
Neural Networks 59 (2014) 51–60
Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Ordinal regression neural networks based on concentric hyperspheres
Pedro Antonio Gutiérrez a,∗, Peter Tiňo b, César Hervás-Martínez a

a University of Córdoba, Department of Computer Science and Numerical Analysis, Rabanales Campus, Albert Einstein building, 14071 - Córdoba, Spain
b School of Computer Science, The University of Birmingham, Birmingham B15 2TT, United Kingdom

a r t i c l e i n f o

Article history:
Received 7 February 2014
Received in revised form 15 May 2014
Accepted 7 July 2014
Available online 11 July 2014

Keywords:
Ordinal regression
Ordinal classification
Neural networks
Latent variable

a b s t r a c t

Threshold models are one of the most common approaches for ordinal regression, based on projecting
patterns to the real line and dividing this real line in consecutive intervals, one interval for each class.
However, finding such one-dimensional projection can be too harsh an imposition for some datasets.
This paper proposes a multidimensional latent space representation with the purpose of relaxing this
projection, where the different classes are arranged based on concentric hyperspheres, each class
containing the previous classes in the ordinal scale. The proposal is implemented through a neural
networkmodel, each dimension being a linear combination of a common set of basis functions. Themodel
is compared to a nominal neural network, a neural network based on the proportional odds model and
to other state-of-the-art ordinal regression methods for a total of 12 datasets. The proposed latent space
shows an improvement on the two performance metrics considered, and the model based on the three-
dimensional latent space obtains competitive performance when compared to the other methods.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Whenwe face an ordinal regression (OR) problem, the objective
is to predict the label yi of an input vector xi, where xi ∈ X ⊆ Rk

and yi ∈ Y ∈ {C1,C2, . . . ,CQ }. This is done by estimating a
classification rule or function F : X → Y to predict the labels of
new samples. In a supervised setting, we are given a training set of
N points, D = {(xi, yi), 1 ≤ i ≤ N}. All these considerations can be
also found in standard nominal classification, but, for OR, a natural
label ordering is included, which is given by C1 ≺ C2 ≺ · · · ≺ CQ .
The symbol ≺ is an order relation representing the nature of the
classification problem and expressing that a label is before another
in the ordinal scale.

OR problems are very common in real settings, although the
machine learning community has often treated them from a
standard (nominal) perspective, ignoring the order relationship,≺,
between classes. Some examples of application fields where OR is
found are credit rating (Dikkers & Rothkrantz, 2005), econometric
modelling (Mathieson, 1996), medical research (Cardoso, da Costa,
& Cardoso, 2005) or face recognition (Kim & Pavlovic, 2010), to
name a few. Considering the order relationship between classes
can result in two significant benefits: (1) minimisation of specific

∗ Corresponding author. Tel.: +34 957218349; fax: +34 957218630.
E-mail addresses: pagutierrez@uco.es, zamarck@gmail.com (P.A. Gutiérrez).

http://dx.doi.org/10.1016/j.neunet.2014.07.001
0893-6080/© 2014 Elsevier Ltd. All rights reserved.
classification errors, and (2) incorporation of the ordering into
the classifier. With respect to the first benefit, it is clear that one
should focus on predicting categories as close as possible to the
real one when tackling an OR problem. Hence, OR methods are
aimed to minimise those errors that involve large category gaps in
the ordinal scale. As an example, consider a tumour classification
problem where the categories are {benign, dangerous, malign}.
Misclassification of malign tumours as dangerous is preferred to
assign the label benign to a malign tumour and OR methods will
generally minimise this second type of errors. The second benefit
comes from the fact that label order is usually present, in a direct
way in the input space or through a latent space representation
(Sánchez-Monedero, Gutiérrez, Tino, & Hervás-Martínez, 2013).
Imbuing a classifier with this ordering will generally improve
generalisation performance, as the classifier is better representing
the nature of the task.

The field of OR has experienced significant development in the
last decade, with many new methods adapted from traditional
machine learning methodologies, from support vector machine
(SVM) formulations (Chu & Keerthi, 2007) to Gaussian processes
(Chu & Ghahramani, 2005) or discriminant learning (Sun, Li, Wu,
Zhang, & Li, 2010). For all these methods, although classifier
construction is motivated and undertaken from different points
of view, the final models share a common structure or nature.
They exploit the fact that it is natural to assume that an
unobserved continuous variable underlies the ordinal response
variable (e.g. the actual age of the person appearing in a picture

http://dx.doi.org/10.1016/j.neunet.2014.07.001
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2014.07.001&domain=pdf
mailto:pagutierrez@uco.es
mailto:zamarck@gmail.com
http://dx.doi.org/10.1016/j.neunet.2014.07.001

52 P.A. Gutiérrez et al. / Neural Networks 59 (2014) 51–60
for an age classification problem). This variable is called latent
variable, and methods based on that assumption are known as
threshold models (Verwaeren, Waegeman, & De Baets, 2012).
Indeed, this structure can be found in one of the first models for
OR, the proportional odds model (POM) (McCullagh, 1980), which
is a probabilistic model estimating the cumulative probabilities
of the different ordered categories and leading to linear decision
boundaries. Threshold models methodologies estimate:

• A function f (x) that tries to predict the values of the latent
variable.

• A set of thresholds b = (b1, b2, . . . , bQ−1) ∈ RQ−1 to represent
intervals in the range of f (x), whichmust satisfy the constraints
b1 ≤ b2 ≤ · · · ≤ bQ−1.

Fromapractical perspective, thresholdmodels are basically try-
ing to find a one-dimensional projection (f (x))where patterns are
ordered according to the class labels. Finding this projection can
be a problem for real world datasets. If we consider linear models
for f (x), the chances that the patterns exhibit a linear ordering re-
lationship are certainly very low. If we consider nonlinear models,
the pressure to find this nonlinear projection can result in unnat-
ural or too complex projections leading to poorer generalisation
performance. This paper proposes to relax this pressure by allow-
ing a higher dimensional representation of the latent space. This is
done by ordering patterns in an L-dimensional space, where each
class region is limited by concentric hyperspheres (centred in the
origin). The ordering of the classes is imposed by assuring that the
radii of the hyperspheres are also ordered.

Another popular way to tackle OR problems is to decompose
the original task into several binary tasks, where each binary task
consists of predicting if the patterns belong to a category higher
(in the ordinal scale) than a given label Cq. One model is estimated
for each class in the ordinal scale. The approach is presented in
the work of Frank and Hall (2001), also proposing a way to fuse
probabilities given for all binary tasks. Later on, there have been
two different lines of research where binary classification and OR
were linked in a more direct way (Cardoso & da Costa, 2007; Li &
Lin, 2007; Lin & Li, 2012). Instead of learning Q different binary
classifiers, a single binary classifier is learnt, where the category
examined is included as an additional feature and training patterns
are replicated and weighted. The framework in Li and Lin (2007)
and Lin and Li (2012) is more generic, in the sense that it can be
applied to different cost matrices.

The Error-Correcting Output Codes (ECOC) methodology is
a popular and effective coding method to learn complex class
targets, which can be used also for OR. Themain idea is to associate
each classCq with a column of a binary codingmatrixMR×Q , where
each entry of the matrix M(j, q) ∈ {−1,+1},Q is the number
of classes, R is the number of binary classifiers, 1 ≤ q ≤ Q
and 1 ≤ j ≤ R. After training the binary classifiers, prediction
is then accomplished by choosing the column of M closest to
the set of decision values, where the distance function should be
selected according to the error functionminimised during learning
(Allwein, Schapire, & Singer, 2001; Dietterich & Bakiri, 1995).

In the field of neural networks, there have been some proposals
for OR problems. The first one dates back to 1996, whenMathieson
proposed a non-linear version of the POM (Mathieson, 1996,
1999) by setting the projection f (x) to be the output of a neural
network. Although the results were quite promising, the method
was evaluated for a very specific dataset. A more extensive battery
of experiments should be done to further validate the proposal.

