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Abstract 

Making predictions about future events relies on interpreting streams of information that may 

initially appear incomprehensible. This skill relies on extracting regular patterns in space and 

time by mere exposure to the environment (i.e. without explicit feedback). Yet, we know 

little about the functional brain networks that mediate this type of statistical learning. Here, 

we test whether changes in the processing and connectivity of functional brain networks due 

to training relate to our ability to learn temporal regularities. By combining behavioral 

training and functional brain connectivity analysis, we demonstrate that individuals adapt to 

the environment’s statistics as they change over time from simple repetition to probabilistic 

combinations. Further, we show that individual learning of temporal structures relates to 

response strategy. Our fMRI results demonstrate that learning-dependent changes in fMRI 

activation within and functional connectivity between brain networks relate to individual 

variability in strategy. In particular, extracting the exact sequence statistics (i.e. matching) 

relates to changes in brain networks known to be involved in memory and stimulus-response 

associations, while selecting the most probable outcomes in a given context (i.e. maximizing) 

relates to changes in frontal and striatal networks. Thus, our findings provide evidence that 

dissociable brain networks mediate individual ability in learning behaviorally-relevant 

statistics. 

 

Keywords: brain plasticity, fMRI, functional network connectivity, individual differences, 

statistical learning. 
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1. Introduction  

Successful interactions in a new environment entail interpreting initially incomprehensible 

streams of information and making predictions about upcoming events. The brain is thought 

to succeed in this challenge by finding regular patterns and meaningful structures that help us 

to predict and prepare for future actions. This skill is thought to rely on our ability to extract 

spatial and temporal regularities, often with minimal explicit feedback (Perruchet and Pacton, 

2006; Aslin and Newport, 2012). For example, previous behavioral studies have shown that 

structured patterns become familiar after simple exposure to items (shapes, tones or syllables) 

that co-occur spatially or follow in a temporal sequence (Saffran et al., 1996; Saffran et al., 

1999; Chun, 2000; Fiser and Aslin, 2002; Turk-Browne et al., 2005). 

Functional imaging studies have identified key brain regions involved in the learning 

of statistical regularities. In particular, striatal and hippocampal regions have been implicated 

in the learning of temporal sequences (Rauch et al., 1997; Schendan et al., 2003; Aizenstein 

et al., 2004; Gheysen et al., 2011; Rose et al., 2011; Hsieh et al., 2014). Further, the medial 

temporal cortex has been implicated in learning of probabilistic associations (Turk-Browne et 

al., 2010; Schapiro et al., 2012). However, we know little about the functional brain networks 

and their interactions that mediate statistical learning. 

Recent functional connectivity studies provide accumulating evidence for learning-

dependent changes in human brain networks due to training in a range of tasks including 

visual perceptual learning (Lewis et al., 2009; Baldassarre et al., 2012), motor learning (Sun 

et al., 2007; Bassett et al., 2011; Ma et al., 2011), auditory learning (Ventura-Campos et al., 

2013) and language learning (Veroude et al., 2010). These studies typically involve 

prolonged training with feedback. Here we ask whether mere exposure to streams of 

information (i.e. without trial-by-trial feedback) changes processing in functional brain 

networks that mediate our ability to extract statistical regularities. 
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We combine behavioral measurements and multi-session fMRI (before and after 

training) to investigate processing in functional brain networks that mediate statistical 

learning of temporal structures. Event structures in the natural environment typically contain 

regularities at different scales from simple repetition to probabilistic combinations. To 

investigate the brain networks involved in extracting such structures unencumbered by past 

experience, we generated temporal sequences based on Markov models of different orders 

(i.e. context lengths of 0 or 1 previous item) (Figure 1). We exposed participants to 

sequences of unfamiliar symbols and varied the sequence structure unbeknownst to the 

participants by increasing the context length. To facilitate learning, sequences were first 

determined by frequency statistics (i.e. occurrence probability per symbol), and then by 

context-based statistics (i.e. the probability of a given symbol appearing depends on the 

preceding symbol). Participants performed a prediction task, indicating which symbol they 

expected to appear next in the sequence. Following previous statistical learning paradigms, 

participants were exposed to the sequences without trial-by-trial feedback. We tested for 

improvement in the prediction task and fMRI activation changes in functional networks due 

to training (i.e. before vs. after training on frequency and context-based statistics). 

Further, we asked whether learning-dependent changes in functional brain networks 

relate to the participants’ ability to learn temporal structures. Previous work (Shanks et al., 

2002; Erev and Barron, 2005; Lagnado et al., 2006; Wozny et al., 2010; Eckstein et al., 2013; 

Acerbi et al., 2014; Murray et al., 2015) has highlighted the role of strategies in probabilistic 

learning and decision making and suggests that previous experience shapes the selection of 

response strategies (Rieskamp and Otto, 2006; Fulvio et al., 2014). That is, observers are 

shown to match their choices stochastically according to the underlying input statistics or 

maximize their reward by selecting the most probable positively rewarded outcomes. Here, 
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we tested whether learning-dependent changes in functional brain networks relate to the 

participants’ response strategy when learning frequency and context-based statistics. 

 Our behavioral results show that individuals adapt to the environment’s statistics; that 

is they are able to extract predictive structures that change over time. Further, we show that 

individual learning of structures relates to response strategy; that is individuals differed in 

their response strategies, favoring probability maximization (i.e. extracting the most probable 

outcome in a given context) or matching the exact sequence statistics. We used this 

variability in response strategy to interrogate fMRI activity in functional brain networks. Our 

results demonstrate that distinct brain networks mediate these two strategies. In particular, 

learning-dependent fMRI changes in functional brain networks relate to individual variability 

in response strategy: matching relates to fMRI activation changes in brain networks involved 

in memory and stimulus-response associations (including precuneus, sensorimotor, middle 

temporal and the right central executive), while maximizing relates to activation changes in 

frontal and striatal brain networks (including basal ganglia and the left central executive). 

Further, increased functional connectivity due to training between networks involved in 

memory and stimulus-response associations relates to matching, while between frontal and 

striatal networks relates to maximization. Thus, our findings provide evidence for distinct 

functional brain networks that mediate individual ability to extract behaviorally-relevant 

statistics in variable environments. 

