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Abstract

Coevolutionary systems have been used successfully in various problem domains

involving situations of strategic decision-making. Central to these systems is a

mechanism whereby finite populations of agents compete for reproduction and

adapt in response to their interaction outcomes. Outcomes from their behavioral

interactions express preferences over the candidate solutions they implement in

competitive settings. A recent framework for precise characterizations of com-

petitive coevolutionary systems was introduced. Its two main features are: (1)

A directed graph (digraph) representation that fully captures the underlying

structure arising from pairwise preferences over solutions. (2) Coevolutionary

processes are modelled as random walks on the digraph. Here, we study a

deep connection between coevolutionary systems and PageRank, and develop a

principled approach to measure and rank the performance (importance) of solu-

tions (vertices) in coevolutionary digraphs. In PageRank formalism, B transfers

part of its authority to A if A dominates B (there is an arc from B to A in

the digraph), and so PageRank authority indicates the importance of a vertex.

Upon suitable normalization, PageRank authorities have a natural interpreta-

tion of long-term visitation probabilities over the digraph by the coevolutionary

random walk. We prove that PageRank for any coevolutionary system exists
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and derive closed-form expressions to calculate PageRank authorities. Changes

to PageRank authorities due to changes in restart probability setting for any

coevolutionary system are quantified precisely. Furthermore, PageRank author-

ities can be approximated effectively and our empirical studies show how they

characterize coevolutionary digraphs with different underlying structures.

Keywords: Coevolutionary systems, PageRank, Markov chains

1. Introduction

Coevolutionary systems that are inspired by natural evolutionary processes

have been applied extensively and shown remarkable success in problem areas

involving situations of strategic decision-making. These include simulation tools

involving a collection of interacting, adaptive agents to understand conditions5

for the emergence of complex, intelligent behaviors in the real-world [1, 2] and

algorithms to generate high performance agents with minimal preprogrammed

knowledge in competitive settings [3, 4].

Competitive coevolutionary systems share a common framework and are

specified by: (1) the problem whereby the solutions are the set of all alter-10

natives (strategies in a two-player game) with a pairwise preference relation

indicating the superior alternative, and (2) the process whereby the finite popu-

lation of agents (each implementing a strategy to play) goes through a process of

selection and variation guided only by their interaction (game play) outcomes.

This framework allows for various design choices and parameters in strategy rep-15

resentation (finite state machines, neural networks, etc.), variation approaches

(recombination and mutation) to generate new distinct strategies, and selection

operations that favours higher performing strategies for reproduction.

All coevolutionary systems implement a mechanism that requires the pop-

ulation of agents to compete for reproduction [5]. This can be double-edged20

in competitive settings. The system could exploit interactions to search in-

creasingly superior strategies or succumbs to the deleterious effects from using

relative fitness evaluations in the search process. These pathologies have been
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studied [6, 7, 8] and include formal methods [9, 10] characterizing cyclic coevo-

lutionary dynamics due to the choice of selection mechanism in an evolutionary25

game theoretic setting in the framework of continuous dynamical systems.

Other studies have found that problem structures induced by pairwise re-

lations can affect coevolutionary search [11]. A new framework that formally

specifies and models coevolutionary systems is introduced [12]. It uses a digraph

representation of coevolutionary problem where the vertex set corresponds to30

the strategy set and the arc set captures preferences over all pairs of strategies.

Coevolutionary processes are modelled as discrete time Markov chains operating

on the digraph. A distinct population-one coevolutionary algorithm corresponds

to a specific implementation of random walk on digraphs. Other learning al-

gorithms involving self play for any problem in the form of a two-player game35

can be modelled within this framework. In this manner, complete qualitative

characterization of cycle structures underlying coevolutionary problems as well

as quantitative characterizations of coevolutionary processes are obtained.

Performing quantitative characterizations on these coevolutionary Markov

chains (CMCs) requires prior knowledge of the digraph’s underlying structure.40

As in the case of evolutionary algorithms [13], the expected hitting times of

the absorbing class for CMCs operating on reducible digraphs are studied in

[12]. However, a CMC can operate on irreducible digraphs and so its stationary

distribution is of interest. Can other useful quantitative characterizations of di-

graph structures commonly found in coevolutionary problems be obtained? We45

establish a direct connection between coevolutionary systems and large network

analysis methodologies [14] particularly PageRank (used originally to measure

webpage importance [15, 16]). In PageRank formalism, strategies transfer part

of their authorities to those that dominate them at pairwise interactions level

and these authorities give indication of strategies’ performances. Furthermore,50

PageRank authorities with suitable normalization gives the long-term visitation

probabilities of CMC with restart operating over the coevolutionary digraph.

This connection allows us to develop a principled approach to measure and

rank the performance of individual strategies that correspond to the vertex set
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for any digraph representation of the coevolutionary problem. In Section 2, we55

establish several theoretical results supporting this approach. We prove that

PageRank for any coevolutionary system exists, derive closed-form expressions

to calculate PageRank authorities, and quantify their changes due to varying

restart probability. Section 3 introduces a benchmark of coevolutionary digraphs

having different structures that is used in the controlled empirical studies to60

demonstrate how PageRank authorities provide quantitative characterizations

of the digraphs. Section 4 concludes with remarks for future studies.

2. Coevolutionary Systems and PageRank

The framework in [12] provides a formal approach to model and contruct

coevolutionary systems as random walks on digraphs. We consider a wide range65

of problems modelled as two-player strategic games C = (S,R) for which the full

underlying structures are captured by coevolutionary digraphs DC = (VS , AR).

VS is a non-empty, finite vertex set that corresponds to the set of pure strategies

S. AR ⊂ VS × VS is a finite arc set of ordered pairs of distinct vertices that

corresponds to the dominance relation R on S. The arc (u, v) ∈ AR (uv or70

u → v) indicates v dominating u. Note that standard digraph terminology

reverses our domination definition [17].

2.1. Structural Characterizations of Coevolutionary Digraphs

There are unique structures underlying coevolutionary digraphs DC that

allow us to characterize them. A DC ’s underlying graph obtained by replacing75

arcs for all pairs of vertices by single edges, UG(DC) = (VS , E), is complete.

One characterization relates to edge biorientation, e.g., either the orientation uv

or vu (win-lose) or both {uv, vu} ∈ AR (draw). Let VS(n) be the vertex set with

n = |VS(n)| number of vertices. For n ≥ 2, we obtain two coevolutionary digraph

classes: (1) tournament T (VS(n)) ∈ T (VS(n)) as orientations of UG(DC), and80

(2) semicomplete digraph SD(VS(n)) ∈ SD(VS(n)) as biorientations of UG(DC)

[17]. T (VS) represents all coevolutionary games with win-lose outcomes and

SD(VS) generalizes further by allowing draws.
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Further characterizations relate to global structures on reducibility (group-

ing of related vertices) and connectivity (reachability of vertices). A reducible85

DC(VS(n)) admits a vertex partition on VS(n) into two disjoint, nonempty sub-

sets (V 1
S ∩V 2

S = ∅, V 1
S ∪V 2

S = VS(n)) whereby V
1
S 7→ V 2

S (each v ∈ V 2
S dominates

all u ∈ V 1
S only). Consider DC(VS(n)) with vertices vi and arcs ai labelled

so that ai indicates vivi+1 for every i = 1, 2, 3, . . . , k − 1. A (v1, vk)-path is a

(v1, vk)-walk in DC(VS(n)) given by v1a1v2a2v3. . .ak−1vk such that all vertices90

are distinct. A k-cycle is Hamilton if it is a closed (v1, vk)-walk (i.e. v1 = vk)

of length k = n on the (v1, vk−1)-path. A digraph is strongly connected (or

strong) if for every pair vi, vj ∈ VS(n), i, j = 1, 2, 3, . . . , n and i 6= j, there exist

both (vi, vj)-path and (vj , vi)-path [17]. Coevolutionary digraphs DC(VS(n))

are either reducible or irreducible. Any irreducible DC(VS(n)) on n ≥ 3 vertices95

cannot be vertex-partitioned, is hamiltonian and strongly connected [12].

2.2. CMCs

We focus on population-one coevolutionary systems with processes described

by random walks on digraphs. They also naturally represent learning algorithms

based on self play [18].. A standard random walk on a labelled DC starts at a100

random vertex, and in each subsequent step, jumps to one of the out-neighbours

N+
D (u) = {v ∈ VS\{u} : uv ∈ AR} of the current vertex u randomly with equal

probability. They are modelled as a specific type of discrete time Markov chain

Φ = {Φt : t ∈ N0}, each Φt takes values from the countable state space X =

VS(n). By exploiting time homogeneity and memory loss [19], we can construct105

the CMC Φ as the random walk on DC(VS(n)) with initial distribution µ over

and Markov transition matrix P on X = VS(n) satisfying: (1) µ = (µx : x ∈ X),

0 ≤ µx ≤ 1 and
∑

x∈X µx = 1, and (2) P = (P(x, z) : x, z ∈ X), where every row

is a distribution with 0 ≤ P(x, z) ≤ 1 and
∑

y∈X P(x, y) = 1. The distribution

describing Φ can be obtained from µ and P .110

There is an intimate connection between qualitative characterizations of

global connectivity structures in DC and quantitative characterizations of Φ

[12]. A random walk on a reducible DC leads to an absorbing Φ. In the same
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manner, an irreducible Φ operates on a strongly connected DC . One can obtain

the long-term limiting distribution of Φ that satisfies the invariant property115

πP = π. π = (πx : x ∈ X) on X is the stationary distribution of Φ. Each

πx describes the long-term fraction of time spent on x by Φ. For absorbing Φ,

the probability mass is concentrated on the absorbing class with all other states

having zero probabilities [20].