Costa (1996) derived another neural network architecture to
exploit the ordinal nature of the data. It was based on a ‘‘partitive
approach’’, where probabilities are assigned to the joint prediction
of constrained concurrent events.

Other approach (Cheng, Wang, & Pollastri, 2008) applies the
coding scheme of Frank and Hall and a decision rule based on
examining output nodes with an order and selecting the first
one whose output is higher than a predefined threshold T . The
problem of this method is that inconsistencies can be found in the
predictions (i.e. a sigmoid with value higher than T after the index
selected).

The ordinal neural network (oNN) of Cardoso and da Costa
(2007) adapts the previously discussed data replication method to
neural networks (a single model for binary decomposition using
an extended and replicated version of the dataset), allowing the
derivation of nonlinear decision boundaries.

Additionally, extreme learning machines (ELMs) have been
used as a very fast method to fit single layer neural networks,
where the hidden neurons weights are random, and the output
weights are analytically obtained (Huang, Zhou, Ding, & Zhang,
2012). They have been adapted to OR (Deng, Zheng, Lian, Chen,
& Wang, 2010), considering again the Frank and Hall coding
scheme and a prediction based on the ECOC loss-based decoding
approach (Allwein et al., 2001), i.e. the chosen label is that which
minimises the exponential loss. Another recent paper by Riccardi,
Fernandez-Navarro, and Carloni (in press) introduces a cost-
sensitive approach for adapting the stagewise additive modelling
using amulticlass exponential boosting algorithm (SAMME, which
is the multiclass version of the well-known AdaBoost) to OR
problems. They consider ELMs as the base classifier and they
introduce three different loss functions, affecting the update rule of
the error estimation and/or of the pattern weights (Riccardi et al.,
in press). From the three variants introduced in the paper, the third
one (which adapts the update rule of both the error estimation
and the pattern weights) obtains the best results. The OR model
proposed in Fernandez-Navarro, Riccardi, and Carloni (in press)
adapts ELM to OR problems by imposing monotonicity constraints
in the weights connecting the hidden layer with the output layer.
The optimum of the inequality constrained least squares problem
is determined analytically according to the closed-form solution
estimated from the Karush–Kuhn–Tucker conditions.

A conceptually different methodology is proposed by da Costa,
Alonso, and Cardoso (2008) and da Costa and Cardoso (2005) for
training OR models, with a special attention to neural networks.
They assume that the random variable class of a pattern should
follow a unimodal distribution. Two possible implementations are
considered: a parametric one,where a specific discrete distribution
is assumed and the associated free parameters are estimated by a
neural network; and a non-parametric one, where no distribution
is assumed but the error function is modified to avoid errors
from distant classes. Finally, the approach in Dobrska, Wang, and
Blackburn (2012) is a distribution-independent methodology for
OR based on pairwise preferences. The strength of dependency
between two data instances (continuous preferences) is shown to
improve algorithmic performance, obtaining competitive results.

In this paper, we extend the proposal of Mathieson (1996,
1999), deriving a nonlinear version of the POM based on neural
networks. We present a common learning framework to fit the
parameters of a nominal neural network (NNN) and the neural
network based on the POM (POMNN). The framework is then used
to fit an extended version of the POMNN, where, as previously
discussed, the latent space is assumed to be L-dimensional and the
patterns are ordered by consideringQ−1 concentric hyperspheres.
The underlying motivation is to relax the imposition of projecting
all patterns in a real line.

With regard to the relationship between ECOC and the proposal
of this paper, one single model is used for learning the ordinal
target, and the problem is not decomposed into several binary
ones. In this way, the latent space structure relates each pattern
to the posterior probabilities without learning multiple binary
classifiers.

This paper is organised as follows: Section 2 is devoted to a brief
analysis of the POMmodel, closely related to themodels proposed;

P.A. Gutiérrez et al. / Neural Networks 59 (2014) 51–60 53
the description of the different ordinal neural network models
is carried out in Section 3; Section 4 contains the experimental
results; and finally, Section 5 summarises the conclusions of our
work.

2. Proportional odds model (POM)

This model is a direct extension of binary logistic regression
for the case of OR. It was first presented by McCullagh (1980) and
dates back to 1980. POM can be grouped under a wider family of
models, the cumulative link models (CLMs) (Agresti, 2002), which
predict probabilities of adjacent categories, taking the ordinal scale
into account. The key idea of CLMs is to estimate cumulative
probabilities as follows:

P(y ≼ Cq|x) = P(y = C1|x)+ · · · + P(y = Cq|x),
P(y = Cq|x) = P(y ≼ Cq|x)− P(y ≼ Cq−1|x),

for 1 < q ≤ Q , considering by definition that P(y ≼ CQ |x) = 1
and P(y = C1|x) = P(y ≼ C1|x). CLMs relate a linear model of the
input variables to these cumulative probabilities:

f (x) = g−1 P(y ≼ Cq|x)


= bq − wTx,

where g−1
: [0, 1] → (−∞,+∞) is a monotonic transformation

(the inverse link function), bq is the threshold defined for class
Cq, and w is the coefficient vector of the linear model. The
most common choice for the link function is the logistic function
(which is indeed the one selected for the POM McCullagh, 1980),
although probit, complementary log–log, negative log–log or
cauchit functions could also be used (Agresti, 2002). The logit
link function is the inverse of the standard logistic cumulative
distribution function (cdf), with the following expression:

g−1 P(y ≼ Cq|x)


= ln


P(y ≼ Cq|x)
1 − P(y ≼ Cq|x)


, (1)

while the probit link function is the inverse of the standard normal
cdf:

g−1 P(y ≼ Cq|x)


= Φ−1(P(y ≼ Cq|x)), (2)

where Φ(x) is the normal distribution, and the cauchit link
function is the inverse of the Cauchy cdf (characterised for having
long thick tails):

g−1 P(y ≼ Cq|x)


= tan{π · [P(y ≼ Cq|x)− 0.5]}. (3)

Under the assumption that f (x) follows a logistic cdf and following
the idea of the POM model (McCullagh, 1980), the cumulative
likelihood of a pattern being associated with a class less than or
equal to class Cq is defined as:

P(y ≼ Cq|x) =
1

1 + exp(f (x)− bq)
, (4)

where q = 1, . . . ,Q , and, by definition, P(y ≼ CQ |x) = 1.
Therefore, this model approximates the posterior probability of a
class q as:

P(y = Cq|x) = P(y ≼ Cq|x)− P(y ≼ Cq−1|x)

=
1

1 + exp(f (x)− bq)
−

1
1 + exp(f (x)− bq−1)

. (5)

Thresholds must satisfy the constraint b1 < b2 < · · · < bQ−1
and their role is to divide the real line into Q contiguous intervals;
these intervals map the function value f (x) into the discrete vari-
able, while forcing a proper probability interpretation (increasing
probability when a higher class in the ordinal scale is examined).
3. Neural network classification algorithms

This section explains the characteristics of the different neural
network models considered for the present work, including the
ones proposed. The first subsection will introduce the learning
algorithm which will be based on a set of estimated probabilities
p(x) = {P(y = C1|x), P(y = C2|x), . . . , P(y = CQ |x)}. The
different ways of obtaining this probability vector p(x) constitute
the different neural network models considered.

3.1. Learning algorithm

As previously stated, our aim is to estimate a classification rule
F based on a training set D. If we consider a ‘‘1-of-Q ’’ encoding
vector for representing the class labels, then we define a vector
yi =


y(1)i , y

(2)
i , . . . , y

(Q)
i


for each training label yi, such that y(q)i =

1 if xi corresponds to an example belonging to class Cq and y(q) =

0 otherwise. We will denote θ to the vector of free parameters
of the model to be learnt, which will be specified in following
subsections. To perform themaximum likelihood estimation of the
parameter vector θ, we choose tominimise the cross-entropy error
function:

L(θ) = −
1
N

N
n=1

Q
q=1

y(q)n log P(y = Cq|xn, θ). (6)

An individual should be assigned to the class which has the
maximum probability, given the measurement vector x:

F(x) = q̂, where q̂ = argmax
q

P(y = Cq|xn, θ), q = 1, . . . ,Q .

