
Markovian bias of neural-based architectures

with feedback connections

Peter Tiňo1, Barbara Hammer2, and Mikael Bodén3

1 University of Birmingham, Birmingham, UK p.tino@cs.bham.ac.uk
2 Clausthal University of Technology, Germany hammer@in.tu-clausthal.de
3 University of Queensland, Brisbane, Australia mikael@itee.uq.edu.au

Summary. Dynamic neural network architectures can deal naturally with sequen-
tial data through recursive processing enabled by feedback connections. We show
how such architectures are predisposed for suffix-based Markovian input sequence
representations in both supervised and unsupervised learning scenarios. In partic-
ular, in the context of such architectural predispositions, we study computational
and learning capabilities of typical dynamic neural network architectures. We also
show how efficient finite memory models can be readily extracted from untrained

networks and argue that such models should be used as baselines when comparing
dynamic network performances in a supervised learning task. Finally, potential ap-
plications of the Markovian architectural predisposition of dynamic neural networks
in bioinformatics are presented.

1 Introduction

There has been a considerable research activity in connectionist processing of
sequential symbolic structures. For example, researchers have been interested
in formulating models of human performance in processing linguistic patterns
of various complexity (e.g. [1]).

Of special importance are dynamic neural network architectures capable
of naturally dealing with sequential data through recursive processing. Such
architectures are endowed with feedback delay connections that enable the
models to operate with a ”neural” memory” in the form of past activations
of a selected subset of neurons, sometimes referred to as recurrent neurons.
It is expected that activations of such recurrent neurons will code all the
”important” information from the past that is needed to solve a given task.
In other words, the recurrent activations can be thought of as representing, in
some ”relevant” way, the temporal context in which the current input item is
observed. The ”relevance” is given by the nature of the task, be it next symbol
prediction, or mapping sequences in a topographically ordered manner.

It was a bit surprising then, when researchers reported that when training
dynamic neural networks to process language structures, activations of re-

2 Peter Tiňo, Barbara Hammer, and Mikael Bodén

current neurons displayed a considerable amount of structural differentiation
even prior to learning [2, 3, 1]. Following [1], we refer to this phenomenon as
the architectural bias of dynamic neural network architectures.

It has been recently shown, both theoretically and empirically, that the
structural differentiation of recurrent activations before the training has much
deeper implications [4, 5]. When initialized with small weights (standard ini-
tialization procedure), typical dynamic neural network architectures will or-
ganize recurrent activations in a suffix-based Markovian manner and it is
possible to extract from such untrained networks predictive models compa-
rable to efficient finite memory source models called variable memory length
Markov models [6]. In addition, in such networks, recurrent activations tend
to organize along a self-similar fractal substrate the fractal and multifractal
properties of which can be studied in a rigorous manner [7]. Also, it is possi-
ble to rigorously characterize learning capabilities of dynamic neural network
architectures in the early stages of learning [5].

Analogously, the well-known Self-Organizing Map (SOM) [8] for topo-
graphic low-dimensional organization of high-dimensional vectorial data has
been reformulated to enable processing of sequential data. Typically, standard
SOM is equipped with additional feed-back connections [9, 10, 11, 12, 13, 14].
Again, various forms of inherent predispositions of such models to Markovian
organization of processed data have been discovered [15, 13, 16].

The aim of this paper is to present major developments in the phenomenon
of architectural bias of dynamic neural network architectures in a unified
framework. The paper has the following organization: First, a general state-
space model formulation used throughout the paper is introduced in section
2. Then, still on the general high description level, we study in section 3 the
link between Markovian suffix-based state space organization and contrac-
tive state transition maps. Basic tools for measuring geometric complexity of
fractal sets are introduced as well. Detailed studies of several aspects of the
architectural bias phenomenon in the supervised and unsupervised learning
scenarios are presented in sections 4 and 5, respectively. Section 6 brings a
flavour of potential applications of the architectural bias in bioinformatics.
Finally, key findings are summarized in section 7.

2 General model formulation

We consider models that recursively process inputs x(t) from a set X ⊆ RNI

by updating their state r(t) in a bounded set R ⊆ RN , and producing outputs
y(t) ∈ Y, Y ⊆ RNO . State space model representation takes the form:

y(t) = h(r(t)) (1)

r(t) = f(x(t), r(t− 1)). (2)

Processing of an input time series x(t) ∈ X , t = 1, 2, ..., starts by initializing
the model with some r(0) ∈ R and then recursively updating the state r(t) ∈

Markovian bias of neural-based architectures with feedback connections 3

R and output y(t) ∈ Y via functions f : X × R → R and h : R → Y,
respectively. This is illustrated in figure 1.

x(t)

f

r(t)

h

y(t)

r(t−1)

delay
unit time

Fig. 1. The basic state space model used throughout the paper. Processing of an
input time series x(t) ∈ X , t = 1, 2, ..., is done by recursively updating the state
r(t) ∈ R and output y(t) ∈ Y via functions f : X × R → R and h : R → Y,
respectively.

We consider inputs coming from a finite alphabet A of A symbols. The
set of all finite sequences over A is denoted by A∗. The set A∗ without the
empty string ε is denoted by A+. The set of all sequences over A with exactly
n symbols (n-blocks) is denoted by An. Each symbol s ∈ A is mapped to its
real-vector representation c(s) by an injective coding function c : A → X .
The state transition process (2) can be viewed as a composition of fixed-input
maps

fs(r) = f(c(s), r), s ∈ A. (3)

In particular, for a sequence s1:n = s1...sn−2sn−1sn over A and r ∈ R, we
write

fs1:n(r) = fsn(fsn−1
(...(fs2(fs1(r)))...))

= (fsn ◦ fsn−1
◦ ... ◦ fs2 ◦ fs1)(r). (4)

4 Peter Tiňo, Barbara Hammer, and Mikael Bodén

3 Contractive state transitions

In this section we will show that by constraining the system to contractive
state transitions we obtain state organizations with Markovian flavour. More-
over, one can quantify geometric complexity of such state space organizations
using tools of fractal geometry.

3.1 Markovian state-space organization

Denote a Euclidean norm by ‖ · ‖. Recall that a mapping F : R → R is said
to be a contraction with contraction coefficient ρ ∈ [0, 1), if for any r, r′ ∈ R,
it holds

‖F(r)− F(r′)‖ ≤ ρ · ‖r− r′‖. (5)

F is a contraction if there exists ρ ∈ [0, 1) so that F is a contraction with
contraction coefficient ρ.

Assume now that each member of the family {fs}s∈A is a contraction
with contraction coefficient ρs and denote the weakest contraction rate in the
family by

ρmax = max
s∈A

ρs.

Consider a sequence s1:n = s1...sn−2sn−1sn ∈ A
n, n ≥ 1. Then for any two

prefixes u and v and for any state r ∈ R, we have

‖fus1:n(r)− fvs1:n(r)‖ = ‖fs1:n−1sn(fu(r))− fs1:n−1sn(fv(r))‖ (6)

= ‖fsn(fs1:n−1
(fu(r)))− fsn(fs1:n−1

(fv(r)))‖ (7)

≤ ρmax · ‖fs1:n−1
(fu(r))− fs1:n−1

(fv(r))‖, (8)

and consequently

‖fus1:n(r)− fvs1:n(r)‖ ≤ ρnmax · ‖fu(r)− fv(r)‖ (9)

≤ ρnmax · diam(R), (10)

where diam(R) is the diameter of the set R, i.e. diam(R) = supx,y∈R ‖x−y‖.
By similar arguments, for L < n,

‖fs1:n(r)− fsn−L+1:n
(r)‖ ≤ ρL · ‖fs1:n−L(r)− r‖ (11)

≤ ρL · diam(R). (12)

There are two related lessons to be learnt from this exercise:

1. No matter what state r ∈ R the model is in, the final states fus1:n(r)
and fvs1:n(r) after processing two sequences with a long common suffix
s1:n will lie close to each other. Moreover, the greater the length n of the
common suffix, the closer lie the final states fus1:n(r) and fvs1:n(r).

Markovian bias of neural-based architectures with feedback connections 5

2. If we could only operate with finite input memory of depth L, then all
reachable states from an initial state r0 ∈ R could be collected in a finite
set

CL(r0) = {fw(r0) | w ∈ A
L}.

Consider now a long sequence s1:n over A. Disregarding the initial tran-
sients for 1 ≤ t ≤ L− 1, the states fs1:t(r0) of the original model (2) can
be approximated by the states fst−L+1:t

(r0) ∈ CL(r0) of the finite memory
model to arbitrarily small precision, as long as the memory depth L is
long enough.

What we have just described can be termed Markovian organization of the
model state space. Information processing states that result from processing
sequences sharing a common suffix naturally cluster together. In addition, the
spatial extent of the cluster reflects the length of the common suffix - longer
suffixes lead to tighter cluster structure.

If, in addition, the readout function h is Lipschitz with coefficient κ > 0,
i.e. for any r, r′ ∈ R,

‖h(r)− h(r′)‖ ≤ κ · ‖r− r′‖,

then
‖h(fus1:n(r))− h(fvs1:n(r))‖ ≤ κ · ρn · ‖fu(r)− fv(r)‖.

Hence, for arbitrary prefixes u, v, we have that for sufficiently long common
suffix length n, the model outputs resulting from driving the system with
us1:n and vs1:n can be made arbitrarily close. In particular, on the same long
input sequence (after initial transients of length L−1), the model outputs (1)
will be closely shadowed by those of the finite memory model operating only
on the most recent L symbols (and hence on states from CL(r)), as long as L
is large enough.

3.2 Measuring complexity of state space activations

Let us first introduce measures of size of geometrically complicated objects
called fractals (see e.g. [17]). Let K ⊆ R. For δ > 0, a δ-fine cover of K is a
collection of sets of diameter ≤ δ that cover K. Denote by Nδ(K) the smallest
possible cardinality of a δ-fine cover of K.

Definition 1. The upper and lower box-counting dimensions of K are defined
as

dim+
B K = lim sup

δ→0

logNδ(K)

− log δ
and dim−B K = lim inf

δ→0

logNδ(K)

− log δ
, (13)

respectively.

6 Peter Tiňo, Barbara Hammer, and Mikael Bodén

Let γ > 0. For δ > 0, define

Hγ
δ (K) = inf

Γδ(K)

∑

B∈Γδ(K)

(diam(B))γ , (14)

where the infimum is taken over the set Γδ(K) of all countable δ-fine covers
of K. Define

Hγ(K) = lim
δ→0

Hγ
δ (K).

Definition 2. The Hausdorff dimension of the set K is

dimH K = inf{γ| Hγ(K) = 0}. (15)

It is well known that

dimH K ≤ dim−B K ≤ dim+
B K. (16)

The Hausdorff dimension is more ”subtle” than the box-counting dimen-
sions: the former can capture details not detectable by the latter. For a more
detailed discussion see e.g. [17].

Consider now a Bernoulli source S over the alphabet A and (without loss
of generality) assume that all symbol probabilities are nonzero.

The system (2) can be considered an Iterative Function System (IFS) [18]
{fs}s∈A. If all the fixed input maps fs are contractions (contractive IFS), there
exists a unique set K ⊆ R, called the IFS attractor, that is invariant under
the action of the IFS:

K =
⋂

s∈A

fs(K).

