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Abstract In this paper, a decomposition method for

binary tensors, generalized multi-linear model for prin-

cipal component analysis (GMLPCA) is proposed. To

the best of our knowledge at present there is no other

principled systematic framework for decomposition or

topographic mapping of binary tensors. In the model

formulation, we constrain the natural parameters of the

Bernoulli distributions for each tensor element to lie in

a sub-space spanned by a reduced set of basis (princi-

pal) tensors. We evaluate and compare the proposed

GMLPCA technique with existing real-valued tensor

decomposition methods in two scenarios: (1) in a series

of controlled experiments involving synthetic data; (2)

on a real world biological dataset of DNA sub-sequences

from different functional regions, with sequences repre-

sented by binary tensors. The experiments suggest that

the GMLPCA model is better suited for modeling bi-

J. Mažgut
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nary tensors than its real-valued counterparts. Further-

more, we extended our GMLPCA model to the semi-

supervised setting by forcing the model to search for a

natural parameter subspace that represents a user spec-

ified compromise between the modelling quality and the

degree of class separation.

Keywords Tensor decomposition · Tucker model ·
Binary data · Topographic mapping

1 Introduction

At present an increasing number of data processing

tasks involve manipulation of multi-dimensional objects,

known also as tensors, where the elements are to be

addressed by more than two indices. In many prac-

tical problems such as gait [1], hand postures [2] or

face recognition [3], hyperspectral image processing [4]

and text documents analysis [5], the data tensors are

specified in a high-dimensional space. Applying pat-

tern recognition or machine learning methods directly

to such data spaces can result in high computational

and memory requirements, as well as poor generaliza-

tion. To address this “curse of dimensionality” a wide

range of decomposition methods have been introduced

to compress the data while capturing the ‘dominant’

trends. Making the learning machines operate on this

compressed data space may not only boost their gen-

eralization performance but crucially can also increase

their interpretability.

Decomposition techniques such as principal compo-

nent analysis (PCA) [6] were designed to decompose

data objects in the form of vectors. For tensor decompo-

sition, the data items need to be first vectorized before

the analysis can be applied. Besides higher computa-

tional and memory requirements, the vectorization of
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data tensors breaks the higher order dependencies pre-

sented in the natural data structure that can potentially

lead to more compact and useful representations [1].

New methods capable of processing multi-dimensional

tensors in their natural structure have been introduced

for real-valued tensors [1,5,7], nonnegative tensors [8,9]

and symmetric tensors [10]. Such techniques, however,

are not suitable for processing binary tensors. Yet, bi-

nary tensors arise in many real world applications such

as gait recognition [1], document analysis [5] or graph

objects represented by adjacency tensors. In this pa-

per we introduce and verify model based methods for

unsupervised and semi-supervised binary tensor decom-

position that explicitly take into an account the binary

nature of such data. In particular:

1. We extend the model of [11] for decomposition of

binary vectors into a methodology for decomposi-

tion of binary tensors of any (finite) order. We show

that even though the original model is non-linear in

parameters, the strong linear algebraic structure of

the Tucker model for tensor decomposition can be

superimposed on the parameter space of our model,

allowing us to preserve the efficient linear nature of

parameter updates introduced in [11].

2. We extend our model for unsupervised decomposi-

tion of binary tensors to the semi-supervised setting

where the knowledge of tensor labels can be utilized

to the degree specified by the user.

The paper is organized as follows: Section 2 intro-

duces notation and basic tensor algebra. Section 3 briefly

discusses the problem of reduced rank representation of

real-valued tensors. A model based formulation for bi-

nary data decomposition with iterative update scheme

to maximize the model’s log-likelihood is presented in

sections 4 and 5. Section 6 contains experiments on syn-

thetic and biological datasets. Finally, section 7 dis-

cusses an extension of GMLPCA to semi-supervised

learning and section 8 summarizes the results and con-

cludes the work.

2 Notation and Basic Tensor Algebra

An N -th order tensorA ∈ RI1×I2×...×IN can be thought

of as an N -dimensional array of real numbers in pro-

gramming languages. It is addressed by N indices in
ranging from 1 to In, n = 1, 2, ..., N . A rank-1 tensor

A ∈ RI1×I2×...×IN can be obtained as an outer prod-

uct of N non-zero vectors u(n) ∈ RIn , n = 1, 2, ..., N :

A = u(1) ◦ u(2) ◦ ... ◦ u(N). In other words, for a par-

ticular index setting (i1, i2, ..., iN ) ∈ Υ = {1, 2, ..., I1}×

{1, 2, ..., I2} × ...× {1, 2, ..., IN}, we have

Ai1,i2,...,iN =

N∏
n=1

u
(n)
in
, (1)

where u
(n)
in

is the in-th component of the vector u(n).

Slightly abusing mathematical notation, we will often

write the index N -tuples (i1, i2, ..., iN ) ∈ Υ using vector

notation i = (i1, i2, ..., iN ), so that instead of writing

Ai1,i2,...,iN we write Ai.

A tensor can be multiplied by a matrix (2nd order

tensor) using n-mode products: The n-mode product of

a tensor A ∈ RI1×I2×...×IN by a matrix U ∈ RJ×In is a

tensor (A×nU) with entries (A×nU)i1,...,in−1,j,in+1,...,iN

=
∑In
in=1Ai1,...,in−1,in,in+1,...,iN · Uj,in , for some j ∈

{1, 2, ..., J}.
Consider now an orthonormal basis {u(n)

1 ,u
(n)
2 , ...,

u
(n)
In
} for the n-mode space RIn . The (column) vec-

tors u
(n)
k can be stored as columns of the basis matrix

U (n) = (u
(n)
1 ,u

(n)
2 , ...,u

(n)
In

). Any tensor A can be de-

composed into the product A = Q ×1 U
(1) ×2 U

(2) ×3

... ×N U (N), with expansion coefficients stored in the

Nth order tensor Q ∈ RI1×I2×...×IN . The expansion of

A can also be written as

A =
∑
i∈Υ

Qi · (u
(1)
i1
◦ u

(2)
i2
◦ ... ◦ u

(N)
iN

). (2)

In other words, tensor A is expressed as a linear com-

bination of
∏N
n=1 In rank-1 basis tensors (u

(1)
i1
◦ u

(2)
i2
◦

...◦u(N)
iN

). In addition, from orthonormality of the basis

sets, the tensor Q of expansion coefficients can be ob-

tained as Q = A×1(U (1))T×2(U (2))T×3 ...×N (U (N))T .

This is also known as the Tucker model for decom-

posing real tensors: any tensor A (of the given size)

is expressed as a linear combination of rank-1 (basis)

tensors obtained as outer products of the correspond-

ing basis vectors. Besides the Tucker model, another

widely used tensor decomposition technique is related

to the more restricted PARAFAC model [12]. PARA-

FAC model can be viewed as a special case of the Tucker

model, where the tensor Q of expansion coefficients is

diagonal, every mode has an equal number I of basis

vectors yielding I rank-1 basis tensors (the i-th rank-1

basis tensor is equal to (u
(1)
i ◦ u

(2)
i ◦ ... ◦ u

(N)
i )). For

our GMLPCA model we use the more flexible Tucker

model considering the results of Wang and Ahuja [13].

The experiments with real-valued tensors showed that

Tucker model achieved lower reconstruction errors than

the PARAFAC model with the same compression ratio.
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3 Reduced Rank Representations of Tensors

Several approaches have been proposed for reduced rank

representations of tensors (e.g. [14–16]). For example,

one can assume that a smaller number of basis tensors

in the expansion (2) are sufficient to approximate all

tensors in a given dataset:

A ≈
∑
i∈K

Qi · (u
(1)
i1
◦ u

(2)
i2
◦ ... ◦ u

(N)
iN

), (3)

where K ⊂ Υ . In other words, tensors in a given dataset

can be found ‘close’ to the |K|-dimensional hyperplane

in the tensor space spanned by the basis tensors (u
(1)
i1
◦

u
(2)
i2
◦ ... ◦ u

(N)
iN

), i ∈ K. Then the tensor A can be

represented through expansion coefficients Qi, i ∈ K.