Considering the L(θ) error function, we optimise the model pa-
rameters by gradient descent using the iRprop+ local improvement
procedure (Igel & Hüsken, 2003). This training scheme combines
the local information (i.e. the sign of the partial derivative of the
error with respect to a weight like Rprop) with more global infor-
mation (i.e. the error value at each iteration) in order to decide
whether to revert an update step for each weight individually, re-
sulting in very robust performance (Igel & Hüsken, 2003).

For the sake of simplicity, let S be the total number of parame-
ters of the model. The gradient vector is given by:

∇L(θ) =


∂L(θ)
∂θ1

,
∂L(θ)
∂θ2

, . . . ,
∂L(θ)
∂θS


. (7)

Considering (6), each of its component will be defined as:

∂L
∂θs

= −
1
N

N
n=1

Q
q=1

y(q)n

P(y = Cq|xn, θ)
·
∂P(y = Cq|xn, θ)

∂θs
,

where s = 1, . . . , S. These derivatives will depend on the actual
model form and theywill be specified in the following subsections.

3.2. Nominal neural network (NNN)

Even when an ordinal classification problem is considered,
one could use as a baseline a nominal neural network (NNN)
to estimate p(x). A feed-forward multilayer perceptron can be
configured with Q output nodes and one hidden layer. For a more
robust model and learning process, the output of this NNN should
be transformed by considering the softmax transformation:

P(y = Cq|xn, θ) =
exp


gq

x, θq


Q
j=1

exp

gj

x, θj

 , (8)

54 P.A. Gutiérrez et al. / Neural Networks 59 (2014) 51–60
where 1 ≤ q ≤ Q , θ = (θ1, θ2, . . . , θQ) and gq

x, θq


is the output

of the qth node of the output layer. A proper probability distribu-
tion should assure that

Q
l=1 P(y = Cl|xn, θ) = 1, which implies

that the probability for one of the classes could be expressed as
a function of the others, reducing the degrees of freedom of the
model. This can be done by setting one class as the reference class
(in our case, the last class,CQ), and dividing the numerator and the
denominator by exp


gQ

x, θQ


:

P(y = Cq|xn, θ) =
exp


gq(x, θq)− gQ


x, θQ


1 +

Q−1
j=1

exp

gj(x, θj)− gQ


x, θQ


for q = 1, . . . ,Q −1. Nowwe set fq(x, θq) = gq(x, θq)−gQ


x, θQ


and the final model reduces to:

P(y = Cq|xn, θ) =
exp


fq

x, θq


1 +

Q−1
j=1

exp

fj

x, θj

 , 1 ≤ q ≤ Q − 1,

P(y = CQ |xn, θ) =
1

1 +

Q−1
j=1

exp

fj

x, θj

 ,
which is equivalent to Eq. (8) when the last output is set to zero,
fQ

x, θQ


= 0. This way the number of model parameters is re-

duced. For the rest of classes, the outputs are defined by a linear
combination of the hidden nodes, in the following way:

fq(x, θq) = f (x, βq,W) = β
q
0 +

M
j=1

β
q
j Bj(x,wj),

where 1 ≤ q ≤ Q − 1, βq = {β
q
0, β

q
1, . . . , β

q
M},W = {w1, . . . ,

wM},wj = {wj0, wj1, . . . , wjk}, and Bj(x,wj) can be any kind of
basis function, in our case, sigmoidal units:

Bj(x,wj) =


1 + exp


−wj0 −

k
i=1

wji · xi

−1

. (9)

With this configuration, the derivatives are given in the follow-
ing way. For the sake of simplicity, let θs be any of the parameters
of βq orW, P(y = Cq|xn, θ) = pnq and fq(xn, θq) = fnq:

∂pnq
∂θs

=

Q
j=1

pnq ·

I (j = q)− pnj


·
∂ fnq
∂θs

,

where I(·) is the indicator function. The derivatives of the param-
eters of the model output functions fnq can be expressed as:

∂ fnq
∂βk

0
=


0 if q ≠ k,
1 if q = k. ,

∂ fnq
∂βk

j
=


0 if q ≠ k,
Bj(xn,wj) if q = k

and the gradient for the hidden layer depends on the kind of basis
function used. For sigmoidal nodes:

∂ fnq
∂wjt

= β
q
j Bj(xn,wj)


1 − Bj(xn,wj)


xnt , 1 ≤ t ≤ k,

∂ fnq
∂wj0

= β
q
j Bj(xn,wj)


1 − Bj(xn,wj)


.

3.3. Proportional odds model neural network (POMNN)

The fact that the POM is linear limits its applicability in real
world datasets, given that the parallel linear decision boundaries
are often unrealistic. A non-linear version of the POMmodel can be
formed by setting the projection f (x) to be the output of a neural
network. While the POM model approximates f (x) by a simple
linear combination of the input variables, the POMNN considers
a non-linear basis transformation of the inputs. For each class we
will have:

fq(x, θq) = fq(x, β,W, bq) = bq − f (x, β,W)

where q = 1 . . .Q −1, θq = {β,W, bq} and the projection function
f (x, β,W) is estimated by:

f (x, β,W) =

M
j=1

βjBj(x,wj),

where β = {β1, . . . , βM},W = {w1, . . . ,wM}, and Bj(x,wj) can be
any kind of basis functions, in our case, sigmoidal units. Note that in
this case the neural networkmodelwill have only one output node.
As compared with the model of Mathieson (1999), that model had
skip-layer connections and the error function was endowedwith a
regularisation term.Moreover, in order to ensure the constraints in
the biases, b1 ≤ · · · ≤ bQ−1, we propose the following definition:
bq = bq−1 +∆2

q, q = 1 . . .Q −1, with padding variables∆q, which
are squared to make them positive, and b1,∆q ∈ R. Consequently,
the parameter vector is defined as: θ =


β,W, b1,∆2, . . . ,∆Q−1


.

In this way, we convert the constrained optimisation problem into
an unconstrained one, and gradient descent can be applied to all
the parameters in θ without considering the constraints.

With this model structure, the derivatives can now be reformu-
lated to perform gradient-descent optimisation. Let θs be any of the
parameters of β orW, P(y = Cq|xn, θ) = pnq and f (xn, β,W) = fn:

pnq|q>1 =
1

1 + exp(bq − fn)
−

1
1 + exp(bq−1 − fn)

,

pn1 =
1

1 + exp(b1 − fn)
,

∂pnq|q>1

∂θs
=

exp(bq − fn)
(1 + exp(bq − fn))2

∂ fn
∂θs

−
exp(bq−1 − fn)

(1 + exp(bq−1 − fn))2
∂ fn
∂θs
,

∂pn1
∂θs

=
exp(b1 − fn)

(1 + exp(b1 − fn))2
∂ fn
∂θs
,

where the derivatives for the projection parameters θs are:

∂ fn
∂βj

= Bj(xn,wj),

∂ fn
∂wjt

= βjBj(xn,wj)

1 − Bj(xn,wj)


xnt , 1 ≤ t ≤ k,

∂ fn
∂wj0

= βjBj(xn,wj)

1 − Bj(xn,wj)


.

The derivatives for the biases and the padding variables can be
formulated in the following way:

∂pnq|q>1

∂b1
=

exp(fn − bq)
(1 + exp(fn − bq))2

−
exp(fn − bq−1)

(1 + exp(fn − bq−1))2
,

∂pn1
∂b1

=
exp(fn − b1)

(1 + exp(fn − b1))2
,

∂pnq|q>1

∂∆j
= 2∆j ·

∂pnq|q>1

∂b1
, j = 2 . . .Q − 1,

∂pn1
∂∆j

= 2∆j ·
∂pn1
∂b1

, j = 2 . . .Q − 1.