As the system (2) is driven by an input stream generated by S, the states
{r(t)} converge to K. In other words, after some initial transients, state tra-
jectory of the system (2) ”samples” the invariant set K (chaos game algo-
rithm).

It is possible to upper-bound fractal dimensions of K [17]:

dim+
B K ≤ γ, where

∑

s∈A

ργs = 1.

If the IFS obeys the open set condition, i.e. all fs(K) are disjoint, we
can get a lower bound on the dimension of K as well: assume there exist
0 < κs < 1, s ∈ A, such that

‖fs(r)− fs(r
′)‖ ≥ κs · ‖r− r′‖.

Then [17],

dimH K ≥ γ, where
∑

s∈A

κγ
s = 1.

Markovian bias of neural-based architectures with feedback connections 7

4 Supervised learning setting

In this section, we will consider the implications of Markovian state-space
organization for recurrent neural networks (RNN) formulated and trained in
a supervised setting. We present the results for a simple 3-layer topology of
RNN. The results can be easily generalized to more complicated architectures.

4.1 Recurrent Neural Networks and Neural Prediction Machines

Let Wr,x, Wr,r and Wy,r denote real N × NI , N × N and NO × N weight
matrices, respectively. For a neuron activation function g, we denote its
element-wise application to a real vector a = (a1, a2, ..., ak)

T by g(a), i.e.
g(a) = (g(a1), g(a2), ..., g(ak))

T . Then, the state transition function f in (2)
takes the form

f(x, r) = g(Wr,xx+Wr,rr+ tf), (17)

where tf ∈ RN is a bias term.
Often, the output function h reads:

h(r) = g(Wy,rr+ th), (18)

with the bias term th ∈ RNO . However, for the purposes of symbol stream pro-
cessing, the output function h is sometimes realized as a piece-wise constant
function consisting of a collection of multinomial next-symbol distributions,
one for each compartment of the partitioned state space R. RNN with such an
output function were termed Neural Prediction Machines (NPM) in [4]. More
precisely, assuming the symbol alphabet A contains A symbols, the output
space Y is the simplex

Y = {y = (y1, y2, ..., yA)
T ∈ RA |

A
∑

i=1

yi = 1 and yi ≥ 0}.

The next-symbol probabilities h(r) ∈ Y are estimates of the relative fre-
quencies of symbols, conditional on RNN state r. Regions of constant prob-
abilities are determined by vector quantizing the set of recurrent activations
that result from driving the network with the training sequence:

1. Given a training sequence s1:n = s1s2...sn over the alphabet A =
{1, 2, ..., A}, first re-set the network to the initial state r(0), and then,
while driving the network with the sequence s1:n, collect the recurrent
layer activations in the set Γ = {r(t) | 1 ≤ t ≤ n}.

2. Run your favorite vector quantizer with M codebook vectors b1, ...,bM ∈
R, on the set Γ . Vector quantization partitions the state space R into M
Voronoi compartments V1, ..., VM , of the codebook vectors4 b1, ...,bM :

4 ties are broken according to index order

8 Peter Tiňo, Barbara Hammer, and Mikael Bodén

Vi = {r | ‖r− bi‖ = min
j
‖r− bj‖}. (19)

All points in Vi are allocated to the codebook vector bi via a projection
π : R → {1, 2, ...,M},

π(r) = i, provided r ∈ Vi. (20)

3. Re-set the network again with the initial state r(0).
4. Set the [Voronoi compartment,next-symbol] counters N(i, a), i = 1, ...,M ,

a ∈ A, to zero.
5. Drive the network again with the training sequence s1:n.

For 1 ≤ t < n, if π(r(t)) = i, and the next symbol st+1 is a, increment
the counter N(i, a) by one.

6. With each codebook vector associate the next symbol probabilities5

P (a | i) =
N(i, a)

∑

b∈AN(i, b)
, a ∈ A, i = 1, 2, ...,M. (21)

7. The output map is then defined as

h(r) = P (· | π(r)), (22)

where the a-th component of h(r), ha(r), is the probability of next symbol
being a ∈ A, provided the current RNN state is r.

Once the NPM is constructed, it can make predictions on a test sequence
(a continuation of the training sequence) as follows: Let r(n) be the vector of
recurrent activations after observing the training sequence s1:n. Given a prefix
u1u2, ...u` of the test sequence, the NPM makes a prediction about the next
symbol u`+1 by:

1. Re-setting the network with r(n).
2. Recursively updating states r(n+ t), 1 ≤ t ≤ `, while driving the network

with u1u2...u`.

5 For bigger codebooks, we may encounter data sparseness problems. In such cases,
it is advisable to perform smoothing of the empirical symbol frequencies by ap-
plying Laplace correction with parameter γ > 0:

P (a | i) =
γ +N(i, a)

γ ·A+
∑

b∈A
N(i, b)

.

The parameter γ can be viewed in the Dirichlet prior interpretation for the multi-
nomial distribution P (a | i) as the effective number of times each symbol a ∈ A
was observed in the context of state compartment i, prior to counting the condi-
tional symbol occurrences N(i, a) in the training sequence. Typically, γ = 1, or
γ = A−1.

Markovian bias of neural-based architectures with feedback connections 9

3. The probability of u`+1 occurring is

hu`+1
(r) = P (u`+1 | π(r(n+ `))). (23)

A schematic illustration of NPM is presented in figure 2.

x(t)

f

r(t−1)

r(t)

P(. | i)

P(. | 1)

P(. | 2)

P(. | 3)

P(. | 4)

delay
unit time

Fig. 2. Schematic illustration of Neural Prediction Machine. The output function
is realized as a piece-wise constant function consisting of a collection of multinomial
next-symbol distributions P (·|i), one for each compartment i of the state space R.

4.2 Variable memory length Markov models and NPM built on

untrained RNN

In this section we will present intuitive arguments for a strong link between
Neural Prediction Machines (NPM) constructed on untrained RNN and a class
of efficient implementations of Markov models called Variable memory length
Markov models (VLMM) [6]. The arguments will be made more extensive and
formal in section 4.5.

In Markov models (MMs) of (fixed) order L, the conditional next-symbol
distribution over alphabet A, given the history of symbols s1:t = s1s2...st ∈ A

t

observed so far, is written in terms of the last L symbols (L ≤ t),

P (st+1 | s1:t) = P (st+1 | st−L+1:t). (24)

10 Peter Tiňo, Barbara Hammer, and Mikael Bodén

For large memory lengths L, the estimation of prediction probabilities
P (s|w), w ∈ AL, can become infeasible. To overcome this problem, VLMM
were introduced. The key feature of VLMMs is that they permit prediction
contexts of variable length, depending on the particular history of observed
symbols.

Suppose we are given a long training sequence on which we calculate em-
pirical frequencies P̂` of `-blocks over A. Let w ∈ A

n be a potential prediction
context of length n used to predict the next symbol s ∈ A according to the
empirical estimates

P̂ (s|w) =
P̂n+1(ws)

P̂n(w)
.

If for a symbol a ∈ A, such that aw ∈ An+1, the empirical probability of
the next symbol s,

P̂ (s|aw) =
P̂n+2(aws)

P̂n+1(aw)
,

with respect to the extended context aw differs ”significantly” from P̂ (s|w),
then extending the prediction context w with a ∈ A helps in the next-symbol
predictions. Several decision criteria have been suggested in the literature. For
example, extend the prediction context w with a ∈ A, if the Kullback-Leibler
divergence between the next-symbol distributions for the candidate prediction
contexts w and aw, weighted by the prior distribution of the extended context
aw, exceeds a given threshold [19] [20]. For other variants of decision criteria
see [21] [22].

A natural representation of the set of prediction contexts, together with
the associated next-symbol probabilities, has the form of a prediction suffix
tree (PST) [19] [23]. The edges of PST are labelled by symbols from A. From
every internal node there is at most one outgoing edge labelled by each symbol.
The nodes of PST are labelled by pairs (s, P̂ (s|w)), s ∈ A, w ∈ A+, where
w is a string associated with the walk starting from that node and ending in
the root of the tree. Given a history s1:t = s1s2...st of observed symbols up to
time t, the corresponding prediction context is the deepest node in the PST
reached by taking a walk labelled by the reversed string, st...s2s1, starting in
the root.

It is a common practise to initialize the RNN weights with small numbers.
In such cases, prior to RNN training, the state transition function (17) is
initialized as a contraction. There is a good reason for this practise: unless one
has a strong prior knowledge about the network dynamics [24], the sequence of
desired bifurcations during the training process may be hard to achieve when
starting from arbitrarily complicated network dynamics [25]. But, as argued
in section 3.1, in contractive NPMs, histories of seen symbols sharing long
common suffixes are mapped close to each other. Under finite input memory
assumptions, such histories are likely to produce similar continuations and in
contractive NPMs they are likely to appear in the same quantization region.

Markovian bias of neural-based architectures with feedback connections 11

Dense areas in the RNN state space correspond to symbol histories with long
common suffixes and are given more attention by the vector quantizer. Hence,
the prediction contexts are analogous to those of VLMM in that deep memory
is used only when there are many different symbol histories sharing a long
common suffix. In such situations it is natural to consider deeper past contexts
when predicting the future. This is done automatically by the vector quantizer
in NPM construction as it devotes more codebook vectors to the dense regions
than to the sparsely inhabited areas of the RNN state space. More codebook
vectors in dense regions imply tiny quantization compartments Vi that in turn
group symbol histories with long shared suffixes.

Note, however, that while prediction contexts of VLMMs are built in a
supervised manner, i.e. deep memory is considered only if it is dictated by the
conditional distributions over the next symbols, in contractive NPMs predic-
tion contexts of variable length are constructed in an unsupervised manner:
prediction contexts with deep memory are accepted if there is a suspicion
that shallow memory may not be enough, i.e. when there are many different
symbol histories in the training sequence that share a long common suffix.

4.3 Fractal Prediction Machines

A special class of affine contractive NPMs operating with finite input mem-
ory has been introduced in [26] under the name Fractal Prediction Machines
(FPM). Typically, the state space R is an N -dimensional unit hypercube6

R = [0, 1]N , N = dlog2 Ae. The coding function c : A → X = R maps each of
the A symbols of the alphabet A to a unique vertex of the hypercube R. The
state transition function (17) is of particularly simple form, as the activation
function g is identity and the connection weight matrices are set toWr,x = ρI
and Wr,x = (1− ρ)I, where 0 < ρ < 1 is a contraction coefficient and I is the
N ×N identity matrix. Hence, the state space evolution (2) reads:

r(t) = f(x(t), r(t− 1))

= ρr(t− 1) + (1− ρ)x(t). (25)

The reset state is usually set to the center of R, r0 = { 1
2}

N . After fixing
the memory depth L, the FPM states are confined to the set

CL(r0) = {fw(r0) | w ∈ A
L}.

FPM construction proceeds in the same manner as that of NPM, except
for the states fs1:t(r0) coding history of inputs up to current time t are approx-
imated by their memory-L counterparts fst−L+1:t

(r0) from CL(r0), as discussed
in section 3.1.

