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Abstract. Learning in the model space (LiMS) represents each obser-
vational unit (e.g. sparse and irregular time series) with a suitable model
of it (point estimate), or a full posterior distribution over models. LiMS
approaches take the mechanistic information of how the data is gener-
ated into account, thus enhancing the transparency and interpretability
of the machine learning tools employed. In this paper we develop a novel
topographic mapping in the model space and compare it with an exten-
sion of the Generative Topographic Mapping (GTM) to the model space.
We demonstrate these two methods on a dataset of measurements taken
on subjects in an adrenal steroid hormone deficiency study.

Keywords: LiMS · Topographic mapping · Sparse · Irregular time
series

1 Introduction

Topographic visualisation techniques have been established as an important
tool in data analysis and data mining, e.g. Self-Organising Map (SOM) [7,8]
and its probabilistic reformulation - Generative Topographic Mapping (GTM)
[3,4]. However, most of these methods were designed to operate in a vectorial
data space. Also, there has been an increasing interest in formulating SOM and
GTM in the model space to deal with data with more complex structures, e.g.
[5,10,14]. The approach in [10] establishes the Self-Organising mixture autore-
gressive (SOMAR) model, in which components in the construction of the topo-
logical mixture model are AR models to model foreign exchange (FX) rates.
For visualising sets of symbolic sequences, [14] attempts to extend GTM in the
model space based on a constrained mixture of discrete hidden Markov models.
As an extension of [14], the work in [5] formulates GTM by extending it to the
space of Hidden Tree Models for tree-structured data.
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In this work we are interested in using Learning in the Model Space (LiMS)
approaches to deal with potentially sparsely sampled and noisy time series. We
offer a non-GTM learning method for SOM formulated directly in the model
space termed SOM in model space (SOMiMS), which takes advantage of the
probabilistic model formulation of our base inferential models. Keeping the
SOM philosophy translated into the model space, we can retain control over
the neighbourhood-shrinking rate and make the components move directly in
the direction of gradients with respect to the model parameters of the infer-
ential model class. We also extend the GTM to the model space. In general,
GTM offers a clean formulation, but direct manipulation of dynamic neighbour-
hood size is not possible and prototype movements are controlled only implicitly
through parameters of the embedding kernel regression function. We demon-
strate the two methods on a real dataset of measurements taken on subjects in
an adrenal steroid hormone deficiency study.

The rest of the paper is organised as follows: Sect. 2 briefly introduces the
SOMiMS and extended GTM models. Section 3 presents the base inferential
model and describes the real data set we use. Section 4 provides experimental
results. We conclude the paper with a brief summary of key elements in Sect. 5.

2 Topographic Mapping of Time Series in the Model
Space

Consider a set of time series Y = {Y (1), Y (2), ..., Y (N)}, n = 1 : N . The n-th
time series will be denoted by Y (n) = {Y

(n)
t }t=1:Tn

, where Tn is the length of
n-th time series. The individual time series can be of different length, but we
assume that there is a unique time grid where the observations are allowed to
be taken. Generalization to time grids specific for each individual time series is
relatively straightforward, but beyond the scope of this paper.

In our LiMS approach, each time series is considered as a set of partial
observations of some underlying mechanistic model parametrised via �θ ∈ R

d

[12]. Mathematically, this parametric mechanistic model will be formulated as a
multivariate Ordinary Differential Equation (ODE).

The topographic mapping of a vectorial data set is given by a (usually)
nonlinear mapping from input vector space to a low-dimensional topographic
mapping space (usually two dimensional) [8,15]. Topographic mappings we are
interested in will operate in the model space rather than the original signal space.
Each node of a topographic map corresponds to an instance from the inferential
model class. The aim is to represent each time series as an individual projection
on the topographic map.

2.1 SOMiMS

We will assume a SOM structure with k × k nodes. Each node i will be assigned
an inferential model representative parameterized by a parameter vector �θi. Con-
sidering the n-th time series Y (n), the log likelihood of i-th node is
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L(Y (n)|�θi, Σ) = ln
Tn∏

t=1

p(Y (n)
t |�θi, Σ) =

Tn∑

t=1

ln p(Y (n)
t |�θi, Σ),

where Σ collects parameters of the observational noise. Since each time series
may have different length, we will operate with log likelihood per observation,

Q(Y (n)|�θi, Σ) =
1
Tn

L(Y (n)|m�θi
, Σ) =

1
Tn

Tn∑

t=1

ln p(Y (n)
t |�θi, Σ).