P.A. Gutiérrez et al. / Neural Networks 59 (2014) 51–60 55
25

20

15

10

5

0

–5

–10

–15
2520151050–5–10–15

(a) One-dimensional projection of POMNN. (b) Two-dimensional projection of CHNN.

Fig. 1. POMNN projection for the tae dataset and the proposed two-dimensional CHNN projection for the same dataset. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
3.4. Concentric hypersphere neural network (CHNN)

Both POM and POMNN project input patterns to the real line
with the difference that POM impose a linear projection and
POMNN a nonlinear one. After this, the projection is divided into
intervals, each representing a different class. Finding such one-
dimensional projection where patterns are ordered according to
the class labels can be too harsh an imposition for some datasets.
We propose to relax this requirement by allowing a multivariate
representation. The class order will be represented by a natural
order of nested concentric hyper-spheres (centred at the origin).
The proposal tries to find a space made up by several different
projections (coordinates) where the order of the class labels is
presented in the form of concentric hyperspheres. The smallest
hypersphere will contain the patterns of the first class in the
ordinal scale.

An example showing the proposed idea is presented in Fig. 1,
where the one-dimensional projection of POMNN is compared
against the two-dimensional one of the proposed CHNN approach.
As can be seen, the patterns can be more easily positioned in their
correct region, because they are projected into a two-dimensional
space, where each coordinate is approximated separately.

Non-linearity is achieved by letting these projections be the
output of different linear combinations of the basis functions. Input
conditional class probabilities are related to the distance of the
pattern to the centre of the hyperspheres. Specifically, the latent
space is defined in the following way:

fl(x, θl) = f (x, βl,W) = β l
0 +

M
j=1

β l
jBj(x,wj), 1 ≤ l ≤ L,

where L is the latent space dimensionality (hence dimensionality
of the hyperspheres), βl = {β l

0, β
l
1, . . . , β

l
M} is the vector of

coefficients of the linear combination for the lth projection, and
W = {w1, . . . ,wM} is the matrix containing the parameters of the
basis functions. The matrix W is common for all the projections,
while the corresponding βl vectors are specific for each one. In this
way, the coordinates of the pattern in the latent space are decided
by each of the fl(x, θl) functions. Consequently, each input pattern
x is projected using the following mapping φ : Rk

→ RL:

φ(x) = {f1(x, θ1), f2(x, θ2), . . . , fL(x, θL)}.
Fig. 2. CHNN structure and topology.

The dimensionality of the latent space is an additional parameter
and different valueswill be considered in the experimental section.

The input conditional class probability is related to the distance
to origin of the derived space. In order to simplify the calculus, we
obtain the norm of the projection:

∥φ(x)∥ =


f1(x, θ1)2 + f2(x, θ2)2 + · · · + fL(x, θL)2,

and then the different classes are defined by a set of thresholds
{b1, . . . , bQ−1}, as in POM:

P(y ≼ Cq|x) =
1

1 + exp

bq − ∥φ (x) ∥

 , q = 1, . . . ,Q − 1.

The scheme of the proposed neural network can be seen in Fig. 2.
Again, we need a set of thresholds—radii of the concentric

hyperspheres in the latent space. These thresholds have to respect

56 P.A. Gutiérrez et al. / Neural Networks 59 (2014) 51–60
Table 1
Characteristics of the 12 datasets used for the experiments: number of instances (Size), total number
of inputs (#In.), number of classes (#Out.), and number of patterns per-class (NPPC).

Dataset Size #In. #Out. NPPC

Balance 625 4 3 (288, 49, 288)
Car 1728 21 4 (1210, 384, 69, 65)
ERA 1000 4 9 (92, 142, 181, 172, 158, 118, 88, 31, 18)
ESL 488 4 9 (2, 12, 38, 100, 116, 135, 62, 19, 4)
LEV 1000 4 5 (93, 280, 403, 197, 27)
Newth. 215 5 3 (30, 150, 35)
Pasture 36 25 3 (12, 12, 12)
Sq.-st. 52 51 3 (23, 21, 8)
Sq.-unst. 52 52 3 (24, 24, 4)
SWD 1000 10 4 (32, 352, 399, 217)
Tae 151 54 3 (49, 50, 52)
Toy 300 2 5 (35, 87, 79, 68, 31)
the class order, b1 ≤ b2 ≤ · · · ≤ bQ−1, so we again introduce
padding variables (see previous subsection), bq = bq−1 +∆2

q, 1 <
q < Q , b1,∆q ∈ R. Consequently, the parameter vector is now
θ =


β1, . . . , βL,W, b1,∆2, . . . ,∆Q−1


.

With respect to the derivatives, they are the same as for POMNN
model, if we replace fn by ∥φ (x) ∥. Then:
∂ fn
∂θs

=
2 · f (x, θl)

∥φ (x) ∥4
· fnl ·

∂ fnl
∂θs

,

where fnl is f (xn, θl) and the derivatives of the parameters of each
latent dimension fnl can be expressed as:
∂ fnl
∂βk

0
=


0 if l ≠ k,
1 if l = k. ,

∂ fnl
∂βk

j
=


0 if l ≠ k,
Bj(xn,wj) if l = k.

The gradient for the hidden layer depends on the basis function.
For sigmoidal nodes:
∂ fnl
∂wjt

= β l
jBj(xn,wj)


1 − Bj(xn,wj)


xnt , 1 ≤ t ≤ k,

∂ fnl
∂wj0

= β l
jBj(xn,wj)


1 − Bj(xn,wj)


.

4. Experiments

4.1. Experimental design

The proposedmethodologywas applied to 12 different datasets
taken from the UCI repository (Asuncion & Newman, 2007). As
can be seen in Table 1, the characteristics vary noticeably among
the datasets. We included a more controlled dataset (the toy
one), which is a 2D problem synthetically generated, using the
instructions given in da Costa et al. (2008). The performance of
the different methods was evaluated by the following two metrics
(Cruz-Ramírez, Hervás-Martínez, Sánchez-Monedero, & Gutiérrez,
2014):
• The Correctly Classified Ratio (CCR) is the error rate of the

classifier, expressed as a percentage:

CCR =
100
N

N
i=1

I(y∗

i = yi),

where yi is the true label and y∗

i is the predicted label. This
metric evaluates the global classification performance task
without taking into account the different kinds of errors with
regard to the category order.

• TheMeanAbsolute Error (MAE) is the average deviation in abso-
lute value of the predicted rank from the true one (Baccianella,
Esuli, & Sebastiani, 2009):

MAE =
1
N

N
i=1

|O(yi)− O(y∗

i)|,
where the position of a label in the ordinal scale is expressed
by the function O in the form O(Cq) = q, 1 ≤ q ≤ Q .
|O(yi)− O(y∗

i)| is the distance between the true and predicted
ranks. MAE values range from 0 to Q − 1 (maximum deviation
in number of categories).

All the compared algorithms have been run 30 times for each
dataset, considering a random holdout partition with a 75% of pat-
terns for the training set and the remaining 25% for testing gen-
eralisation performance of the obtained classifier. The partitions
were stratified in the sense that both partitions approximately pre-
sented the same class distribution of the complete dataset, and the
same random partitions were considered for all the methods.

Apart from the methods previously presented in the paper
(POM, NNN, POMNN and CHNN), different state-of-the-art meth-
ods were included in the experimentation for comparison pur-
poses.