6 for x ∈ <, dxe is the smallest integer y, such that y ≥ x

12 Peter Tiňo, Barbara Hammer, and Mikael Bodén

4.4 Echo and Liquid State Machines

A similar architecture has been proposed by Jaeger in [27, 28]. So-called Echo
State Machines (ESM) combine an untrained recurrent reservoir with a train-
able linear output layer. Thereby, the state space model has the following
form

y(t) = h(x(t), r(t),y(t− 1)) (26)

r(t) = f(x(t), r(t− 1),y(t− 1)). (27)

For training, the function f is fixed and chosen in such a way that it has the
echo state property, i.e. the network state r(t) is uniquely determined by left
infinite sequences. In practise, the dependence of r on y is often dropped such
that this property is equivalent to the fading property of recurrent systems
and it can be tested by determining the Lipschitz constant of f (which must be
smaller than 1). The readout h is trainable. It is often chosen as a linear func-
tion such that training can be done efficiently using linear regression. Unlike
FPMs, ESMs usually work with very high dimensional state representations
and a transition function which is obtained as the composition of a nonlin-
ear activation function and a linear mapping with (sufficiently small) random
weights. This combination should guarantee that the transition function has
sufficiently rich dynamics to represent ”important” properties of input series
within its reservoir.

A similar idea is the base for so-called Liquid State Machines (LSM) as
proposed by Maass [29]. These are based on a fixed recurrent mechanism in
combination with a trainable readout. Unlike FPM and ESM, LSMs consider
continuous time, and they are usually based on biologically plausible circuits
of spiking neurons with sufficiently rich dynamics. It has been shown in [29]
that LSMs are approximation complete for operators with fading memory
under mild conditions on the models. Possibilities to estimate the capacity of
such models and their generalization ability have recently been presented in
[30]. However, the fading property is not required for LSMs.

4.5 On the computational power of recursive models

Here we will rigorously analyze the computational power of recursive models
with contractive transition function. The arguments are partially taken from
[5]. Given a sequence s1:t = s1 . . . st, the L-truncation is given by

TL(s1:t) =

{

st−L+1:t if t ≤ L
s otherwise

AssumeA is a finite input alphabet and Y is an output set. A Definite Memory
Machine (DMM) computes a function f : A∗ → Y such that f(s) = f(TL(s))
for some fixed memory length L and every sequence s. AMarkov model (MM)
fulfils P (st+1|s1:t) = P (st+1|TL(s)) for some L. Obviously, the function which

Markovian bias of neural-based architectures with feedback connections 13

maps a sequence to the next symbol probability given by a Markov model de-
fines a definite memory machine. Variable length Markov models are subsumed
by standard Markov models taking L as the maximum length. Therefore, we
will only consider definite memory machines in the following.

State space models as defined in eqs. (1-2) induce a function h ◦ f•(r) :
A∗ → Y, s1:t 7→ (h◦ fst ◦ . . .◦ fs1)(r) as defined in (4) given a fixed initial value
r. As beforehand, we assume that the set of internal states R is bounded.
Consider the case that f is a contraction w.r.t. x with parameter ρ and h is
Lipschitz continuous with parameter κ. According to (12), |fs(r)−fTL(s)(r)| ≤
ρL · diam(R). Note that the function h ◦ fTL(•)(r) can be given by a definite
memory machine. Therefore, if we choose L = logρ(ε/(κ · diam(R))), we find
|h ◦ fs(r) − h ◦ fTL(s)(r)| ≤ ε. Hence, we can conclude that every recurrent
system with contractive transition function can be approximated arbitrarily
well by a finite memory model. This argument proves the Markovian property
of RNNs with small weights:

Theorem 1. Assume f is a contraction w.r.t. x, and h is Lipschitz continu-

ous. Assume r is a fixed initial state. Assume ε > 0. Then there exists a defi-
nite memory machine with function g : A∗ → Y such that |g(s)−h◦ fs(r)| ≤ ε
for every input sequence s.

As shown in [5], this argument can be extended to the situation where the
input alphabet is not finite, but given by an arbitrary subset of a real-vector
space.

It can easily be seen that standard recurrent neural networks with small
weights implement contractions, since standard activation functions such as
tanh are Lipschitz continuous and linear maps with sufficiently small weights
are contractive. RNNs are often initialized by small random weights. There-
fore, RNNs have a Markovian bias in early stages of training, first pushing
solutions towards simple dynamics before going towards more complex models
such as finite state automata and beyond.

It has been shown in [27] that ESMs without output feedback possess the
so-called shadowing property, i.e. for every ε a memory length L can be found
such that input sequences the last L entries of which are similar or identical
lead to images which are at most ε apart. As a consequence, such mechanisms
can also be simulated by Markovian models. The same applies to FPMs (the
transition is a contraction by construction) and NPMs built on untrained
RNNs randomly initialized with small weights.

The converse has also been proved in [5]: every definite memory machine
can be simulated by a RNN with small weights. Therefore, an equivalence of
small weight RNNs (and similar mechanisms) and definite memory machines
holds. One can go a step further and consider the question in which cases

14 Peter Tiňo, Barbara Hammer, and Mikael Bodén

randomly initialized RNNs with small weights can simulate a given definite
memory machine provided a suitable readout is chosen.

The question boils down to the question whether the images of input se-
quences s of a fixed memory length L under the recursion (fsL ◦ . . . ◦ fs1)(r)
are of a form such that they can be mapped to desired output values by a
trainable readout. We can assume that the codes for the symbols si are lin-
early independent. Further, we assume that the transfer function of the net-
work is a nonlinear and non algebraic function such as tanh. Then the terms
(fsL ◦ . . . ◦ fs1)(r) constitute functions of the weights which are algebraically
independent since they consist of the composition of linearly independent
terms and the activation function. Thus, the images of sequences of length
L are almost surely disjoint such that they can be mapped to arbitrary out-
put values by a trainable readout provided the readout function h fulfils the
universal approximation capability as stated e.g. in [31] (e.g. FNNs with one
hidden layer). If the dimensionality of the output is large enough (dimension-
ality LA), the outputs are almost surely linearly independent such that even
a linear readout is sufficient. Thus, NPMs and ESMs with random initializa-
tion constitute universal approximators for finite memory models provided
sufficient dimensionality of the reservoir.

4.6 On the generalization ability of recursive models

Another important issue of supervised adaptive models is their generaliza-
tion ability, i.e. the possibility to infer from learnt data to new examples. It
is well known that the situation is complex for recursive models due to the
relatively complex inputs: sequences of priorly unrestricted length can, in prin-
ciple, encode behavior of priorly unlimited complexity. This observation can
be mathematically substantiated by the fact that generalization bounds for
recurrent networks as derived e.g. in [32, 33] depend on the input distribution.
The situation is different for finite memory models for which generalization
bounds independent of the input distribution can be derived. A formal argu-
ment which establishes generalization bounds of RNNs with Markovian bias
has been provided in [5], whereby the bounds have been derived also for the
setting of continuous input values stemming from a real-vector space. Here,
we only consider the case of a finite input alphabet A.

Assume F is the class of functions which can be implemented by a re-
current model with Markovian bias. For simplicity, we restrict to the case of
binary classification, i.e. outputs stem from {0, 1}, e.g. adding an appropriate
discretization to the readout h. Assume P is an unknown underlying input-
output distribution which has to be learnt. Assume a set of m input-output
pairs, Tm = {(s1, y1), . . . , (sm, ym)}, is given; the pairs are sampled from
P in an i.i.d. manner7. Assume a learning algorithm outputs a function g
when trained on the samples from Tm. The empirical error of the algorithm

7 independent identically distributed

Markovian bias of neural-based architectures with feedback connections 15

is defined as

ÊTm(g) =
1

m

m
∑

i=1

|g(si)− yi| .

This is usually minimized during training. The real error is given by the
quantity

EP (g) =

∫

|g(s)− y| dP (s, y) .

A learning algorithm is said to generalize to unseen data if the real error is
minimized by the learning scheme.

The capability of a learning algorithm of generalizing from the training
set to new examples depends on the capacity of the function class used for
training. One measure of the complexity is offered by the Vapnik Chervonenkis
(VC) dimension of the function class F . The VC dimension of F is the size of
the largest set such that every binary mapping on this set can be realized by
a function in F . It has been shown by Vapnik [34] that the following bound
holds for sample size m, m ≥ VC(F) and m > 2/ε:

Pm{Tm | ∃g ∈ F s.t. |EP (g)− ÊTm(g)| > ε}

≤ 4 ·

(

2 · e ·m

VC(F)

)

· exp(−ε2 ·m/8)

Obviously, the number of different binary Markovian classifications with

finite memory length L and alphabet A of A symbols is restricted by 2L
A

,
thus, the VC dimension of the class of Markovian classifications is limited
by LA. Hence its generalization ability is guaranteed. Recurrent networks
with Markovian bias can be simulated by finite memory models. Thereby,
the necessary input memory length L can be estimated from the contraction
coefficient ρ of the recursive function, the Lipschitz constant κ of the readout,
and the extent of the state space R, by the term − logρ(2 · κ · diam(R)).
This holds since we can approximate every binary classification up to ε = 0.5
by a finite memory machine using this length as shown in Theorem 1. This
argument proves the generalization ability of ESMs, FPMs, or NPMs with
fixed recursive transition function and finite input alphabet A for which a
maximum memory length can be determined a priori. The argumentation can
be generalized to the case of arbitrary (continuous) inputs as shown in [5].

If we train a model (e.g. a RNN with small weights) in such a way that a
Markovian model with finite memory length arises, whereby the contraction
constant of the recursive part (and hence the corresponding maximummemory
length L) is not fixed, these bounds do not apply. In this case, one can use
arguments from the theory of structural risk minimization as provided e.g.
in [35]. Denote by Fi the set of recursive functions which can be simulated
using memory length i (this corresponds to a contraction coefficient (2 · κ ·
diam(R)−1/i). Obviously, the VC dimension of Fi is iA. Assume a classifier is
trained on a sample Tm of m i.i.d. input-output pairs (sj , yj), j = 1, 2, ...m,

16 Peter Tiňo, Barbara Hammer, and Mikael Bodén

generated from P . Assume the number of errors on Tm of the trained classifier
g is k, and the recursive model g is contained in Fi. Then, according to [35]
(Theorem 2.3), the generalization error EP (g) can be upper bounded by the
following term with probability 1− δ:

1

m

(

(2 + 4 ln 2)k + 4 ln 2i+ 4 ln
4

δ
+ 4iA · ln

(

2em

iA

))

.

(Here, we chose the prior probabilities used in [35] (Theorem 2.3) as 1/2i for
the probability that g is in Fi and 1/2k that at most k errors occur.) Unlike the
bounds derived e.g. in [15], this bound holds for any posterior finite memory
length L obtained during training. In practise, the memory length can be
estimated from the contraction and Lipschitz constants as shown above. Thus,
unlike for general RNNs, generalization bounds which do not depend on the
input distribution, but rather on the input memory length, can be derived for
RNNs with Markovian bias.