2.3. PageRank Authority for Coevolutionary Digraphs120

We reformulate the PageRank authority [21] using digraph-theoretic nota-

tions to make explicit its link to digraph structures. Let u, v ∈ VS , the in-

neighbourhood of u is N−
D (u) = {v ∈ VS\{u} : vu ∈ AR}, and the out-degree

(number of outgoing arcs) of v is d+D(v) = |{(u, v) ∈ AR : v ∈ VS\{u}}|. The

PageRank authority of u is ϕu = α+(1−α)
∑

v∈N−

D
(u)

ϕv/d+
D
(v) where α ∈ (0, 1).125

Let vertices in DC(VS(n)) be labelled as v1, v2, v3, . . . , vn. The PageRank

authorities are ϕ = [ϕ1, ϕ2, ϕ3, . . . , ϕn] (we write ϕvi
as the ith element ϕi of

ϕ), and given by ϕ = αe+(1−α)ϕM, where e = [1, 1, 1, . . . , 1] and the matrix

M = (mij : i, j ∈ {1, 2, 3, . . . , n}) with mij = 1
d+
D
(vj)

if j → i, mij = 0 if j 9 i.

The influence of the digraph structure can be seen from non-zero entries of M130

that corresponds to the domination matrix associated with DC(VS(n)).

2.4. CMC and PageRank Connection

Actual PageRank computation requires reformulation as an eigensystem or

an equivalent linear system if ψ is suitably normalized (ψeT = 1) [14]. PageR-

ank is a Markov chain with a primitive probability transition matrix PPR (non-135

negative, irreducible matrix having one eigenvalue r = ρ(PPR) on its spectral

circle [22]). Similarly, setting the usual adjustment PPR = αeT s + (1 − α)P

where s is a general probability vector (e.g. uniform 1
ne) [23] (i.e. introducing

restart with probability α) makes CMC irreducible and akin to a PageRank

on DC(VS(n)). P = M if standard random walk is used. ψ is the solution to140

ψPPR = ψ. This gives two natural interpretations to ψ: (1) It indicates how

coevolution measures the importance (authority) of individual v ∈ VS(n) and
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provides the means to rank them. (2) It gives long-term visitation probabilities

over the digraph by coevolutionary search.

We will establish several theoretical results connecting CMC and PageR-145

ank. We focus on the personalized PageRank [24]. In the following, we provide

guarantees on the existence of a PageRank vector associated with a coevolution-

ary system and a linear systems formulation that allows us to uncover several

properties related to the coefficient matrix.

Lemma 1. Let DC(VS(n)) ∈ DC(VS(n)) be a coevolutionary digraph. Let P be

the probability transition matrix associated with a CMC operating on DC(VS(n))

and Z = (I+P )/2 its lazy version. The row vector s is the probability distribu-

tion over the set vertices VS(n). Given α ∈ (0, 1) and β = 2α
1−α , the personalized

PageRank vector is the unique solution to the linear system defined as

ψα(s) = αs+ (1− α)ψα(s)Z. (1)

and can be computed as

ψα(s) = βs
(

βI+ (I− P )
)−1

. (2)

Proof: Equation 1 is formulated in [25]. We can rewrite it as

ψα(s)
(

βI+ (I− P )
)

= βs (3)

where β > 0 (see Appendix A). W = βI+(I−P ) is a strictly dominant diagonal150

matrix and is invertible [26]. �

Lemma 2. Let ψα(s)
(

βI+ (I−P )
)

= βs be the formulation of the PageRank

problem as a linear systems. The coefficient matrix W = βI+ (I− P ) has the

following properties:

1. W is an M-matrix.155

2. W is nonsingular.

3. The row sums of W are β.

4. ||W||∞ = 2 + β.

5. W−1 ≥ 0.

6. The row sums of W−1 are 1
β .160

7. ||W−1||∞ = 1
β .

8. κ∞(W) = 2+β
β = 1

α .
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Proof: Let Rn×n be the set of real, square n × n matrices. A ∈ Rn×n is an

M-matrix with the form A = cI−B, where B ≥ 0 = (bij ≥ 0 : 1 ≤ i, j ≤ n) and

c ≥ ρ(B) with ρ(·) denoting the spectral radius [27]. The main idea uses the165

fact that by definition, W = cI−B is an M-matrix with c = 1+ β and B = P

a stochastic matrix. Various properties can be shown such as inverse-positivity

(Theorem 2.3, [27]). See Appendix A for complete details. �

κ∞(W) in Lemma 2 indicates the sensitivity of the solution to PageRank to

perturbations in W. It quantifies the extent W is ill-conditioned with respect170

to machine precision when direct computation based on Gaussian elimination is

used. For a machine precision u, this quantity is taken to be uκ∞(W) (Chapter

3, [28]). For example, uκ∞(W) ≤ 1 would indicate a loss of a single decimal digit

of precision for α = 0.1. In practice, iterative methods are used for PageRank

computation (see Theorem 2.2 [14] for error characterizations of these methods).175

2.5. CMC and PageRank - Stationary Distributions

Given the connection between CMC and PageRank, the immediate issues are

(1) characterization of introducing restart in random walks on DC and (2) how

changes to α impact the long-term limiting distribution of CMC. Our theoretical

results address these issues qualitatively and quantitatively, for (1) and (2),

respectively. We use recent results from spectral graph theory generalized to

digraphs in [29]. Let P be associated with a CMC operating on irreducible

DC(VS(n)) ∈ DC(VS(n)) with stationary vector π = (π1, π2, π3, . . . , πn) where

πP = π. Let the diagonal matrix be Π = diag(πi). The normalized digraph

Laplacian is L̃ = Π
1
2 (I− P )Π− 1

2 , with its individual element given by

L̃ij =



















1− pii if i = j

−π
1/2
i pijπ

1/2
j if (i, j) ∈ A

0 otherwise.

The Green’s function for digraphs Z̃ = L̃
+
is the Moore-Penrose pseudoinverse

of L̃ with Z̃L̃ = L̃Z̃ = I − J̃ , where J̃ = (π1/2)Tπ1/2. The next theorem

shows the relationship between PageRank and stationary vectors of CMC.
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Theorem 3. Let π be the stationary vector associated with a CMC operating

on an irreducible DC(VS(n)) ∈ DC(VS(n)). The personalized PageRank vector is

given by

ψα(s) = s
(

I−Π− 1
2 L̃(βI+ L̃)−1Π

1
2
)

. (4)

Furthermore,

lim
β→0

L̃(βI+ L̃)−1 = L̃(L̃)+ = L̃Z̃

where β = 2α
1−α and Z̃ = L̃

+
is the Moore-Penrose pseudoinverse of L̃. For180

small values of α (subsequently, small values of β), the PageRank vector is

approximated by the stationary vector, i.e., ψα(s) ≈ π with equality (ψ0(s) = π)

for any s.

Proof: Appendix A gives the full proof while we summarize the main ideas here.

Using various identities involving the normalized digraph Laplacian and the

generalized identity for the inverse of a sum of matrices [30], we can rewrite

Equation 2 so that

ψα(s) = s
(

I−Π− 1
2 L̃(βI+ L̃)−1Π

1
2
)

can be calculated (βI+ L̃)−1 is nonsingular (Theorem 1.2.17, [26]).

We can reformulate the linear system as

ψα(s) = π + β(s− π)
(

βI+ I− P
)−1

, (5)

which indicates that ψ0(s) = π for any s as we let α→ 0 ⇒ β → 0.185

We can directly calculate ψ0(s). Let Nβ = β(βI + L̃)−1. We will apply

results from (Theorem 1 and Lemma 1 [29]) involving identities relating the

normalized digraph Laplacian and its Moore-Penrose pseudoinverse. As β → 0,

we have N0 = N0J̃ . Given that J̃ is singular, the solutions to the equality

N0 = N0J̃ are N0 = 0 and N0 = J̃
k
= J̃ , k = 1, 2, 3, . . .. Then, L̃(βI +

L̃)−1 = L̃Z̃
(

I− β(βI+ L̃)−1
)

reduces to L̃(L̃)+ = L̃Z̃, implying that

lim
β→0

L̃(βI+ L̃)−1 = L̃Z̃.
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�

Theorem 3 shows a direct relationship between π and ψα(s) as a result of

introducing restart in CMC. Crucially, the connection between structures in DC

and quantities arising from random walks on DC is made explicit through the

digraph Laplacian. For small α > 0, how the long-term fraction of time the190

random walker spends on each vertices that is redistributed is represented by

the perturbed normalized digraph Laplacian (βI+ L̃)−1. What is the difference

between π and ψα(s) due to restart with probability α? The following results

answer this quantitatively.

Lemma 4. Let a CMC operating on irreducible DC(VS(n)) ∈ DC(VS(n)) be

associated with a probability transition matrix P , stationary distribution π,

and the fundamental matrix Z. Correspondingly, the personalized PageRank

on DC(VS(n)) is a CMC with probability transition matrix PPR and stationary

distribution ψα(s). Then

π −ψα(s) = −ψα(s)
(

I− P
)

Z

= β(π − s)
(

βI+ (I− P )
)−1

.

Proof: Applying results from Perturbation theory on finite Markov chains (The-

orems 1 and 2, [31]), we obtain

π −ψα(s) = −ψα(s)(I− P )Z.

We can show that the vector π − ψα(s) is invariant under multiplication of

the matrix (I − P )Z, i.e., (π − ψα(s))(I − P )Z = π − ψα(s). Furthermore,
(

(I − P )Z
)k

= (I − P )Z, k = 1, 2, 3, . . .. From Equation 5, we obtain the

following

π −ψα(s) = β(π − s)
(

βI+ I− P
)−1

.

Multiplying (I − P )Z on both sides of the equality above completes the proof195

(see Appendix A for details). �
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Corollary 5. For π and ψα(s) associated with CMC on an irreducible DC(VS(n)) ∈

DC(VS(n)), the following inequality is given for restart probabilities α1 ≤ α2

||π −ψα1
(s)|| ≤ ||π −ψα2

(s)|| (6)

where α1, α2 ∈ (0, 1).