Figure 1 

 

2. Material and Methods 

2.1 Observers 

Twenty-three participants (mean age = 21.8 years) were tested in multiple scanning and 

behavioral training sessions. The data from four participants were excluded from further 
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imaging analysis due to excessive head movement or signal variance. A single run from six 

of the remaining nineteen participants was also removed due to excessive head movement or 

signal variance. All participants were naive to the aim of the study, had normal or corrected-

to-normal vision and signed an informed consent. This study was conducted in the School of 

Psychology, Birmingham and was approved by the University of Birmingham Ethics 

Committee. 

2.2 Stimuli 

Stimuli comprised four symbols chosen from Ndjuká syllabary (Figure 1a). These symbols 

were highly discriminable from each other and were unfamiliar to the participants. Each 

symbol subtended 8.5o of visual angle and was presented in black on a mid-grey background. 

Experiments were controlled using Matlab and the Psychophysics toolbox 3 (Brainard, 1997; 

Pelli, 1997). For the behavioral training sessions, stimuli were presented on a 21-inch CRT 

monitor (ViewSonic P225f 1280 x 1024 pixel, 85 Hz frame rate) at a distance of 45 cm. For 

the pre and post-training fMRI scans, stimuli were presented using a projector and a mirror 

set-up (1280 x 1024 pixel, 60 Hz frame rate) at viewing distance of 67.5 cm. The physical 

size of the stimuli was adjusted so that angular size was constant during behavioral and 

scanning sessions. 

2.3 Sequence design 

To generate probabilistic sequences that differed in their structure, we used a temporal 

Markov model and manipulated the memory order of the sequence, which we refer to as the 

context length. The Markov model consists of a series of symbols, where the symbol at time i 

is determined probabilistically by the previous ‘k’ symbols. We refer to the symbol presented 

at time i, s(i), as the target and to the preceding k-tuple of symbols  (s(i-1) , s(i-2), …, s(i-k)) 

as the context. The value of ‘k’ is the order or level of the sequence: 

P (s(i) | s(i-1), s(i-2), … , s(1)) = P (s(i) | s(i-1), s(i-2), … , s(i-k)), k<i 
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 In our study, we used two levels of memory length; for k=0,1. The simplest k=0th 

order model is a memory-less source. This generates, at each time point i, a symbol according 

to symbol probability P(s), without taking account of the previously generated symbols. The 

order k=1 Markov model generates symbol s(i) at each time i conditional on the previously 

generated symbol s(i-1). This introduces a memory in the sequence; that is, the probability of 

a particular symbol at time i strongly depends on the preceding symbol s(i-1). Unconditional 

symbol probabilities P(s(i)) for the case k=0 are replaced with conditional ones, P(s(i)|s(i-1)). 

 At each time point, the symbol that follows a given context is determined 

probabilistically, making the Markov sequences stochastic. The underlying Markov model 

can be represented through the associated context-conditional target probabilities. We used 4 

symbols that we refer to as stimuli A, B, C and D. The correspondence between stimuli and 

symbols was counterbalanced across participants. 

 For level-0, the Markov model was based on the probability of symbol occurrence: 

one symbol had a high probability of occurrence, one low probability, while the remaining 

two symbols appeared rarely (Figure 1b). For example, the probabilities of occurrence for 

the four symbols A, B, C, and D were 0.18, 0.72, 0.05 and 0.05, respectively. Presentation of 

a given symbol was independent of the items that preceded it. For level-1, the target 

depended on the immediately preceding stimulus (Figure 1b). Given a context (the last seen 

symbol), only one of two targets could follow; one had a high probability of being presented 

and the other a low probability (e.g., 80% vs. 20%). For example, when Symbol A was 

presented, only symbols B or C were allowed to follow, and B had a higher probability of 

occurrence than C. 

 To test whether participants adapt to changes in the temporal structure, we ensured 

that the sequences across levels were matched for properties other than context-length. That 

is, sequences across levels were matched for the number of symbols presented (i.e. all four 
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symbols were presented for both level-0 and level-1 sequences). To ensure that for level-1 

participants learned context-target contingences rather than individual symbols, all symbols 

in level-1 were presented with equal frequency (i.e. marginal probability of each symbol was 

0.25). These constraints resulted in differences in the probability distributions between level-

0 and level-1. However, we designed the stochastic sources from which the sequences were 

generated so that the context-conditional uncertainty remained highly similar across levels. In 

particular, for the zero-order source, only two symbols were likely to occur most of the time; 

the remaining two symbols had very low probability (0.05); this was introduced to ensure that 

there was no difference in the number of symbols presented across levels. Of the two 

dominant symbols, one was more probable (probability 0.72) than the other (probability 

0.18). This structure is preserved in Markov chain of order 1, where conditional on the 

previous symbol, only two symbols were allowed to follow, one with higher probability 

(0.80) than the other (0.20). This ensures that the structure of the generated sequences across 

levels differed predominantly in memory order (i.e. context length) rather than context-

conditional probability. 

2.4 Procedure 

Participants were initially familiarized with the task through a brief practice session (8 

minutes) with random sequences (i.e. all four symbols were presented with equal probability 

25% in a random order). Following this, participants took part in multiple behavioral training 

and fMRI scanning sessions that were conducted on different days. Participants were trained 

with structured sequences and tested with both structured and random sequences to ensure 

that training was specific to the trained sequences. 

 In the first scanning session, participants were presented with zero- and first-order 

sequences and random sequences. Participants were then trained with zero-order sequences, 

and subsequently with first-order sequences. For each level, participants completed a 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

minimum of 3 and a maximum of 5 training sessions (840-1400 trials). Training at each level 

ended when participants reached plateau performance (i.e. performance did not change 

significantly for two sessions). A post-training scanning session followed training per level 

(i.e. on the following day after completion of training) during which participants were 

presented with structured sequences determined by the statistics of the trained level and 

random sequences (90 trials each). The mean time interval (±standard deviation) between the 

pre-training and the post-training test sessions was 21.6 (±3.3) days. 

2.5 Psychophysical training 

Each training session comprised five blocks of structured sequences (56 trials per block) and 

lasted one hour. To ensure that sequences in each block were representative of the Markov 

model order per level, we generated 10,000 Markov sequences per level comprising 672 

stimuli per sequence. We then estimated the Kullback-Leibler divergence (KL divergence) 

between each example sequence and the generating source. In particular, for level-0 

sequences this was defined as: 

�� = ∑ ����	
���	��
	������������������������� �, 

and for level-1 sequences this was defined as: 

�� = ∑ ����������	� !��"� ∑ ����
��|��������	��
	���������|$%&��'����������|$%&��'�������� �, 

where P( ) refers to probabilities or conditional probabilities derived from the presented 

sequences, and Q( ) refers to those specified by the source. We selected fifty sequences with 

the lowest KL divergence (i.e. these sequences matched closely the Markov model per level). 