The “quality measure” of the i-th node, given the time series Y (n), is obtained
by renormalization through all nodes,

Q(Y (n)|�θi, Σ) =
Q(Y (n)|�θi, Σ)

∑
a Q(Y (n)|�θa, Σ)

=
−Q(Y (n)|�θi, Σ)

∑
a −Q(Y (n)|�θa, Σ)

.

Note that −Q(Y (n)|�θi, Σ) can be thought of as the information (per obser-
vation) the node i contains about the time series Y (n). The quality measure
Q(Y (n)|�θi, Σ) is then the normalized information the node i holds on Y (n), renor-
malized in the competition across all the nodes.

Adopting a Gaussian observational noise model, we have:

p(Y (n)
t |�θi, Σ) =

1

(2π)
D
2 |Σ| 1

2

{
exp(−1

2
(Y (n)

t − Xi,t)TΣ−1(Y (n)
t − Xi,t)

}
,

where Xi,t is the (noiseless) observational vector at time t obtained from the
inferential model parametrized with �θi. Here we assume a homoscedastic process
with a fixed covariance Σ. Again, generalization to time varying noise model is
relatively straightforward, but out of the scope of the present paper.

During the training phase, in each iteration we randomly pick (with replace-
ment) a time series Y (n) from the data set Y. In each iteration, rather than
updating the winner node (the node with maximum quality Q) and its neigh-
borhood as in the classic topographic mapping [8,15], we will update each node
and its neighborhood according to the normalized quality measure Q(Y (n)|�θi, Σ).
This is needed, since especially for sparsely observed and/or noisy data, several
prototypical node models can be likely and committing to a single winner node
may bias the final topographic map. All nodes are considered in turn. For the
i-th node, nodes c its neighbourhood are updated as

�θc(l + 1) = �θc(l) + Q(Y (n)|�θi, Σ) · h(c,i)(l) · η(l) · ∇�θc
Q(Y (n)|�θc(l)),

where h(c,i)(l) is the neighborhood function and η(l) is the learning rate, both
monotonically decreasing in algorithmic time steps l:

η(l) = η(0) · exp
(

− l

τ

)
(1)
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h(c,i)(l) = exp
{

−||c − i||2
2(α(l))2

}
(2)

α(l) = α(0) · exp
(

− l

τ

)
(3)

Here τ is a time scale parameter and l is the current iteration index [9]. η(0) is
the initial learning rate in the power series learning rate function [13]; α(0) is
the initial neighborhood size.

Note two crucial aspects of the SOMiMS methodology: (1) for each time series
Y (n) we perform a double scan through the grid nodes, the outer scan through
the pivotal nodes �θi with the inner scan through their neighbours �θc; (2) the
node updates are performed in the model space in the directions improving the
node likelihoods, given Y (n), i.e. directions given by the gradient ∇�θc

Q(Y (n)|�θc).
To visualize the time series data, we embed the k × k node grid in a square,

e.g. [−1, 1]2, resulting in the embedded grid of points gi ∈ [−1, 1]2. The n-th
time series Y (n) is then visualized (GTM-style) in [−1, 1]2 as the mean of the
posterior distribution over the grid points [4,14],

Proj(Y (n)) =
J∑

i=1

P (gi|Y (n), �θi, Σ) · gi,

where (imposing a uniform prior distribution over the grid),

P (gi|Y (n), �θi, Σ) =
p(Y (n)|�θi, Σ)

∑J
j=1 p(Y (n)|�θj , Σ)

.

2.2 Generative Topographic Mapping in the Model Space

As an alternative to SOMiMS, we also extend the Generative Topographic Map-
ping (GTM) [4] to the model space along the lines of [14] and [5]. Consider a
2-dimensional latent space H, e.g. H = [−1, 1]2. The aim is to represent each
time series using this latent space through imposing a uniform prior over reg-
ular grid {gi}J

i=1 of J points gi ∈ H covering the latent space. One imposes a
function 	(g;W ) parametrized by W that maps the latent space into the model
space:

	(g : W ) = Wφ(g),

where W is a d × M matrix of parameters that governs the mapping 	(g;W )
and φ(g) contains M fixed basis functions φm(g) : H → R. Note that 	(gi : W )
now plays the role of the i-th prototypical model setting �θi in SOMiMS.