Proof: Let y = π − ψα(s), which consists of entries that are differentiable

functions of a real variable α [22]. We can show that ||y(α)|| is monotonically

increasing for α in (0, 1). See Appendix A for complete details. �200

Corollary 6. Associated to each irreducible DC(VS(n)) ∈ DC(VS(n)) is CMC

with stationary distribution ψα(s) for α ∈ (0, 1) and π with the following per-

turbation bound

||π −ψα(s)||∞ ≤ ||π − s||∞ (7)

with equality when α = 1.

Proof: Since ||(βI+I−P )−1||∞ = 1
β from Lemma 2, we obtain ||π−ψα(s)||∞ ≤

β||π − s||∞ ||(βI+ I− P )−1||∞ = ||π − s||∞. See Appendix A for details. �

In this paper, we adopt a centrality measure approach [14] and take s to

be uniform for a global digraph analysis. For suitable norms, ||π − ψα(s)|| is

monotonic with α (Corollary 5). ||π − ψα(s)||∞ is upper-bounded by ||π −

s||∞ (Corollary 6). A general upper-bound of ||π − ψα(s)||1 can be obtained

for probability vectors associated with random walks on labelled (isomorphic)

tournaments [32, 33], taking into account their unilateral and directional duals

[34, 17] (see Appendix A)

||π1 − π2||1 ≤ 2
(

1−
1

n

)

. (8)

Although characterizing ||π − ψα(s)||1 against changes in α is more useful,

tight bounds are difficult to obtain (e.g. 2
α ) [35, 23, 21]. We combine a coupling205

approach [35] with digraph-theoretic arguments to improve the bound to 2
1−α

for irreducible DC (see Lemma 5, Appendix A).
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3. Computational Results

We present results from controlled empirical studies on CMCs operating on

coevolutionary tournaments TC(VS(n)) having specific structures [32, 17, 12].210

They are selected based on known internal cycle structures that let us test cur-

rent understanding of those structures and evaluate their impact on the visita-

tion probabilities of vertices by the coevolutionary random walkers using quan-

titative measures we develop earlier. We also compute differences on PageRank

orderings [36] that we describe in detail later. We adapt the standard Power215

Method approach [23] to compute the PageRank vectors ψα(s), using the lazy

version of the CMCs with uniform (teleportation vector) s.

3.1. Generating Coevolutionary Tournaments

The set of coevolutionary digraphs for the experiments include irreducible,

reducible, and random TC(VS(n)). All irreducible TC(VS(n)) are pancyclic [12].220

The vertex-pancyclic TC(VS(n)) with the least number of 3-cycles [37] can be ob-

tained from the transitive tournaments of order n indexed by its score sequences

and then just reversing the arc v1vn to vnv1. It has a single transitive subtour-

nament induced from a maximal, disjoint vertex partition of n− 2 vertices. We

will refer to these tournaments as pancyclic (maximal transitive subtournament).225

Other vertex-pancyclic (or simply pancyclic) TC(VS(n)) that we use are those

where we further reverse the arc v2vn−1 to vn−1v2.

For reducible cases, we use two approaches to generate reducible TC(VS(n))

with various degrees of cycle structures in a controlled manner. The first ap-

proach exploits known digraph-theoretic structures. Every reducible TC(VS(n)) ∈230

TC(VS(n))n ≥ 2 has a strong decomposition V
(

T (1)
)

∪V
(

T (2)
)

∪V
(

T (3)
)

∪ . . .∪

V
(

T (l)
)

with a unique ordering T (1), T (2), T (3), . . . , T (l) whereby T (i) 7→ T (j)

when i < j for i, j = 1, 2, 3, . . . , l. T (1)
(

T (l)
)

is the initial (terminal) strong

component [12]. We generate reducible TC(VS(n)) with odd number of compo-

nents so that each odd-numbered-ith component is a single vertex and even-235

numbered-ith component consists of a strong component of known structures,

e.g., vertex-pancyclic (maximal transitive subtournament) and regular [17].
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The second approach uses a network-growth-based methodology via prefer-

ential attachment [12, 38]. A hierarchy of TC(VS(n)) where a control parameter

is used to move between two complexity extremes – irreducible TC(VS(n)) and240

reducible TC(VS(n)) with prominent transitive structures – can be generated.

We use the same settings in [12]: an initial transitive TC of order ten is used

as a seed and attachment probabilities P
−
i =

(

1 + exp(−γ(xi − x)
)−1

of nodes

vi are computed with {xi}
n
1 being the ranks of vi sorted according to the score

sequences, x = n/2, and γ that plays the role of the inverse temperature. We245

control the generator to produce reducible TC of order n+ 1 by introducing at

the final iteration a single dominant node vn+1.

Finally, random TC(VS(n)) is generated by orienting each edge {vi, vj} ∈ E

of its underlying, complete graph randomly with equal probability for each

direction. However, a random TC(VS(n)) is likely to be irreducible (e.g. more250

than half the chance for a generated random tournament of order five [32]).

Irreducibility test on random TC(VS(n)) can be done using their score sequences

following a well-known result of Moser and Harary (1966) [17].

3.2. Results For ||π −ψα(s)||

We evaluate both max and one norms and study the impact of the restart255

probability α on ||π−ψα(s)|| as the structure and size of TC(VS(n)) are varied in

a controlled manner. Fig. 1 shows the results for ||π −ψα(s)||∞. For reducible

TC(VS(n)), they all have one absorbing state vn so that π = (0, 0, 0, . . . , 1).

Following Theorem 3, ψα(s) is a redistribution of π and amounts to leakages

of the probability mass concentrated on vn. Essentially, the max norm takes260

the value ||π − ψα(s)||∞ = |πvn
− ψvn

|. Since there are leakages to a maximal

subset VS(n)\{vn} of n− 1 vertices, ||π−ψα(s)||∞ for reducible cases would be

larger in comparison with the irreducible cases where there are no leakages.

||π − ψα(s)||∞ becomes larger and gets closer to the upper bound (1 − 1
n )

(bold line in Fig. 1) as a result of increasing number of 3-cycles that leads to265

fewer transitive components in the reducible TC(VS(n))s. This is achieved by

setting the dominated strong component parts with specific cycle structures
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Figure 1: ||π − ψα(s)||∞ of CMCs operating on tournaments that are (A) transitive, (B)

with pancyclic (maximal transitive subtournament) components of order 9, (C) with regular

components of order 9, (D) pancyclic (maximal transitive subtournament), (E) pancyclic, and

(F) random tournaments of odd order n ∈ [5, 999]. All plots are semilog except the inset of

F, which is log-log. Dotted lines indicate ||π − ψα(s)||∞ for α ∈ [0.05, 0.95] in steps of 0.05.

Upper bounds: (1− 1
n
) (bold lines) and ( a1

a2+Hm+1
− 1

m+2
) (dash-dot lines in D-E).

from pancyclic with the least number of 3-cycles in B to regular with the most

number of 3-cycles (corollary of Theorem 4, [32]) in C.

For irreducible cases, both stationary and PageRank vectors will be nonneg-270

ative (all entries > 0) so that ||π−ψα(s)||∞ are substantially lower than (1− 1
n ).
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Intuition suggests that as the number of 3-cycles increases, i.e., towards tourna-

ments with regular cycle structures that have maximum number of 3-cycles and

uniform π [12], ||π −ψα(s)||∞ will decrease. This can be observed by compar-

ing results in D for pancyclic TC(VS(n)) with the least number of 3-cycles and275

results in E and particularly in F where random TC(VS(n)) become increasingly

more regular-like as the number of vertices increases (inset of F).

Computational results indicate that ||π − ψα(s)||∞ is monotonic with α

(see the higher-valued dotted lines in Fig. 1 representing results where larger α

values are used for reducible and irreducible cases). ||π − ψα(s)||∞ gets closer280

to the upper bound ||π − s||∞ ≤ ||πtran − s||∞ = (1− 1
n ) for the reducible A-C

cases and ||π − s||∞ for the irreducible D-E cases. Although this property was

shown explicitly only for irreducible CMCs in Corollary 5, one can argue from

the point of leakages and setting a uniform s that ||π −ψα(s)||∞ is monotonic

for reducible CMCs too.285

Sharp bounds can be obtained for CMCs operating on TC(VS(n)) with spe-

cific structures in D that consist of pancyclic (maximal transitive subtourna-

ment). We note that ||π − ψα(s)||∞ = |πv1
− ψv1

| ≤ ||π − s||∞ = |πv1
− 1

n |.

This coincides with our intuitive understanding how this structure affects on

PageRank calculation. Redistribution affects vertex v1, which shares most of290

the probability mass with vn. As in [21], the PageRank authority of v1 is ob-

tained from a single link vn → v1 even though vn has the highest authority.

We can calculate this bound directly using digraph-theoretic arguments (see

notes after Corollary 8, Appendix A). We have these identities: Hn =
∑n

k=1
1
k

(nth Harmonic number),
∑n

i=1Hi = (n+ 1)(Hn+1 − 1) [39], and E(ηVS(n−2)
) =

1
n−2

∑n−2
i=1 Hi. We apply these identities with m = n−2, n ≥ 3 on Equation A.9

in Appendix A to obtain

πv1
=

1

2

(

1−
1
m

∑m
i=1Hi

2 + 1
m

∑m
i=1Hi

)

=
1

2

(

1−
1
m (m+ 1)(Hm+1 − 1)

2 + 1
m (m+ 1)(Hm+1 − 1)

)
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=
a1

a2 +Hm+1

where a1 = m
m+1 and a2 = m−1

m+1 . Then,

||π −ψα(s)||∞ ≤
( a1
a2 +Hm+1

−
1

m+ 2

)

.

For these tournaments with large but finite number of vertices n = m + 2, the

right-hand side of the inequality is dominated by the reciprocal of Hm+1 (since

Hm+1 grows logarithmically) and is bounded away from zero [39]. Equality is295

obtained only form = 1 where the right-hand side of the inequality is zero. This

corresponds to the isomorphic pancyclic tournament of n = 3 vertices, which is

regular and has ||π −ψα(s)|| = 0.

Fig. 2 shows the results for ||π − ψα(s)||1 for the same set of experiments.