The sequences presented to the participants during the experiments were selected randomly 

from this sequence set. 

 For each trial, a sequence of 8-14 stimuli appeared in the center of the screen, one at a 

time in a continuous stream, each for 300ms followed by a central white fixation dot (ISI) for 

500ms (Figure 1a). This variable trial length ensured that participants maintained attention 
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during the whole trial. Each block comprised equal number of trials with the same number of 

stimuli. The end of each trial was indicated by a red dot cue that was presented for 500ms. 

Following this, all four symbols were shown in a 2x2 grid. The positions of test stimuli were 

randomized from trial to trial. Participants were asked to indicate which symbol they 

expected to appear following the preceding sequence by pressing a key corresponding to the 

location of the predicted symbol. Participants learned a stimulus-key mapping during the 

familiarization phase: key ‘8’, ‘9’, ‘5’ and ‘6’ in the number pad corresponded to the four 

positions of the test stimuli - upper left, upper right, lower left and lower right, respectively. 

 After the participant’s response, a white circle appeared on the selected item for 

300ms to indicate the participant’s choice, followed by a fixation dot for 150ms (ITI) before 

the start of the next trial. If no response was made within 2s, a null response was recorded 

and the next trial started. Participants were given feedback (i.e. score in the form of 

Performance Index, see Behavioral analysis) at the end of each block –rather than per-trial 

error feedback– that motivated them to continue with training. 

2.6 Scanning sessions 

The pre-training scanning session (Pre) included six runs (i.e. three runs per level) the order 

of which was randomized across participants. Scanning sessions after training per level 

(denoted as Post-0, Post-1) included nine runs of structured sequences determined by the 

same statistics as the corresponding trained level and random sequences. Each run comprised 

five blocks of structured and five blocks of random sequences presented in a random 

counterbalanced order (2 trials per blocks; a total of 10 structured and 10 random trials per 

run), with an additional two 16s fixation blocks, one at the beginning and one at the end of 

each run. The trial design was adjusted to afford modeling of fMRI signals within the 

scanning timing constraints. In particular, each trial comprised a sequence of 10 stimuli that 

were presented for 250ms each, separated by a blank interval during which a white fixation 
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dot was presented for 250ms. Following the sequence, a response cue (central red dot) 

appeared on the screen for 4s before the test display (comprising four test stimuli) appeared 

for 1.5s. Participants were asked to indicate which symbol they expected to appear following 

the preceding sequence by pressing a key corresponding to the location of the predicted 

symbol. A white fixation was then presented for 5.5s before the start of the next trial. In 

contrast to the training sessions, no feedback was given during scanning. 

2.7 fMRI data acquisition 

The experiments were conducted at the Birmingham University Imaging Centre using a 3T 

Philips Achieva MRI scanner. T2*-weighted functional and T1-weighted anatomical (175 

slices; 1×1×1 mm3 resolution) data were collected with a 32-channel head coil. Echo planar 

imaging (EPI) data (gradient echo-pulse sequences) were acquired from 32 slices (whole 

brain coverage; duration=6min; TR=2s; TE=35 ms; 2.5×2.5×4 mm3 resolution; SENSE). 

2.8 Behavioral analysis 

2.8.1 Performance index 

We assessed participant responses in a probabilistic manner. We computed a performance 

index per context that quantifies the minimum overlap (min: minimum) between the 

distribution of participant responses and the distribution of presented targets estimated across 

56 trials per block by: 

PI(context) = ∑target min (Presp(target|context), Ppres(target|context)) 

where the sum is over targets from the symbol set A, B, C and D. 

 The overall performance index is then computed as the average of the performance 

indices across contexts, PI(context), weighted by the corresponding stationary context 

probabilities: 

PI = ∑context PI(context) · P(context) 
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 To compare across different levels, we defined a normalized PI measure that 

quantifies participant performance relative to random guessing. We computed a random 

guess baseline; i.e. performance index PIrand that reflects participant responses to targets with 

a) equal probability of 25% for each target per trial for level-0 (PIrand = 0.53); b) equal 

probability for each target for a given context for level-1 (PIrand = 0.45). To correct for 

differences in random-guess baselines across levels, we subtracted the random guess baseline 

from the performance index (PInormalized = PI − PIrand). 

2.8.2 Strategy choice and strategy index 

To quantify each participant’s strategy, we compared individual participant response 

distributions (response-based model) to two baseline models: (i) probability matching, where 

probabilistic distributions are derived from the Markov models that generated the presented 

sequences (Model-matching) and (ii) a probability maximization model, where only the 

single most likely outcome is allowed for each context (Model-maximization). We used 

Kullback-Leiber (KL) divergence to compare the response distribution to each of these two 

models. KL is defined as follows: 

�� = ( )���	
���	��
	�*��������
+��������

������
� 

for level-0 model, and 

�� = ( )���������	
� !��"�

( )���	
��|��������	��
	�*�������|� !��"��
+�������|� !��"��

������
� 

for level-1 model, where R( ) and M( ) denote the probability distribution or conditional 

probability distribution derived from the human responses and the models (i.e. probability 

matching or maximization) respectively, across all the conditions. 

 We quantified the difference between the KL divergence from the response-based 

model to Model-matching and the KL divergence from the response-based model to Model-

maximization. We refer to this quantity as strategy choice indicated by ∆KL(Model-
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maximization, Model-matching). We computed strategy choice per training block, resulting 

in a strategy curve across training for each individual participant. We then derived an 

individual strategy index by calculating the integral of each participant’s strategy curve and 

subtracting it from the integral of the exact matching curve, as defined by Model-matching 

across training. We defined the integral curve difference (ICD) between individual strategy 

and exact matching as the individual strategy index. Negative strategy index indicates a 

strategy closer to matching, while positive index indicate a strategy closer to maximization. 