• Support vector ordinal regression (SVOR) by Chu and Ghahra-
mani (2005) and Chu and Keerthi (2007), who optimised
multiple thresholds in order to define parallel discriminant hy-
perplanes for the ordinal scales. In a first approachwith explicit
inequality constraints on the thresholds, they derive the opti-
mality conditions for the dual problem, and adapt the SMO al-
gorithm for the solution. We will refer to it as SVOREX. There is
a second approach based on implicit constraints (SVORIM), but
we consider SVOREX as we have found slightly better results
for it in a previous work (Gutiérrez, Pérez-Ortiz, Fernandez-
Navarro, Sánchez-Monedero, & Hervás-Martínez, 2012).

• Kernel discriminant learning for ordinal regression (KDLOR)
(Sun et al., 2010), which is an adaption of kernel discriminant
analysis to the field of ordinal regression. Order on classes is
imposed by constraining the projection to be obtained from the
optimisation problem.

• Extreme learning machine with ordered partitions (ELMOP)
(Deng et al., 2010), which is the ordinal regression version of
ELMs. They are adapted by relabelling the dataset using the
binary coding proposed in Frank and Hall (2001) and then
fitting one multi-output model or several binary models based
on the Error-Correcting Output Codes (ECOC) framework. The
authors present the single model ELM as the one with the best
performance (Deng et al., 2010), so this is the configuration
chosen for ELMOP.

• AdaBoost for ordinal regression is based on an ordinal cost
model for both the error estimation and pattern weights
(ABORC3). As proposed in Riccardi et al. (in press), the base
classifier is an ELM with Gaussian kernel and a regularisation
parameter and the weighted least squares closed-form solution
of the error function was considered for estimating the linear
parameters of the individuals in the final ensemble model.

P.A. Gutiérrez et al. / Neural Networks 59 (2014) 51–60 57
Table 2
Statistical results obtained when comparing the different neural network algorithms considered for this work.

CCR (MeanSD)

Dataset NNN POMNN CHNN1D CHNN2D CHNN3D CHNN4D

Balance 95.751.73 97.641.51 96.791.45 97.241.30 97.281.19 97.111.52
Car 98.940.53 98.980.59 98.910.71 99.040.35 99.100.54 98.990.57
ERA 26.492.78 26.962.47 26.732.17 26.962.51 26.872.46 26.372.57
ESL 68.063.00 70.083.12 70.492.54 70.773.11 71.372.88 69.893.51
LEV 62.852.58 62.432.97 62.672.21 62.932.20 62.612.71 62.853.15
Newth. 96.982.15 97.042.21 96.792.48 97.282.47 97.222.32 96.852.24
Pasture 72.5914.51 68.8913.81 64.0714.50 71.8514.22 74.0712.83 69.6314.27
Sq. st. 63.0812.35 64.6210.99 63.8510.91 63.8511.63 66.9212.48 64.3613.17
Sq. unst. 75.1313.20 76.9210.88 66.1515.33 75.6410.71 76.4113.69 71.0312.40
SWD 56.812.69 57.363.23 57.843.54 57.923.19 57.963.25 57.553.45
Tae 57.198.09 57.637.29 55.618.92 59.045.97 59.917.30 56.938.78
Toy 92.933.40 93.782.63 92.763.26 93.112.74 93.422.55 92.442.83

RCCR 4.54 3.04 4.88 2.33 1.83 4.38

MAE (MeanSD)

Dataset NNN POMNN CHNN1D CHNN2D CHNN3D CHNN4D

Balance 0.0550.022 0.0250.018 0.0350.016 0.0300.016 0.0290.014 0.0310.016
Car 0.0130.007 0.0100.006 0.0110.007 0.0100.004 0.0090.005 0.0100.006
ERA 1.3010.073 1.2640.049 1.2630.051 1.2580.051 1.2570.051 1.2620.056
ESL 0.3460.035 0.3150.033 0.3100.029 0.3050.034 0.3020.032 0.3160.037
LEV 0.4060.027 0.4120.031 0.4100.023 0.4070.024 0.4090.029 0.4070.033
Newth. 0.0300.021 0.0300.022 0.0320.025 0.0270.025 0.0280.023 0.0320.022
Pasture 0.2740.145 0.3150.143 0.3670.163 0.2850.151 0.2590.128 0.3040.143
Sq. st. 0.4080.143 0.3720.116 0.3740.112 0.3720.120 0.3410.129 0.3720.143
Sq. unst. 0.2740.156 0.2330.112 0.3440.159 0.2510.118 0.2410.140 0.2920.125
SWD 0.4640.029 0.4480.035 0.4430.038 0.4430.034 0.4410.035 0.4470.036
Tae 0.5500.124 0.5390.096 0.5410.119 0.5140.081 0.4970.106 0.5170.109
Toy 0.0720.034 0.0620.026 0.0720.033 0.0690.027 0.0660.025 0.0760.028

RMAE 4.75 3.50 4.83 2.41 1.58 3.91

The best result is shown in bold face and the second one in italics.
Regarding hyper-parameter tuning, the following procedure
has been applied. For kernel algorithms, i.e. SVOREX, KDLOR and
ABORC3, the width of the Gaussian kernel, γ , was adjusted us-
ing a grid search with a 5-fold cross-validation, considering the
following range: γ ∈ {10−3, 10−2, . . . , 103

}. An additional pa-
rameter u was also used for KDLOR in order to avoid singulari-
ties in the covariance matrices, u ∈ {10−6, 10−5, . . . , 10−2

}. For
SVOREX and ABORC3, the additional cost parameter was adjusted
by using the range C ∈ {10−3, 10−2, . . . , 103

}. Finally, the results
of the ABORC3 algorithm were directly taken from Riccardi et al.
(in press), given that the authors used the same partitions as in
this paper (as presented in Gutiérrez et al., 2012), and the same
configuration for γ and C parameters. The number of members of
the ensemble model wasM = 25.

For the neural network algorithms, the hyper-parameters
(number of hidden neuron, H , and number of iterations of the lo-
cal search procedure, N), were adjusted using a grid search with
a 5-fold cross-validation, considering the following ranges: H ∈

{1, 5, 15, 20, 30, 40} and N ∈ {100, 200, 300, 400, 500}. For EL-
MOP, a higher number of hidden neurons are considered, H ∈ {5,
10, 20, 30, 40, 50, 60, 70, 80, 90, 100}, given that it relies on suffi-
ciently informative random projections (Huang et al., 2012). With
respect to iRprop+, the parameter values are set to those specified
in Igel andHüsken (2003). Althoughmore advancedmethods could
have been considered for adjusting the structure of the neural net-
works (Bueno-Crespo, García-Laencina, & Sancho-Gómez, 2013;
Xi-zhao, Qing-yan, Qing, & Jun-hai, 2013), we have selected cross-
validation to ease the comparisons against other state-of-the-art
methods.

The CHNN algorithm has been run with different options for
the dimensionality of the latent space (L ∈ {1, 2, 3, 4}), leading
to four versions of the algorithm: CHNN1D, CHNN2D, CHNN3D and
CHNN4D. Indeed, the CHNN1D is very similar to POMNN (they both
project the patterns into a one dimensional space), but the classes
are arranged in nested intervals for CHNN1D, while the intervals
are consecutive in the case of POMNN.

4.2. Comparison of the different alternatives for the neural network
algorithms

In the first part of this section, we compare the different neu-
ral network algorithms in order to check (1) whether considering
an ordinal regression configuration is able to improve the perfor-
mance of the NNN classifier, and (2) if the additional dimensions
for latent space help to better separate the classes. The results are
shown in Table 2. This table includes the average ranking (R) ob-
tained for each metric and all datasets (R = 1 for the best method,
R = 6 for the worst one).