The upper-bound ||π − ψα(s)||1 ≤ 2(1 − 1
n ) is plotted as a bold line while300

||π −ψα(s)||1 ≤ 2
1−α

(

1−
(

πvn
− 1

n

)

)

is plotted as dash-dot line in Fig. 2. For

reducible A-C cases with one absorbing state vn, we can verify numerically that

||π − ψα(s)||1 = 2||π − ψα(s)||∞. Any leakage that is measured by the max

norm would be redistributed over all other states. The one norm cumulatively

adds these leakages in addition to that given by the max norm for vn. Crucially,305

this leakage relationship extends to that between the digraph-theoretic-derived

upper-bounds since ||π −ψα(s)||1 ≤ 2(1− 1
n ) and ||π −ψα(s)||∞ ≤ (1− 1

n ).

We now turn our attention to experiments involving reducible TC(VS(n)) gen-

erated from the network-growth-based methodology and consider ||π−ψα(s)||∞

only. Fig. 3 shows results where the temperature 1/γ for the system is increased310

from A to D. At a lower temperature (A), random orientations of edges gener-

ated as a result of introducing a new node at each iteration of the method are

biased towards existing nodes with higher scores. This leads to more prominent

transitive structures in TC(VS(n)), detected by computing its Landau’s index ν

[12] that gives the number of strong components in TC(VS(n)). ν ranges at [8, 49],315

[8, 39], [7, 47] for experiments with the final generated TC(VS(n)) at n = 100,

500, and 1000, respectively. At higher temperatures, TC(VS(n)) generated in

B-D have two strong components only (a single dominant node and a strong
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Figure 2: ||π − ψα(s)||1 of CMCs operating on tournaments that are (A) transitive, (B)

with pancyclic (maximal transitive subtournament) components of order 9, (C) with regular

components of order 9, (D) pancyclic (maximal transitive subtournament), (E) pancyclic, and

(F) random tournaments of odd order n ∈ [5, 999]. All plots are semilog except the inset of

F, which is log-log. Dotted lines indicate ||π − ψα(s)||1 for α ∈ [0.05, 0.95] in steps of 0.05.

Upper bounds: 2(1− 1
n
) (bold lines) and 2

1−α

(

1−
(

πvn − 1
n

)

)

at α = 0.05 setting (dash-dot

lines in D-F).

dominated component of n−1 nodes). A higher ||π−ψα(s)||∞ value is a result

of the larger-sized, strong dominated component drawing out more probability320

mass away from the absorbing dominant node (more leakages).
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Figure 3: ||π − ψα(s)||∞ of CMCs operating on reducible tournaments that are generated

from a network-growth-based methodology with γ set to (A) 2.0, (B) 0.1, (C) 0.05, and (D)

0.01. Box and line plots in blue, black, and red represents results where the final generated

tournaments are of order 100, 500, and 1000, respectively.

3.3. Results For PageRanking Coevolutionary Tournaments

The PageRank vector ψα(s) gives the visitation probabilities ψvi
that ranks

the importance (performance) of vertices vi ∈ VS(n) representative of the under-

lying structure of their pairwise relations in the coevolutionary digraphDC(VS(n)).325

We PageRank (index) the importance of these vertices in the same manner as

their score sequence for consistency. Let τ : {ψvi
}ni → Z

n
k be the PageRanks of

the vertices vi ∈ VS(n) of DC(VS(n)), with visitation probabilities {ψvi
}ni and

Z
n
k = {1, 2, 3, . . . , n}. Vertices are PageRanked in the ascending order from the

least important τ(v1) = 1 to the most important τ(vn) = n. Ties are handled in330

the usual manner through fractional (average) ranks [40]. In our experiments,

we generate tournaments and strong components of odd orders so that tied

18



ranks can be assigned with the median (integer) value.

For transitive TC(VS(n)), results show that the ranking of vertices from τ

is the same as that of score sequences
(

d−T (vi)
)n

i
even for high α setting. How335

about irreducible TC(VS(n)) with prominent transitive structures? In the case of

the pancyclic (maximal transitive subtournament) TC(VS(n)), visitation prob-

abilities are sorted as ψv2
< ψv3

< ψv4
< · · · < ψvn−1

< ψv1
< ψvn

, for

reasonably low α settings. Unlike the situation with the stationary probability

vector where the two highest ranks are tied since πv1
= πvn

, PageRank is able340

to distinguish between v1 and vn.
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Figure 4: Visitation probabilities (PageRank vector) of the CMC with restart on the vertices

of reducible tournaments of order 101 (A) with pancyclic (maximal transitive subtournament)

components of order 9 and (B) with regular components of order 9. Plots with blue, black,

and red crosses are for the visitation probabilities where α is set to 0.05, 0.15 and 0.25,

respectively. Insets show the visitation probabilities where α = 0.25 for one of the strong

components. Vertices are sorted according to their score sequences.

If such a structure is embedded within a reducible TC(VS(n)) (as one may en-

counter in real-world problems with such complex structures), PageRank can be

used to uncover this strong component structure for small-sized TC(VS(n)) where

the issue of scale does not arise although the analysis can be more nuanced. For345

example, consider the case whereby the strong component is pancyclic (maximal

transitive subtournament). Nodes v62 and v63 (inset of Fig. 4A) have the same

out-degree globally (d−T (v62) = d−T (v63)) and within the strong component, the

least number of just one outgoing link locally. However, v62 has a higher PageR-
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ank than v63. Together both information would indicate that they are part of a350

strong component that dominates all other vertices {v1, v2, v3, . . . , v61}. If the

strong component is regular, PageRanks are the same for those vertices (inset

of Fig. 4B). Regardless, our setting (uniform s) is to provide a global view [14].

For reducible TC(VS(n)), there would be a general increase in visitation prob-

abilities ψvi
for vertices with higher scores and that vertices in the absorbing355

class have significantly larger values (in Fig. 4, both tournaments are reducible

with a single dominant vertex).

3.4. Results For Differences in Rank Aggregation

It is known that setting α appropriately can improve the convergence rate

of the Power Method (Theorem 5.1 in [23]) to compute PageRanks at the ex-360

pense of increasing perturbations on PageRank authorities and subsequently

the actual PageRank orderings [36]. We study the impact of α on PageRanks

by computing the differences between PageRanks at baseline α = 0.05 setting

and those obtained from using higher α settings. There are various approaches

to calculate this difference through rank aggregation. We use a form of the365

Spearman footrule distance [41].

For TC(VS(n)) of odd orders n, we can calculate this distance

dspear(τ1, τ2) =
4

n2 − 1

n
∑

i=1

|τ1(vi)− τ2(vi)| (9)

where the normalizing constant is given by the maximum of the sum of absolute

differences max d(τ1, τ2) =
n2−1

4 . This can be obtained in the same manner as

the Spearman’s rank correlation [40] by calculating the distance obtained from

completely opposed rankings of 1, 2, 3, . . . , n and n, n− 1, n− 2, . . . , 1 that also

take into account directional duals of labelled tournaments [34]. The maximum

distance is the same as in the case of the distance between that of transitive

and regular tournaments. We also compute the average rank difference

davg(τ1, τ2) =
1

n

n
∑

i=1

|τ1(vi)− τ2(vi)|. (10)
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davg(τ1, τ2) would be a useful comparison with dspear(τ1, τ2) for experiments

where the n2 factor could mask the effect of small rank differences for certain

large tournaments.
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Figure 5: Differences of PageRanks for coevolutionary tournaments that are irreducible having

(A)-(B) pancyclic (maximal transitive subtournament) structures and reducible having (C)-

(D) pancyclic (maximal transitive subtournament) components of order 9. Plots in (A) and

(C) are for dspear(τ1, τ2) and (B) and (D) are for davg(τ1, τ2). Dotted lines show difference

from baseline PageRanks obtained with α = 0.05 to PageRanks obtained from setting higher

α ∈ [0.10, 0.90]. Bold lines are the case where α = 0.95.

In general, higher α settings would lead to more perturbations to PageRanks370

measured by larger d(τ1, τ2) values (e.g. the bold lines in Fig. 5). However,

increasing the size of the generated TC(VS(n)) leads to lower d(τ1, τ2) values,

indicating that changes to PageRanks are localized to certain vertices. For

example, this is usually v1 for pancyclic (maximal transitive subtournament)

TC(VS(n)) in A-B. Beyond specific structures in TC(VS(n)), our results indicate375
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that the presence of prominent transitive structures (A-B) and those that forces

reducibility (C-D) would localize perturbations of PageRanks to a small number

of vertices, leading to lower d(τ1, τ2) values as TC(VS(n)) increases in size.

4. Conclusion

One important issue dealing with problems in competitive settings is how380

problem structures can affect the performance of solutions discovered by iter-

ative means. Under some assumptions, coevolutionary processes can be repre-

sented as Markov chain models operating on digraphs that capture preference

relations between competing solutions to those problems. As a consequence, we

are able to establish a direct and formal connection between the Markov chain385

model of coevolutionary processes and PageRank operating on such digraphs.

This lets us develop a principled approach for quantitative characterization of

coevolutionary problems regardless of the underlying structures in their digraph

representations. This PageRank characterization of a coevolutionary digraph

measures and ranks of the performance of individual solutions.390

Our theoretical support involves interdisciplinary studies in large-scale co-

evolutionary systems, Markov models of PageRank and digraph theory. We

provide guarantees of the existence of PageRank for any coevolutionary system.

We prove the PageRank vector to be a redistribution of the stationary vector as-

sociated with CMCs operating on coevolutionary digraphs. Changes as a result395

of introducing restarts with different probability α can be quantified precisely.

Our theoretical bounds are loose to cover for digraphs of any cycle structure

but there are cases where qualitative knowledge of digraph structures can be

exploited to obtain sharp bounds. We consider a restricted class of population-

one coevolutionary systems, which covers other learning algorithms involving400

self play. The advantage is the coevolutionary digraph captures all underlying

structures induced by the pairwise preferences over solutions for the problem

under consideration. Specific reducible digraphs would cover evolutionary cases

as in recent studies that apply PageRank to evolutionary systems [42].

