be seen to be equivalent to ¬B \ ¬(A ∪B):

πn(B) = 1−
(

1− π(ba)
)n

(by Prop. 1)

⇒ πn(¬B) =
(

1− π(ba)
)n
, and by Prop. 2, (9)

πn
(

¬(A ∪B)
)

=
(

1− π(ab)− π(ba)
)n
. (10)

From equations 9 and 10, because ¬(A ∪B) ⊂ ¬B,

Pα(a→n b) = πn
(

¬B \ ¬(A ∪B)
)

= πn(¬B)− πn
(

¬(A ∪B)
)

=
(

1− π(ba)
)n

−
(

1− π(ab)− π(ba)
)n
.

This is intuitively interpretable as the probability of not seeing

ba in any of n traces (good), minus the probability of also not

seeing ab in any of those n traces (bad).

D. Proof of Proposition 4

Proposition 4. The probability that Alpha infers a ‖n b is

Pα(a ‖n b) =1−
(

1− π(ab)
)n

−
(

1− π(ba)
)n
+

(

1− π(ab)− π(ba)
)n
.

Proof: The relations partition the set of possible logs

(Fig.6(a)); thus Pα(a ‖n b) = 1 − Pα(a →n b) − Pα(b →n

a)− Pα(a#nb), following the previous results.

E. Proof of Proposition 5

Proposition 5. Probability that Alpha infers an XOR split is

Pα

(

a→n (b1# . . .#bm)
)

=

Sn(N)−
∑

1≤i≤m

Sn

(

N ∪ {Yi}
)

+
∑

1≤i<j≤m

Sn

(

N ∪ {Yi, Yj}
)

−

. . .+ (−1)mSn(N ∪ Y), where (11)

Sn(X) =

(

1−
∑

1≤i≤|X|

π(Xi) +
∑

1≤i<j≤|X|

π(Xi ∧Xj)−

. . .+ (−1)|X|π(X1 ∧X2 ∧ . . . ∧X|X|)

)n

. (12)

Proof: We begin with the probability that the pairs of

tasks which must not be seen in the log, do indeed not occur in

the log, then use the ‘inclusion-exclusion principle’ to remove

the probability that any of the pairs of tasks which must be

present in the log, are also missing from the log.

For events Ei in a probability space with N events,

πn

(

⋃

1≤i≤N

Ei

)

=
∑

1≤i≤N

πn(Ei)−
∑

1≤i<j≤N

πn(Ei ∩ Ej)+

. . .+ (−1)N−1πn

(

⋂

1≤i≤N

Ei

)

, (13)

As a simplified example, we consider discovery of a two-

way XOR split from a to b, c, and assume π(ba) = π(ca) = 0.

For Alpha to discover the split, the log must include ab and

ac, but not bc or cb. If Fig.6(b) represents the set of all logs of

n traces, then let set A contain all logs which contain no ab,

B no ac, C no bc, and D no cb. Then we need the probability

contained in the shaded area:

πn
(

(C ∩D) \ (A ∪B)
)

= πn(C ∩D)− πn
(

(C ∩D) ∩ (A ∪B)
)

= πn(C ∩D)− πn
(

(C ∩D ∩A) ∪ (C ∩D ∩B)
)

= πn(C ∩D)− πn(C ∩D ∩ A)− πn(C ∩D ∩B)

+ πn(C ∩D ∩ A ∩B) (by equation 13).

Sn(N) is represented by (C∩D), Sn(N∪Y1) by (C∩D∩A),
etc. If we make no assumptions about the ground truth, then a

single trace may include any of these sub-strings, so the same

approach is needed to calculate Sn(X).

F. Proof of Theorem 1

Theorem 1. The probability of discovery of an XOR split may

be approximated by assuming independence between discovery

of Alpha relations over n traces. The probability is over-stated

but error rate decreases exponentially with increasing n:

Pα

(

a→n (b1# . . .#bm)
)

≤
∏

1≤i≤m

Pα(a→n bi)×
∏

1≤i<j≤m

Pα(bi#nbj). (14)

Proof: To demonstrate, we assume that an underlying

model with an XOR split from a to (b1, b2, . . .) is followed

without error, and traces are recorded without error (‘noise-

free’). Thus π(b1a) = π(b1b2) = 0, etc. and the previous

14

equations may be simplified. Equation 1 reduces to Pα(a→n

b) = 1−
(

1− π(ab)
)n

, and so on.

Let bi be shorthand for π(abi), and label equations (2) as

F (n) and (14) as G(n). Equation (2) (discovery of multiple

Alpha relations from one log not independent) reduces to

F (n) = 1−
∑

1≤i≤m

(1− bi)
n +

∑

1≤i<j≤m

(1− bi − bj)
n −

∑

1≤i<j<k≤m

(1− bi − bj − bk)
n + . . .+ (−1)m

(

1−
∑

1≤i≤m

bi
)n
,

while equation (14), which assumes that discovery of the

relations can be treated as independent, to

G(n) =
∏

1≤i≤m

Pα(a→n bi) =
∏

1≤i≤m

(

1− (1− bi)
n
)

= 1−
∑

1≤i≤m

(1− bi)
n +

∑

1≤i<j≤m

(1− bi)
n(1− bj)

n −

. . .+ (−1)m
∏

1≤i≤m

(1 − bi)
n.

The error in assuming independent relations is given by

H(n) = |F (n) − G(n)|. The first two terms of F (n) and

G(n) cancel, leaving (m− 1) terms. The difference between

the third terms of F (n) and G(n) determines the rate of decay

of the error, since the absolute values of subsequent terms in

F (n) will be not greater than the third term. This is because

the value of each term, and all bi, will be between 0 and 1, so

the terms are decreasing in absolute value. Similarly for G(n)
because each subsequent term is multiplied by a further factor

between 0 and 1, itself decreasing exponentially. Now let

fij(n) = (1 − bi − bj)
n hij(n) = gij(n)− fij(n)

gij(n) = (1 − bi)
n(1 − bj)

n λij = 1− bi − bj

= (1 − bi − bj + bibj)
)n

µij = λij + bibj

Then hij(n) = µn
ij − λnij , so the error is bounded by

H(n) ≤ (m− 1)
[

∑

1≤i<j≤m

(µn
ij − λnij)

]

. (15)

This is always positive, since µij > λij for all i, j; and decays

exponentially in n after a maximum at relatively low n.

The rate of decay of the error is also exponential:

h′ij(n) = µn
ij lnµij − λnij lnλij .

This is always negative after hij(n) reaches its maximum,

and decays exponentially in n, as the log factors are relatively

negligible. The maximum error in term hij(n) is reached when

h′(n) = µn
ij lnµij − λnij lnλij = 0

⇒n = ln
(lnλij
lnµij

)/

ln
(µij

λij

)

(16)

n will be largest when λij ≈ µij , when the denominator

of equation (16) tends to 0. This occurs when when the

probabilities are small, as the difference between λij and µij

is π(abi)π(abj). But the discovery probability F (n) or G(n)
will be correspondingly small, due to the second terms of

F (n), G(n). With the number of traces required to give only

a 50% probability of discovery across all possibilities for the

probabilities in a 3-way split, the difference in the number of

traces predicted using F (n) and G(n) is negligible.