Given the n-th Y (n) time series in Y of length Tn, we can again calculate
its probability, given the forward ODE model parametrized by 	(gi : W ) and
observational noise model parametrized by Σ:

p(Y (n)|gi,W,Σ) =
Tn∏

t=1

p(Y (n)
t |	(gi : W ), Σ).
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Since GTM is a flat mixture model of the latent grid, we have for the data
log likelihood:

L =
N∑

n=1

ln

{
1
J

J∑

i=1

p(Y (n)|gi,W,Σ)

}
. (4)

Expectation Maximization (EM) algorithm is used to obtain W by maximiz-
ing L. The ’responsibilities’ of grid points gi, i = 1 : J , for time series Y (n) are
calculated in the E-step as

Rin = p(gi|Y (n),W,Σ) =
p(Y (n)|gi,W,Σ)∑
j p(Y (n)|gj ,W,Σ)

.

The expected complete-data log likelihood then takes the form

〈Lcomp〉 =
N∑

n=1

J∑

j=1

Rin ln{p(Y (n)|gi,W,Σ)}.

The M-step consists of maximizing 〈Lcomp〉 with respect to W .
After training, each time series Y (n) can be visualized in the latent space H

as the mean of the posterior distribution over the latent grid points [4,14],

Proj(Y (n)) =
J∑

i=1

Rin · gi.

3 Biomedical Background, Mechanistic Model, and the
Data

Major adrenal steroid hormones are synthesized in different areas of the adrenal
cortex[2]. We are particularly interested in the glucocorticoid and mineralocor-
ticoid pathways. An appreciation of these pathways helps to understand the
different forms of congenital adrenal hyperplasia (CAH) and isolated hypoaldos-
teronism characterized by defects in functionality of enzymes involved in adrenal
steroid hormone synthesis[1].

The real data set we used in the experiments includes three conditions:
Healthy control, Cushing’s and Primary Aldosteronism. Cushing’s usually results
from the excessive production of Cortisol. Primary Aldosteronism is correspond-
ing to the Aldosterone excess. The dataset contains subject-specific multivariate
time series (of Corticosterone, Aldosterone, Cortisol, and Cortisone) obtained
from 60 subjects covering the three conditions - Control (30), Cushing’s (15)
and Primary Aldosteronism (15). Each time series was sampled every 20 min
within 24 h. However, there are some missing values due to certain operational
problems. Thus, the length of time series may vary.

Below we introduce the mechanistic model representing the adrenal steroid
hormone biosynthesis pathway that will be used to represent the observed data
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Table 1. Model parameters.

Parameter Description Parameter Description

kC Corticosterone synthesis rate kA Aldosterone synthesis rate

kF Cortisol synthesis rate kE Cortisone synthesis rate

kb Cortisone to Cortisol conversion rate γC Corticosterone degradation

γA Aldosterone degradation rate γF Cortisol degradation rate

γE Cortisone degradation rate αc Amplitude of circadian drive

T c
s Phase shift of circadian drive σ Asymmetry of circadian drive

β Offset of circadian drive αu Amplitude of ultradian drive

Tu
s Phase shift of ultradian drive np Number of ultradian pulses

in the LiMS framework. In the first instance, four hormones (Corticosterone (C),
Aldosterone (A), Cortisol (F), Cortisone (E)) are modeled through a system of
ODEs. The joint model reads:

d

dt
C = kCϕc(t) − kAC − γCC

d

dt
A = kACϕu(t) − γAA

d

dt
F = kF ϕc(t) − kEF + kbE − γF F

d

dt
E = kEF − kbE − γEE,

where ϕc(t) and ϕu(t) are periodic circadian and ultradian drives specified by

ϕc(t) = αc sin(2π(t + T c
s ) + σ ∗ sin(2π(t + T c

s ))) + β

ϕu(t) = 1 + αu sin(2π(t + Tu
s )np).

All sixteen parameters used in models and their descriptions are listed in
Table 1. Three drive parameters were fixed to αc = 1, αu = 1, Tu

s = 0.5, leaving
thirteen free parameters.

4 Experiments and Results

In this section we present results of applying the SOMiMS and extended GTM
methodologies on the real adrenal steroid dataset. We used a 10 × 10 grid and
the models were initialized by applying the classic Self-Organising Map [8] in the
signal space on all 60 subjects. The missing values were imputed using Gaussian
Process model [11]. After training, most grid points of the classical SOM contain
in their Voronoi compartments one or several time series. For grid points with
no time series assigned, we used time series of their closest neighbours on the
grid. Each grid point was then transformed to the model space by calculating the
maximum likelihood parameter estimate obtained on the time series assigned to
it. The 10 × 10 classic map thus became a map in the model space, each grid
point corresponding to a setting of the 13-dimensional parameter vector.
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Fig. 1. Topographic visualization of the data obtained by the SOMiMS (a) and
Extended GTM (b) models. The Control, PrimaryAldo and Cushing’s conditions are
marked as blue circles, green triangles and red squares, respectively. (Color figure
online)

Fig. 2. Parameter heat maps of γF (a) and γE (b) for the SOMiMS model.