Note that the orthonormality of basis {u(n)
1 ,u

(n)
2 , ...,

u
(n)
In
} for the n-mode space RIn can be relaxed. It can

be easily shown that as long as for each mode n =

1, 2, ..., N , the vectors u
(n)
1 ,u

(n)
2 , ...,u

(n)
In

are linearly in-

dependent, the basis tensors (u
(1)
i1
◦ u

(2)
i2
◦ ... ◦ u

(N)
iN

),

i ∈ Υ will be linearly independent as well. If the n-mode

space basis are orthonormal, the tensor decomposition

is known as the Higher-Order Singular Value Decompo-

sition (HOSVD) [14]. It has to be said that extending

matrix (2nd-order tensor) decompositions such as SVD

to higher-order tensors is not an easy matter. Famil-

iar concepts such as rank become ambiguous and more

complex. However, the main purpose of the decompo-

sition remains unchanged: rewrite a tensor as a sum of

rank-1 tensors.

One of the early attempts to extend the traditional

PCA method for multidimensional tensors is represented

by the GPCA model[17]. The GPCA model is an ex-

tension of PCA for 2nd-order tensors and similarly to

PCA aims to maximize the captured variation in the

(projected) data. Further generalizations of PCA and

GPCA for arbitrary order real-valued tensors were pro-

posed in the same year (2008): Xu et al. introduced the

concurrent subspace analysis (CSA)[18] and Lu et al.

proposed the multilinear PCA (MPCA)[1]. Both mod-

els are based on the Tucker concept and use an itera-

tive estimation scheme to fit the model parameters1.

Besides the basic MPCA model, many other exten-

sions were introduced, uncorrelated multilinear PCA

(UMPCA)[19], robust multilinear PCA[20] and a ver-

sion for non-negative tensors[9]. Further details about

multilinear subspace learning models can be found in

[21], where Tucker based models are denoted as tensor-

to-tensor projections and PARAFAC based models as

tensor-to-vector projections.

1 The updating formulas of CSA and MPCA are similar,
the only difference being that MPCA subtracts the mean from
the data tensors.

While much work has been done in the context of

PCA-style decompositions of real-valued tensors, no for-

malism exists as yet for decomposing binary tensors.

Binary tensors occur naturally in many applications

where the value Ai1,i2,...,iN indicates presence or ab-

sence of the feature related to the index (i1, i2, ..., iN ).

For example, in graph theory, a 2nd-order tensor A
(called adjacency matrix) codes a graph by imposing

Ai1,i2 = 1 if and only if there is an arc from node i1
to node i2, Ai1,i2 = 0 otherwise. We present a frame-

work that is a generalization of the binary probabilistic

principal component analysis to tensor data.

4 The Model

Our GMLPCA model for binary tensor decomposition

and topographic mapping is based on an extension of

the multi-linear Tucker model (2) for real-valued ten-

sorial data. The extension is analogous to the general-

ization of linear models for exponential family of dis-

tributions. We use the Tucker model as a multi-linear

’predictor’ and logistic function as a link function to

link the real-valued multi-linear ’predictions’ with re-

sponse variables, in our case binary elements of data

tensors. A probabilistic framework is used to formally

define the model and to derive rules for the parameter

estimation.

Consider anNth-order tensorA ∈ {0, 1}I1×I2×...×IN .

Assume we are given a set of M such binary tensors

D = {A1,A2, ...,AM}. Each element A
m,i of the tensor

Am, m = 1, 2, ...,M , is assumed to be (independently)

Bernoulli distributed with parameter (mean) p
m,i:

P (A
m,i|pm,i) = p

A
m,i

m,i
· (1− p

m,i)
1−A

m,i . (4)

The Bernoulli distribution can be equivalently parame-

trized through log-odds (natural parameter) θ
m,i ∈ R,

so that the canonical link function linking the natural

parameter with the mean is the logistic function

p
m,i = σ(θ

m,i) =
1

1 + e
−θ

m,i
. (5)

For each data tensor Am, m = 1, 2, ...,M , we have

P (Am|θm) =
∏
i∈Υ

σ(θ
m,i)

A
m,i · σ(−θ

m,i)
1−A

m,i . (6)

We collect all the parameters θ
m,i in a tensor Θ ∈

RM×I1×I2×...×IN of order N + 1. Assuming the data

tensors in D are independently generated, the model



4 Jakub Mažgut et al.

log-likelihood reads

L(Θ) =

M∑
m=1

∑
i∈Υ

A
m,i log σ(θ

m,i)

+ (1−A
m,i) log σ(−θ

m,i). (7)

So far the values in the parameter tensor Θ were

unconstrained. To discover a low dimensional structure

in the data, we employ the multi-liner Tucker model to

constrain all the N -th order parameter tensors θm ∈
RI1×I2×...×IN (one for each data tensor Am) to lie in

the subspace spanned by the reduced set of basis ten-

sors (u
(1)
r1 ◦u

(2)
r2 ◦...◦u

(N)
rN ), where rn ∈ {1, 2, ..., Rn}, and

Rn ≤ In, i = 1, 2..., N . The indices r = (r1, r2, ..., rN )

take values from the set ρ = {1, ..., R1} × {1, ..., R2} ×
...× {1, ..., RN}. Note that there is no explicit pressure

in the model to ensure (for each mode) independence of

the basis vectors. However, in practice, the optimized

model parameters always represented independent ba-

sis vectors, as dependent basis vectors would lead to de-

pendent basis tensors, implying smaller than intended

rank of the tensor decomposition.

We further allow for an N -th order bias tensor ∆ ∈
RI1×I2×...×IN , so that the parameter tensors θm are

constrained onto an affine space. Using (2) we get

θm =
∑
r∈ρ
Qm,r · (u(1)

r1 ◦ u(2)
r2 ◦ ... ◦ u(N)

rN ) +∆ (8)

so that by

θ
m,i =

∑
r∈ρ
Qm,r · (u(1)

r1 ◦ u(2)
r2 ◦ ... ◦ u(N)

rN )i +∆i

=
∑
r∈ρ
Qm,r ·

N∏
n=1

u
(n)
rn,in

+∆i. (9)

5 Algorithm

In this section, we present only the final update rules

for fitting the model parameters with a minimum of

extra formalism. A full derivation of the updating rules

can be found in appendix.

We use the trick of [11] and take advantage of the

fact that while the model log-likelihood (7) is not con-

vex in the parameters, it is convex in any parameter,

if the others are kept fixed. This leads to an iterative

scheme where the model parameters are fitted alternat-

ing between least square updates for basis vectors u
(n)
rn ,

expansion coefficients Qm,r and bias tensor ∆. While

one set of the parameters is updated, the others are held

fixed. This procedure is repeated until the log-likelihood

converges to a desired degree of precision. The updates

lead to monotonic increases in the log-likelihood.

5.1 Updates for n-mode space basis

Holding the bias tensor∆ and the expansion coefficients

Qm,r, m = 1, 2, ...,M , r ∈ ρ fixed, we obtain a update

rule for the n-mode space basis {u(n)
1 ,u

(n)
2 , ...,u

(n)
Rn
}.

For each n-mode and its coordinate j ∈ {1, 2, . . . , In},
the basis vectors are updated by solving linear system:

Rn∑
t=1

u
(n)
t,j K

(n)
q,t,j = S(n)q,j , (10)

where

S(n)q,j =

M∑
m=1

∑
i∈Υ−n

(2A
m,[i,j|n] − 1

− Ψ
m,[i,j|n]∆[i,j|n])B

(n)

m,i,q
, (11)

K(n)
q,t,j =

M∑
m=1

∑
r∈ρ−n

Qm,[r,t|n]

×
∑

i∈Υ−n

Ψ
m,[i,j|n] B

(n)

m,i,q

N∏
s=1,s6=n

u
(s)
rs,is

, (12)

B(n)
m,i,q

=
∑

r∈ρ−n

Qm,[r,q|n] ·
N∏

s=1,s6=n

u
(s)
rs,is

, (13)

Ψ denotes (tanh
θ
m,i
2 )/θ

m,i, and q = 1, 2, . . . , Rn. Note

that the updates for coefficients of basis vectors for dif-

ferent mode n and its coordinates j ∈ {1, 2, . . . , In} are

conveniently decoupled.