4.7 Verifying the architectural bias

The fact that one can extract from untrained recurrent networks Neural
Prediction Machines (NPM, section 4.1) that yield comparable performance
to Variable Memory Length Markov Models (VLMM, section 4.2) has been
demonstrated e.g. in [4]. This is of vital importance for model building and
evaluation, since in the light of these findings, the base line models in neural-
based symbolic sequence processing tasks should in fact be VLMMs. If a
neural network model after the training phase cannot beat a NPM extracted
from an untrained model, there is obviously no point in training the model
first place. This may sound obvious, but there are studies e.g. in the field
of cognitive aspects of natural language processing, where trained RNN are
compared with fixed order Markov models [1]. Note that such Markov models
are often inferior to VLMM.

In [4], five model classes were considered:

• RNN trained via Real Time Recurrent Learning [36] coupled with Ex-
tended Kalman Filtering [37, 38]. There were A input and output units,
one for each symbol in the alphabet A, i.e. NI = NO = A. The inputs and
desired outputs were encoded through binary one-of-A encoding. At each
time step, the output activations were normalized to obtain next-symbol
probabilities.

• NPM extracted from trained RNN.
• NPM extracted from RNN prior to training.
• Fixed order Markov models.
• VLMM.

The models were tested on two data sets:

Markovian bias of neural-based architectures with feedback connections 17

• A series of quantized activations of a laser in a chaotic regime. This se-
quence can be modelled quite successfully with finite memory predictors,
although, because of the limited finite sequence length, predictive contexts
of variable memory depth are necessary.

• An artificial language exhibiting deep recursive structures. Such structures
cannot be grasped by finite memory models and fully trained RNN should
be able to outperform models operating with finite input memory and
NPM extracted from untrained networks.

Model performance was measured by calculating the average (per symbol)
negative log-likelihood on the hold-out set (not used during the training). As
expected, given fine enough partition of the state space, the performances of
RNNs and NPMs extracted from trained RNNs were almost identical. Be-
cause of finite sample size effects, fixed-order Markov models were beaten
by VLMMs. Interestingly enough, when considering models with comparable
number of free parameters, the performance of NPMs extracted prior to train-
ing mimicked that of VLMMs. Markovian bias of untrained RNN was clearly
visible.

On the laser sequence, negative log-likelihood on the hold out set improved
slightly through an expensive RNN training, but overall, almost the same per-
formance could be achieved by a cheap construction of NPMs from randomly
initialized untrained networks.

On the deep-recursion set, trained RNNs could achieve much better per-
formance. However, it is essential to quantify how much useful information
has really been induced during the training. As argued in this study, this can
only be achieved by consulting VLMMs and NPMs extracted before training.

A large-scale comparison in [26] of Fractal Prediction Machines (FPM, sec-
tion 4.3) with both VLMM an fixed order Markov models revealed an almost
equivalent performance (modulo model size) of FPM and VLMM. Again, fixed
order Markov models were inferior to both FPM and VLMM.

4.8 Geometric complexity of RNN state activations

It has been well known that RNN state space activations r often live on a
fractal support of a self-similar nature [39]. As outlined in section 3.2, in
case of contractive RNN, one can actually estimate the size and geometric
complexity of the RNN state space evolution.

Consider a Bernoulli source S over the alphabet A. When we drive a
RNN with symbolic sequences generated by S, we get recurrent activations
{r(t)} that tend to group in clusters sampling the invariant set K of the RNN
iterative function system {fs}s∈A.

Note that for each input symbol s ∈ A, we have an affine mapping acting
on R:

Qs(r) =Wr,rr+Wr,xc(s) + tf .

18 Peter Tiňo, Barbara Hammer, and Mikael Bodén

The range of possible net-in activations of recurrent units for input s is
then

Cs =
⋃

1≤i≤N

[Qs(R)]i, (28)

where [B]i is the slice of the set B, i.e. [B]i = {ri| r = (r1, ..., rN)T ∈ B},
i = 1, 2, ..., N .

By finding upper bounds on the values of derivatives of activation function,

g′s = sup
v∈Cs

|g′(v)|, g′max = max
s∈A

g′s,

and setting
ρmax
s = α+(W

r,r) · g′s, (29)

where α+(W
r,r) is the largest singular value ofWr,r, we can bound the upper

box-counting dimension of RNN state activations [40]: Suppose α+(W
r,r) ·

g′max < 1 and let γmax be the unique solution of
∑

s∈A(ρ
max
s)γ = 1. Then,

dim+
B K ≤ γmax.
Analogously, Hausdorff dimension of RNN sates can be lower-bounded as

follows: Define
q = min

s,s′∈A,s6=s′
‖Wr,x(c(s)− c(s′))‖

and assume α+(W
r,r) < min

{

(g′max)
−1, q · diam(R)

}

. Let γmin be the unique
solution of

∑

s∈A(ρ
min
s)γ = 1, where ρmin

s = α−(W
r,r) · infv∈Cs |g

′(v)| and
α−(W

r,r) is the smallest singular value of Wr,r. Then, dimH K ≥ γmin.
Closed-form (less tight) bounds are also possible [40]:

dim+
B K ≤ −

logA

logN + logW r,r
max + log g′max

,

where W r,r
max = max1≤i,j≤N |W

r,r
ij |; and

dimH K ≥ −
logA

log ρmin
,

where ρmin = mins∈A ρmin
s .

A more involved multifractal analysis of RNN state activations under more
general stochastic sources driving the RNN input can be found in [7].

5 Unsupervised learning setting

In this section, we will study model formulations for constructing topographic
maps of sequential data. While most approaches to topographic map forma-
tion assume that the data points are members of a finite-dimensional vector
space of a fixed dimension, there has been a considerable interest in extend-
ing topographic maps to more general data structures, such as sequences or

Markovian bias of neural-based architectures with feedback connections 19

trees. Several modifications of standard Self-Organizing Map (SOM) [8] to se-
quences and/or tree structures have been proposed in the literature [41, 15].
Several modifications of SOM equip standard SOM with additional feed-back
connections that allow for natural processing of recursive data types. Typi-
cal examples of such models are Temporal Kohonen Map [9], recurrent SOM
[10], feedback SOM [11], recursive SOM [12], merge SOM [13] and SOM for
structured data [14].

In analogy to well-known capacity results derived for supervised recursive
models e.g. in [42, 43], some approaches to investigate the principled capacity
of these models have been presented in the last few years. Thereby, depending
on the model, the situation is diverse: whereas SOM for structured data and
merge SOM (both with arbitrary weights) are equivalent to finite automata
[44, 13], recursive SOM equipped with a somewhat simplified context model
can simulate at least pushdown automata [45]. The Temporal Kohonen Map
and recurrent SOM are restricted to finite memory models due to their re-
stricted recurrence even with arbitrary weights [45, 44]. However, the exact
capacity of most unsupervised recursive models as well as biases which arise
during training have hardly been understood so far.

5.1 Recursive SOM

In this section we will analyse recursive SOM (RecSOM) [12]. There are two
main reasons for concentrating on RecSOM. First, RecSOM transcends sim-
ple local recurrence of leaky integrators of earlier SOM-motivated models for
processing sequential data and consequently can represent much richer dynam-
ical behavior [15]. Second, the underlying continuous state-space dynamics of
RecSOM makes this model particularly suitable for analysis along the lines of
section 3.1.

The map is formed at the recurrent layer. Each unit i ∈ {1, 2, ..., N} in
the map has two weight vectors associated with it:

• w
r,x
i ∈ X – linked with an NI -dimensional input x(t) feeding the network

at time t
• w

r,r
i ∈ R – linked with the context

r(t− 1) = (r1(t− 1), r2(t− 1), ..., rN (t− 1))T

containing map activations ri(t− 1) from the previous time step.

Hence, the weight matrices Wr,x and Wr,r can be written as Wr,x =
((wr,x

1)T , (wr,x
2)T , ..., (wr,x

N)T)T and Wr,r = ((wr,r
1)T , (wr,r

2)T , ..., (wr,r
N)T)T ,

respectively.
The activation of a unit i at time t is computed as

ri(t) = exp(−di(t)), (30)

where

20 Peter Tiňo, Barbara Hammer, and Mikael Bodén

di(t) = α · ‖x(t)−w
r,x
i ‖2 + β · ‖r(t− 1)−w

r,r
i ‖

2. (31)

In eq. (31), α > 0 and β > 0 are parameters that respectively quantify the
influence of the input and the context on the map formation. The output of
RecSOM is the index of the unit with maximum activation (best-matching
unit),

y(t) = h(r(t)) = argmax
i∈{1,2,...,N}

ri(t). (32)

Both weight vectors can be updated using a SOM-type learning [12]:

∆wr,x
i = γ · ν(i, y(t)) · (x(t)−w

r,x
i), (33)

∆wr,r
i = γ · ν(i, y(t)) · (r(t− 1)−w

r,r
i), (34)

where 0 < γ < 1 is the learning rate. Neighborhood function ν(i, k) is a
Gaussian (of width σ) on the distance d(i, k) of units i and k in the map:

ν(i, k) = e−
d(i,k)2

σ2 . (35)

The ”neighborhood width”, σ, linearly decreases in time to allow for forming
topographic representation of input sequences. A schematic illustration of
RecSOM is presented in figure 3.

The time evolution (31) becomes

ri(t) = exp(−α‖x(t)−w
r,x
i ‖2) · exp(−β‖r(t− 1)−w

r,r
i ‖

2). (36)

We denote the Gaussian kernel of inverse variance η > 0, acting on RN ,
by Gη(·, ·), i.e. for any u,v ∈ RN ,

Gη(u,v) = e−η‖u−v‖2 . (37)

Finally, the state space evolution (2) can written for RecSOM as follows:

r(t) = f(x(t), r(t− 1)) = (f1(x(t), r(t− 1)), ..., fN (x(t), r(t− 1))), (38)

where
fi(x, r) = Gα(x,w

r,x
i) ·Gβ(r,w

r,r
i), i = 1, 2, ..., N. (39)

The output response to an input time series {x(t)} is the time series {y(t)}
of best-matching unit indexes given by (32).

5.2 Markovian organization of receptive fields in contractive

RecSOM

As usual in topographic maps, each unit on the map can be naturally repre-
sented by its receptive field (RF). Receptive field of a unit i is the common
suffix of all sequences for which that unit becomes the best-matching unit.

Markovian bias of neural-based architectures with feedback connections 21

x(t)

f

r(t)

r(t−1)

h

argmax r (t)

delay
unit time

i i

Fig. 3. Schematic illustration of RecSOM. Dimensions (neural units) of the state
space R are topologically organized on a grid structure. The degree of ”closeness” of
units i and k on the grid is given by the neighborhood function ν(i, k). The output
of RecSOM is the index of maximally activated unit (dimension of the state space).

It is common to visually represent trained topographic maps by printing out
RFs on the map grid.

Let us discuss how contractive fixed-input maps fs (3) shape the overall
organization of RFs in the map. For each input symbol s ∈ A, the autonomous
dynamics

r(t) = fs(r(t− 1)) (40)

induces an output dynamics y(t) = h(r(t)) of best-matching (winner) units
on the map. Since for each input symbol s ∈ A, the fixed-input dynamics (40)
is a contraction, it will be dominated by a unique attractive fixed point rs.
It follows that the output dynamics {y(t)} on the map settles down in unit
is, corresponding to the mode of rs. The unit is will be most responsive to
input subsequences ending with long blocks of symbols s. Receptive fields of
other units on the map will be organized with respect to the closeness of the
units to the fixed-input winners is, s ∈ A. When symbol s is seen at time t,
the mode of the map activation profile r(t) starts drifting towards the unit
is. The more consecutive symbols s we see, the more dominant the attractive
fixed point of fs becomes and the closer the winner position is to is.