2.9 fMRI data analysis 

2.9.1 Data pre-processing 

We pre-processed the fMRI data in Matlab R2013a and SPM12 software package 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) following the pipeline described in 

(Taylor et al., 2015).  We first processed the T1 weighted anatomical images by applying 

brain extraction and segmentation. From the segmented T1 we created a white matter (WM) 

mask and a cerebrospinal fluid (CSF) mask. For each fMRI run, we corrected the EPI data for 

slice scan timing (i.e. to remove time shifts in slice acquisition) and motion (least squares 

correction). We co-registered each run to the T1 image and calculated the mean CSF and 

WM signal per volume. We then aligned the T1 image to MNI space (affine transformation) 

and applied the same transformation to the EPI data. Finally, we resliced the aligned EPI data 

to 3 x 3 x 4 mm3 resolution and applied spatial smoothing with a 5mm isotropic FWHM 

Gaussian kernel. 

2.9.2 Independent Component Analysis (ICA) 

We used group spatial ICA (GICA) (McKeown et al., 1998; Haberecht et al., 2001; Calhoun 

et al., 2009; Calhoun and Adali, 2012) to extract participant- and session-specific 

hemodynamic source locations using the Group ICA fMRI Toolbox (GIFT) 

(http://mialab.mrn.org/software/gift/). Pre-training sessions comprised of 3 runs, whereas 
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post-training sessions comprised of 9 runs. To account for the difference in number of runs 

between sessions, we matched the post-training session runs to the pre-training session in 

their acquisition order and therefore, we included the matched 3 runs for subsequent analyses. 

Following pre-training processing of each run, we performed intensity normalization and 

dimensionality reduction. We used the Minimum Description Length criteria (MDL) 

(Rissanen, 1978) to estimate the dimensionality and determine the number of independent 

components. We used a two-level dimensionality reduction procedure using PCA; first at the 

participant level and then at the group level. The ICA estimation was run 20 times and the 

component stability was estimated using ICASSO (Himberg et al., 2004). 

 This procedure resulted in 28 independent components. We generated participant- and 

session-specific spatial maps and timecourses for each component using GICA3 back 

reconstruction. Participant spatial maps were not scaled and, as intensity normalization was 

performed prior to ICA, they represent percent signal change. For further analysis, we 

extracted the timecourse per participant per component and regressed out the six motion 

parameters (translation and rotation) as well as the mean WM and CSF signal. We then 

removed slow drifts by applying linear detrending on the regressed timecourse (Van Dijk et 

al., 2010). 

2.9.3 Component selection 

We used a quantitative method, as described in (Stevens et al., 2007), to remove components 

of non-neuronal origin. We first converted each component’s spatial map to a z-map and 

thresholded it at z=1.96 to calculate its spatial correlation with grey matter (GM) and CSF 

probabilistic maps (as extracted from the MNI template). We rejected any component with a 

spatial correlation of R2 >0.025 with CSF or WM and of R2 <0.025 with GM. To supplement 

this method, we visually inspected all rejected components to verify that they were not of 

neuronal origin. This method resulted in 13 rejected components: 7 components had a high 
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spatial correlation with CSF, 1 component had a high correlation with WM and 5 components 

had a low correlation with GM. 

 We labeled the selected components based on spatial correlation with known resting-

state networks, as the brain’s functional architecture at rest has been shown to relate to task-

based networks (Fox and Raichle, 2007; Smith et al., 2009). We correlated the thresholded 

spatial maps with network templates (Allen et al., 2011) and labeled each component based 

on its highest correlation value to the network templates. In further analysis, we used only the 

selected components. To further denote the areas included in each selected component, we 

created participant-specific maps per component by averaging the maps across runs and 

sessions per participant. We then generated a group map based on one sample t-test on the 

participant average map (FWER corrected at p<0.005). We visualized the significant clusters 

in xjView toolbox (http://www.alivelearn.net/xjview) and labeled them based on their peak 

voxels (Table 1). 

2.9.4 GLM-based analysis  

We generated a GLM event-related (epoch) design and ran a multiple regression analysis on 

each component’s timecourse (treated for nuisance variables: 6-motion, CSF and WM) per 

participant per run. The GLM design was composed of random and structured trial blocks 

convolved with the hemodynamic response function. The output of the regression is a set of β 

weights (i.e. parameter estimates) for the task conditions (random, structured sequences); 

where the β weights represent the degree to which the component timecourse is modulated by 

each task condition. We then averaged the β weights of each task condition across runs 

resulting in a single value for each condition per participant per component per session. 

 To test whether component activation changes in relation to individual behavior (i.e. 

strategy), we correlated strategy for frequency (level-0) and context-based (level-1) statistics 

with change of β weight (i.e. post- minus pre-training) per component, separately for each 
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task condition (random, structured). We used the Robust Correlation Toolbox (Pernet et al., 

2013) and Pearson’s skipped correlation to account for potential outliers. We accepted as 

significant the correlations where the bootstrapped 95% confidence interval (CI) after 1000 

permutations doesn’t cross the zero origin. 

2.9.5 Functional Network Connectivity (FNC) 

To investigate the functional interaction of the networks identified in the analysis of temporal 

dynamics, we calculated the between network connectivity of these components (Jafri et al., 

2008). We defined as FNC the correlation of each component’s timecourse (after nuisance 

regression and detrending) with every other component’s timecourse, per participant. We 

converted the correlation coefficients to z-scores (Fisher z-transform) and averaged the 

values across runs for each pair of components; deriving one connectivity value per 

participant per session. We then correlated the change in average z-score (post- minus pre-

training) with strategy for frequency (level-0) and context-based (level-1) statistics using the 

Robust Correlation method. 

 

3. Results 

3.1 Behavioral performance 

Previous studies have compared learning of different spatiotemporal contingencies in 

separate experiments across different participant groups (Fiser and Aslin, 2002; Fiser and 

Aslin, 2005). Here, to investigate whether individuals extract changes in structure, we 

presented the same participants with sequences that changed in structure unbeknownst to 

them (Figure 1a). We parameterized sequence structure based on the memory-order of the 

Markov models used to generate the sequences (see 2.3); that is, the degree to which the 

presentation of a symbol depended on the history of previously presented symbols (Figure 

1b). We first presented participants with simple zero-order sequences (level-0) followed by 
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more complex first-order sequences (level-1), as previous work has shown that temporal 

dependencies are more difficult to learn as their length increases (van den Bos and Poletiek, 

2008) and training with simple dependencies may facilitate learning of more complex 

contingencies (Antoniou et al., 2016). Zero-order sequences (level-0) were context-less; that 

is, the presentation of each symbol depended only on the probability of occurrence of each 

symbol. For first-order sequences (level-1), the presentation of a particular symbol was 

conditionally dependent on the previously presented symbol (i.e. context length of one). 