5.2 Updates for expansion coefficients

When updating the expansion coefficients Qm,r, the

bias tensor ∆ and the basis sets {u(n)
1 ,u

(n)
2 , ...,u

(n)
Rn
} for

all n modes n = 1, 2, ..., N are kept fixed to their cur-

rent values. The update rule for expansion coefficients

Qm,r of the m-th input tensor Am can be obtained by

solving a set of linear equations

Tv,m =
∑
r∈ρ
Pv,r,m Qm,r, (14)

where

Tv,m =
∑
i∈Υ

(2A
m,i − 1− Ψ

m,i ∆i) Cv,i, (15)

Pv,r,m =
∑
i∈Υ

Ψ
m,i Cv,i Cr,i, (16)

Cr,i denotes
∏N
n=1 u

(n)
rn,in

and v ∈ ρ is a basis index.

In terms of these equations, the expansion coefficients

updates for different input tensors are conveniently de-

coupled.
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5.3 Updates for the bias tensor

As before, holding the expansion coefficientsQm,r, m =

1, 2, ...,M , r ∈ ρ, and the basis sets {u(n)
1 ,u

(n)
2 , ...,u

(n)
Rn
}

for all n modes n = 1, 2, ..., N fixed, we obtain a simple

update rule for the bias tensor:

∆j =

∑M
m=1 2A

m,j − 1− Ψ
m,j ·

∑
r∈ρQm,r Cr,j∑M

m=1 Ψm,j
. (17)

5.4 Decomposing Unseen Binary Tensors

Note that our model is not generative, however, it is

straightforward to find expansion coefficients for an N -

th order tensor A′ ∈ {0, 1}I1×I2×...×IN not included in

the training set D. One simply needs to solve for expan-

sion coefficients in the natural parameter space, given

that the parameters are confined onto the affine sub-

space of the tensor parameter space found in the train-

ing phase. Recall that the affine subspace is determined

by the bias tensor ∆ and the basis sets {u(n)
1 ,u

(n)
2 , ...,

u
(n)
Rn
}, one for each n mode, n = 1, 2, ..., N . These are

kept fixed.

The log-likelihood (7) to be maximized with respect

to the expansion coefficients stored in tensor Q reads

L(Q;A′) =
∑

i, s.t. A′
i
=1

log σ

(∑
r∈ρ
Qr Cr,i +∆i

)

+
∑

i, s.t. A′
i
=0

log σ

(
−
∑
r∈ρ
Qr Cr,i −∆i

)
. (18)

Any optimization technique can be used. The quan-

tities Cr,i and ∆i are constants given by the trained

model. The tensor Q can be initialized by first finding

the closest data tensor from the training data set D to

A′ in the Hamming distance sense,

m(A′) = arg min
m=1,2,...,M

∑
i∈Υ

|A′i −Am,i|,

and then setting the initial value of Q to the expansion

coefficient tensor of Am(A′).

When using gradient ascent,

Qv ← Qv + η
∂ L(Q;A′)
∂ Qv

,

the updates take the form

Qv ← Qv+η
∑
i∈Υ

Cv,i

[
A′i − σ

(∑
r∈ρ
Qr Cr,i +∆i

)]
,

(19)

where η > 0.

6 Experiments

In this section, we compare our proposed generalized

multilinear model for principal component analysis of

binary tensors (GMLPCA) with one matrix decompo-

sition method logistic principal component analysis

(LPCA) and three existing real-valued tensor decompo-

sition methods, namely tensor latent semantic indexing

model (TensorLSI)[5], multilinear principal component

analysis model (MPCA)[1] and uncorrelated multilinear

principal component analysis (UMPCA)[19]. We incor-

porate the LPCA into the experiment to point out the

advantage of tensor decomposition methods over the

classical vector methods. Note that an application of

LPCA to binary tensors requires their reshaping into

vectors.

The comparison is performed in two different sce-

narios. First, we evaluate the ability of the models to

compress (and reconstruct) synthetic binary data ten-

sors in a controlled set of experiments. Second, we illus-

trate our method on a real set of biological DNA sub-

sequences (represented as binary tensors) originating

from different functional regions of genomic sequences.

6.1 Synthetic Data

In order to evaluate the ability of the model to find a

compact data representation and reconstruct the com-

pressed data, we generated several datasets of binary

tensors from underlying subspaces of the natural pa-

rameter space. Below, we describe generation of the

synthetic binary tensors, give an overall outline of the

experiments and summarize the results.

6.1.1 Generating process

Our goal is to generate a set of M binary tensors D =

{A1,A2, ...,AM}, where each element A
m,i of Am ∈

{0, 1}I1,I2,...,IN is independently Bernoulli distributed

with natural parameter θ
m,i and the natural parameter

tensor θm lies in a sub-space spanned by a set of lin-

early independent basis tensors {B1,B2, ...,BR}, Br ∈
{−1, 1}I1×I2×...×IN , r = 1, 2, ..., R. Given such basis,

each synthetic binary tensor Am is generated as follows:

First, a tensor θm containing Bernoulli natural parame-

ters is constructed as a (random) linear combination of

bases, θm =
∑R
r=1 αmrBr, where the elements αmr

∈ R
of the mixing vector αm = (αm1 , αm2 , ..., αmR

), are

sampled from a uniform distribution over a given sup-

port. The elements A
m,i of the binary data tensor Am

are then sampled from the Bernoulli distribution para-

metrized by θ
m,i (see (4) and (5)):
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Fig. 1 An example of basis tensors spanning a 4-dimensional
Bernoulli natural parameter space.
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Fig. 2 A sample of randomly generated binary tensors from
the Bernoulli natural parameter space spanned by the bases
shown in figure 1.

A
m,i ∼ P (A

m,i|θm,i) = σ(θ
m,i)

A
m,i · σ(−θ

m,i)
1−A

m,i .

(20)

To illustrate that it is non-trivial to discern the un-

derlying natural parameter subspace from the sample

binary tensors, we randomly sampled and visualized 5

data tensors from Bernoulli natural parameter space

spanned by bases shown in figure 1. The binary tensors

are shown in figure 2.

6.1.2 Outline of the Experiments

In the next section we will use tensor decomposition to

analyze a large-scale set of biological sequences repre-

sented through sparse second order binary tensors (N =

2) of sizes around (I1, I2) = (30, 250). In this section we

verify our method in a set of controlled experiments em-
ploying synthetically generated 2nd-order binary ten-

sors of size (I1, I2) = (30, 30). For the experiment we

generated 5 data sets, each containing M = 3, 000 bi-

nary tensors, from a Bernoulli natural parameter spaces

spanned by 40 linearly independent basis tensors. Each

data set was sampled from a different natural parame-

ter subspace. From each data set we hold out one-third

(1, 000) binary tensors as a test set and let the mod-

els find the latent subspace on the remaining (2, 000)

tensors (training set).

After training the models, tensors that were not in-

cluded in training (hold-out set) were “compressed” by

projecting them onto the principal subspace and thus

their low dimensional representations in the natural pa-

rameter space were obtained. To evaluate the amount of

preserved information, the compressed representations

would need to be reconstructed back into the original

binary tensor space. Note that since the models we con-

sider represent binary tensors through continuous val-

ues in the natural parameter space (GMLPCA, LPCA),

or in RI1×I2×···×IN (other models), a straightforward

deterministic reconstruction in the binary space is not

appropriate. We use the area under the ROC curve

(AUC) designed to compare different real-valued pre-

dictions of binary data. One way of determining the

AUC value is to calculate the normalized Wilcoxon-

Mann-Whitney statistic which is equal to AUC [22]. If

we identify {x1, x2 . . . xJ} as the model prediction out-

puts for all nonzero elements of tensors from the test

set, and {y1, y2 . . . yK} as outputs for all zero elements,

the AUC value for that particular prediction (recon-

struction) of the test set of tensors is equal to

AUC =

∑J
j=1

∑K
k=1 C(xj , yk)

J ·K
,

where J and K are the total number of nonzero and

zero tensor elements in the test set, respectively, and C

is a scoring function

C(xj , yk) =

{
1 ifxj > yk
0 otherwise.