22



Empirical studies have demonstrated how PageRank authorities characterize405

coevolutionary tournaments of various degree of complexity and known struc-

tures. The challenge remains to deal with large, real-world coevolutionary sys-

tems. New methods that can discover and exploit digraph structures (locally

and globally) would be needed to obtain the relevant characterizations of these

large-scale and complex systems. Unlike other problem domains with sparse P410

[14] and for which there exists methods to speed up computation [23], there are

at least half of nonzero entries in P for coevolutionary systems by definition.

There are scaling and computational issues if a global analysis perspective is

adopted but this can be mitigated if some form of structures can be exploited

(grouping vertices that represent a type of strategies of similar behaviors).415
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Appendix A. Complete Proofs for Theoretical Results Listed in Main420

Texts

Lemma 1. Let DC(VS(n)) ∈ DC(VS(n)) be a coevolutionary digraph. Let P be

the probability transition matrix associated with a CMC operating on DC(VS(n))

and Z = (I+P )/2 its lazy version. The row vector s is the probability distribu-

tion over the set vertices VS(n). Given α ∈ (0, 1) and β = 2α
1−α , the personalized

PageRank vector is the unique solution to the linear system defined as

ψα(s) = αs+ (1− α)ψα(s)Z. (A.1)

and can be computed as

ψα(s) = βs
(

βI+ (I− P )
)−1

. (A.2)
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Proof: We can rewrite Equation A.1 as follows

ψα(s) = αs+ (1− α)ψα(s)Z

ψα(s)
(

I+
(1− α)

2α
(I− P )

)

= s

so that now it can be expressed in the usual matrix form for linear systems

ψα(s)
(

βI+ (I− P )
)

= βs (A.3)

where β = 2α
1−α > 0.

βI + (I − P ) is a strictly dominant diagonal matrix and so is nonsingular

(invertible) [26]. This can be proven as follows. Let W = βI+ (I− P ) = (1 +

β)I−P . Since P is a row stochastic matrix, then for each row i,
∑

j 6=i |wij | ≤ 1.425

But |wii| = 1 + β >
∑

j 6=i |wij | for β > 0. �

Lemma 2. Let ψα(s)
(

βI+ (I−P )
)

= βs be the formulation of the PageRank

problem as a linear systems. The coefficient matrix W = βI+ (I− P ) has the

following properties:

1. W is an M-matrix.430

2. W is nonsingular.

3. The row sums of W are β.

4. ||W||∞ = 2 + β.

5. W−1 ≥ 0.

6. The row sums of W−1 are 1
β .435

7. ||W−1||∞ = 1
β .

8. κ∞(W) = 2+β
β = 1

α .

Proof: The properties of W and their proofs follow a similar exposition in [23].

Let Rn×n be the set of real, square n× n matrices. A ∈ Rn×n is an M-matrix

if it can be written in the form A = cI −B, where B ≥ 0 (i.e., B = (bij ≥ 0 :440

1 ≤ i, j ≤ n)) and c ≥ ρ(B) with ρ(·) denoting the spectral radius (Chapter 6,

[27]). Then, we have the following.

1. W is an M-matrix: W = βI + (I − P ) = cI − B where c = 1 + β and

B = P . Applying the Perron-Frobenius Theorem to the stochastic matrix

P , ρ(P ) = ||P ||∞ = 1 (Chapter 8, [22]). Obviously, c = 1+β > ρ(P ) = 1445

for β > 0. As such, W is an M-matrix.

24



2. W is nonsingular: This was shown earlier in the proof for Lemma 1.

3. The row sums of W are β: Note that for each row i, wii −
∑

j 6=i wij =

(1 + β)− 1 = β. So, WeT = βeT where eT is the column vector of ones.

4. ||W||∞ = 2 + β: Applying the definition of ∞-norm [22], ||W||∞ =450

max
i

∑

j |wij | = 2 + β.

5. Since W is an M-matrix, then W−1 ≥ 0: This is simply direct application

of (Theorem 2.3, Chapter 6, [27]). Since W is a nonsingular M-matrix, it

is inverse-positive, i.e., W−1 exists and W−1 ≥ 0.

6. The row sums of W−1 are 1
β : We note

WeT = βeT

1

β
eT = W−1eT .

7. ||W−1||∞ = 1
β : Since W

−1 ≥ 0 and W−1eT = 1
βe

T , then ||W−1||∞ = 1
β .455

8. κ∞(W) = 2+β
β = 1

α : The condition number κ for a nonsingular A is

||A|| ||A−1|| [22]. Applying results in (4) and (7) with β = 2α
1−α , we have

κ∞(W) = ||W||∞ ||W−1||∞

=
2 + β

β

=
1

α
.

�

Theorem 3. Let π be the stationary vector associated with a CMC operating

on an irreducible DC(VS(n)) ∈ DC(VS(n)). The personalized PageRank vector is

given by

ψα(s) = s
(

I−Π− 1
2 L̃(βI+ L̃)−1Π

1
2
)

. (A.4)

Furthermore,

lim
β→0

L̃(βI+ L̃)−1 = L̃(L̃)+ = L̃Z̃

where β = 2α
1−α and Z̃ = L̃

+
is the Moore-Penrose pseudoinverse of L̃. For

small values of α (subsequently, small values of β), the PageRank vector is
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approximated by the stationary vector, i.e., ψα(s) ≈ π with equality (ψ0(s) = π)

for any s.460

Proof: Since L̃ = Π
1
2 (I− P )Π− 1

2 can be rewritten as (I− P ) = Π− 1
2 L̃Π

1
2 ,

(

βI+ (I− P )
)−1

= (βI+Π− 1
2 L̃Π

1
2 )−1

= (βI)−1 − (βI)−1Π− 1
2
(

I+ L̃Π
1
2 (βI)−1Π− 1

2
)−1

L̃Π
1
2 (βI)−1

= (βI)−1 − (βI)−1Π− 1
2
(

I+ L̃(βI)−1
)−1

L̃(βI)−1Π
1
2

= (βI)−1 − (βI)−1Π− 1
2 L̃(βI)−1

(

I+ L̃(βI)−1
)−1

Π
1
2

=
1

β

(

I−Π− 1
2 L̃(βI+ L̃)−1Π

1
2
)

.

On the second line, we used the generalized identity for the inverse of a sum of

matrices (A+UBV)−1 = A−1 −A−1U(I+BVA−1U)−1BVA−1 where A is

nonsingular and U, B, and V are square matrices in our case. On the fourth

line, we used the identity (I+C)−1C = C(I+C)−1 where for any C, (I+C)−1

is nonsingular [30].465

The personalized PageRank for coevolutionary digraphs is calculated as

ψα(s) = s
(

I−Π− 1
2 L̃(βI+ L̃)−1Π

1
2
)

.

since (βI + L̃)−1 is nonsingular (by Theorem 1.2.17 in page 54, [26]). What

happens when β → 0? We know the linear system should reduce to the case

whereby the solution is the stationary vector π if we assume that the coevolu-

tionary digraph is irreducible.

Since Z̃ = L̃
+
is the Moore-Penrose pseudoinverse of L̃,

L̃ = L̃Z̃L̃

L̃+ E = L̃Z̃(βI+ L̃)

E = βL̃Z̃.

Then,

L̃+ E = L̃Z̃(βI+ L̃)

(L̃+ E)(βI+ L̃)−1 = L̃Z̃
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L̃(βI+ L̃)−1 = L̃Z̃ − E(βI+ L̃)−1

= L̃Z̃
(

I− β(βI+ L̃)−1
)

.

We rewrite the personalized PageRank for coevolutionary digraphs as follows

ψα(s) = s
(

I−Π− 1
2 L̃Z̃

(

I− β(βI+ L̃)−1
)

Π
1
2
)

= s
(

I−Π− 1
2 L̃Z̃Π

1
2 + βΠ− 1

2 L̃Z̃Π
1
2Π− 1

2 (βI+ L̃)−1Π
1
2
)

= s
(

I−Π− 1
2 L̃Z̃Π

1
2 + βΠ− 1

2 L̃Z̃Π
1
2
(

βΠ− 1
2Π

1
2 +Π− 1

2 L̃Π
1
2
)−1)

= s
(

I−Π− 1
2 L̃Z̃Π

1
2
)

+ βs
(

Π− 1
2 L̃Z̃Π

1
2
(

βI+ I− P
)−1)

= s
(

I−Π− 1
2 (I− J̃ )Π

1
2
)

+ βs
(

Π− 1
2 (I− J̃ )Π

1
2
(

βI+ I− P
)−1)

= π + β(s− π)
(

βI+ I− P
)−1

where L̃Z̃ = (I − J̃ ). We need to show that s
(

I −Π− 1
2 (I − J̃ )Π

1
2
)

= π and470

s
(

Π− 1
2 (I− J̃ )Π

1
2
)

= s− π.

First, we obtain by direct calculation that

I−Π− 1
2 (I− J̃ )Π

1
2 =





























π1 π2 π3 · · · πn

π1 π2 π3 · · · πn

π1 π2 π3 · · · πn
...

...
...

. . .
...

π1 π2 π3 · · · πn





























where J̃ = (π1/2)Tπ1/2. Since s = (si)
n
i=1 with

∑

i si = 1, we can calculate the

following s
(

I−Π− 1
2 (I−J̃ )Π

1
2
)

= (
∑

i πjsi)
n
j=1 = (πj

∑

i si)
n
j=1 = (πj)

n
j=1 = π.

Second, let s = (s1, s2, s3, . . . , sn) and π = (π1, π2, π3, . . . , πn). Direct calcu-

lation shows that s
(

Π− 1
2 (I− J̃ )Π

1
2
)

= (s1−π1, s2−π2, s3−π3, . . . , sn−πn) =

s − π. Note that the product of the row vector s with the first column of the

matrix Π− 1
2 (I− J̃ )Π

1
2 is

(s1, s2, s3, . . . , sn)(1− π1,−π1,−π1, . . . ,−π1)
T

= s1(1− π1) + s2(−π1) + s3(−π1) + · · ·+ sn(−π1)

= s1 − π1
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whereby the product of s with the ith-column of Π− 1
2 (I− J̃ )Π

1
2 is si − πi.