 As the sequences we employed were probabilistic, we developed a probabilistic 

measure to assess participants’ performance in the prediction task. Specifically, we computed 

a performance index (PI) that indicates how closely the probability distribution of the 

participant responses matched the probability distribution of the presented symbols. This is 

preferable to a simple measure of accuracy because the probabilistic nature of the sequences 

means that the ‘correct’ upcoming symbol is not uniquely specified; thus, designating a 

particular choice as correct or incorrect is often arbitrary. 

 Comparing normalized performance (i.e. after subtracting performance based on 

random guessing) before and after training per level (Figure 2a) showed that participants 

improved substantially in learning probabilistic structures (i.e. mean improvement higher 

than 20% for all levels). A two-way repeated measures ANOVA with Session (Pre, Post) and 

Level (level-0, level-1) showed a significant main effect of Session (F(1,18)=58.7, p<0.001), 

but no significant effect of Level (F(1,18)=0.6, p=0.459) nor a significant interaction 

(F(1,18)=0.6, p=0.459), indicating that participants improved similarly at both levels through 

training. Further, we asked whether these learning effects were specific to the trained 

structured sequences. We contrasted performance on structured vs. random sequences before 

and after training sessions. A repeated-measures ANOVA showed a significant interaction of 

Session (Pre, Post) and Sequence type (structured, random) for level-0 (F(1,18)=20.5, 
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p<0.001) and level-1 (F(1,18)=58.6, p<0.001), suggesting that learning improvement was 

specific to the structured sequences. 

3.2 Response strategies: matching vs. maximization 

Previous work (Shanks et al., 2002; Lagnado et al., 2006; Rieskamp and Otto, 2006; Eckstein 

et al., 2013; Acerbi et al., 2014; Fulvio et al., 2014; Murray et al., 2015) on probabilistic 

learning and decision making has proposed that individuals use two possible response 

strategies when making a choice: matching vs. maximization. Observers have been shown to 

either match their choices stochastically according to the underlying input statistics or to 

maximize their reward by selecting the most probable positively rewarded outcomes. In the 

context of our task, as the Markov models that generated stimulus sequences were stochastic, 

participants needed to learn the probabilities of different outcomes to succeed in the 

prediction task. It is possible that participants used probability maximization whereby they 

always select the most probable outcome in a particular context. Alternatively, participants 

might learn the relative probabilities of each symbol (e.g. p(A)=0.18; p(B)=0.72, p(C)=0.05; 

p(D)=0.05) and respond so as to reproduce this distribution, a strategy referred to as 

probability matching. 

 To quantify participants’ strategies across training, we computed a strategy index that 

indicates each participant’s preference (on a continuous scale) for responding using 

probability matching vs. maximization (Figure 2b). Figures 2b, 2c indicate variability in 

strategy index across participants. Comparing individual strategy across levels showed 

significantly higher values for level-1 compared to level-0 (t(18)=2.2, p=0.04), suggesting 

that participants adopted a strategy closer to maximization when learning context-based 

rather than frequency statistics (Figure 2c). Note, that this relationship was not confounded 

by differences in performance, as there were no significant correlations (level-0: r=0.34, 

p=0.19; level-1: r=0.04, p=0.88) between performance after training and strategy index. 
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 Further, we conducted two additional analyses to control for the possibility that the 

differences we observed in strategy index between levels may be confounded by differences 

in the probability distributions between levels (i.e. 72% vs. 80% probability for the most 

frequent target for level-0 vs. level-1) and PI. First, we observed significantly higher strategy 

index for level-1 compared to level-0 (t(18)=2.19, p=0.042) after scaling the strategy index in 

level-0 by 0.8/0.72 (i.e. the ratio of maximum PI for exact maximization for level-1 vs. level-

0). Second, strategy index remained higher for level-1 than level-0 (t(18)=2.36, p=0.030) 

after regressing out the post-training PI from strategy index per level. Thus, our result 

showing higher strategy index for level-1 than level-0 is unlikely to be confounded by 

differences in PI or the probability distributions between levels. 

Finally, participants were exposed to the sequences without trial-by-trial feedback, but 

were given block feedback about their performance that motivated them to continue with 

training. A control experiment during which the participants were not given any feedback 

showed similar results to our main experiment; that is, higher strategy index for level-1 than 

level-0, suggesting that differences in the strategy between levels could not be simply 

attributed to feedback. Taken together, these results suggest that participants adopt a strategy 

closer to maximization for learning higher–order sequences (i.e. context-based statistics) than 

simple frequency statistics. This is consistent with previous studies showing that participants 

adopt a strategy closer to matching when learning a simple probabilistic task in the absence 

of trial-by-trial feedback (Shanks et al., 2002). However, for more complex probabilistic 

tasks, participants weight their responses towards the most likely outcome (i.e. adopt a 

strategy closer to maximization) after training (Lagnado et al., 2006). 

Figure 2 

3.3 fMRI analysis: functional brain networks 
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To identify functional brain networks that mediate our ability to adapt to changes in temporal 

statistics, we performed fMRI on participants before and after training on each level with 

structured and random sequences. First, we decomposed the fMRI timecourse into 

functionally connected components (i.e. components comprising voxel clusters with 

correlated fMRI time course) using ICA and selected components of neuronal origin using a 

spatial correlation method with known brain networks (Allen et al., 2011) (Figure 3, Table 

1). We then tested whether learning-dependent changes in fMRI activation in these brain 

networks relate to individual strategy when learning frequency and context-based statistics. 

For each component we extracted a β weight across voxels for structured and random 

sequences per session (pre-, post-training). We correlated learning-dependent changes in 

fMRI signal (post-pre β weight) for structured sequences with individual strategy. Positive 

correlations indicate increased activation after training that relates to maximization, while 

negative correlations indicate increased activation that relates to matching, as negative 

strategy index indicates strategy towards matching. 