First of all, attention should be drawn to the results of the
nominal version (NNN) of the model presented in this paper. As
can be seen, there are only two datasets (LEV and pasture), where
the nominal version of the algorithm obtains a first or a second
position (for CCR andMAE)when compared to the ordinal versions.
A further analysis should be done on those two datasets to check
if the order scale of the target variable can be found (in a linear
or non-linear form) in the input space distribution of the training
patterns. Regarding the ordinal methods, the one dimensional
projection of CHNN1D (where the intervals are nested) seems to
be too restrictive, and the results are a bit worse than those of
POMNN. However, when the dimensionality is increased (CHNN2D
and CHNN3D), the results are considerably better, although a too
high dimensionality seems to compromise the learning capability
(CHNN4D).

The projections of the CHNN2D model for the tae dataset are
included in Fig. 1(b), showing a higher degree of flexibility than
the POMNNmodel (Fig. 1(a)). The projection of the patterns in this
space can be used to have better understanding about how they
are organised with regard to the classification task, serving as a

58 P.A. Gutiérrez et al. / Neural Networks 59 (2014) 51–60
40

20

0

–20

–40

–60
50

0

–50

–100 –5
0

5

10
15

Fig. 3. Three-dimensional CHNN projection for the sq.-st. dataset. Hyper-
spheres have been omitted for clarity. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

visualisation tool. In Fig. 3, the result of CHNN3D has been included
for one of the runs of sq.-st. dataset, where the model only
confuses one green pattern, labelled as red.

An analysis of the significance of the differences found was
also performed. We consider a procedure for comparing multiple
classifiers over multiple datasets, following the guidelines of
Demšar (2006). It begins with the Friedman test (Friedman, 1940;
Zhai, Xu, & Wang, 2012), using the CCR and MAE ranking as
the test variable. This test is a non-parametric equivalent to the
repeated-measures ANOVA test. We apply it because a previous
evaluation of the CCR and MAE ranking values results in rejecting
the normality and the equality of variances’ hypothesis. Applying
this test to the average ranks at Table 2, the test shows that
the effect of the method used for classification is statistically
significant at a significance level of 5%, as the confidence interval
is C0 = (0, F(α=0.05) = 2.38) and the F-distribution statistical
values are: (1) for CCR, F∗

= 9.48 ∉ C0; and (2) for MAE,
F∗

= 10.06 ∉ C0. Consequently, we reject the null-hypothesis
stating that all algorithms perform equally in mean ranking and a
post-hoc test is needed. For the post-hoc test, the best performing
method (CHNN3D) was considered as the control method, and it
was compared to the remaining ones according to their rankings.
It has been noted that the approach of comparing all classifiers to
each other in a post-hoc test is not as sensitive as the approach
of comparing all classifiers to a given classifier (a control method).
One approach to this latter type of comparison is the Holm test.
The test statistics for comparing the ith and jth methods using this
procedure is:

z =
Ri − Rj

k(k+1)
6N

, (10)

where k is the number of algorithms, N is the number of datasets
and Ri is the mean ranking of the ith method. The z value is used
to find the corresponding probability from the table of normal
distribution, which is then compared with an appropriate level
of significance α. Holm test adjusts the value for α in order to
compensate for multiple comparisons. This is done in a step-up
procedure that sequentially tests the hypotheses ordered by their
significance.Wewill denote the ordered p-values by p1, p2, . . . , pk
so that p1 ≤ p2 ≤ · · · ≤ pk−1. Holm test compares each pi with
α′

Holm = α/(k − i), starting from the most significant p value. If p1
is below α/(k − 1), the corresponding hypothesis is rejected and
we allow to compare p2 with α/(k − 2). If the second hypothesis
is rejected, the test proceeds with the third, and so on. As soon
Table 3
Holm test for the comparison of the different neural network algorithms: adjusted
p-values using CCR and MAE as the test variables (CHNN3D is the control method).

Variable test: CCR Variable test: MAE
Algorithm p-value α′

Holm Algorithm p-value α′

Holm

CHNN1D 0.000* 0.010 CHNN1D 0.000* 0.010
NNN 0.000* 0.013 NNN 0.000* 0.013
CHNN4D 0.001* 0.017 CHNN4D 0.002* 0.017
POMNN 0.114 0.025 POMNN 0.012* 0.025
CHNN2D 0.513 0.050 CHNN2D 0.275 0.050
* Statistically significant differences for α = 0.05.

as a certain null hypothesis cannot be rejected, all the remaining
hypotheses are retained as well.

The results of the Holm test can be seen in Table 3, using
the corresponding p and α′

Holm values. From the results of this
test, it can be concluded that the CHNN3D methodology obtains a
significantly higher ranking when compared to all methods except
CHNN2D (for CCR and MAE) and POMNN (for CCR).

The reason the proposed latent space helps to improve the
classification for ordinal regression problems is that the ordering
imposed by the projection helps to better locate new patterns
in the ordinal scale, which is also true for the POMNN model.
However, as opposed to PONN, the CHNN model allows certain
flexibility when constructing the multidimensional projection,
which encourages more parsimonious models less prone to
overfitting.

4.3. Comparison of CHNN3Dagainst other state-of-the-art algorithms

This second part of the experiments compares the results
obtained from CHNN3D to other state-of-the-art algorithms in
order to check if the method can be considered competitive. The
results of this comparison are included in Tables 4 and 5 and
follow the same format as in the previous comparison. Again,
the Friedman test shows that the effect of the method used for
classification is statistically significant at a significance level of 5%,
as the confidence interval is C0 = (0, F(α=0.05) = 2.38) and the
F-distribution statistical values are: (1) for CCR, F∗

= 11.23 ∉ C0;
and (2) for MAE, F∗

= 6.72 ∉ C0. From Table 4, it can be checked
that the best ranking is obtained by CHNN3D forMAE and CCR. The
second methods are ABORC3 for CCR and SVOREX for MAE. Recall
that ABORC3 is an ensemble of kernel models, while CHNN3D is a
single model. SVOREX is known to be one of the most competitive
methods for ordinal regression (Chu & Keerthi, 2007; Gutiérrez
et al., 2012), because it inherits the good properties of binary SVM.
The statistical tests of Table 5 conclude that the differences are
significant for all methods, except SVOREX and ABORC3. These
results confirm that CHNN3D method is able to achieve a very
competitive performance when compared to the state-of-the-art
algorithms.

5. Discussion and conclusion

This paper is motivated by the fact that the one dimensional
projection of threshold models in ordinal regression can be
too restrictive, resulting in too complex nonlinear models or
unrealistic assumptions for linearmodels.We propose to relax this
projection by extending the latent space and allowing multiple
dimensions. The order of the classes is organised in this space
by using concentric hyperspheres centred in the origin, in such
a way that intermediate classes are bounded by consecutive
hyperspheres.

In analogy with kernel methods, increased dimensionality of
internal ‘‘feature space’’ representations allows one to use simpler,
less complex functions to accomplish the task. In classification

P.A. Gutiérrez et al. / Neural Networks 59 (2014) 51–60 59
Table 4
Statistical results obtained when comparing the CHNN3D approach against other state-of-the-art algorithms.