We have calculated that

ψα(s) = π + β(s− π)
(

βI+ I− P
)−1

. (A.5)

Since βI+ I− P is nonsingular, then

ψα(s)
(

βI+ I− P
)

= π(βI+ I− P ) + β(s− π).

Note that when we let α→ 0 ⇒ β → 0, we obtain

ψ0(s)
(

I− P
)

= π(I− P ) + 0̃

= π(I− P )

where 0̃ is the zero row vector. As such, ψ0(s) = π for any s.475

Can we calculate ψα(s) = s
(

I − Π− 1
2 L̃Z̃

(

I − β(βI + L̃)−1
)

Π
1
2
)

directly?

We need to be able to calculate ψ0(s) also. Let Nβ = β(βI+ L̃)−1. This means

calculating N0 also. Nβ is nonsingular. Then,

Nβ = β(βI+ L̃)−1

βINβ +NβL̃ = βI.

Assume N0 is nonsingular. As β → 0, we have

0N0 +N0L̃ = 0

N0L̃ = 0.

We know L̃ is singular. But for the last equality N0L̃ = 0, the original state-

ment that N0 is nonsingular would be a contradiction. N0 must be singular.

We can apply the theoretical result involving several identities relating to

the normalized digraph Laplacians [29] and obtain the solution for N0L̃ = 0 as

N0 = J̃
k
= J̃ , k = 1, 2, 3, . . . (by repeatedly applying the identity J̃

2
= J̃ )

or N0 = 0 (the zero matrix). Here, J̃ L̃ = 0 (by Lemma 1 in [29]) and 0L̃ = 0.

We furnish a direct calculation for J̃ L̃ here since it is sketched only in [29]. Let

J be the square matrix of ones and e the row vector of ones. Then,

J̃ L̃ = (Π
1
2JΠ

1
2 )(Π

1
2 (I− P )Π− 1

2 )
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= Π
1
2JΠ(I− P )Π− 1

2

= Π
1
2 eTπ(I− P )Π− 1

2

= 0

since π(I − P ) = π − πP = π − π = 0̃ and eT 0̃ = 0 where 0̃ is the zero row

vector and 0 is the zero matrix.

However, we can establish what N0 is, directly. First we rewrite the expres-

sion (βI+ L̃)−1 as follows

(βI+ L̃)−1 =
(

βI+ (L̃+ J̃ )− J̃
)−1

=
(

(

L̃+ J̃
)(

I+ (L̃+ J̃ )−1(βI− J̃ )
)

)−1

=
(

L̃+ J̃
)−1(

I+ (L̃+ J̃ )−1(βI− J̃ )
)−1

=
(

Z̃ + J̃
)(

I+ (Z̃ + J̃ )(βI− J̃ )
)−1

=
(

Z̃ + J̃
)(

I+ β(Z̃ + J̃ )− Z̃J̃ − J̃ J̃
)−1

=
(

Z̃ + J̃
)(

β(Z̃ + J̃ ) + (I− J̃ )
)−1

,

using identities (Z̃+J̃ ) = (L̃+J̃ )−1 on the fourth line (by Theorem 1 in [29]),480

Z̃J̃ = 0 and J̃ J̃ = J̃ on the last line (by Lemma 1 in [29]).

Since Nβ = β(βI+ L̃)−1 is nonsingular, then

Nβ = β
(

Z̃ + J̃
)(

β(Z̃ + J̃ ) + (I− J̃ )
)−1

Nβ

(

β(Z̃ + J̃ ) + (I− J̃ )
)

= β
(

Z̃ + J̃
)

.

As β → 0, we have

N0

(

0+ (I− J̃ )
)

= 0

N0 = N0J̃ .

Given that J̃ is singular, the solutions to the equality N0 = N0J̃ are N0 = 0

and N0 = J̃
k
= J̃ , k = 1, 2, 3, . . ..

As α → 0 ⇒ β → 0, we can then reduce the equation L̃(βI + L̃)−1 =

L̃Z̃
(

I− β(βI+ L̃)−1
)

as follows

L̃(L̃)+ = L̃Z̃(I−N0)
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= L̃Z̃(I− J̃ )

= L̃Z̃,

given that L̃Z̃ = I − J̃ and L̃Z̃L̃ = L̃. The conclusion is the same if we

consider N0 = 0. This implies that

lim
β→0

L̃(βI+ L̃)−1 = L̃(L̃)+

= L̃Z̃.

For small values of α (subsequently small values of β), we can use this

approximation

L̃(βI+ L̃)−1 ≈ L̃Z̃ = I− J̃ ,

with equality when β = 0. We can approximate the personalized PageRank for

irreducible coevolutionary digraphs as

ψα(s) ≈ s
(

I−Π− 1
2 (I− J̃ )Π

1
2
)

= π.

with equality, i.e., ψ0(s) = π, for any s. �

Lemma 4. Let a CMC operating on irreducible DC(VS(n)) ∈ DC(VS(n)) be

associated with a probability transition matrix P , stationary distribution π,

and the fundamental matrix Z. Correspondingly, the personalized PageRank

on DC(VS(n)) is a CMC with probability transition matrix PPR and stationary

distribution ψα(s). Then

π −ψα(s) = −ψα(s)
(

I− P
)

Z

= β(π − s)
(

βI+ (I− P )
)−1

.

Proof: The following makes use of results of Perturbation theory applied to finite

Markov chains in [31]. Let πA = π, PA = P , πB = ψα(s), and PB = PPR.

The distance between P and PPR is defined as

UAB = (PPR − P )Z
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with the fundamental matrix Z = ZA. Applying (Theorems 1 and 2 in [31]),

we obtain

ψα(s) = π(I−UAB)
−1

ψα(s)−ψα(s)UAB = π

π −ψα(s) = −ψα(s)UAB

= ψα(s)(P − PPR)Z

= −ψα(s)(I− P )Z

making use of ψα(s)PPR = ψα(s).485

We show that the vector π − ψα(s) is invariant under multiplication of

the matrix (I − P )Z, i.e., (π − ψα(s))(I − P )Z = π − ψα(s). Furthermore,
(

(I− P )Z
)k

= (I− P )Z, k = 1, 2, 3, . . .. First,

(π −ψα(s))(I− P )Z = π(I− P )Z −ψα(s)(I− P )Z

= 0̃−ψα(s)(I− P )Z

= π −ψα(s).

where 0̃ is the zero row vector. Second, using identities L̃ = Π
1
2 (I − P )Π− 1

2

and Z̃ = Π
1
2ZΠ− 1

2 [29], we obtain (I− P )Z = Π− 1
2 L̃Z̃Π

1
2 . Then,

(

(I− P )Z
)(

(I− P )Z
)

= (Π− 1
2 L̃Z̃Π

1
2 )(Π− 1

2 L̃Z̃Π
1
2 )

= (I− P )Z

making use of L̃Z̃L̃ = L̃. Applying this equality repeatedly we obtain
(

(I −

P )Z
)k

= (I− P )Z, k = 1, 2, 3, . . ..

Applying Equation A.5 from the proof section of Theorem 3, we obtain

π −ψα(s) = β(π − s)
(

βI+ I− P
)−1

.

Multiplying (I− P )Z on both sides of the equality

(π −ψα(s))(I− P )Z = β(π − s)
(

βI+ I− P
)−1

(I− P )Z

π −ψα(s) = βπ(I− P )Z − βs(βI+ I− P )−1(I− P )Z
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= 0̃− βs(βI+ I− P )−1(I− P )Z

= −ψα(s)(I− P )Z,

making use of Equation A.2 from Lemma 1, which completes the proof. �

Corollary 5. For π and ψα(s) associated with CMC on an irreducible DC(VS(n)) ∈

DC(VS(n)), the following inequality is given for restart probabilities α1 ≤ α2

||π −ψα1
(s)|| ≤ ||π −ψα2

(s)|| (A.6)

where α1, α2 ∈ (0, 1).

Proof: First, we rewrite the equation as follows

π −ψα(s) = β(π − s)(βI+ I− P )−1

y = (π − s)A−1

where y = π−ψα(s) and A = I+ 1
β (I−P ). A−1 is by definition a nonsingular490

M-matrix and as such is inverse-positive A−1 ≥ 0 (Theorem 2.3, Chapter 6,

[27]) with positive || ⋆ ||. Furthermore, since each row sum of A is equal to one,

then A is a uniformly strictly diagonally dominant M-matrix and that A−1 is

a row stochastic matrix (Corollary 2 in [43]). We have three cases when: (a)

α = 0, (b) α = 1, and (c) α ∈ (0, 1). We evaluate these cases individually using495

several results in the proof of Theorem 3.

For (a), Theorem 3 implies that as α → 0 ⇒ β → 0, we have limβ→0 ||π −

ψα(s)|| = 0. We can show this directly here. We rewrite A−1 as

A−1 =
(

I+
1

β
(I− P )

)−1

= I−Π− 1
2 L̃(βI+ L̃)−1Π

1
2 .

since
(

βI+(I−P )
)−1

= 1
β

(

I−Π− 1
2 L̃(βI+ L̃)−1Π

1
2
)

. Let y(0) = limβ→0(π−

s)A−1. As α→ 0 ⇒ β → 0, we obtain

y(0) = lim
β→0

(π − s)A−1
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= (π − s) lim
β→0

(I−Π− 1
2 L̃(βI+ L̃)−1Π

1
2 )

= (π − s)eTπ

= 0̃

making use of I−Π− 1
2 L̃Z̃Π

1
2 = I−Π− 1

2 (I− J̃ )Π
1
2 = eTπ. So, ||y(0)|| = 0.

For (b), as α→ 1 ⇒ β → ∞, we have limβ→∞ ||π−ψα(s)|| = ||π− s|| since

ψ1(s) = s, given that limβ→∞ A−1 = I−1 = I and ψα(s) = sA−1. We can show

this directly as follows. Let y(1) = limβ→∞(π − s)A−1. Then,

y(1) = lim
β→∞

(π − s)A−1

= (π − s) lim
β→∞

A−1

= π − s.