It has indeed been reported that maps of sequential data obtained by
RecSOM often seem to have a Markovian flavor: The units on the map become
sensitive to recently observed symbols. Suffix-based RFs of the neurons are

22 Peter Tiňo, Barbara Hammer, and Mikael Bodén

topographically organized in connected regions according to last seen symbols.
If two prefixes s1:p and s1:q of a long sequence s1...sp−2sp−1sp...sq−2sq−1sq...
share a common suffix of length L, it follows from (10) that for any r ∈ R,

‖fs1:p(r)− fs1:q (r)‖ ≤ ρLmax · diam(R).

For sufficiently large L, the two activations r1 = fs1:p(r) and r
2 = fs1:q (r) will

be close enough to have the same location of the mode,8

i∗ = h(r1) = h(r2),

and the two subsequences s1:p and s1:q yield the same best matching unit
i∗ on the map, irrespective of the position of the subsequences in the input
stream. All that matters is that the prefixes share a sufficiently long common
suffix. We say that such an organization of RFs on the map has a Markovian
flavour, because it is shaped solely by the suffix structure of the processed
subsequences, and it does not depend on the temporal context in which they
occur in the input stream9.

RecSOM parameter β weighs the significance of importing information
about possibly distant past into processing of sequential data. Intuitively,
when β is sufficiently small, e.g. when information about the very recent inputs
dominates processing in RecSOM, the resulting maps should have Markovian
flavour. This intuition was given a more rigorous form in [16]. In particular,
theoretical bounds on parameter β that guarantee contractiveness of the fixed
input maps fs were derived. As argued above, contractive fixed input mappings
are likely to produce Markovian organizations of RFs on the RecSOM map.

Denote by Gα(x) the collection of activations coming from the feed-
forward part of RecSOM,

Gα(x) = (Gα(x,w
r,x
1), Gα(x,w

r,x
2), ..., Gα(x,w

r,x
N)). (41)

Then we have [16]:

Theorem 2. Consider an input x ∈ X . If for some ρ ∈ [0, 1),

β ≤ ρ2 e

2
‖Gα(x)‖

−2, (42)

then the mapping fx(r) = f(x, r) is a contraction with contraction coefficient
ρ.

8 or at least mode locations on neighboring grid points of the map
9 Theoretically, there can be situations where (1) locations of the modes of r1

and r2 are distinct, but the distance between r1 and r2 is small; or where (2)
the modes of r1 and r2 coincide, while their distance is quite large. This follows
from discontinuity of the output map h. However, in our extensive experimental
studies, we have registered only a negligible number of such cases.

Markovian bias of neural-based architectures with feedback connections 23

Corollary 1. Provided

β <
e

2N
, (43)

irrespective of the input symbol s ∈ A, the fixed input map fs of a RecSOM
with N units will be a contraction.

The bound e/(2N) may seem restrictive, but as argued in [15], the con-
text influence has to be small to avoid instabilities in the model. Indeed, the
RecSOM experiments of [15] used N = 10 × 10 = 100 units and the map
was trained with β = 0.06, which is only slightly higher than the bound
e/(2N) = 0.0136. Obviously the bound e/(2N) can be improved by consider-
ing other model parameters, as in Theorem 2.

These results complement Voegtlin’s stability analysis of the parameter
adaptation process during RecSOM training [12]: for β < e/(2N), stability
of weight updates with respect to small perturbations of the map activity r
is ensured. Voegtlin also shows that if β < e/(2N), small perturbations of
the activities will decay (fixed input maps are locally contractive). The work
in [16] extends this result to perturbations of arbitrary size. It follows that
for each RecSOM model satisfying Voegtlin’s stability bound on β, the fixed
input dynamics for any input will be dominated by a unique attractive fixed
point. This renders the map both Markovian quality and training stability.

5.3 Verifying Markovian organization of receptive fields in

RecSOM

In [16] we posed the following questions:

• Is the architecture of RecSOM naturally biased towards Markovian repre-
sentations of input streams? If so, under what conditions will Markovian
organization of receptive fields (RF) occur? How natural are such condi-
tions, i.e. can Markovian topographic maps be expected under widely-used
architectures and (hyper)parameter settings in RecSOM?

• What can be gained by having a trainable recurrent part in RecSOM?
In particular, how does RecSOM compare with a much simpler setting
of standard SOM (no feedback connections) operating on a simple non-
trainable FPM-based iterative function system (25)?

The experiments were performed on three data sets:

• A binary symbolic stream generated by a two-state first-order Markov
chain used in the original RecSOM paper [12].

• The series of quantized activations of a laser in a chaotic regime from
section 4.7.

• A corpus of written English - the novel ”Brave New World” by Aldous
Huxley. This is the second data set used to demonstrate RecSOM in [12].

24 Peter Tiňo, Barbara Hammer, and Mikael Bodén

Three methods of assessment of the topographic maps were used. The first
two were suggested in [12].

• For each unit in the map its RF is calculated. The RFs are then visually
presented on the map grid.

• As a measure of the amount of memory captured by the map, the overall
quantizer depth of the map was calculated as

QD =
N
∑

i=1

pi`i, (44)

where pi is the probability of the RF of neuron i and `i is its length.
• Quantifying topography preservation in recursive extensions of SOM is

not as straightforward as in traditional SOM. To quantify the maps’ topo-
graphic order we first calculated the length of the longest common suffix
shared by RFs of that unit and its immediate topological neighbors. The
topography preservation measure (TP) is the average of such shared RF
suffix lengths over all units in the map.

For the Markov chain series, when we chose values of parameters α and β
from the region of stable RecSOM behavior reported in [12], after the training
we almost always got a trivial single-attractive-fixed-point behaviour of fixed
input maps (40). As explained in section 5.2, this resulted in Markovian orga-
nization of RFs. Note that such a RF organization can be obtained ”for free”,
i.e. without having a set of trainable feed-back connections, simply by con-
structing a standard SOM on a FPM-based iterative function system (25). We
call such models IFS+SOM. This indeed turned out to be the case. Maps of
RFs obtained by RecSOM and IFS+SOM of comparable sizes looked visually
similar, with a clear Markovian organization. However, quantitative measures
of quantizer depth (QD) and topography preservation (TP) revealed a signifi-
cant advantage of RecSOM maps. The same applied to the chaotic laser data
set. In most cases, the β parameter was above the upper bound of Theorem
2,

Υ (s) =
e

2
‖Gα(c(s))‖

−2, (45)

guaranteeing contractive fixed input maps (40). Nevertheless, the organiza-
tion of RFs was still Markovian. We performed experiments with β-values
bellow ε/(2N) (see Corollary 1). In such cases, irrespective of other training
hyperparameters, the fixed input maps (40) were always contractive, leading
automatically to Markovian RF organizations.

When training RecSOM on the corpus of written English, for a wide variety
of values of α and β that lead to stable map formation, non-Markovian orga-
nizations of RFs were observed. As a consequence, performance of IFS+SOM
model, as measured by the QD and TP measures, was better, but it is impor-
tant to realize that this does not necessarily imply that RecSOM maps were
of inferior quality. The QD and TP are simply biased towards Markovian RF

Markovian bias of neural-based architectures with feedback connections 25

organizations. But there may well be cases where non-Markovian topographic
maps are more desirable, as discussed in the next section.

5.4 Beyond Markovian organization of receptive fields

Periodic (beyond period 1), or aperiodic attractive dynamics (40) yield poten-
tially complicated non-Markovian map organizations with ”broken topogra-
phy” of RFs. Two sequences with the same suffix can be mapped into distinct
positions on the map, separated by a region of different suffix structure. Un-
like in contractive RecSOM or IFS+SOM models, such context-dependent
RecSOM maps embody a potentially unbounded input memory structure:
the current position of the winner neuron is determined by the whole series of
processed inputs, and not only by a history of recently seen symbols. To fully
appreciate the meaning of the RF structure, we must understand the driving
mechanism behind such context-sensitive suffix representations.

In what follows we will try to suggest one possible mechanism of creating
non-Markovian RF organizations. We noticed that often Markovian topogra-
phy was broken for RFs ending with symbols of high frequency of occurrence.
It seems natural for such RFs to separate on the map into distinct islands
with a more refined structure. In other words, it seems natural to distinguish
on the map between temporal contexts in which RFs with high frequency
suffixes occur.

Now, the frequency of a symbol s ∈ A, input-coded as c(s) ∈ X , in the
input data stream will be reflected by the ”feed-forward” part of the map con-
sisting of weights Wr,x. The more frequent the symbol is, the better coverage
by the weights Wr,x it will get10. But good match with more feedforward
weights wr,x

i means higher kernel values of (see (37))

Gα(c(s),w
r,x
i) = exp{−α‖c(s)−w

r,x
i ‖2},

and consequently higher L2 norms of Gα(c(s)) (41). It follows that the upper
bound Υ (s) (45) on parameter β guaranteeing contractive fixed input map
(40) for symbol s will be smaller. Hence, for more frequent symbols s, the
interval (0, Υ (s)) of β values for guaranteed Markovian organization of RFs
ending with s shrinks and so a greater variety of stable maps can be formed
with topography of RFs broken for suffixes containing s.

5.5 SOM for structured data

RecSOM constitutes a powerful model which has the capacity of at least
pushdown automata as shown (for a simplified form) in [45]. It uses a very

10 This is, strictly speaking, not necessarily true. It would be true in the standard
SOM model. However, weight updates of Wr,x in RecSOM are influenced by
the match in both the feedforward and recurrent parts of the model, represented
by weights Wr,x and Wr,x, respectively. Nevertheless, in all our experiments
we found this correspondence between the frequency of an input symbol and its
coverage by the feedforward part of RecSOM to hold.

26 Peter Tiňo, Barbara Hammer, and Mikael Bodén

complex context representation: the activation of all neurons of the map of
the previous time step, usually a large number. This has the consequence that
memory scales with N2, N being the number of neurons, since the expected
context is stored in each cell. SOM for structured data (SOMSD) and merge
SOM (MSOM) constitute alternatives which try to compress the relevant
information of the context such that the memory load is reduced.

SOMSD has been proposed in [14] for unsupervised processing of tree
structured data. Here we restrict to sequences, i.e. we neglect branching.
SOMSD compresses the temporal context by the location of the winner in
the neural map. The map is given by units i ∈ {1, . . . , N} which are located
on a lattice structure embedded in a real-vector space RI ⊂ Rd, typically a
two-dimensional rectangular lattice in R2. The location of neuron i in this
lattice is referred to as Ii.

Each neuron has two vectors associated with it:

• w
r,x
i ∈ X – linked with an NI -dimensional input x(t) feeding the network

at time t as in RecSOM
• w

r,r
i ∈ RI – linked with the context

rI(t− 1) = Iit−1
with it−1 = argmin

i
{ri(t− 1) | i = 1, . . . , N} ,

i.e. it is linked to the winner location depending on map activations ri(t−1)
from the previous time step.