For a fair comparison, the decomposition methods

are compared based on the amount of preserved infor-

mation with respect to the number of free parameters.

In general, the free parameters correspond to the basis

vectors and the offset. For the TensorLSI, MPCA and

UMPCA the offset represents the mean tensor (used to

center the data); for GMLPCA and LPCA it represents

the bias tensor and vector, respectively. For GMLPCA

and MPCA, the number of free parameters is equal to∑N
n=1Rn · In +

∏N
n=1 In. TensorLSI with R basis ten-

sors hasR·
∑N
n=1 min{R, In}+

∏N
n=1 In free parameters.

UMPCA is a PARAFAC based model and can extract

up to R ≤ min{min In,M} uncorrelated features (basis

tensors). The number of free parameters for UMPCA

is equal to R ·
∑N
n=1 In +

∏N
n=1 In. For the LPCA the

number of free parameters is equal to (R+1) ·
∏N
n=1 In,

where R is the number of basis vectors.

6.1.3 Results

We summarize performance of the examined models to

compress and subsequently reconstruct the sets of syn-

thetic tensors by calculating the mean and standard

deviation of AUC values across the 5 test sets of binary

tensors. Reconstruction results for binary tensors gener-

ated from Bernoulli natural parameter spaces spanned

by 40 bases tensors are summarized in figure 3. For

the two smallest subspace sizes (strong compression),

the models achieved comparable results while for the

other larger subspace sizes GMLPCA clearly signifi-

cantly outperformed all the other models.
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Fig. 3 AUC analysis of hold-out binary tensor reconstructions obtained by the models using different number of free parameters
among 5 different sets of binary tensors. Each set was generated from different Bernoulli natural parameter space spanned by
40 linearly independent basis tensors. Table under the plot describes model settings for particular number of free parameters.

6.2 Topographic Mapping of DNA Sequences

represented as binary tensors

Bioinformatics involves the development of computa-

tional tools for systematic analysis and visualization

of DNA, RNA and protein sequence data. To uncover

specific regulatory circuits controlling gene expression,

biologists need to first confidently map broader func-

tional regions implanted in genomic sequence, such as

promoters. Promoters are regions upstream of a gene,

used by the transcriptional machinery. The process of

expressing a gene is carefully regulated by the timely

binding of both general and gene-specific regulatory

proteins and RNA (or complexes thereof) to its promo-

ter. We thus expect that promoters contain regulatory

binding sites (typically 5-15 nucleotide degenerate se-

quence patterns). This section investigates the ability

of GMLPCA to recognize in an unsupervised manner

promoter sequences (forming our “positive” class).

A gene contains exons and introns, where exons pri-

marily code for protein-forming amino acids. Not di-

rectly coding for amino acids, introns may contain im-

portant control signals for splicing the gene product.

Intronic sequences may also contain sites to which a

different category of regulatory proteins (and RNA)

bind to modulate the efficiency of transcription. Many

current state-of-the-art systems for analyzing and pre-

dicting promoter regions (e.g. [23,24]) are based on the

underlying principle that sequences from different func-

tional regions differ in a local term2 composition. Fol-

lowing [23,24], we use intronic sequences as a negative

set. For further information on DNA sub-sequence anal-

ysis methods, among others, we refer the reader to [25]

and [26].

Based on this principle we use a suffix tree based

extraction of statistically significant terms, preserving

the within-class (functional regions) frequencies. Given

such terms, the local term composition of a DNA se-

quence is obtained in the form of a binary second-order

tensor (matrix), where rows represent terms, columns

positions within the sequence and the binary tensor el-

ements indicate the presence/absence of a term in the

sequence at a given position.

To reveal the ‘dominant trends’ in a real world large-

scale dataset of annotated DNA sequences, we compress

the binary tensors representing the sequences into their

low dimensional representations and visualize their dis-

tributions. Note that based on the underlying assump-

tion about the differences in local term composition, we

expect some separation between sequences from differ-

2 As a term, we denote a short and widespread sequence of
nucleotides that has or may have a biological significance.
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ent functional regions of DNA, even though the decom-

position/compression models themselves are fitted in a

completely unsupervised manner.

6.2.1 Biological sequence data and its representation

We use the dataset of promoter and intron (non-promo-

ter) sequences employed in [23]. From the Database

of Transcription Start Sites (DBTSS), version 5.2 [27],

which includes 30,964 human promoter sequences, we

extracted from each sequence a subsequence from 200bp

upstream to 50bp downstream relative to the position

of a transcription start site (TSS). Regulatory compo-

nents primarily bind to the DNA relatively close to the

TSS. The same number of intron sequences with length

of 250bp were randomly selected from the Exon-Intron

Database [28], release Sept.2005. To represent the se-

quences, we identify terms over the alphabet of nu-

cleotidesN ∈ {a, c, g, t} that are statistically significant

longest words preserving the within-class frequencies.

For this purpose we use a suffix tree construction. Typ-

ically, such a construction is guided by two main char-

acteristics: (1) a ‘significance criterion’ used to decide

whether to continue with expanding a particular suffix

and (2) construction parameters guiding the suffix ex-

tension process. As the significance criterion we employ

the Kullback-Leibler divergence between the promoter

and intron class distributions, given by the candidate

term w and its possible extension ws, s ∈ N , weighted

by the prior distribution of the extended term ws. The

suffix tree is built in a bottom-up fashion, starting with

four leaf nodes labeled with the symbols from N . A

term w is extended with a symbol s if

P (ws)
∑

c={0,1}

P (c|ws) log2

P (c|ws)
P (c|w)

≥ εKL,

where the classes of sequences from promoter regions

and intron regions are denoted by c = 1 and c = 0,

respectively. Size of the suffix tree depends on values

of the construction parameters εKL, εgrow > 0. The pa-

rameter εgrow represents the minimal frequency of a

word in the training sequences to be considered a can-

didate for the tree construction. More details on general

principles behind suffix tree construction can be found

e.g. in [29,30].

Besides the composition of specific terms, their po-

sition within the sequences may be an important factor

(especially for promoter sequences aligned with respect

to the TSS site). To capture both the term composition

and position, we represent the DNA sequences as binary

second-order tensors A where rows i1 represent terms,

columns i2 positions within the sequence, and the bi-

nary tensor element Ai1,i2 is an indicator whether the

sequence represented by A has a term i1 at position i2.

An example of a real promoter sequence represen-

tation by a binary tensor is shown in figure 4. The se-

quence was randomly selected from the dataset.

We used the following values of the construction pa-

rameters: εgrow = 5 × 10−3 and εKL = 7 × 10−5. This

setting yields a set of 31 terms. Larger term sets (ob-

tained using lower values of construction parameters)

did not improve the separation of sequences from dif-

ferent function regions in the final visualizations and

smaller term sets (resulting from more stringent param-

eter settings) made the separation weaker. Each DNA

sequence was represented by a binary matrix with 31

rows and 250 columns. We compressed the binary ma-

trices via GMLPCA using 10 principal tensors obtained

as outer products of 5 column and 2 row basis vectors.

The setting of 5 column and 2 row basis vectors corre-

sponds to the smallest principal subspace for GMLPCA

that lead to a significant separation of promoters from

introns. To see if the other decomposition methods are

capable of revealing the same level of separation with

this number of principal tensors, we decomposed the

data using (1) MPCA with 5 column and 2 row basis

vectors; (2) UMPCA with 10 uncorrelated features; (3)

TensorLSI using 10 principal tensors.