So, ||y(1)|| = ||π − s||.

For (c), note that y and A consist of entries that are differentiable functions

of a real variable β [22] whereby

dy

dβ
= (π − s)

d

dβ
A−1

=
1

β2
(π − s)A−1(I− P )A−1

since

d

dβ
A =

d

dβ

(

I+
1

β
(I− P )

)

= −
1

β2
(I− P )

and

d

dβ
A−1 = −A−1(

d

dβ
A)A−1

=
1

β2
A−1(I− P )A−1.

We note that

(π − s)A−1(I− P )A−1 =
(

π −ψα(s)
)

(I− P )A−1
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= (ψα(s)P −ψα(s))A
−1.

Given that limβ→∞ A−1 = I, we obtain

lim
β→∞

(π − s)A−1(I− P )A−1 = (π − s)(I− P )

= sP − s.

As α→ 1 ⇒ β → ∞, limβ→∞

∣

∣

∣

∣

dy
dβ

∣

∣

∣

∣ = limβ→∞
1
β2 ||sP − s|| = 0.

∣

∣

∣

∣

dy
dβ

∣

∣

∣

∣ is positive for α ∈ (0, 1) and goes to zero as α→ 1. Furthermore, we500

know that y(α) is bounded entrywise with ||y(0)|| = 0 and ||y(1)|| = ||π − s||.

Since ||y(α)|| is monotonically increasing in the interval of α for (0, 1), it follows

that ||π −ψα1
(s)| ≤ ||π −ψα2

(s)|| for α1 ≤ α2 where α1, α2 ∈ (0, 1). �

Corollary 6. Associated to each irreducible DC(VS(n)) ∈ DC(VS(n)) is CMC

with stationary distribution ψα(s) for α ∈ (0, 1) and π with the following per-

turbation bound

||π −ψα(s)||∞ ≤ ||π − s||∞ (A.7)

with equality when α = 1.

Proof: Since ||(βI+ I− P )−1||∞ = 1
β from Lemma 2 and from the property of

induced matrix norm [22], we obtain

||π −ψα(s)||∞ = ||β(π − s)(βI+ I− P )−1||∞

≤ β||π − s||∞ ||(βI+ I− P )−1||∞

= ||π − s||∞.

Equality is obtained as α = 1 since ψ1(s) = s. �505

Note: Lemma 4 expresses the difference between stationary and PageRank

vectors of a CMC explicitly, which is followed by Corollary 5 that shows for

suitable vector norms, ||π−ψα(s)|| is directly proportional to the restart prob-

ability α. This can be seen from the expression π−ψα(s) = (π− s)A−1 where

A−1 =
(

I + 1
β (I − P )

)−1
. A−1 is a row stochastic matrix that changes from510
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eTπ (as α → 0) to I (as α → 1). Although it is not possible to find a general

expression of A−1 for α ∈ (0, 1), for A being a nonsingular M-matrix that is

diagonally dominant, A−1 is diagonally dominant of its column entries (i.e, for

B = A−1, |bii| > |bij |, j 6= i, i = 1, 2, 3, . . . , n) [44]. Furthermore, πA−1 = π

from Equation A.5. One can observe that ||(π − s)A−1|| = ||π − sA−1|| mono-515

tonically increases as α → 1. For example, ||(π − s)A−1||1 =
∑n

i=1 |πi − si|

since si(α) changes from si(0) = πi to si(1) = si. For ||(π − s)A−1||∞, in

the case where |π1 − s1| ≥ |πi − si|, i = 2, 3, 4, . . . , n and assuming uniform s,

monotonicity can be observed from changes in sA−1 from seTπ = π to sI = s.

Appendix B. Theoretical Bounds for One Norm ||π − ψ
α
(s)||1520

Appendix B.1. General Bound for Coevolutionary Digraphs

General bounds can be obtained for any (reducible and irreducible) coevolu-

tionary digraph. A simple argument would be to take the maximum one norm

for probability vectors (0, 0, 0, . . . , 1) and (1, 0, 0, . . . , 0) as 2 [23]. However, we

can improve the bound by considering random walks on labelled or isomorphic525

tournaments [32, 33]. A probability vector (a1, a2, a3, . . . , an) associated for a

tournament with vertices consistently indexed according to their score sequences

will have for its unilateral and directional dual (vertices indexed in the reversed

order of their score sequences), (an, an−1, an−2, . . . , a1) [34, 17].

Here, a straightforward digraph-theoretic argument would be to take the one

norm between stationary vectors associated with transitive (πtran = (0, 0, 0, . . . , 1))

and regular (πreg = ( 1n ,
1
n ,

1
n , . . . ,

1
n )) tournaments

max || ⋆ ||1 = ||πtran − πreg||1

=
(

n− 1
) 1

n
+
(

1−
1

n

)

= 2
(

1−
1

n

)

as the upper bound, that is, for the one norm of probability vectors associated

with CMCs operating on tournaments π1 and π2

||π1 − π2||1 ≤ 2
(

1−
1

n

)

. (A.8)
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Appendix B.2. Bounds based on Digraph-Theoretic and Coupling Arguments530

The bound given by the inequality in Equation A.8 also reflects the difference

for a PageRank random walker operating on a transitive tournament between

two opposite cases where α = 0 so that all the probability mass is concentrated

on a single absorbing vertex and where α = 1, i.e. restarts all the time with a

uniform teleportation vector so that the mass is now uniformly distributed on535

all vertices. What happens when α is varied in (0, 1)? In general, one would

obtain loose bounds. In [35], a coupling argument is introduced to provide the

relevant bounds, which we improve here.

Let µ and ν be the probability distributions of the random variables X and

Y , respectively. BothX and Y take on values in the state space V. Let (X,Y ) be540

the pair of the two random variables. Let q be the joint distribution of (X,Y ) on

V×V, i.e., q(x, y) = P(X = x, Y = y), such that
∑

y∈V q(x, y) = P(X = x) = µx

and
∑

x∈V q(x, y) = P(Y = y) = νy. A coupling of µ and ν refers to the pair

(X,Y ) defined on a single probability space whereby its marginal distributions

of X and Y are µ and ν, respectively, i.e., satisfying P(X = x) = µx and545

P(Y = y) = νy for all x, y ∈ V [45].

The following result show how to bound the distance between stationary

µ = π and PageRank ν = ψα(s) distributions of the coupled CMCs {(Xt, Yt) :

t ∈ N0}, where {Xt : t ∈ N0} is without restart and {Yt : t ∈ N0} is with restart.

Our proof uses a combination of digraph-theoretic and coupling arguments. We550

exploit specific structures in irreducible coevolutionary digraphs DC(VS(n)) ∈

DC(VS(n)) to construct a specific coupling of the two CMCs. Then, we use

of the equivalent characterizations of variation distance between the marginal

distributions of the coupling (||π − ψα(s)||TV = 1
2 ||π − ψα(s)||1 = minP(X 6=

Y )) [46] and subsequently bound ||π−ψα(s)||1 with an asymptotic upper-bound555

of P(X∞ 6= Y∞).

Lemma 7. Let DC(VS(n)) ∈ DC(VS(n)) be an irreducible coevolutionary di-

graph. Let {(Xt, Yt) : t ∈ N0} be a coupling of the two CMCs. Associated

with CMC {Xt : t ∈ N0} is the probability transition matrix P and stationary
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distribution π. Associated with CMC {Yt : t ∈ N0} is the perturbed probability

transition matrix PPR and stationary distribution ψα(s). The lazy random walk

versions are considered for both CMCs. The two stationary distributions satisfy

the relation:

||π −ψα(s)||1 ≤
2

1− α
P(X∞ 6= Y∞)

≤
2

1− α
dα

≤
2

1− α

where dα = maxP(Xt+1 6= Yt+1, Xt = Yt | restart at t+ 1).

For {Ỹt : t ∈ N0} with no restart (α = 0), there is an optimal coupling

{(Xt, Ỹt) : t ∈ N0} such that ||π −ψ0(s)||1 = 0, which implies ψ0(s) = π.

Proof: Let {(Xt, Yt) : t ∈ N0} be a coupling of the two CMCs with the following560

construction.

(i) X0 = Y0 is drawn randomly from π.

(ii) The state transitions are as follows: At time step t+1, decide with prob-

ability 1− α not to restart or with probability α to restart.

a. If there is no restart, then Xt+1 = Yt+1 always. If Xt = Yt, then565

Xt+1 = Yt+1 (i.e., both chains jump to the same vertex) that is

chosen randomly according to P . If Xt 6= Yt, then Xt+1 and Yt+1

are chosen such that Xt+1 = Yt+1.

b. If there is restart, then Xt+1 6= Yt+1 always if Xt 6= Yt. Otherwise, if

Xt = Yt, then Xt+1 is chosen randomly according to P and Yt+1 is570

chosen uniformly at random such that Xt+1 6= Yt+1.

For the coupling of the two CMCs, we first show that when there is no restart,

Xt+1 = Yt+1 regardless of the state of the coupled CMCs at time t. Applying

Moon’s Theorem [32], an irreducible coevolutionary digraph DC(VS(n), A) ∈

DC(VS(n)) is vertex-pancyclic. In particular, any three distinct vertices x, y, z ∈575

VS(n) forms a 3-cycle, i.e., cycle of length three. We use the simplified notation

xyzx to indicate x → y → z → x. Let Xt = x and Yt = y. For lazy random
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walks, if the 3-cycle is xzyx, then arbitrarily set Xt+1 = Xt = x and Yt+1 = x.

Similarly, if the 3-cycle is yzxy, then arbitrarily set Yt+1 = Yt = y andXt+1 = y.

If Xt and Yt are at the same vertex y, depending on the 3-cycle configuration,580

then both chains either jump to the same vertex z, i.e., Xt+1 = Yt+1 = z (if the

3-cycle is xyzx) or stay at vertex y (if the 3-cycle is yxzy). Similar arguments

can be made for the case of Xt = Yt = x.