Figure 3, Table 1 

 First, we observed significant negative correlations between learning-dependent fMRI 

changes and strategy index in functional brain networks known to be involved in memory 

processes and stimulus-response associations. In particular, for learning frequency statistics 

(Figure 4a), we found significant negative correlations of fMRI activation change in the 

Precuneus (CP_20, peak activations in bilateral precuneus and cingulate; r=-0.70, CI=[-0.88, 

-0.48]), the Sensorimotor (CP_6, peak activations in bilateral precentral and postcentral gyri; 

r=-0.70, CI=[-0.90, -0.42]) and the Right Central Executive (CP_17, peak activations in right 

inferior parietal and right inferior frontal gyrus; r=-0.42, CI=[-0.73, -0.07]) networks with 

strategy. For learning context-based statistics (Figure 4b), we found significant negative 

correlations of fMRI activation change in the Precuneus (CP_20; r=-0.37, CI=[-0.68, -0.03]) 
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and the Middle Temporal (CP_26, peak activations in bilateral precuneus and middle 

temporal gyrus extending medially into parahippocampal cortex; r=-0.44, CI=[-0.74, -0.01]) 

networks with strategy. These results suggest that increased functional activation in these 

brain networks after training relates to matching the exact sequence statistics. This is 

consistent with the role of precuneus and cingulate in memory retrieval (Wagner et al., 2005; 

Cabeza et al., 2008; St. Jacques et al., 2011) in the context of episodic and working memory 

tasks (Nyberg et al., 2002). Further, sensorimotor areas have been implicated in the 

consolidation of stimulus-response associations, mainly at early stages of motor consolidation 

(Muellbacher et al., 2002). Similarly, the Right Central Executive Network has been 

implicated in the initial stages of learning (Seger et al., 2000). Thus, these networks 

contribute at the initial training on frequency statistics, while the Middle Temporal network 

contributes at later learning of context-based statistics, as this brain network has been 

implicated in episodic memory and mnemonic tasks involving longer memory length 

(Nyberg et al., 2002; Vincent et al., 2006; Cabeza et al., 2008). 

Figure 4 

In contrast, we observed significant positive correlations between learning-dependent 

fMRI changes and strategy in basal ganglia and the Left Central Executive Network. In 

particular, for learning frequency statistics, we found a significant positive correlation of 

fMRI activation change in the Basal Ganglia Network (CP_13, peak activation in bilateral 

caudate) with strategy (r=0.43, CI=[0.04, 0.72]) (Figure 5a), suggesting involvement of basal 

ganglia in learning by maximizing. This is consistent with previous work suggesting that 

basal ganglia is involved in the consolidation of the stimulus-response mapping (Albouy et 

al., 2008; Shohamy et al., 2008) and category learning (Ashby and Maddox, 2005; Seger and 

Cincotta, 2005). In particular, previous work on humans and animals emphasizes the role of 

the caudate in switching between strategies (Monchi et al., 2001; Cools et al., 2004; Seger 
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and Cincotta, 2005), and learning after a rule reversal (Cools et al., 2002; Pasupathy and 

Miller, 2005). For learning context-based statistics, we found a significant positive 

correlation of fMRI activation change in the Left Central Executive Network (CP_21, peak 

activations in left inferior parietal and left middle frontal gyrus) with strategy (r=0.63, 

CI=[0.29, 0.84]) (Figure 5b), suggesting that higher activation after training in this region 

relates to maximization. Executive networks have been implicated in holding and updating 

task rules (Ridderinkhof et al., 2004; Vincent et al., 2008; D’Ardenne et al., 2012). In 

particular, increased activation in the Left Central Executive Network has been shown after 

training in the context of category learning (Seger et al., 2000). This is consistent with our 

behavioral results showing that participants adopt a stronger maximization strategy during 

later training on context-based statistics.  

Figure 5 

 Finally, we tested whether our results were specific to the learned structured 

sequences. We computed fMRI activation for random sequences in brain networks that 

showed significant correlations with strategy for structured sequences. For frequency 

statistics, fMRI activation change in the Precuneus Network showed a significant negative 

correlation with strategy (r=-0.53, CI=[-0.81, -0.11]). For context-based statistics: a) 

activation change in the Middle Temporal Network (r=-0.59, CI=[-0.87, -0.14]) and the 

Precuneus Network (r=-0.57, CI=[-0.81, -0.25]) showed a significant negative correlation 

with strategy b) activation change in the Left Central Executive Network showed a 

significant positive correlation with strategy (r=0.61, CI=[0.25, 0.79]). To compare 

correlations for structured vs. random sequences, we used a Steiger z-score comparison (Lee 

and Preacher, 2013), for comparing of dependent correlations with a shared variable (i.e. 

strategy index). We found significantly higher negative correlations for structured vs. random 

trials in: a) Precuneus (z=-2.19, p=0.029), b) Right Central Executive (z=-2.43, p=0.015) and 
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c) Sensorimotor (z=-2.92, p=0.004) Networks. These results suggest differences in the 

processing of structured vs. random sequences primarily when participants learn by 

matching, as this strategy requires learning the exact sequence statistics that differ between 

these two sequence types. 

 

3.4 Functional Network Connectivity (FNC) 

Our analyses so far identified brain networks that show learning-dependent changes in 

functional processing that relate to individual strategy for learning temporal structure. Next, 

we asked whether learning-dependent changes in the connectivity between these networks 

relate to individual strategy when learning frequency and context-based statistics. We 

calculated pairwise correlations between the six brain networks (Precuneus, Sensorimotor, 

Right Central Executive, Middle Temporal, Basal Ganglia, Left Central Executive) that 

showed significant correlations with strategy (see 3.3). We calculated these correlations for 

each session (Pre, Post-0, Post-1) and converted them to z-scores (Fisher z). We then 

correlated change (post- minus pre-training z-score) in Functional Network Connectivity 

(FNC) with strategy index to assess the relationship of strategy with changes in between-

network connectivity (Figure 6).  

 For frequency statistics, we found that a) connectivity change between Left Central 

Executive and Middle Temporal network correlated negatively with strategy (r=-0.62, CI=[-

0.86, -0.18]), and b) connectivity change between Precuneus and Sensorimotor networks 

correlated negatively with strategy (r=-0.62, CI=[-0.88, -0.15]). These results suggest that 

increased connectivity between these networks with training relates to learning by matching 

the exact sequence statistics. For context-based statistics, we found that connectivity change 

between Right Central Executive and Basal Ganglia networks correlated positively with 

strategy (r=0.55, CI=[0.01, 0.85]), suggesting that increased connectivity between these 
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networks with training relates to maximization. These results are consistent with previous 

work highlighting the role of Central Executive networks in controlling learning of contextual 

and stimulus-response associations (Ridderinkhof et al., 2004; D’Ardenne et al., 2012). 