6.2.2 Visualizations

All the decomposition methods represent the sequential

data as 10-dimensional vectors of expansion coefficients.

To visualize the distribution of such representations,

we used principal component analysis (PCA) and pro-

jected the real-valued 10-dimensional expansion vectors

onto the two-dimensional space defined by the two lead-

ing principal vectors. Visualizations of promoter and in-

tron sequences decomposed via GMLPCA, TensorLSI,

MPCA and UMPCA are shown in figure 5. Promoter

sequences are illustrated in the plots by blue and intron

sequences by red dots. The separation between promot-

ers and introns is markedly better under the GMLPCA

model than under the real-valued MPCA, UMPCA and

TensorLSI methods.

For a more involved analysis, we project the 10-

dimensional expansion coefficients of the GMLPCA onto

the leading two-dimensional principal subspace (see fig-

ure 6). Detailed analysis of the individual sequences

(not reported here) reveals that the rightmost region,

populated primarily by promoter sequences, have fre-

quent occurrences of terms GGCG, GCG, CGCG and

CCGC. This indicates a high concentration of di-nucleo-

tides CG around the TSS. These so-called CpG islands
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Fig. 4 An example of representing a promoter DNA sub-sequence from real biological dataset by a binary second order tensor
where rows represent terms and columns positions.
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are known to be associated with functional promoter

regions–approximately 60% of mammalian genes [31].

More specific signals are found directly at the TSS (the

band at “200”), which is known to be a key site for the

RNA polymerase transcriptional machinery. GT and

AG are known signals for splicing and are thus expected

to occur in introns. Indeed, these words tend to occur

predominately in the intron-rich regions in figure 6.

For a deeper analysis of the composition difference

between promoter and intron sequences, a user inter-

action can be integrated into the visualization to select

and visualize the term composition of interesting indi-

vidual sequences. An illustrative visualization of manu-

ally selected sequences is shown in figure 6 where matri-

ces for promoters and introns are denoted by letters P

and I, respectively. Based on our previous analysis, we

highlighted important terms that have a strong influ-

ence on the sequence position in the visualization space

(marked with black dots). For illustration purposes, we

selected two pairs of ‘close’ promoter sequences: the pair

(P-3,P-4) is more separated from the introns than the

pair (P-1,P-2). Based on the term compositions, pro-

moter sequences P-3 and P-4 have higher occurrences

of terms GGCG and GCG (regarded as a strong signal

of promoter sequence by the model). A general topo-

graphic organization of the visualization plot is clearly

visible, with ‘close’ sequences representations on the

plot having ‘similar’ term composition structure (e.g

three intron sequences I-1, I-2 and I-3, and related pro-

moter structure in P-5).

6.2.3 Functional enrichment analysis of promoter

sequences

The DNA-binding sites of transcription factors are of-

ten characterized as relatively short (5-15 nucleotides)

and degenerate sequence patterns. They may occur mul-

tiple times in promoters of the genes the expression of

which they modulate. To further validate that GMLPCA

indeed picks up biologically meaningful patterns, we

searched the compressed feature space of promoters for

biologically relevant structure (including that left by

transcription factors). Genes that are transcribed by

the same factors are often functionally similar [32]. Car-

rying specific biologically relevant features, suitable rep-

resentations of promoters should correlate with the roles

assigned to their genes. If the projection to a com-

pressed space highlights such features, it is testament to

a method’s utility for processing biological sequences.

The Gene Ontology (GO; [33]) provides a controlled

vocabulary for the annotation of genes, broadly catego-

rized into terms for cellular component, biological pro-

cess and molecular function. In an attempt to assign bi-

ologically meaningful labels to promoters, all sequences

were mapped to gene identifiers. In cases of multiple

promoters for the same identifier, we picked one se-

quence randomly. In cases of multiple gene identifiers

for the same promoter sequence, we picked the identi-

fier with the greatest number of annotations. Using the

Gene Ontology (June 2009), we could thus assign zero

or more GO terms to each promoter sequence. In to-

tal there are 8051 unique GO terms annotating 14619

promoters.

Recall that in this experiment GMLPCA decom-

poses binary tensors into a (linear) combination of 10

basis tensors in the Bernoulli natural parameter space.

Each promoter sequence from the dataset can thus be

represented by a 10-dimensional expansion coefficient

vector. For visualization purposes, standard PCA is

then used to project the expansion vectors into a 2-

dimensional space (selected to have the highest prin-

cipal values). To evaluate whether promoters deemed

similar by GMLPCA are also functionally similar, we

need first to design a methodology for calculating the

‘distance’ between each pair of promoters. Naively, one

may be tempted to use the usual Euclidean distance in

the 10-dimensional coordinate space of natural param-

eters. However, this is not correct, since (1) the ba-

sis tensors are not orthogonal; (2) they span a space

of Bernoulli natural parameters that have a nonlin-

ear relationship with the data values. To determinate

the model-based ‘distance’ between two promoter se-

quences m and l in a principled manner, we propose

to calculate a sum of average symmetrized Kullback-

Leibler divergences between noise distributions for all

corresponding tensor elements i ∈ Υ :

D(m, l) =
∑
i∈Υ

(
KL[p

m,i || pl,i] + KL[p
l,i || pm,i]

2

)
,

(21)

where KL divergence between two Bernoulli distribu-

tions defined by their means (see (4)) is equal to

KL[pm,i || pl,i] =
∑

x∈{0,1}

P (x|p
m,i) log

P (x|p
m,i)

P (x|p
l,i)

. (22)

The following test suite aims to quantify if the com-

pressed promoter representations are biologically mean-

ingful. In each test, we select one promoter as a ref-

erence. The test is repeated until all promoters have

been selected. Given a reference promoter m, we la-

bel the group of all promoters l within a pre-specified

distance D(m, l) < D0 as “positives” and all others

as “negatives”. Hence, the positive set of the reference
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Fig. 6 Detailed visualization of second-order binary tensors for manually selected promoter and intron sequences. Important
terms that have a strong influence on the sequence coordinates in the central 2D plot are marked with black dots.

promoter m reads: Sm = {l | D(m, l) < D0}. In the

tests we consistently use a distance of D0 = 25, usu-

ally rendering over one hundred “positives”. For each

GO term (ultimately, in the full Gene Ontology, but in

practice, we look only at those assigned to the reference

promoter), Fisher’s exact test resolves if it occurs more

often amongst “positives” than would be expected by

chance. (The null hypothesis is that the GO term is

not attributed more often than by chance to the “posi-

tives”.) A small p-value indicates that the term is “en-

riched” at the position of the reference promoter m.

We adjust for multiple hypothesis testing and set the

threshold at which to report a term as significant ac-

cordingly (p < 5 · 10−7). To understand the tendency

of false discovery, we also repeated the tests (with the

same significance threshold) after shuffling the points

assigned to promoters. Re-assuringly, in no case did this

permutation test identify a single GO term as signifi-

cant.

In total, at the aforementioned level of significance,

we found 75 GO terms that were enriched around one or

more reference promoters. The observation that a sub-

set of promoter sequences are functionally organized af-

ter decomposition into 10 basis tensors adds support to

the methods’ ability to detect variation at an informa-

tion-rich level. More specifically, we find a number of

terms that are specifically concerned with chromatin

structure (that packages the DNA), e.g. GO:0000786

“Nucleosome”, GO:0006333 “Chromatin assembly or

disassembly” and GO:0065004 “Protein-DNA complex

assembly”. Interestingly, we found several enriched terms

related to development, e.g. GO:0022414 “Reproduc-

tive process” and GO:0007565 “Female pregnancy”.
Anecdotally, we note that CpG islands (that are clearly

distinct in the promoter sequence data) are associated

with open DNA, leading to constitutive gene expres-

sion. Speculatively, genes associated with CpG-rich pro-

moters need to control local chromatin. Moreover, it

was recently observed that under-methylation of such

otherwise methylation-prone regions is established by

developmental cues [34], suggesting a link between CpG

islands and development.