The activation of a unit i at time t is computed as

ri(t) = α · ‖x(t)−w
r,x
i ‖+ β · ‖rI(t− 1)−w

r,r
i ‖. (46)

where, as beforehand,

rI(t− 1) = Iit−1
with it−1 = argmin

i
{ri(t− 1) | i = 1, . . . , N}.

The readout extracts the winner

y(t) = h(r(t)) = argmin
i∈{1,...,N}

ri(t) .

Note that this recursive dynamics is very similar to the dynamics of RecSOM
as given in (31). The information stored in the context is compressed by
choosing the winner location as internal representation.

Since RI is a real-vector space, SOMSD can be trained in the standard
Hebb style for both parts of the weights, moving w

r,x
i closer to x(t) and

w
r,r
i closer to rI(t− 1) after the representation of a stimulus. The principled

capacity of SOMSD can be characterized exactly. It has been shown in [15]
that SOMSD can simulate finite automata in the following sense: assume A
is a finite alphabet. Assume a finite automaton accepts the language L ⊂ A∗.
Then there exists a constant delay τ , an encoding C : A → X τ , and a SOMSD

Markovian bias of neural-based architectures with feedback connections 27

network such that s ∈ L if and only if the sequence C(s1) . . . C(st) is mapped
to neuron 1. Because of the finite context representation within the lattice in
(46) (capacity at most the capacity of finite state automata), the equivalence
of SOMSD for sequences and finite state automata results.

Obviously, unlike RecSOM, the dynamics of SOMSD is discontinuous since
it involves the determination of the winner. Therefore, the arguments of sec-
tion 5.2 which show a Markovian bias as provided for RecSOM do not apply
to SOMSD. For SOMSD, an alternative argumentation is possible, assuming
small β and two further properties which we refer to as sufficient granularity
and as distance preservation. More precisely:

1. SOMSD has sufficient granularity given ε1 > 0 if for every a ∈ A and
rI ∈ RI a neuron i can be found such that ‖c(a) − w

r,x
i ‖ ≤ ε1 and

‖rI −w
r,r
i ‖ ≤ ε1.

2. SOMSD is distance preserving given ε2 > 0 if for every two neurons i
and j the following inequality holds |‖Ii − Ij‖ − α · ‖wr,x

i − w
r,x
j ‖ − β ·

‖wr,r
i −w

r,r
j ‖| ≤ ε2. This inequality relates the distances of the locations

of neurons on the lattice to the distances of their content.

Assume a SOMSD is given with initial context r0. We denote the output
response to the empty sequence ε by iε = h(r0), the winner unit for an input
sequence u by iu := h ◦ fu(r0) and the corresponding winner location on the
map grid by Iu. We can define an explicit Markovian metric on sequences in
the following way: dA∗ : A∗×A∗ → R, dA∗(ε, ε) = 0, dA∗(u, ε) = dA∗(ε, u) =
‖Iε − Iu‖, and for two sequences u = u1 . . . up−1up, v = v1 . . . vq−1vq over A,

dA∗(u, v) = α · ‖c(up)− c(vq)‖+ β · dA∗(u1 . . . up−1, v1 . . . vq−1). (47)

Assume β < 1, then, the output of SOMSD is Markovian in the sense that
the metric as defined in (47) approximates the metric induced by the winner
location of sequences. More precisely, the following inequality is valid:

| dA∗(u, v)− ‖Iu − Iv‖ | ≤ (ε2 + 4 · (α+ β)ε1)/(1− β).

This equation is immediate if u or v are empty. For nonempty sequences
u = u1:p−1up and v = v1:q−1vq, we find

| dA∗(u, v)− ‖Iu − Iv‖ | = | α · ‖c(up)− c(vq)‖

+ β · dA∗(u1:p−1, v1:q−1)− ‖Iu − Iv‖ |

≤ ε2 + α · | ‖wr,x
iu
−w

r,x
iv
‖ − ‖c(up)− c(vq)‖ |

+ β · | ‖wr,r
iu
−w

r,r
iv
‖ − dA∗(u1:p−1, v1:q−1)|

= (∗)

Therefore, α · ‖wr,x
iu
− c(up)‖ + β‖wr,r

iu
− Iu1:p−1

‖ is minimum. We have
assumed sufficient granularity, i.e. there exists a neuron with weights at most
ε1 away from c(up) and Iu1:p−1

. Therefore,

28 Peter Tiňo, Barbara Hammer, and Mikael Bodén

‖wr,x
iu
− c(up)‖ ≤ (α+ β)ε1/α

and
‖wr,r

iu
− Iu1:p−1

‖ ≤ (α+ β)ε1/β.

Using the triangle inequality, we obtain the estimation

(∗) ≤ ε2 + 4 · (α+ β)ε1 + β · | dA∗(u1:p−1, v1:q−1)− ‖Iu1:p−1
− Iv1:q−1

‖ |
≤ · · · ≤ (ε2 + 4 · (α+ β)ε1)(1 + β + β2 + . . .)
≤ (ε2 + 4 · (α+ β)ε1)/(1− β),

since β < 1.

5.6 Merge SOM

SOMSD uses a compact context representation. However, it has the drawback
that it relies on a fixed lattice structure. Merge SOM (MSOM) uses a different
compression scheme which does not rely on the lattice, rather, it uses the
content of the winner. Here context representations are located in the same
space as inputs X . A map is given by neurons which are associated with two
vectors

• w
r,x
i ∈ X – linked with an NI -dimensional input x(t) feeding the network

at time t as in RecSOM
• w

r,r
i ∈ X – linked with the context

rM (t− 1) = γ ·wr,x
it−1

+ (1− γ) ·wr,r
it−1

where it−1 = argmini{ri(t − 1) | i = 1, . . . , N} is the index of the best
matching unit at time t − 1. The feed-forward and recurrent weight vec-
tors of the winner from the previous time step are merged using a fixed
parameter γ > 0.

The activation of a unit i at time t is computed as

ri(t) = α · ‖x(t)−w
r,x
i ‖+ β · ‖rM (t− 1)−w

r,r
i ‖, (48)

where rM (t− 1) = γ ·wr,x
it−1

+ (1− γ) ·wr,r
it−1

is the merged winner content of
the previous time step. The readout is identical to SOMSD.

As for SOMSD, training in the standard Hebb style is possible, moving
w

r,x
i towards x(t) and wr,r

i towards the context rM (t− 1), given a history of
stimuli up to time t. It has been shown in [13] that MSOM can simulate every
finite automaton whereby we use the notation of simulation as defined for
SOMSD. Since for every finite map only a finite number of different contexts
can occur, the capacity of MSOM coincides with finite automata.

As for SOMSD, the transition function of MSOM is discontinuous since it
incorporates the computation of the winner neuron. However, one can show
that standard Hebbian learning biases MSOM towards Markovian models

Markovian bias of neural-based architectures with feedback connections 29

in the sense that optimum context weights which have a strong Markovian
flavour are obtained by Hebbian learning for MSOM as stable fixed points of
the learning dynamics. Thereby, the limit of Hebbian learning for vanishing
neighborhood size is considered which yields the update rules

∆wr,x
it

= η · (x(t)−w
r,x
it

) (49)

∆wr,r
it

= η · (rM (t− 1)−w
r,r
it

) (50)

after time step t, whereby x(t) constitutes the input at time step t, rM (t−1) =
γ ·wr,x

it−1
+(1− γ) ·wr,r

it−1
the context at time step t, and it the winner at time

step t; η > 0 is the learning rate.
Assume an input series {x(t)} is presented to MSOM and assume the initial

context r0 is the null vector. Then, if a sufficient number of neurons is available
such that there exists a disjoint winner for every input x(t), the following
weights constitute a stable fixed point of Hebbian learning as described in
eqs. (49-50):

w
r,x
it

= x(t) (51)

w
r,r
it

=

t−1
∑

j=1

γ · (1− γ)jx(t− j). (52)

The proof of this fact can be found in [15, 13]. Note that, depending on the
size of γ, the context representation yields sequence codes which are very
similar to the recursive states provided by fractal prediction machines (FPM)
of section 4.3. For γ < 0.5 and unary inputs x(t) (one-of-A encoding), (52)
yields a fractal whereby the global position in the state space is determined
by the most recent entries of the input series. Hence, a Markovian bias is
obtained by Hebbian learning.

This can clearly be observed in experiments, compare figure 411 which
describes a result of an experiment conducted in [13]: a MSOM with 644
neurons is trained on DNA sequences. The data consists of windows around
potential splice sites from C.elegans as described in [46]. The symbols TCGA
are encoded as the edges of a tetrahedron in R3. The windows are concatenated
and presented to a MSOM using merge parameter γ = 0.5. Thereby, the
neighborhood function used for training is not a standard SOM lattice, but
training is data driven by the ranks as described for neural gas networks
[47]. Figure 4 depicts a projection of the learnt contexts. Clearly, a fractal
structure which embeds sequences in the whole context space can be observed,
substantiating the theoretical finding by experimental evidence.

Note that, unlike FPM which use a fixed fractal encoding, the encoding
of MSOM emerges from training. Therefore, it takes the internal probability
distribution of symbols into account, automatically assigning a larger space
to those inputs which are presented more frequently to the map.

11 We would like to thank Marc Strickert for providing the picture.

30 Peter Tiňo, Barbara Hammer, and Mikael Bodén

Fig. 4. Projection of the three dimensional fractal contexts which are learnt when
training a MSOM on DNA-strings whereby the symbols ACTG are embedded in
three dimensions.

6 Applications in bioinformatics

In this section we briefly describe applications of the architectural bias phe-
nomenon in the supervised learning scenario. Natural Markovian organization
of biological sequences within the RNN state space may be exploited when
solving some sequence-related problems of bioinformatics.

6.1 Genomic data

Enormous amounts of genomic sequence data has been produced in recent
years. Unfortunately, the emergence of experimental data for the functional
parts of such large-scale genomic repositories is lagging behind. For example,
several hundred thousands of proteins are known, but only about 35,000 have
had their structure determined. One third of all proteins are believed to be
membrane associated, but less than a thousand have been experimentally
well-characterized to be so.

As commonly assumed, genomic sequence data specifies the structure and
function of its products (proteins). Efforts are underway in the field of bioin-
formatics to link genomic data to experimental observations with the goal of
predicting such characteristics for the yet unexplored data [48]. DNA, RNA
and proteins are all chain molecules, made up of distinct monomers, namely
nucleotides (DNA and RNA) and amino acids (protein). We choose to cast
such chemical compounds as symbol sequences. There are four different nu-
cleotides and twenty different amino acids, here referred to as alphabets A4

and A20, respectively.

Markovian bias of neural-based architectures with feedback connections 31

A functional region of DNA typically includes thousands of nucleotides.
The average number of amino acids in a protein is around the 300 mark but
sequence lengths vary greatly. The combinatorial nature of genomic sequence
data poses a challenge for machine learning approaches linking sequence data
with observations. Even when thousands of samples are available, the sequence
space is sparsely populated. The architectural bias of predictive models may
thus influence the result greatly. This section demonstrates that a Markovian
state-space organization–as imposed by the recursive model in this paper–
discerns patterns with a biological flavor [49].