When there is restart and if Xt = Yt, we choose Xt+1 randomly according

to P and then choose Yt+1 uniformly at random such that Xt+1 6= Yt+1. By585

construction, Xt+1 6= Yt+1 always when Xt 6= Yt. Although the two transitions

are correlated, each of the two CMCs are still using their state transitions in-

dependently. As such, we have a coupled CMCs {(Xt, Yt) : t ∈ N0} such that

their marginal distributions are π and ψα(s).

We now use the coupling argument (Theorem 3 in [35]) for our coupling

construction. Let dt = P(Xt 6= Yt). Since X0 = Y0, P(X0 6= Y0) = 0. Then,

dt+1 = P(Xt+1 6= Yt+1)

= P(Xt+1 6= Yt+1 | no restart at t+ 1)P(no restart)

+ P(Xt+1 6= Yt+1 | restart at t+ 1)P(restart)

= (0)(1− α) + α
(

P(Xt+1 6= Yt+1, Xt 6= Yt | restart at t+ 1)
)

+ α
(

P(Xt+1 6= Yt+1, Xt = Yt | restart at t+ 1)
)

≤ α
(

P(Xt 6= Yt) + P(Xt+1 6= Yt+1, Xt = Yt | restart at t+ 1)
)

= α
(

dt + P(Xt+1 6= Yt+1, Xt = Yt | restart at t+ 1)
)

.

Since we start with d0 = 0 and taking dα = maxP(Xt+1 6= Yt+1, Xt =590

Yt | restart at t+1) with a slight abuse of notation, as we iterate the bound on

dt+1 ≤ α(dt+dα), we obtain d1 = (α)dα, d2 = (α+α2)dα, d3 = (α+α2+α3)dα,

. . . , which follows a geometric progression. We can asymptotically bound

d∞ ≤ 1
1−αdα. Furthermore, since (X∞, Y∞) is drawn from the stationary dis-

tribution of the correlated chains, the marginal distributions of X∞ and Y∞ are595

π and ψα(s), respectively. As such, P(X∞ 6= Y∞) = d∞ ≤ 1
1−αdα.

We apply the Coupling Lemma (Lemma 2.19 in [46]) to obtain the variation
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distance between the two marginal distributions

||π −ψα(s)||TV =
1

2
||π −ψα(s)||1

= minP(X 6= Y )

to obtain the bound ||π −ψα(s)||1 ≤ 2P(X∞ 6= Y∞) = 2d∞ ≤ 2
1−αdα ≤ 2

1−α .

Where there is no restart, the CMC is a copy of {Xt : t ∈ N0}. Let {Ỹt :

t ∈ N0} denote such a CMC. Starting with X0 = Ỹ0 that is drawn randomly

from π, there is an optimal coupling {(Xt, Ỹt) : t ∈ N0} whereby Xt+1 = Ỹt+1600

always. In this case, X0 = Ỹ0, X1 = Ỹ1, X2 = Ỹ2, . . . whereby ||π−ψ0(s)||TV =

minP(X∞, Y∞) = 0, which implies that ψ0(s) = π. �

Corollary 8. Let DC(VS(n)) be the set of irreducible coevolutionary digraphs.

Let any DC(VS(n)) ∈ DC(VS(n)) be an irreducible coevolutionary digraph so

that the vertices v1, v2, v3, . . . , vn are ordered according to the score sequence605

d−T (v1) ≤ d−T (v2) ≤ d−T (v3) ≤ · · · ≤ d−T (vn), where d−T (vi) is the in-degree of

vertex vi. Assume the digraph having the following structure:

1. The set of vertices VS(n) can be partitioned into three disjoint subsets with

{v1} ∪ VS(n−2) ∪ {vn} = VS(n), where VS(n−2) = VS(n)\{v1, vn}, {v1} ∩

V m = ∅, and {vn} ∩ VS(n−2) = ∅.610

2. {v1} 7→ VS(n−2) 7→ {vn}. That is, v1 → vi for all vi ∈ VS(n−2) and that

vi → vn for all vi ∈ VS(n−2).

3. v1 → vi → vn → v1 forms a 3-cycle for all vi ∈ VS(n−2).

For a coupled CMCs {(Xt, Yt) : t ∈ N0} operating on DC(VS(n)), there is the

following bound in distance

||π −ψα(s)||1 ≤
2

1− α

(

1−
(

πvn
−

1

n

)

)

.

Proof: Since X0 = Y0 is drawn randomly from π and that (X∞, Y∞) is drawn

from the stationary distribution of the correlated chains, we can bound d∞ as

follows

d∞ ≤
1

1− α
P(X∞ 6= Y∞)
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≤
1

1− α

(

1− P(X∞ = Y∞)
)

≤
1

1− α

(

1−
∑

vi∈VS(n)

P
(

(X∞ = vi) ∧ (Y∞ = vi)
)

)

≤
1

1− α

(

1−
∑

vi∈VS(n)

min{P(X∞ = vi),P(Y∞ = vi)}

)

≤
1

1− α

(

1−min{P(X∞ = vn),P(Y∞ = vn)}
)

≤
1

1− α

(

1−
(

πvn
−

1

n

)

)

.

Our argument proceeds as follows. By construction, (X∞ = Y∞) occurs when

there is no restart. (X∞, Y∞) is drawn from the stationary distribution of the615

correlated chains with the marginal distributions of X∞ and Y∞ are π and

ψα(s), respectively. We can use the bound P
(

(X∞ = vi) ∧ (Y∞ = vi)
)

≤

min{P(X∞ = vi),P(Y∞ = vi)} for the third inequality [45]. In this manner,

P(X∞ = vi) = πvi
and P(Y∞ = vi) = ψvi

for all vi ∈ VS(n). For the fifth

inequality, given that probabilities range in [0, 1], we could choose the vertex that620

the CMC would most often jump to (i.e., vn) as the upper bound. For the sixth

inequality, min{πvn
, ψvn

} = ψvn
but we can bound the term 1−min{πvn

, ψvn
}

by noting that πvn
− 1

n ≤ ψvn
≤ πvn

.

Since X∞ is drawn from the stationary distribution π, we need to show that

πvi
≤ πv1

≤ πvn
for all vi ∈ VS(n−2). We use a digraph-theoretic argument. We625

can assume that the subdigraph DC(VS(n−2)) induced by VS(n−2) is transitive.

We apply the Canonical Decomposition of quasi-transitive digraphs (Theorem

4.8.5 [17]) on DC(VS(n), A) and obtain a strong semicomplete digraph (in this

case, a digraph of 3-cycle) u1 → u2 → u3 → u1 whereby u1 = v1, u3 = vn, and

u2 is the contraction of VS(n−2). We can then view the CMC as a random walk630

that is jumping clockwise along the direction of u1 → u2 → u3 → u1.

Given that the score sequence d−T (v1) ≤ d−T (v2) ≤ d−T (v3) ≤ · · · ≤ d−T (vn)

of DC(VS(n)) orders the vertices according to its in-degrees, a random walk

on this digraph will spend most of the fraction of its time at vn. Note that

although d−T (vn) = d−T (vn−1) in the case DC(VS(n−2)) is transitive, vn−1 is635

40



oriented towards vn. Furthermore, although for any vi ∈ VS(n−2)\{vn−1}, there

could be equal probability (for a standard random walk) of jumping towards

vn−1 and vn, the relation vn−1 → vn ensures that any time the random walk

jumps to vn−1 it must then jump to vn. At other times, the random walk could

jump directly to vn so that on average the random walk spends more fraction of640

its time in vn. We also note that since vn is oriented towards v1 only, every time

the random walk jumps to vn it will then jump to v1, in which case πv1
= πvn

.

As such, πvi
≤ πv1

= πvn
for all vi ∈ VS(n−2). �

Note: For an irreducible coevolutionary digraphDC(VS(n)) having structures

described in Corollary 8, it is possible to compute πvn
directly without having645

to compute the full π. When DC(VS(n)) is pancyclic with the least number of

3-cycles, we can calculate πvn
= πv1

= 1
2 (1−

∑n−1
i=2 πi) using only hitting times.

Note DC(VS(n−2)) is transitive. We calculate 1−
∑n−1

i=2 πi as the fraction of time

on average the random walk spends jumping along the subdigraph DC(VS(n−2))

as it cycles along u1 → u2 → u3 → u1. More precisely, it is the average of the650

expected hitting time to vn over starting vertices vi ∈ VS(n−2).

The subdigraph induced by VS(n−2) ∪ {vn} is transitive and that {v1} 7→

VS(n−2). So, we can treat the random walk on the subdigraph as an absorbing

CMC with transient states vi ∈ VS(n−2) and a single absorbing state vn. Let

Evi
(τvn

) be the expected hitting time starting from vi to vn. We relabel the

vertices as xm, m = n− i, i = 1, 2, 3, . . . , n− 2 (e.g., vertex vn−1 is now x1). It

can be shown that Evi
(τvn

) = Exm
(τvn

) =
∑m

j=1
1
j . In this case, we have

Evn−1
(τvn

) = Ex1
(τvn

) = 1

Evn−2
(τvn

) = Ex2
(τvn

) = 1 +
1

2
...

Ev2
(τvn

) = Exn−2
(τvn

) = 1 +
1

2
+

1

3
+ · · ·+

1

n− 2
.

Let E(ηVS(n−2)
) = 1

n−2

∑n−2
m=1 Exm

(τvn
) be the fraction of time on average the

random walk spends in VS(n−2) is as it cycles through u1 → u2 → u3 → u1.

E(ηv1
) = 1 and E(ηvn

) = 1. So the total average time would be 2+E(ηVS(n−2)
).
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We can calculate 1−
∑n−1

i=2 πi using these fraction of times as the random walk

cycles through u1 → u2 → u3 → u1 as follows

πvn
= πv1

=
1

2

(

1−
E(ηVS(n−2)

)

2 + E(ηVS(n−2)
)

)

. (A.9)
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