We use the following method to visualize the group-

ing of promoters assigned the same GO term t. Given a

promoter m, we consider two events: et - a promoter as-

signed the GO term t; e 6=t - the complement of et. The

probability Pt(et|Sm) is determined by calculating the

proportion of promoters with the GO term t in Sm. We

do this by first normalizing the counts so that a priori

(across all promoters) the probability of drawing a pos-

itive (a promoter assigned the GO term t) and drawing

a negative (a promoter not assigned that GO term) is
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Fig. 7 Promoter regions assigned to GO:0000003 biological
process: Reproduction.

equal. Denote by M , Mt, Mt,Sm , and M 6=t,Sm the num-

ber of promoters, number of promoters assigned to GO

term t, number of promoters from Sm assigned to GO

term t, and number of promoters from Sm not assigned

to GO term t, respectively. Then the counts Mt,Sm
and

M 6=t,Sm
are normalized as M̃t,Sm

= (Mt,Sm
·M)/(2Mt)

and M̃ 6=t,Sm = [M 6=t,Sm ·M ]/[2(M −Mt)], yielding

Pt(et|Sm) =
M̃t,Sm

M̃t,Sm + M̃ 6=t,Sm

.

By performing the procedure above, we have for each

promoter m and for each GO term t assigned to it a

value Pt(et|Sm) that expresses how organized the space

around m is with respect to the GO term t. Figure 7

shows a contour plot of Pt(et|S) that interpolates the

values Pt(et|Sm) calculated for all promoters m with a

GO term t=GO:0000003 “Reproduction” when mapped

to the PCA-derived 2-dimensional space. Dark regions

indicate high level of enrichment. The star marker high-

lights the promoter NM-002784 with the highest level

of enrichment for the GO term GO:0000003. The plot

reveals islands of highly enriched promoter regions re-

lated to a particular biological function.

To further investigate the enrichment of biologically

meaningful information we performed a motif discovery

on the sets Sm. As an example, consider a reference pro-

moter NM-002784 (highly enriched for GO:0000003).

Sm contains 38 promoter sequences that were passed

to MEME [35]. Several statistically significant motifs

were found. The most significant 12-nucleotide motif

was then passed to Tomtom [36] that (reassuringly)

recognized the motif as the binding site of transcrip-

tion factor Sfpi1 (p = 0.0003, q = 0.23, UniPROBE

database). We stress that the main purpose of this ex-

periment was to illustrate the potential of GMLPCA

to take stock of more complicated patterns than zero-

order compositional biases. A more involved application

of our binary tensor decomposition in specific analysis

of biological sequences (genomic or aminoacid) is a mat-

ter for our future research.

6.3 Discussion

The experiments presented in this section compared our

proposed GMLPCA model with other existing decom-

position models in two different scenarios: (1) synthetic

data compression and (2) topographic mapping of DNA

sequences.

Experiments involving synthetic data sets generated

from the linear Bernoulli natural parameter subspaces

showed that GMLPCA clearly outperformed the other

examined decomposition models. To investigate whether

this translates to the case of real-world data, we re-

peated the reconstruction experiment on a data set of

2nd-order binary tensors representing DNA sequences

used in section 6.2.

From the dataset of 62,000 sequences we randomly

sampled 5 groups, each having 4,500 sequences. Each

group was partitioned into 3,000 training and 1,500 test

tensors. The tensor decomposition models were used

on the training set to find latent subspaces spanned by

different number of basis tensors. Then the hold-out se-

quences were projected onto the reduced-dimensionality

latent space and subsequently reconstructed back into

the original tensor space to measure the discrepancy

between the reconstructed and original data. The pro-
cedure is identical to the one used in the synthetic data

experiment.

Reconstruction results in terms of AUC for different

latent space sizes are shown in figure 8. Our proposed

GMLPCA model clearly outperformed other decompo-

sition models except for the smallest latent subspace,

where UMPCA model achieved slightly higher accuracy

in terms of AUC.

Please note that we derived an iterative estimation

scheme via maximum likelihood for fitting the GMLPCA

model parameters. It is well known that good parame-

ter initialization can be crucial for the success of maxi-

mum likelihood estimation. We empirically studied two

commonly used initialization methods - random initial-

ization and initialization by HOSVD (see e.g. [1]). The

effects of these initialization methods on the conver-

gence of log-likelihood were tested on both the syn-

thetic data and DNA sequences. The results are sum-

marized in figure 9. For the random initialization the

average of 5 repeated runs is shown. It can be seen
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AUC Analysis of Hold-out DNA Sequence Samples Reconstruction

≈ 10,000 ≈ 12,000 ≈ 14,000 ≈ 16,000 ≈ 18,000Number of free parameters
GMLPCA (row x column vectors)             1 x 8              2 x 16            3 x 24            4 x 32             5 x 40            6 x 48            7 x 56            8 x 64  
MPCA (row x column vectors)                  1 x 8              2 x 16            3 x 24            4 x 32             5 x 40            6 x 48            7 x 56            8 x 64    
UMPCA (uncorrelated features)                  7                   15                  22                  29                    -                    -                     -                     -   
TensorLSI (basis tensors)                           7                   15                  22                  29                   37                  45                 53                   61
LPCA (basis vectors)                                   -                     -                    -                     1                    -                     -                     -                     2

A
U

C

GMLPCA
LPCA
MPCA
UMPCA
TLSI

0.7

0.75

0.8

0.85

0.9

0.95

1

 

 

≈ 20,000 ≈ 22,000 ≈ 24,000

Fig. 8 AUC analysis of hold-out 2nd-order binary tensor reconstructions obtained by the models using different number of
free parameters among 5 disjoin subsets of binary tensors that represent DNA sequences. Table under the plot describes model
settings for particular number of free parameters.

that for smaller subspaces (R = [3 × 3]3 for synthetic

data and R = [1 × 8] for DNA sequences) the differ-

ences between the two initialization methods are neg-

ligible and GMLPCA converges in about 5 iterations.

However, for larger subspaces the HOSVD initialization

performed better than the blind random initialization

and the training takes longer (GMLPCA converges in

20-25 iterations). Hence, the HOSVD initialization is

superior and has been used in all our experiments.

We have also investigated the ability of tensor based

models for unsupervised analysis and visualization of

DNA sub-sequences (represented as binary tensors) from

different functional regions based on the local term com-

position. By visualizing sub-sequence distributions in

the principal sub-spaces spanned by the basis tensors,

it transpires that the separation between promoters and

introns is markedly better under the GMLPCA model

than under the real-valued MPCA and TensorLSI meth-

ods. After detailed analysis, the discriminatory trends

were identified as one of the most known signals in the

promoter analysis domain verified by in-vivo biological

experiments. To further investigate the method’s util-

ity for processing biological sequences, we searched the

compressed feature space of promoters for biologically

relevant structure. After assigning biologically mean-

ingful labels to analyzed promoters, we found 75 GO

terms that were enriched around one or more promot-

3 R = [3 × 3] represents a natural parameter subspace
spanned by 3 row and 3 column vectors.

ers. The observation that a subset of promoter sequences

are functionally organized adds support to the method’s

ability to detect variation at an information-rich level.

7 Semi-Supervised Extension

So far we considered the GMLPCA model as an un-

supervised dimensionality reduction method for binary

tensor data. However, many problems in machine learn-

ing involve decompositions that to certain degree pre-

serve the label information provided for some data items.

Such semi-supervised decomposition methods aim to

benefit from both labeled and unlabeled data.

Here we propose to extend our GMLPCA model

to the semi-supervised setting by forcing the model

to search for a natural parameter subspace that rep-

resents a user specified compromise between the mod-

elling quality and the degree of class separation. We do

so by extending the cost function with a measure of

separability of projected classes.