CCR (MeanSD)

Dataset CHNN3D ELMOP POM SVOREX KDLOR ABORC3

Balance 97.281.19 91.852.30 90.551.86 99.790.56 83.692.40 95.12
Car 99.100.54 84.851.10 15.7530.63 98.740.53 95.350.83 98.30
ERA 26.872.46 24.551.69 25.612.11 28.602.62 20.513.46 27.24
ESL 71.372.88 69.513.30 70.553.36 71.233.36 65.383.68 71.88
LEV 62.612.71 62.852.58 62.332.80 62.551.97 54.933.46 65.01
Newth. 97.222.32 94.882.51 97.222.22 96.852.39 97.532.02 96.96
Pasture 74.0712.83 61.1113.29 49.6315.37 66.6711.67 66.3012.54 74.44
Sq. st. 66.9212.48 56.4115.16 38.2115.18 64.3614.21 64.8711.90 59.49
Sq. unst. 76.4113.69 61.2812.37 34.8714.25 73.8511.88 75.1312.73 65.64
SWD 57.963.25 56.533.00 56.792.96 57.093.14 49.082.93 59.07
Tae 59.917.30 54.397.52 50.447.73 57.895.82 57.635.76 57.89
Toy 93.422.55 91.732.87 28.932.55 98.271.27 88.583.05 95.49

RCCR 1.96 4.67 5.04 2.63 4.33 2.38

MAE (MeanSD)

Dataset CHNN3D ELMOP POM SVOREX KDLOR ABORC3

Balance 0.0290.014 0.0890.026 0.1070.021 0.0020.006 0.1640.025 0.050
Car 0.0090.005 0.1750.012 1.4510.548 0.0130.005 0.0460.008 0.018
ERA 1.2570.051 1.2430.044 1.2180.050 1.2090.057 1.7830.099 1.213
ESL 0.3020.032 0.3220.035 0.3100.038 0.3020.035 0.3650.043 0.301
LEV 0.4090.029 0.4060.027 0.4090.030 0.4110.021 0.5120.039 0.385
Newth. 0.0280.023 0.0520.025 0.0280.022 0.0310.024 0.0250.020 0.036
Pasture 0.2590.128 0.4040.144 0.5850.204 0.3330.117 0.3410.130 0.242
Sq. st. 0.3410.129 0.4850.181 0.8130.248 0.3670.147 0.3740.145 0.419
Sq. unst. 0.2410.140 0.4230.137 0.8260.230 0.2620.119 0.2510.132 0.354
SWD 0.4410.035 0.4520.031 0.4500.030 0.4460.031 0.5790.035 0.443
Tae 0.4970.106 0.6250.115 0.6280.116 0.4660.061 0.4610.065 0.500
Toy 0.0660.025 0.0830.029 0.9810.039 0.0170.013 0.1140.030 0.043

RMAE 2.29 4.58 4.83 2.45 4.17 2.67

The best result is shown in bold face and the second one in italics.
Table 5
Holm test for the comparison of the different neural network algorithms: adjusted
p-values using CCR and MAE as the test variables (CHNN3D is the control method).

Variable test: CCR Variable test: MAE
Algorithm p-value α′

Holm Algorithm p-value α′

Holm

POM 0.000* 0.010 POM 0.000* 0.010
ELMOP 0.000* 0.013 ELMOP 0.003* 0.013
KDLOR 0.002* 0.017 KDLOR 0.014* 0.017
SVOREX 0.383 0.025 ABORC3 0.623 0.025
ABORC3 0.546 0.050 SVOREX 0.827 0.050
* Statistically significant differences for α = 0.05.

problems, one can always attempt to design potentially complex
non-linear decision boundaries in the data space without the
need to map to a higher dimensional feature space. However, the
advantage of the feature space is that by (implicitly) representing
important class structure properties in the higher dimensional
space, usually much simpler (e.g. linear) functions are needed to
accomplish the final task. These functions are easier to fit, the fit is
more robust, and crucially, less prone to over-fitting.

By the very nature of binary classification, provided linear
decision boundary is needed, we only need to specify its normal
vector (and bias). In that case, the input points are eventually
projected into a single dimension where the class membership is
decided. The situation is different for ordinal regression. In one
dimension, the class order can be naturally represented (as done
in this paper) in a nested way, e.g. class C1 would be represented
by interval [−a1, a1], class C2 by [−a2,−a1)∪ (a1, a2], class C3 by
[−a3,−a2) ∪ (a2, a3], etc. for some positive constants a1 < a2 <
· · · < aQ−1.

Assume the input points x are projected onto the real line
through function φ(x). By composing φ with a function ψ(u) =

|u|, thus obtaining another projection function ν = ψ ◦ φ, one
can always transform the nested interval structure into the typi-
cal threshold structure used in ordinal regression, [0, a1], (a1, a2],
(a2, a3], etc. However, if we did not fix ψ a-priori and wanted to
fit ν directly, the additional modelling burden would lead to more
complex and hence more difficult to fit projection models.

We proposed to push this idea one step further: the nested in-
terval structure can be naturally generalised to a series of nested
L-dimensional hyper-spheres. Such structure still preserves the
idea of class order, while eliminating the need to directly formulate
and fit constrained 1-dimensional projections, as commonly done
in ordinal regression. In our case we need to learn a less restricted
projection function φ = (f1, f2, . . . , fL) taking x into RL. This pro-
jection is then combinedwith a fixed functionψ(u1, u2, . . . , uL) =
u2
1 + u2

2 + · · · + u2
L to form the final projection ν = ψ ◦ φ. Cru-

cially, increasing the latent space dimension from 1 to L can allow
us to put less strain on nonlinear projection function φ, taking us
from the input space to the latent space thatwould be needed if we
wanted to fit directly more complex projections to 1-dimensional
structure of ordered intervals. In analogy with the feature space
metaphor mentioned above, we suggest a ‘‘feature space’’ struc-
ture in our latent space that, at the price of increasing dimensions
of the latent space (thus increasing its representational capacity),
allows us to use a simple decision function ψ on top of the latent
space. In contrast with kernel methods, we do not fix the ‘‘feature
mapping’’ φ while learning the decision function ψ- instead, ψ is
fixed and φ is learnt.

Themodel is implemented by using a neural network approach,
where each of these dimensions is set to a linear combination
of basis functions (sigmoidal nodes, in our case). The proposed
model shows better performance than a nominal neural network
and a neural network based on the proportional odds model, and
competitive performance when compared to the state-of-the-art
in ordinal regression. A study of the number of dimensions of this
extended latent space is also performed, where both two and three
dimensional spaces seem to be a good option, at least for the 12

60 P.A. Gutiérrez et al. / Neural Networks 59 (2014) 51–60
datasets considered. Finally, the projections learnt by the model
are shown to be useful for studying additional characteristics of
the dataset, acting as a visualisation tool.

As future research lines, the same latent space structure could
be tested with other ordinal regression models, e.g. linear models
or kernel models.

Acknowledgments

The researchwork of P.A. Gutiérrez and C. Hervás-Martínezwas
partially subsidized by the TIN2011-22794 project of the Spanish
Ministerial Commission of Science and Technology (MICYT), FEDER
funds and the P11-TIC-7508 project of the ‘‘Junta de Andalucía’’
(Spain). P. Tiňo was supported by EPSRC grant EP/L000296/1.

References

Agresti, A. (2002). Categorical data analysis (2nd Ed.). John Wiley and Sons.
Allwein, E. L., Schapire, R. E., & Singer, Y. (2001). Reducing multiclass to binary: a

unifying approach for margin classifiers. Journal of Machine Learning Research,
1, 113–141.

Asuncion, A., & Newman, D. (2007). UCI machine learning repository. URL
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Baccianella, S., Esuli, A., & Sebastiani, F. (2009). Evaluation measures for ordinal
regression. In Proceedings of the ninth international conference on intelligent
systems design and applications (ISDA’09) (pp. 283–287).

Bueno-Crespo, A., García-Laencina, P. J., & Sancho-Gómez, J.-L. (2013). Neural
architecture design based on extreme learningmachine.Neural Networks, 48(0),
19–24. http://dx.doi.org/10.1016/j.neunet.2013.06.010.

Cardoso, J. S., & da Costa, J. F. P. (2007). Learning to classify ordinal data: the data
replication method. Journal of Machine Learning Research, 8, 1393–1429.

Cardoso, J. S., da Costa, J. F. P., & Cardoso, M. (2005). Modelling ordinal relations
with SVMs: an application to objective aesthetic evaluation of breast cancer
conservative treatment. Neural Networks, 18(5–6), 808–817.

Cheng, J., Wang, Z., & Pollastri, G. (2008). A neural network approach to
ordinal regression. In Proceedings of the IEEE international joint conference on
neural networks (IJCNN2008, IEEE world congress on computational intelligence)
(pp. 1279–1284). IEEE Press.