Further, recent neurophysiology findings (Antzoulatos and Miller, 2014) show enhanced 

connectivity between prefrontal cortex and basal ganglia in the context of category learning, 

suggesting that fast learning in the basal ganglia may train slower learning in the frontal 

cortex that may facilitate the generalization and abstraction of learned associations. 

 This functional connectivity analysis is consistent with our previous analyses showing 

fronto-striatal networks involved in maximization, the strategy for which participants showed 

stronger preference when learning context-based statistics (Figure 2b, 2c). Our results 

provide complementary evidence that learning-dependent changes in the connectivity of brain 

networks known to be involved in memory and stimulus-response associations mediate 

learning by matching the exact sequence statistics, while connectivity changes in frontal and 

striatal networks mediate learning by maximizing (i.e. extracting the most probable outcome 

in a given context).  

Figure 6 

4. Discussion  

Here, we investigate the functional brain networks that mediate our ability to adapt to 

changes in the environment’s statistics and make predictions. Our behavioral results 

demonstrate that individuals adapt to changes in temporal structure and extract the relevant 

frequency or context-based statistics for making predictions of upcoming events. Our fMRI 

results provide evidence for dissociated functional brain networks that mediate our ability to 

extract behaviorally-relevant statistics. 

 Our modeling approach allows us to track participants’ predictions and their strategies 

during training. We demonstrate that learning predictive structures relates to individual 
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variability in response strategies: that is individuals favored either probability maximization 

(i.e. extracting the most probable outcome in a given context) or matching the exact sequence 

statistics. Previous behavioral studies have reported individual variability in response strategy 

in the context of probabilistic learning tasks and suggested that strategies change during the 

course of training with feedback (Gluck et al., 2002; Shanks et al., 2002; Lagnado et al., 

2006). Here we show that response strategy relates to sequence structure; that is, learning 

context-based statistics relates to stronger maximization than learning simple frequency 

statistics. Further, we provide evidence that these response strategies engage distinct 

functional brain networks: matching relates to changes in fMRI activation within and 

functional connectivity between brain networks involved in memory and stimulus-response 

associations, while maximizing relates to changes in frontal and striatal brain networks. 

 Previous studies have implicated these brain networks in reinforcement learning (e.g. 

for reviews (Robbins, 2007; Balleine and O'Doherty, 2010)). Previous brain imaging and 

neurophysiology studies have demonstrated learning-dependent changes in functional brain 

connectivity in a range of tasks: visual perceptual learning (Lewis et al., 2009; Baldassarre et 

al., 2012), category learning (Antzoulatos and Miller, 2014), motor learning (Sun et al., 2007; 

Bassett et al., 2011; Ma et al., 2011), auditory learning (Ventura-Campos et al., 2013) and 

language learning (Veroude et al., 2010). However, most of this work has focused on reward-

based learning that involves training with trial-by-trial feedback. Here, we show that learning 

temporal statistics may proceed without explicit trial-by-trial feedback and involve 

interactions between brain networks similar to those known to support reward-based learning 

(Alexander et al., 1986; Lawrence et al., 1998).  

 Finally, we considered whether the learning we observed occurred in an incidental 

manner or involved explicit knowledge of the underlying sequence structure. Previous studies 

have suggested that learning of regularities may occur implicitly in a range of tasks: 
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visuomotor sequence learning (Nissen and Bullemer, 1987; Seger, 1994; Schwarb and 

Schumacher, 2012), artificial grammar learning (Reber, 1967), probabilistic category learning 

(Knowlton et al., 1994) and contextual cue learning (Chun and Jiang, 1998). This work has 

focused on implicit measures of sequence learning, such as familiarity judgments or reaction 

times. In contrast, our paradigm allows us to directly test whether exposure to temporal 

sequences facilitates the observers’ ability to explicitly predict the identity of the next 

stimulus in a sequence. Although, our experimental design makes it unlikely that the 

participants memorized specific stimulus positions or the full sequences, debriefing the 

participants suggests that most extracted some high probability symbols or context-target 

combinations. Thus, it is possible that prolonged exposure to probabilistic structures (i.e. 

multiple sessions in contrast to single exposure sessions typically used in statistical learning 

studies) in combination with prediction judgments (Dale et al., 2012) may evoke some 

explicit knowledge of temporal structures, in contrast to implicit measures of anticipation 

typically used in statistical learning studies. 

 

5. Conclusions 

Our findings provide evidence that functional brain connectivity changes with learning in 

dissociable networks to support our ability to extract behaviorally-relevant statistics. This 

network connectivity relates to individual response strategies when learning temporal 

structures. Our paradigm tested learning of structures that increased in context-length over 

time; thus, it does not allow us to dissociate learning time course from changes in sequence 

structure over time. In future work, it would be interesting to investigate the time course of 

learning temporal statistics using dynamic connectivity analysis that allows us to track 

changes in brain connectivity over time. 
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Figures 

Figure 1: Trial and sequence design. (a) The trial design: 8-14 symbols were presented 

sequentially followed by a cue and the test display. (b) Sequence design: Markov models of 

the two context-length levels. For the zero-order model (level-0): different states (A, B, C, D) 

are assigned to four symbols with different probabilities. For the first-order model (level-1), 

diagrams indicate states (circles) and conditional probabilities (solid arrow: high probability; 

dashed arrow: low probability). Transitional probabilities are shown in a four-by-four (level-

1) conditional probability matrix, where rows indicate temporal context and columns the 

corresponding target. 

 

Figure 2: Behavioral performance. (a) Mean normalized performance index (PI) across 

participants per level during pre-training (grey bars) and post-training (black bars) test 

sessions. Error bars indicate standard error of the mean. (b) Strategy index boxplots for level-

0 and level-1 indicate individual variability. The upper and lower error bars display the 

minimum and maximum data values and the central boxes represent the interquartile range 

(25th to 75th percentiles). The thick line in the central boxes represents the median. (c) 

Scatterplot of strategy index for level-0 against strategy index for level-1. 

 

Figure 3: Spatial maps of ICA task-related components.  15 task-related components are 

shown organized into known functional groups (Allen et al., 2011). Spatial maps are 

thresholded at p<0.005 (FWER corrected) and displayed in neurological convention (left is 

left) on the MNI template. The x,y,z coordinates per component denote the location of the 

sagittal, coronal and axial slices, respectively. 