To enforce class separability of data items living in

a metric space, Globerson and Roweis introduce a dis-

tribution over data items l, given a single data point m

[37]:

p(l|m) =
e−d(m,l)∑

k 6=m e
−d(m,k) m 6= l, (23)

where d(m, l) is the distance between the points m and

l. Loosely speaking, given a particular data item m, un-
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Fig. 9 Illustration of the effect of initialization and convergence of GMLPCA: the evolution of log-likelihood on synthetic data
(left plot) and DNA sequence dataset (right plot) over 30 iterations.

der p(l|m) we are more likely to pick data points closer

to m than the more distant ones. In the ideal situa-

tion, where all points in the same class are collapsed

to a single point and infinitely far from points of dif-

ferent classes, the conditional distributions (23) would

become “bi-level” distributions [37]:

p0(l|m) ∝
{

1 ym = yl
0 ym 6= yl,

(24)

where ym denotes a class label of data point m. In [37],

maximal class separation under a given data model

is achieved by tuning the model parameters so that

the class divergence,
∑
m KL[p0(·|m)||p(·|m)], is min-

imized. Minimizing
∑
m KL[p0(·|m)||p(·|m)] is equiva-

lent to maximizing∑
m

∑
l:yl=ym
l 6=m

log p(l|m) = (25)

∑
m

1

c(ym)− 1

∑
l:yl=ym
l 6=m

−d(l,m)− log
∑
k

k 6=m

e−d(k,m), (26)

where c(ym) denotes a number of points in class ym.

Any two natural parameter tensors θm and θl living

in the tensor subspace represent tensors of Bernoulli

distributions P (Am|θm) and P (Al|θl) given by (6). The

distance between those Bernoulli tensors is quantified

by the symmetric KL divergence D(m, l) (eqs. (21-22)).

Using D(m, l) as a metric on the subspace of tensors of

Bernoulli natural parameters, (23) becomes

p(l|m) =
e−D(m,l)∑

k 6=m e
−D(m,k)

m 6= l. (27)

Given a subset of data tensors D` ⊂ D with class labels,

the degree of projected class separation is quantified by

(see (26))

F(D`,y) =
∑
m∈D`

1

c(ym)− 1

×
∑

l:yl=ym
l 6=m

−D(l,m)− log
∑
k∈D`
k 6=m

e−D(k,m),

(28)

where y is an |D`|-dimensional vector that contains la-

bels for each data tensor in D`.
We aim to find tensor basis that simultaneously

maximizes log-likelihood (7) of all training tensors and

the degree of projected class separation (28): L(D) +

β F(D`,y), where β > 0 is a regularization constant

controlling the trade-off between data representation

and separation.

To fit tensor basis, any optimization technique can

be used. We used gradient ascent:

u
(n)
q,j ← u

(n)
q,j + η

(
∂L(D)

∂u
(n)
q,j

+ β
∂F(D`,y)

∂u
(n)
q,j

)
, (29)

∆j ← ∆j + η

(
∂L(D)

∂∆j
+ β

∂F(D`,y)

∂∆j

)
. (30)

After each update cycle through the training set

(updates of the projection space), the expansion coef-

ficients (projections) of data tensors were calculated as

described in section 5.

To illustrate workings of the semi-supervised tensor

basis selection, we randomly sampled 500 DNA sub-

sequences (250 introns and 250 promoters) as a train-

ing set and another set of 6,000 sub-sequences (3,000

introns + 3,000 promoters) as a hold-out set to verify

whether the subspace found using the training set repre-

sents any global trends in the data. The model setting
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(number of basis vectors for each mode) was exactly

the same as in the previous experiment. The results

are presented in figure 10. Plots in the first and second

columns correspond to the training and hold-out sets,

respectively. The first row represents a model with ran-

domly chosen basis vectors for each mode. The second

row corresponds to the completely unsupervised setting

(β = 0). The third and fourth rows represent two differ-

ent settings of class separation enforcement, β = 5 and

β = 20, respectively. There is certain degree of natural

class separation visible in the tensor subspace found in

an unsupervised manner, without using any class la-

bel information. Random subspace position completely

fails to discriminate between the two classes. However,

further imposition of pressure for more class separation

yields tensor basis giving only minute improvement in

the class distribution over the completely unsupervised

case. We conclude that the data is naturally split into

two overlapping classes, that under the given subspace

dimension, cannot be further separated into clearly dis-

tinct class projections. Biologically speaking, on the se-

quential level, many promoters and introns can exhibit

similar subsequence structure.

8 Conclusion

This paper has introduced a generalized multilinear prin-

cipal component analysis for binary tensors GMLPCA.

The model can be considered as a generalization of the

binary vector-based decomposition technique LPCA [11]

to process binary tensors of an arbitrary order. Even

though the original vector model is non-linear in pa-

rameters, the strong linear algebraic structure of the

Tucker model for tensor decomposition can be super-

imposed on the parameter space of the tensor model,

so that the efficient linear nature of parameter updates

of [11] can be preserved.

Our experimental results involving synthetic and

DNA sequence datasets showed that GMLPCA model

is better suited to reconstruction of binary tensors than

other examined decomposition models. Besides the re-

constructions, we have also investigated the ability of

tensor based models for unsupervised analysis and vi-

sualization of DNA sequences. By visualizing sequence

distributions in the principal sub-spaces, it transpires

that the separation between two functional classes of

sequences is markedly better under GMLPCA model

that under other used models.

In addition, we extended our GMLPCA model to

the semi-supervised setting by forcing the model to

search for a natural parameter subspace that repre-

sents a user specified compromise between the mod-

elling quality and the degree of class separation. We

used the semi-supervised setting of our model to fur-

ther analyze the DNA sequences. However, implying a

combined pressure for modelling quality and class sep-

aration of sequences yielded tensor basis giving only

minute improvement in the class distribution over the

completely unsupervised case. We conclude that in the

tensor subspace discovered in the unsupervised setting,

the data is already naturally split into two overlap-

ping classes and cannot be further separated into more

clearly distinct class projections by applying any addi-

tional supervised pressure.

A Parameter Estimation

To get analytical parameter updates, we use the trick of [11]
and take advantage of the fact that while the model log-
likelihood (7) is not convex in the parameters, it is convex
in any parameter, if the others are kept fixed. This leads to
an iterative estimation scheme detailed below.

The analytical updates will be derived from a lower bound
on the log-likelihood (7) using [11]:

log σ(θ̂) ≥ − log 2+
θ̂

2
− log cosh

(
θ

2

)
− (θ̂2−θ2)

tanh θ
2

4θ
, (31)

where θ stands for the current value of individual natural
parameters θm,i of the Bernoulli noise models P (Am,i|θm,i)
and θ̂ stands for the future estimate of the parameter, given
the current parameter values. Hence, from (7) we obtain4

L(Θ̂) =
M∑
m=1

∑
i∈Υ

Am,i log σ(θ̂m,i) + (1−Am,i) log σ(−θ̂m,i)

≥
M∑
m=1

∑
i∈Υ

Am,i

[
− log 2 +

θ̂m,i

2

− log cosh

(
θm,i

2

)
− (θ̂2

m,i − θ
2
m,i)

tanh
θ
m,i
2

4θm,i

]

+ (1−Am,i)

[
− log 2−

θ̂m,i

2

− log cosh

(
θm,i

2

)
− (θ̂2

m,i − θ
2
m,i)

tanh
θ
m,i
2

4θm,i

]
(32)

= H(Θ̂, Θ). (33)

Denote (tanh
θ
m,i
2

)/θm,i by Ψm,i. Grouping together con-

stant terms in (32) leads to

H(Θ̂, Θ) =
M∑
m=1

∑
i∈Υ

[
θ̂m,i

(
Am,i −

1

2

)
−
Ψm,i

4
θ̂2
m,i

]
+ Const. (34)

Note that H(Θ̂, Θ) = L(Θ̂) only if Θ̂ = Θ. Therefore by
choosing Θ̂ that maximizes H(Θ̂, Θ) we guarantee L(Θ̂) ≥
H(Θ̂, Θ) ≥ H(Θ,Θ) = L(Θ) [11].