Chu,W., &Ghahramani, Z. (2005). Gaussian processes for ordinal regression. Journal
of Machine Learning Research, 6, 1019–1041.

Chu, W., & Keerthi, S. S. (2007). Support vector ordinal regression. Neural
Computation, 19(3), 792–815.

Costa, M. (1996). Probabilistic interpretation of feedforward network outputs, with
relationships to statistical prediction of ordinal quantities. International Journal
of Neural Systems, 7(5), 627–638.

Cruz-Ramírez, M., Hervás-Martínez, C., Sánchez-Monedero, J., & Gutiérrez, P. A.
(2014). Metrics to guide a multi-objective evolutionary algorithm for ordinal
classification. Neurocomputing , 135, 21–31.
http://dx.doi.org/10.1016/j.neucom.2013.05.058.

da Costa, J. F. P., Alonso, H., & Cardoso, J. S. (2008). The unimodal model for the
classification of ordinal data. Neural Networks, 21, 78–91.

da Costa, J. F. P., & Cardoso, J. (2005). Classification of ordinal data using neural
networks. In J. Gama, R. Camacho, P. Brazdil, A. Jorge, & L. Torgo (Eds.), Lecture
notes in computer science: Vol. 3720. Proceedings of the 16th European conference
on machine learning , (ECML 2005), (pp. 690–697). Berlin, Heidelberg: Springer.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research, 7, 1–30.

Deng, W.-Y., Zheng, Q.-H., Lian, S., Chen, L., & Wang, X. (2010). Ordinal extreme
learning machine. Neurocomputing , 74(1–3), 447–456.
Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research, 2(1), 263–286.
URL http://dl.acm.org/citation.cfm?id=1622826.1622834.

Dikkers, H., & Rothkrantz, L. (2005). Support vector machines in ordinal
classification: an application to corporate credit scoring. Neural NetworkWorld,
15(6), 491–507.

Dobrska, M., Wang, H., & Blackburn, W. (2012). Ordinal regression with continuous
pairwise preferences. International Journal of Machine Learning and Cybernetics,
3(1), 59–70.

Fernandez-Navarro, F., Riccardi, A., & Carloni, S. (2014). Ordinal neural networks
without iterative tuning. IEEE Transactions on Neural Networks and Learning
Systems, 1. http://dx.doi.org/10.1109/TNNLS.2014.2304976 (in press).

Frank, E., & Hall, M. (2001). A simple approach to ordinal classification.
In Proceedings of the 12th European conference on machine learning , EMCL’01.
(pp. 145–156). London, UK: Springer-Verlag.

Friedman, M. (1940). A comparison of alternative tests of significance for the
problem of m rankings. Annals of Mathematical Statistics, 11(1), 86–92.

Gutiérrez, P. A., Pérez-Ortiz, M., Fernandez-Navarro, F., Sánchez-Monedero, J.,
& Hervás-Martínez, C. (2012). An experimental study of different ordinal
regression methods and measures. In 7th international conference on hybrid
artificial intelligence systems (pp. 296–307).

Huang, G.-B., Zhou, H., Ding, X., & Zhang, R. (2012). Extreme learning machine for
regression and multiclass classification. IEEE Transactions on Systems, Man and
Cybernetics, Part B: Cybernetics, 42(2), 513–529.

Igel, C., & Hüsken, M. (2003). Empirical evaluation of the improved Rprop learning
algorithms. Neurocomputing , 50(6), 105–123.

Kim, M., & Pavlovic, V. (2010). Structured output ordinal regression for dynamic
facial emotion intensity prediction. In K. Daniilidis, P. Maragos, & N. Paragios
(Eds.), Lecture notes in computer science: Vol. 6313. Proceedings of the 11th
European conference on computer vision (ECCV 2010), part III (pp. 649–662).
Berlin, Heidelberg: Springer.

Li, L., & Lin, H.-T. (2007). Ordinal regression by extended binary classification.
Advances in Neural Information Processing Systems, 19, 865–872.

Lin, H.-T., & Li, L. (2012). Reduction from cost-sensitive ordinal ranking to weighted
binary classification. Neural Computation, 24(5), 1329–1367.

Mathieson,M. J. (1996). Ordinalmodels for neural networks. In J.M. A.-P. N. Refenes,
Y. Abu-Mostafa, & A. Weigend (Eds.), Neural networks in financial engineering ,
Proceedings of the third international conference on neural networks in the capital
markets (pp. 523–536). World Scientific.

Mathieson, M. J. (1999). Ordered classes and incomplete examples in classification.
In T. P. Michael, C. Mozer, & Michael I. Jordan (Eds.), Advances in neural
information processing systems: Vol. 9. Proceedings of the 1996 conference on
neural information processing systems (NIPS) (pp. 550–556).

McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal
Statistical Society. Series B. Statistical Methodology, 42(2), 109–142.

Riccardi, A., Fernandez-Navarro, F., & Carloni, S. (2014). Cost-sensitive adaboost
algorithm for ordinal regression based on extreme learning machine. IEEE
Transactions on Cybernetics, http://dx.doi.org/10.1109/TCYB.2014.2299291 (in
press).

Sánchez-Monedero, J., Gutiérrez, P. A., Tino, P., & Hervás-Martínez, C. (2013).
Exploitation of pairwise class distances for ordinal classification. Neural
Computation, 25(9), 2450–2485.

Sun, B.-Y., Li, J., Wu, D. D., Zhang, X.-M., & Li, W.-B. (2010). Kernel discriminant
learning for ordinal regression. IEEE Transactions on Knowledge and Data
Engineering , 22(6), 906–910.

Verwaeren, J., Waegeman, W., & De Baets, B. (2012). Learning partial ordinal class
memberships with kernel-based proportional odds models. Computational
Statistics & Data Analysis, 56(4), 928–942.

Xi-zhao, W., Qing-yan, S., Qing, M., & Jun-hai, Z. (2013). Architecture selection for
networks trainedwith extreme learningmachine using localized generalization
errormodel. InAdvances in extreme learningmachines (ELM2011),Neurocomput-
ing , 102(0), 3–9. http://dx.doi.org/10.1016/j.neucom.2011.12.053.

Zhai, J.-h., Xu, H.-y., & Wang, X.-z. (2012). Dynamic ensemble extreme learning
machine based on sample entropy. Soft Computing , 16(9), 1493–1502.
http://dx.doi.org/10.1007/s00500-012-0824-6.

http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref1
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref2
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://dx.doi.org/doi:10.1016/j.neunet.2013.06.010
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref6
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref7
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref8
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref9
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref10
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref11
http://dx.doi.org/doi:10.1016/j.neucom.2013.05.058
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref13
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref14
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref15
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref16
http://dl.acm.org/citation.cfm?id%3D1622826.1622834
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref18
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref19
http://dx.doi.org/doi:10.1109/TNNLS.2014.2304976
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref21
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref22
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref24
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref25
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref26
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref27
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref28
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref29
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref30
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref31
http://dx.doi.org/doi:10.1109/TCYB.2014.2299291
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref33
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref34
http://refhub.elsevier.com/S0893-6080(14)00158-0/sbref35
http://dx.doi.org/doi:10.1016/j.neucom.2011.12.053
http://dx.doi.org/doi:10.1007/s00500-012-0824-6

	Ordinal regression neural networks based on concentric hyperspheres
	Introduction
	Proportional odds model (POM)
	Neural network classification algorithms
	Learning algorithm
	Nominal neural network (NNN)
	Proportional odds model neural network (POMNN)
	Concentric hypersphere neural network (CHNN)

	Experiments
	Experimental design
	Comparison of the different alternatives for the neural network algorithms
	Comparison of CHNN3D against other state-of-the-art algorithms

	Discussion and conclusion
	Acknowledgments
	References