The classic SOM (initialization stage for SOMiMS and extended GTM) was
trained for 300 epochs with initial learning rate and initial neighbourhood size
equal to 0.2 and 6, respectively. For SOMiMS, the initial learning rate and neigh-
bourhood size were set to 0.1 and 2, respectively. This accounts for the fact that
some very rough initial topographic organisation was already achieved in the
classic SOM. SOMiMS was trained for 200 epochs. In the extended GTM, we
employed M = 4 × 4 = 16 basis functions φm and one additional constant basis
function as the bias term. Basis functions were radial Gaussian functions with
the same width σ = 1. The likelihood leveled up after 80–100 E-M cycles.

Topographic maps obatained by SOMiMS and extended GTM are shown in
Fig. 1. The models were trained in a completely unsupervised manner, i.e. mark-
ers on the data projections signifying their corresponding conditions were not
used during the training in any way. Overall, both topographic maps constructed
in the model space show a good degree of separation of the conditions, noting
that this is a noisy data set measured on real subjects. Both maps also show a
tendency of sub-grouping the Cushing’s cohort into at least two sub-populations.
The signal plots to the right of the SOMiMS map illustrate the steroid time series
corresponding to the selected projections (subjects).
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Table 2. Confusion matrix

Actual value

SOMiMS Extended GTM

Predicted value Control Cushing’s Primary
Aldosteronism

Control Cushing’s Primary
Aldosteronism

Control 0.80 0.10 0.10 0.68 0.27 0.05

Cushing’s 0.13 0.67 0.20 0.13 0.80 0.07

Primary Aldosteronism 0.21 0.29 0.50 0.14 0.22 0.64

A detailed bio-medical analysis of the visualization plots is beyond the scope
of this paper. We nevertheless stress that one of the primary advantages of
topographic maps in the model space is the opportunity to readily interpret the
topographic data organization from the mechanistic point of view of the under-
lying processes that generated the data. To that end, one can create parameter
plots where the values learnt for each individual mechanistic model parameter
across the prototypes on the grid are shown as heat maps. As an example, Fig. 2
presents parameter heat maps for Cortisol and Cortisone degradation rates, γF

and γE , respectively. The two parameters have low values in the regions of the
SOMiMS topographic map containing Cushing’s projections. It is clear that the
Cortisol excess associated with the Cushing’s condition is partially caused by
reduced degradation rates of Cortisol and Cortisone (which is positively coupled
to Cortisol through kb).

To quantify the amount of separation of the different conditions on the visu-
alization plot, we also performed K-nearest neighbor (KNN) classification [6]
on the map projections. Based on the cross-validated hyper-parameter tuning,
we picked K = 3. Table 2 presents KNN confusion matrices for SOMiMS and
Extended GTM projections. Thanks to the possibility of explicit control over
the topographic map formation offered by SOMiMS (neighbourhood function
and its shrinkage), the projections on the SOMiMS map are much more spread
than those of the Extended GTM. Obviously, topographic organization does not
correspond directly to the classification performance. After all, this is an unsu-
pervised learning scenario. Such an analysis does, however, demonstrate that a
full formation of a topographic map may disrupt cases of multiple projections in
a very close neighbourhood of the visualisation space - a scenario that could yield
good distance-based classifications, but is not preferable from the visualisation
point of view.

5 Conclusion

We have presented a new learning method for SOM formulated directly in the
model space, termed SOM in model space (SOMiMS), together with an extended
GTM formulation in the model space for visualizing sets of sparse time series.
We illustrated the methodologies on a real data set of measurements on subjects
with different steroid hormone biosynthesis conditions. To that end, we formed a



510 X. Chen et al.

parameterized mechanistic inferential model in the form of coupled ordinary dif-
ferential equations and demostrated how the topographic maps could be formed
in the space of such inferential models, given the data.

Compared to the traditional approaches working in the signal space,
SOMiMS and extended GTM are not only naturally able to deal with sparse
time series, but also capable of taking the mechanistic information into account,
creating scientifically interpretable readily data visualisations.
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