In bioinformatics motifs are perceived as recurring patterns in sequence
data (DNA, RNA and proteins) with an observed or conjectured biological
significance (the character varies widely). Problems like promoter and DNA-
binding site discovery [50, 51], identification of alternatively spliced exons
[52] and glycosylation sites are successfully approached using the concept of
sequence motifs. Motifs are usually quite short and to be useful may require
a more permissive description than a list of consecutive sequence symbols.
Hence, we augment the motif alphabet A to include the so-called wildcard
symbol ′∗′: Ã = A∪{∗}. LetM = m1m2...m|M| be a motif where mi ∈ Ã. As
outlined below the wildcard symbol has special meaning in the motif sequence
matching process.

6.2 Recurrent architectures promote motif discovery

We are specifically interested if the Markovian state space organization pro-
motes the discovery of a motif within a sequence. Following [49], position-
dependent motifs are patterns of symbols relative to a fixed sequence-position.
A motif match is defined as

match(s1:n,M) =

{

t, if ∀i ∈ {1, ..., |M|} [mi = ∗ ∨mi = sn−|M|+i]
f otherwise

wheren ≥ |M|. Notice that the motif must occur at the end of the sequence.
To inspect how well sequences with and without a given motifM (t and f,

respectively) are separated in the state-space, Bodén and Hawkins determined
a motif match entropy for each of the Voronoi compartments V1, ..., VM , intro-
duced in the context of NPM construction in section 4.1. The compartments
were formed by vector quantizing the final activations produced by a neural-
based architecture on a set of sequences (see Section 4). With each codebook
vector bi ∈ R, i = 1, 2, ...,M , we associate the probability P (t|i) of observing
a state r ∈ Vi corresponding to a sequence motif match. This probability is es-
timated by tracking the matching and non-matching sequences while counting
the number of times Vi is visited.

The entropy for each codebook is defined as

Hi = −P (t|i) log2 P (t|i)− (1− P (t|i)) log2(1− P (t|i)) (53)

32 Peter Tiňo, Barbara Hammer, and Mikael Bodén

and describes the homogeneity within the Voronoi compartment by consid-
ering the proportion of motif positives and negatives. An entropy of 0 in-
dicates perfect homogeneity (contained states are exclusively for matching
or non-matching sequences). An entropy of 1 indicates random organization
(a matching state is observed by chance). The average codebook entropy,

H = M−1
∑M

i=1 Hi, is used to characterize the overall state-space organiza-
tion.

In our experiments, the weightsWr,x andWr,r were randomly drawn from
a uniform distribution [−0.5,+0.5]. This, together with activation function g,
ensured contractiveness of the state transition map f and hence (as explained
in section 3.1) Markovian organization of the RNN state space.

In an attempt to provide a simple baseline alternative to our recursive
neural-based models, a feedforward neural network was devised accepting the
whole sequence at its input without any recursion. Given the maximum input
sequence length `max, the input layer has NI · `max units and the input code
of a sequence s1:n = s1...sn takes the form

c̃(s1:n) = c(s1) • ... • c(sn) • {0}
NI ·(`max−n),

where • denotes vector concatenation. Hence, c̃(s1:n) is a concatenation of
input codes for symbols in s1:n, followed by NI · (`max−n) zeros. The hidden
layer response of the feedforward network to s1:n is then

f̃s1:n = f̃(c̃(s1:n)) = g(W̃
r,x
c̃(s1:n) + tf), (54)

where the input-to-hidden layer weights (again randomly drawn from [−0.5,+0.5])

are collected in the N × (NI · `max) matrix W̃
r,x

.
In each trial, a random motif M was first selected and then 500 random

sequences (250 with a match, 250 without) were generated. Ten differently
initialized networks (both RNN and the feed-forward baseline) were then sub-
jected to the sequences and the average entropy H was determined. By vary-
ing sequence and motif lengths, the proportion of wildcards in the motifs,
state space dimensionality and number of codebook vectors extracted from
sequence states, Bodén and Hawkins established that recurrent architectures
were clearly superior in discerning random but pre-specified motifs in the state
space (see Figure 5). However, there was no discernible difference between the
two types of networks (RNN and feedforward) for shift-invariant motifs (an
alternative form which allows matches to appear at any point in the sequence).
To leverage the bias, a recurrent network should thus continually monitor its
state space.

These synthetic trials (see [49]) provide evidence that a recurrent network
naturally organizes its state space at each step to enable classification of ex-
tended and flexible sequential patterns that led up to the current time step.
The results have been shown to hold also for higher-order recurrent architec-
tures [53].

Markovian bias of neural-based architectures with feedback connections 33

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Length of sequence

E
nt

ro
py

Fig. 5. The average entropyH (y-axis) for recurrent networks (unfilled markers) and
baseline feedforward networks (filled markers) when A4 (squares) and A20 (circles)
were used to generate sequences of varying length (x-axis) and position-dependent
motifs (with length equal to half the sequence length and populated with 33% wild-
cards). The number of codebooks, M , was 10.

6.3 Discovering discriminative patterns in signal peptides

A long-standing problem of great biological significance is the detection of so-
called signal peptides. Signal peptides are reasonably short protein segments
that fulfil a transportation role in the cell. Basically, if a protein has a signal
peptide it translocates to the exoplasmic space. The signal peptide is cleaved
off in the process.

Viewed as symbol strings, signal peptides are rather diverse. However,
there are some universal characteristics. For example, they always appear
at the N-terminus of the protein, they are 15-30 residues long, consist of a
stretch of seven to 15 hydrophobic (lipid-favouring) amino acids and a few
well-conserved, small and neutral monomers close to the cleavage site. In Fig-
ure 6 nearly 400 mammalian signal peptides are aligned at their respective
cleavage site to illustrate a subtle pattern of conservation.

In an attempt to simplify the sequence classification problem, each position
of the sequence can first be tagged as belonging (t) or not belonging (f) to a
signal peptide [54]. SignalP is a feedforward network that is designed to look
at all positions of a sequence (within a carefully sized context window) and
trained to classify each into the two groups (t and f) [54].

The Markovian character of the recursive model’s state space suggests
that replacing the feedforward network with a recurrent network may provide
a better starting point for a training algorithm. However, since biological

34 Peter Tiňo, Barbara Hammer, and Mikael Bodén

weblogo.berkeley.edu

0

1

2

3

4

b
it

s

N

1

V

F

K
R
G
S
P
L
A
M

2

R

Q

E

T
P

V
S
G
L
A
M

3

K

V

P

S
G
L
A
R
M

4

Q

C

K

F

S
L
P
G
A
R
M

5
V

T

F

K
G
A
P
S
R
L
M

6
T

C

V

K
G
R
P
A
S
L
M

7

V

K

T

G

R
P
A
S
L
M

8

T

P

G

K

R
V
S
A
M
L

9

H

F

G

T
K
V
P

A
S
R
M
L

10

T

R

W

I

P

G

F
V
S
M
K
A
L

11

T

G

R

C

I
W
P
F
S
M
V
A
L

12

Q

W

K
C

R
M

I
T
G
P
S
F
V
A
L

13

Q

M

K

R

C

P
W
I
F
T
S
G
A
V
L

14

M

P

W
C
T
S

I
F
G
A
V
L

15

P

M

H

W

C
T
S
G
I
F
A
V
L

16

M

P

W
T
G
S
C
F
A
I
V
L

17

Q

P

W

M

G
T
S
C
I
F
V
A
L

18

I
G
C
T
F
S
V
A
L

19

Q

P

E

W

I

M
T
G
F
V
C
S
A
L

20

M

W

P
Q

I
F
T
V
C
S
G
A
L

21

M

T

C
W
G
S
I
F
P
V
A
L

22

R

V

Q

T
L
P
S
G
A

23

E

F

T

Q

V
S
L
P
A
G

24

I

C
L
G
T
S
V
A

25

W

H

R

E

Q
A
S
L

26

F

R

Q
P
C
T
S
G
A

27

K

D

V

G

L

S
E
Q
A

28

T

L

H

A

R

K

G

Q

V
D
S
E
P

C

Fig. 6. Mammalian signal peptide sequences aligned at their cleavage site (between
positions 26 and 27). Each amino acid is represented by its one-letter code. The
relative frequency of each amino acid in each aligned position is indicated by the
height of each letter (as measured in bits). The graph is produced using WebLogo.

sequences may exhibit dependencies in both directions (upstream as well as
downstream) the simple recurrent network may be insufficient.

Hawkins and Bodén [53, 55] replaced the feedforward network with a bi-
directional recurrent network [56]. The bi-directional variant is simply two
conventional (uni-directional) recurrent networks coupled to merge two states
each produced from traversing the sequence from one direction (either up-
stream or downstream relative the point of interest). In Hawkins and Bodén’s
study, the networks’ ability was only examined after training.

After training, the average test error (as measured over known signal pep-
tides and known negatives) dropped by approximately 25% compared to feed-
forward networks. The position-specific errors for both classes of architectures
are presented in Figure 7. Several possible setups of the bi-directional recur-
rent network are possible, but the largest performance increase was achieved
when the number of symbols presented at each step was 10 (for both the
upstream and downstream networks).

Similar to signal peptides, mitochondrial targeting peptides and chloro-
plast transit peptides traffic proteins. In their case proteins are translocated
to mitochondrion and chloroplast, respectively. Bi-directional recurrent net-
works applied to such sequence data show a similar pattern of improvement
compared to feedforward architectures [53].

The combinatorial space of possible sequences and the comparatively small
number of known samples make the application of machine learning to bioin-
formatics challenging. With significant data variance, it is essential to design
models that guide the learning algorithm to meaningful portions of the model
parameter space. By presenting exactly the same training data sets to two
classes of models, we note that the architectural bias of recurrent networks
seems to enhance the prospects of achieving a valid generalization. As noted

Markovian bias of neural-based architectures with feedback connections 35

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

S
qu

ar
ed

 e
rr

or

Sequence position

FN
RN

Fig. 7. The average error of recurrent and feedforward neural networks over the
first 60 residues in a sequence test set discriminating between residues that belong
to a signal peptide from those that do not. The signal peptide always appear at the
N-terminus of a sequence (position 1 and onwards, average length is 23).

in [53] the locations of subtle sequential patterns evident in the data sets (cf.
Figure 6) correspond well with those regions at which the recurrent networks
excel. The observation lends empirical support to the idea that recursive mod-
els are well suited to this broad class of bioinformatics problems.

7 Conclusion

We have studied architectural bias of dynamic neural network architectures
towards suffix-based Markovian input sequence representations. In the super-
vised learning scenario, the cluster structure that emerges in the recurrent
layer prior to training is, due to the contractive nature of the state transition
map, organized in a Markovian manner. In other words, the clusters emulate
Markov prediction contexts in that histories of symbols are grouped according
to the number of symbols they share in their suffix. Consequently, from such
recurrent activation clusters it is possible to extract predictive models that
correspond to variable memory length Markov models (VLMM). To appreci-
ate how much information has been induced during the training, the dynamic
neural network performance should always be compared with that of VLMM
baseline models.