 

Figure 4: ICA components related to matching strategy. Average spatial maps showing 

significant negative correlation of BOLD change (post- minus pre-training) with strategy 
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index for (a) learning frequency statistics: Precuneus, Sensorimotor  and Right Central 

Executive. (b) learning context-based statistics: Precuneus and Middle Temporal. Spatial 

maps are averaged across sessions, thresholded at p<0.005 (FWER corrected) and displayed 

in neurological convention (left is left) on the MNI template. Open circles in the correlation 

plots denote outliers. 

 

Figure 5: ICA components related to maximization strategy. Average spatial maps 

showing significant positive correlation of BOLD change (post- minus pre-training) with 

strategy index for: (a) learning frequency statistics: Basal Ganglia. (b) learning context-based 

statistics: Left Central Executive. Spatial maps are averaged across sessions, thresholded at 

p<0.005 (FWER corrected) and displayed in neurological convention (left is left) on the MNI 

template. 

 

Figure 6: Functional Network Connectivity (FNC) change related to strategy. Average 

correlation matrix of FNC change (post- minus pre-training) with strategy index for: (a) 

frequency statistics and (b) context-based statistics. Black dots indicate significant positive, 

while black diamonds significant negative correlations (at 95% bootstrapped confidence 

intervals) of FNC change with strategy index. ICA components included in this analysis are: 

left central executive network (lCEN), right central executive network (rCEN), middle 

temporal (MT), precuneus (PRCUN), basal ganglia (BG) and sensorimotor (SM). 
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Tables 

Table 1: ICA components. Clusters within the 15 task-related components are extracted 

from the group maps and are organized into known functional groups (Allen et al., 2011). 

The table shows the number of voxels within each cluster, the x,y,z coordinates of the peak 

voxel in MNI space and the t-statistic of the peak voxel. 

 

Network Component Areas voxels x,y,z (mm) t-value 

Attentional 

CP 17 

Inferior Parietal R 387 48,-61,42 23.91 
Cerebellum Posterior L 151 -12,-73,-34 18.51 
Inferior Frontal Gyrus R 817 45,41,14 16.35 
Thalamus R 67 9,-22,6 15.95 
Putamen R 155 30,14,-6 14.96 
Inferior Parietal L 57 -48,-46,50 11.75 

CP 21 

Inferior Parietal L 414 -36,-58,42 16.32 
Cerebellum Posterior R 147 21,-67,-34 15.29 
Middle Frontal Gyrus 658 -45,23,30 15.04 
Putamen L 46 -33,-16,-6 14.08 
Insula L 25 -27,17,-2 11.76 

CP 24 
Cingulate Gyrus BL 3742 6,20,38 28.71 
Cerebellum Posterior R 23 36,-67,-26 10.32 

Basal Ganglia 

CP 13 Caudate BL 1548 18,17,2 28.46 

CP 27 
Putamen BL 1321 -24,2,-6 25.81 
Cingulate Gyrus 86 6,-1,46 12.07 
Cerebellum Anterior 20 -3,-58,-38 11.17 

Default Mode 

CP 20 

Precuneus BL 819 12,-67,30 21.61 
Cingulate BL 251 12,32,18 15.51 
Superior Frontal Gyrus L 26 -24,41,22 11.86 
Inferior Parietal R 20 48,-55,42 10.72 

CP 23 

Anterior Cingulate BL 1834 -6,44,10 24.39 
Posterior Cingulate BL 121 -3,-46,30 18.83 
Cingulate Gyrus 32 -3,-16,38 11.45 
Superior Temporal Gyrus L 68 -48,-58,26 12.18 
Cerebellum Posterior R 52 27,-79,-30 11.02 
Superior Temporal Gyrus R 26 54,-61,38 10.61 
Putamen R 24 30,8,2 10.48 

CP 26 

Precuneus BL 1011 6,-61,18 21.88 
Middle Temporal Gyrus R 237 45,-64,22 21.75 
Middle Temporal Gyrus L 233 -48,-67,14 13.61 
Postcentral Gyrus R 93 48,8,26 14.71 

Sensorimotor CP 5 
Superior Temporal Gyrus L 516 -45,-19,6 19.38 
Superior Temporal Gyrus R 654 48,-10,6 17.27 
Medial Frontal Gyrus 24 -3,-1,62 12.41 
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CP 6 

Postcentral Gyrus L 448 -42,-28,54 25.15 
Precentral Gyrus R 91 57,-13,34 14.48 
Cerebellum Anterior R 72 21,-52,-26 12.48 
Postcentral Gyrus R 30 36,-7,62 10.96 
Parietal Superior L 20 -21,-61,58 10.03 

CP 10 
Paracentral BL 1653 21,-31,66 24.7 
Cerebellum Anterior 125 -6,-46,-18 12.75 

CP 19 

Insula L 139 -39,-13,-2 17.42 
Supramarginal R 167 57,-28,26 17.17 
Insula R 177 42,-10,-6 16.19 
Supramarginal L 114 -63,-31,22 15.48 
Cingulate Gyrus BL 87 12,-34,38 13.3 
Precuneus BL 33 -6,-49,58 13.21 
Postcentral R 20 21,-46,66 11.2 
Middle Temporal Gyrus L 22 -54,-61,6 9.83 

Visual 
CP 7 

Lingual Gyrus BL 1197 5,-63,2 31.77 
Cerebellum Declive 47 -3,-73,-26 15.43 

CP 12 
Middle Occipital Gyrus BL 1730 30,-85,18 22.85 
Posterior Cingulate BL 107 1,-31,26 15.94 

Cerebellum CP 16 
Cerebellum Anterior Lobe 3013 30,-58,-34 36.86 
Precuneus BL  30 3,-58,38 10.51 
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Right Central Executive

Middle Temporal

Figure 4

a. Frequency statistics

Strategy index

b. Context-based statistics
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Left Central Executive

Basal Ganglia

Figure 5

a. Frequency statistics

b. Context-based statistics
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Figure 6
Frequency statistics Context-based statistics
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Highlights 

• Learning temporal structure without feedback alters functional brain networks 

• Functional brain connectivity relates to individual strategies for learning  

• Dissociable functional brain networks mediate learning of predictive statistics 

 

 

 