4 θ’s are fixed current values of the parameters and should
be treated as constants
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Fig. 10 Two-dimensional PCA projections from 4 different tensor spaces of training and hold-out sets of 500 and 6,000
randomly sampled sub-sequences, respectively. The first row represents a tensor model with randomly chosen basis vectors for
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We are now ready to constrain the Bernoulli parameters
to be optimized (see (9)):

θ̂m,i =
∑
r∈ρ
Qm,r ·

N∏
n=1

u
(n)
rn,in

+∆i. (35)

We will update the model parameters so as to maximize

H =
M∑
m=1

∑
i∈Υ

Hm,i, (36)

where

Hm,i =

(
Am,i −

1

2

)
θ̂m,i −

Ψm,i

4
θ̂2
m,i, (37)

with θ̂m,i given by (35).

A.1 Updates for n-mode space basis

When updating the n-mode space basis {u(n)
1 ,u

(n)
2 , ..., u

(n)
Rn
},

the bias tensor ∆ and the expansion coefficients Qm,r, m =
1, 2, ...M , r ∈ ρ, are kept fixed to their current values.

For n = 1, 2, ..., N , define

Υ−n ={1, 2, ..., I1} × ...× {1, 2, ..., In−1} × {1}
× {1, 2, ..., In+1} × ...× {1, 2, ..., IN}, (38)

with obvious interpretation in the boundary cases. Given i ∈
Υ−n and an n-mode index j ∈ {1, 2, ..., In}, the index N-tuple
(i1, ..., in−1, j, in+1, ..., iN ) formed by inserting j at the nth
place of i is denoted by [i, j|n].

In order to evaluate

∂ H
∂ u

(n)
q,j

, q = 1, 2, ..., Rn, j = 1, 2, ..., In,

we realize that u
(n)
q,j is involved in expressing all θ̂m,[i,j|n],

m = 1, 2, ...,M , with i ∈ Υ−n. Therefore,

∂ H
∂ u

(n)
q,j

=
M∑
m=1

∑
i∈Υ−n

∂ Hm,[i,j|n]
∂ θ̂m,[i,j|n]

∂ θ̂m,[i,j|n]

∂ u
(n)
q,j

, (39)

where

∂ Hm,[i,j|n]
∂ θ̂m,[i,j|n]

=

(
Am,[i,j|n] −

1

2

)
−
Ψm,[i,j|n]

2
θ̂m,[i,j|n] (40)

and from (35),

∂ θ̂m,[i,j|n]

∂ u
(n)
q,j

= B(n)
m,i,q

=
∑

r∈ρ−n

Qm,[r,q|n] ·
N∏

s=1,s6=n

u
(s)
rs,is

. (41)

Here, the index set ρ−n is defined analogously to Υ−n:

ρ−n ={1, 2, ..., R1} × ...× {1, 2, ..., Rn−1} × {1}
× {1, 2, ..., Rn+1} × ...× {1, 2, ..., RN}. (42)

Setting the derivative (39) to zero results in

M∑
m=1

∑
i∈Υ−n

(2Am,[i,j|n] − 1) B(n)
m,i,q

=

M∑
m=1

∑
i∈Υ−n

Ψm,[i,j|n] θ̂m,[i,j|n] B
(n)

m,i,q
. (43)

Rewriting (35) as

θ̂m,[i,j|n] =

Rn∑
t=1

∑
r∈ρ−n

Qm,[r,t|n] u
(n)
t,j

N∏
s=1,s6=n

u
(s)
rs,is

+ ∆[i,j|n] (44)

and applying to (43) we obtain

Rn∑
t=1

u
(n)
t,j K

(n)
q,t,j = S(n)q,j , (45)

where

S(n)q,j =
M∑
m=1

∑
i∈Υ−n

(2Am,[i,j|n] − 1− Ψm,[i,j|n]∆[i,j|n])B
(n)

m,i,q
,

(46)

and

K(n)
q,t,j =

M∑
m=1

∑
r∈ρ−n

Qm,[r,t|n]

×
∑

i∈Υ−n

Ψm,[i,j|n] B
(n)

m,i,q

N∏
s=1,s6=n

u
(s)
rs,is

.

(47)

For each n-mode coordinate j ∈ {1, 2, ..., In}, collect the j-
th coordinate values of all n-mode basis vectors into a column
vector u

(n)
:,j = (u(n)1,j , u

(n)
2,j , ..., u

(n)
Rn,j

)T . Analogously, stack all

the S(n)q,j values in a column vector S(n):,j = (S(n)1,j ,S
(n)
2,j , ...,

S(n)Rn,j
)T . Finally, we construct an Rn×Rn matrix K(n)

:,:,j whose

q-th row is (K(n)
q,1,j ,K

(n)
q,2,j , ...,K

(n)
q,Rn,j

), q = 1, 2, ..., Rn. The n-
mode basis vectors are updated by solving In linear systems
of size Rn ×Rn:

K(n)
:,:,j u

(n)
:,j = S(n):,j , j = 1, 2, ..., In. (48)

A.2 Updates for expansion coefficients

When updating the expansion coefficients Qm,r, the bias ten-

sor ∆ and the basis sets {u(n)
1 ,u

(n)
2 , ...,u

(n)
Rn
} for all n modes

n = 1, 2, ..., N are kept fixed to their current values.

For r ∈ ρ and i ∈ Υ denote
∏N
n=1 u

(n)
rn,in

by Cr,i. For data
index ` = 1, 2, ...,M and basis index v ∈ ρ we have

∂ H
∂ Q`,v

=
M∑
m=1

∑
i∈Υ

∂ Hm,i
∂ θ̂m,i

∂ θ̂m,i

∂ Q`,v
, (49)

where

∂ Hm,i
∂ θ̂m,i

=

(
Am,i −

1

2

)
−
Ψm,i

2
θ̂m,i (50)

and
∂ θ̂

m,i
∂ Q`,v

= Cv,i if m = ` and
∂ θ̂

m,i
∂ Q`,v

= 0 otherwise.

By imposing ∂ H
∂ Q`,v

= 0, we get

Tv,` =
∑
r∈ρ
Pv,r,` Q`,r, (51)
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where

Tv,` =
∑
i∈Υ

(2A`,i − 1− Ψ`,i ∆i) Cv,i (52)

and

Pv,r,` =
∑
i∈Υ

Ψ`,i Cv,i Cr,i. (53)

To solve for expansion coefficients using the tools of ma-
trix algebra, we need to vectorize tensor indices. Consider any
one-to-one function κ from ρ to {1, 2, ...,

∏N
n=1Rn}. For each

input tensor index ` = 1, 2, ...,M ,

– create a square (
∏N
n=1Rn)×(

∏N
n=1Rn) matrix P:,:,` whose

(κ(v), κ(r))-th element is equal to Pv,r,`,
– stack the values of Tv,` into a column vector T:,` whose
κ(v)-th coordinate is Tv,`,

– collect the expansion coefficients Q`,r in a column vector
Q`,: with κ(r)-th coordinate equal to Q`,r.

The expansion coefficients for the `-th input tensor A`
can be obtained by solving

P:,:,` Q`,: = T:,`, ` = 1, 2, ...,M. (54)

A.3 Updates for the bias tensor

As before, when updating the bias tensor ∆, the expansion
coefficients Qm,r, m = 1, 2, ...M , r ∈ ρ, and the basis sets

{u(n)
1 ,u

(n)
2 , ...,u

(n)
Rn
} for all n modes n = 1, 2, ..., N are kept

fixed to their current values.
Fix j ∈ Υ . We evaluate

∂ H
∂ ∆j

=
M∑
m=1

∑
i∈Υ

∂ Hm,i
∂ θ̂m,i

∂ θ̂m,i

∂ ∆j
, (55)

where
∂ θ̂

m,i
∂ ∆j

is equal to 1 if i = j and 0 otherwise.

Solving for ∂ H
∂ ∆j

= 0 leads to

∆j =

∑M
m=1 2Am,j − 1− Ψm,j ·

∑
r∈ρQm,r Cr,j∑M

m=1 Ψm,j
. (56)
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