Apart from trained models (possibly with small weights, i.e. Markovian
bias) various mechanisms which only rely on the dynamics of fixed or ran-
domly initialized recurrence have recently been proposed, including fractal

36 Peter Tiňo, Barbara Hammer, and Mikael Bodén

prediction machines [26], echo state machines [27, 28], and liquid state ma-
chines [27, 28]. As discussed in the paper, these models almost surely allow an
approximation of Markovian models even with random initialization provided
a large dimensionality of the reservoir.

Interestingly, the restriction to Markovian models has benefits with respect
to the generalization ability of the models. Whereas generalization bounds of
general recurrent models necessarily rely on the input distribution due to the
possibly complex input information, the generalization ability of Markovian
models can be limited in terms of the relevant input length or, alternatively,
the Lipschitz parameter of the models. This yields bounds which are indepen-
dent of the input distribution. Smaller contraction coefficients imply better
bounds. These bounds also hold for arbitrary real-valued inputs and for poste-
rior bounds on the contraction coefficient achieved during training. The good
generalization ability of RNNs with Markovian bias is particularly suited for
typical problems in bioinformatics where dimensionality is high compared to
the number of available training data. A couple of experiments which demon-
strate this effect have been included in this article.

Unlike supervised RNNs, a variety of fundamentally different unsupervised
recurrent networks has recently been proposed. Apart from comparably old
biologically plausible leaky integrators such as the temporal Kohonen map or
recurrent networks, which obviously rely on a Markovian representation of se-
quences, models which use a more elaborate temporal context such as the map
activation, the winner location, or winner content have been proposed. These
models have, in principle, the larger capacity of finite state automata or push-
down automata, respectively, depending on the context model. Interestingly,
this capacity reduces to Markovian models under certain realistic conditions
discussed in this paper. These include a small mixing parameter for recur-
sive networks, a sufficient granularity and distance preservation for SOMSD,
and Hebbian learning for MSOM. The field of appropriate training of com-
plex unsupervised recursive models is, so far, widely unexplored. Therefore,
the identification of biases of the architecture and training algorithm towards
the Markovian property is a very interesting result which allows to gain more
insight into the process of unsupervised sequence learning.

References

1. Christiansen, M., Chater, N.: Toward a connectionist model of recursion in
human linguistic performance. Cognitive Science 23 (1999) 417–437

2. Kolen, J.: Recurrent networks: state machines or iterated function systems?
In Mozer, M., Smolensky, P., Touretzky, D., Elman, J., Weigend, A., eds.: Pro-
ceedings of the 1993 Connectionist Models Summer School. Erlbaum Associates,
Hillsdale, NJ (1994) 203–210

3. Kolen, J.: The origin of clusters in recurrent neural network state space. In:
Proceedings from the Sixteenth Annual Conference of the Cognitive Science
Society, Hillsdale, NJ: Lawrence Erlbaum Associates (1994) 508–513

Markovian bias of neural-based architectures with feedback connections 37

4. Tiňo, P., Čerňanský, M., Beňušková, L.: Markovian architectural bias of re-
current neural networks. IEEE Transactions on Neural Networks 15 (2004)
6–15

5. Hammer, B., Tino, P.: Recurrent neural networks with small weights implement
definite memory machines. Neural Computation 15 (2003) 1897–1929

6. Ron, D., Singer, Y., Tishby, N.: The power of amnesia. Machine Learning 25
(1996)

7. Tiňo, P., Hammer, B.: Architectural bias in recurrent neural networks: Fractal
analysis. Neural Computation 15 (2004) 1931–1957

8. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78 (1990)
1464–1479

9. Chappell, G., Taylor, J.: The temporal kohonen map. Neural Networks 6 (1993)
441–445

10. Koskela, T., znd J. Heikkonen, M.V., Kaski, K.: Recurrent SOM with local linear
models in time series prediction. In: 6th European Symposium on Artificial
Neural Networks. (1998) 167–172

11. Horio, K., Yamakawa, T.: Feedback self-organizing map and its application to
spatio-temporal pattern classification. International Journal of Computational
Intelligence and Applications 1 (2001) 1–18

12. Voegtlin, T.: Recursive self-organizing maps. Neural Networks 15 (2002) 979–
992

13. Strickert, M., Hammer, B.: Merge SOM for temporal data. Neurocomputing
64 (2005) 39–72

14. Hagenbuchner, M., Sperduti, A., Tsoi, A.: Self-organizing map for adaptive
processing of structured data. IEEE Transactions on Neural Networks 14 (2003)
491–505

15. Hammer, B., Micheli, A., Strickert, M., Sperduti, A.: A general framework for
unsupervised processing of structured data. Neurocomputing 57 (2004) 3–35

16. Tiňo, P., Farkaš, I., van Mourik, J.: Dynamics and topographic organization of
recursive self-organizing maps. Neural Computation 18 (2006) 2529–2567

17. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications.
John Wiley and Sons, New York (1990)

18. Barnsley, M.: Fractals everywhere. Academic Press, New York (1988)
19. Ron, D., Singer, Y., Tishby, N.: The power of amnesia. In: Advances in Neural

Information Processing Systems 6, Morgan Kaufmann (1994) 176–183
20. Guyon, I., Pereira, F.: Design of a linguistic postprocessor using variable memory

length markov models. In: International Conference on Document Analysis and
Recognition, Monreal, Canada, IEEE Computer Society Press (1995) 454–457

21. Weinberger, M., Rissanen, J., Feder, M.: A universal finite memory source.
IEEE Transactions on Information Theory 41 (1995) 643–652

22. Buhlmann, P., Wyner, A.: Variable length markov chains. Annals of Statistics
27 (1999) 480–513

23. Rissanen, J.: A universal data compression system. IEEE Trans. Inform. Theory
29 (1983) 656–664

24. Giles, C., Omlin, C.: Insertion and refinement of production rules in recurrent
neural networks. Connection Science 5 (1993)

25. Doya, K.: Bifurcations in the learning of recurrent neural networks. In: Proc.
of 1992 IEEE Int. Symposium on Circuits and Systems. (1992) 2777–2780

26. Tiňo, P., Dorffner, G.: Predicting the future of discrete sequences from fractal
representations of the past. Machine Learning 45 (2001) 187–218

38 Peter Tiňo, Barbara Hammer, and Mikael Bodén

27. Jaeger, H.: The ”echo state” approach to analysing and training recurrent
neural networks. Technical Report GMD Report 148, German National Research
Center for Information Technology (2001)

28. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and
saving energy in wireless communication. Science 304 (2004) 78–80

29. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural
Computation 14 (2002) 2531–2560

30. Maass, W., Legenstein, R.A., Bertschinger, N.: Methods for estimating the
computational power and generalization capability of neural microcircuits. In:
Advances in Neural Information Processing Systems. Volume 17., MIT Press
(2005) 865—872

31. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are
universal approximators. Neural Networks 2 (1989) 359–366

32. Hammer, B.: Generalization ability of folding networks. IEEE Transactions on
Knowledge and Data Engineering 13 (2001) 196–206

33. Koiran, P., Sontag, E.: Vapnik-chervonenkis dimension of recurrent neural net-
works. In: European Conference on Computational Learning Theory. (1997)
223–237

34. Vapnik, V.: Statistical Learning Theory. Wiley-Interscience (1998)
35. Shawe-Taylor, J., Bartlett, P.L.: Structural risk minimization over data-

dependent hierarchies. IEEE Trans. on Information Theory 44 (1998) 1926–
1940

36. Williams, R., Zipser, D.: A learning algorithm for continually running fully
recurrent neural networks. Neural Computation 1 (1989) 270–280

37. Williams, R.: Training recurrent networks using the extended kalman filter. In:
Proc. 1992 Int. Joint Conf. Neural Networks. Volume 4. (1992) 241–246

38. Patel, G., Becker, S., Racine, R.: 2d image modelling as a time-series prediction
problem. In Haykin, S., ed.: Kalman filtering applied to neural networks. Wiley
(2001)

39. Manolios, P., Fanelli, R.: First order recurrent neural networks and deterministic
finite state automata. Neural Computation 6 (1994) 1155–1173

40. Tiňo, P., Hammer, B.: Architectural bias in recurrent neural networks – fractal
analysis. In Dorronsoro, J., ed.: Artificial Neural Networks - ICANN 2002.
Lecture Notes in Computer Science, Springer-Verlag (2002) 1359–1364

41. de A. Barreto, G., Araújo, A., Kremer, S.: A taxanomy of spatiotemporal
connectionist networks revisited: The unsupervised case. Neural Computation
15 (2003) 1255–1320

42. Kilian, J., Siegelmann, H.T.: On the power of sigmoid neural networks. Infor-
mation and Computation 128 (1996) 48–56

43. Siegelmann, H.T., Sontag, E.D.: Analog computation via neural networks. The-
oretical Computer Science 131 (1994) 331–360

44. Hammer, B., Micheli, A., Sperduti, A., Strickert, M.: Recursive self-organizing
network models. Neural Networks 17 (2004) 1061–1086

45. Hammer, B., Neubauer, N.: On the capacity of unsupervised recursive neural
networks for symbol processing. In d’Avila Garcez, A., Hitzler, P., Tamburrini,
G., eds.: Workshop proceedings of NeSy’06. (2006)

46. Sonnenburg, S.: New methods for splice site recognition. Master’s thesis, Diplom
thesis, Institut für Informatik, Humboldt-Universität Berlin (2002)

Markovian bias of neural-based architectures with feedback connections 39

47. Martinetz, T., Berkovich, S., Schulten, K.: ‘neural-gas’ networks for vector
quantization and its application to time-series prediction. IEEE Transactions
on Neural Networks 4 (1993) 558–569

48. Baldi, P., Brunak, S.: Bioinformatics: The machine learning approach. MIT
Press, Cambridge, Mass (2001)

49. Bodén, M., Hawkins, J.: Improved access to sequential motifs: A note on the
architectural bias of recurrent networks. IEEE Transactions on Neural Networks
16 (2005) 491–494

50. Bailey, T.L., Elkan, C.: Fitting a mixture model by expectation maximization to
discover motifs in biopolymers. In: Proceedings of ISMB, Stanford, CA (1994)
28–36

51. Stormo, G.D.: Dna binding sites: representation and discovery. Bioinformatics
16 (2000) 16–23

52. Sorek, R., Shemesh, R., Cohen, Y., Basechess, O., Ast, G., Shamir, R.: A non-
EST-based method for exon-skipping prediction. Genome Research 14 (2004)
1617–1623

53. Hawkins, J., Bodén, M.: The applicability of recurrent neural networks for bio-
logical sequence analysis. IEEE/ACM Transactions on Computational Biology
and Bioinformatics 2 (2005) 243–253

54. Dyrlöv Bendtsen, J., Nielsen, H., von Heijne, G., Brunak, S.: Improved predic-
tion of signal peptides: SignalP 3.0. Journal of Molecular Biology 340 (2004)
783–795

55. Hawkins, J., Bodén, M.: Detecting and sorting targeting papetides with neural
networks and support vector machines. Journal of Bioinformatics and Compu-
tational Biology 4 (2006) 1–18

56. Baldi, P., Brunak, S., Frasconi, P., Soda, G., Pollastri, G.: Exploiting the past
and the future in protein secondary structure prediction. Bioinformatics 15
(1999) 937–946

