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Abstract

Motivated by previous findings that discretization
of financial time series can effectively filter the data
and reduce the noise, this experimental study, per-
formed in a realistic setting of trading straddles via
predicting volatility, compares trading performances
of symbol-based models with those of probabilis-
tic models operating on real-valued sequences. We
show that carefully designed probabilistic models
trained in a Bayesian framework of automatic rel-
evance determination can achieve superior trading
performances.

1 Introduction

It has been frequently argued in the past that quan-
tizing real-valued financial time-series into symbolic
streams and subsequent use of predictive models on
such sequences can be of great benefit in many finan-
cial tasks (e.g. [1, 3, 7]. This is predominantly due
to the inherently noisy and non-stationary nature
of financial data. Careful quantization can reduce
the noise component in the data while preserving
the underlying predictable patterns in the stochas-
tic process1.

Recently, we performed large comparative stud-
ies of various model classes used to predict daily
volatility differences in order to trade (on a daily
basis) straddles on the DAX and FTSE 100 indexes
[8, 7]. The straddles were traded based on pre-
dictions of daily (implied2) volatility differences in
the underlying indexes. Continuous models (such
feed-forward neural networks, mixture density net-

1Recently, this issue has been a source of some controversy

and confusion. Due to the space limitation, in this contribu-

tion we will not follow this issue any further.
2calculated using Black-Scholes model

works, AR models) operating on the original real-
valued sequences of volatility differences, as well as
symbolic models (fixed order Markov models, vari-
able memory length Markov models, fractal predic-
tion machines) trained and tested on their quantized
counterparts were considered. Two key observations
were made: (1) quantization technique significantly
improves the overall profit, and (2) quantization
into just two symbols representing the sign of daily
volatility differences gave the best results.

In this contribution, we would like to add another
token to the ‘discretize vs. do not discretize’ debate
by applying continuous models inherently capable
of dealing with noise in the data. In particular, we
use a probabilistic model, the Noninformative Prior
Relevance Vector Machine (NPRVM), based on the
Relevance Vector Machine (RVM) [9].

2 RVM with noninformative

prior – NPRVM

Modeling of financial time series may be regarded
as a multivariate regression problem. Given a
series of scalar observables (volatility differences):
..., xt, xt+1, ..., xT sampled at discrete time intervals,
the goal is to find a model that accurately describes
how future values depend on the past values. The
future values are predicted based on model operat-
ing on lagged delay vectors:

x̂t+1 ≡ yt = f(xt) = f(xt−(d−1)τ , xt−(d−2)τ , ..., xt)
(1)

where d is the embedding dimension and τ is the
delay time. The original series is transformed into
a data set D = {(xt, yt)}

N
t=1, where the xt ∈ R

d

are independent variable vectors and yt ∈ R is the
dependent variable. In a generalized linear kernel
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regression formulation [6]:

f(x) =

M∑

n=1

wnK(x,xn), (2)

where wn are the weight parameters and K(·, ·) is
the kernel basis function. We use Gaussian ker-
nels of width s2: K(x,xn) = exp[−(x − xn)

T (x −
xn)/(2s

2)]. The future values are modeled as xt+1 =
f(xt)+εt, where εt is i.i.d. zero-mean Gaussian noise
with (unknown) variance σ2.

The RVM [9] provides a framework for Bayesian
learning of sparse kernel regression models. Start-
ing with the complete model, having basis func-
tions centered on all given data points, it adapts
simultaneously the weights and their associated hy-
perparameters. It is assumed that the prior dis-
tribution p(w|α) over the weights w is an M -
dimensional Gaussian of zero mean and covariance
matrix Γ(α) = diag(α−1

1 , α−1
2 , ..., α−1

M ). The hyper-
parameters α = (α1, α2, ..., αM ) quantify the prior
belief in the possible ranges of weight values, and
the hyperparameter β quantifies the (inverse vari-
ance of) output noise.

Posterior distribution over the weights reads

p(w|y, α, β−1) =
p(y|x,w(α), β−1)p(w|α)

p(y|α, β−1)
(3)

where p(y|x,w(α), β−1) is the likelihood and p(w|α)
is the prior over weights; p(y|α, β−1) is the normaliz-
ing factor and w(α) denotes explicit dependence on
the argument. The RVM carries out re-estimation of
the prior hyperparameters and weights. During the
learning process some hyperparameters grow thus
causing their corresponding weights to shrink toward
zero. In practice, all training points xn with the cor-
responding hyperparameter αn bellow a (predefined)
threshold αMAX are pruned out from the model.

The RVM performs adaptation by iterative max-
imization of the marginal likelihood of the hyperpa-
rameters p(y|α, β−1) by following the evidence pro-
cedure of [4]. However, the resulting formulae can
be problematic to compute [5] as they are sensitive
to the numerical accuracy of the computers3 There-
fore, we use a different noninformative prior over
the weight parameters to obtain more stable hyper-
parameter estimates. Following [2], we use the Jef-
freys’ prior in order to adjust the hyperparameters,
while keeping the noise variance fixed.

3Even if the intermediate quantities in these formulae are

computable, they are numerically unstable and can incur er-

rors in the learning process.

After adapting the hyperparameters, the MAP
estimates for weights can be obtained analytically
(posterior over weights, p(w|y, α, β−1), is a Gaus-
sian):

w = β(βKTK+A)−1KTy (4)

where A = Γ−1(α) = diag(α1, α2, ..., αM ) is the di-
agonal matrix with the weight prior hyperparame-
ters, and K is the kernel design matrix with entries
K(xi,xj), 1 <= i, j <= N .

Having individual regularizers causes different
ranges among the weight parameters. The over-
all effect of this is inducing model sparseness and
hence smoothing of the model. The selected ba-
sis functions are usually only a fraction of the
full superposition of kernels centered on all given
data. Given a test input x∗, the mean of the out-
put distribution p(y∗|x) is y∗ = wTk(x∗), where
k(x∗) = [K(x∗,x1),K(x∗,x2), ...,K(x∗,xM )]T , and
w = [w1, w2, ..., wM ]T is the weight vector.

3 Data, trading strategy and

experimental results

First data set is a series of daily closing values of
the German stock index DAX together with a se-
ries of daily closing prices of call and put options
on the DAX with different maturities and exercise
prices. In particular, the first in-the-money and the
first out-of-the money call and put option maturing
next month are available. The at-the-money point is
assumed to be the value of the DAX at that time4.
Straddle prices are obtained by adding call and put
prices. The series start on 22 August 1991 and end
on 8 June 1998 which corresponds to a period of
1700 trading days.

Second data set comprises transactions data of
FTSE 100 option contracts traded at the London
International Financial Futures Exchange (LIFFE).
Intraday bid-ask prices of American options on the
FTSE 100 between 29 May 1991 and 29 December
1995 are available. This time period corresponds to
1161 trading days. The option prices are recorded
synchronously with the FTSE 100 and time-stamped
to the nearest second. Since our trading strategy is
set up on a daily basis, we must fix a reference point
in time on each trading day. This reference point
is 3 pm on normal trading days and 12 pm on days

4It would be probably more appropriate to take the value

of the futures contract with the same maturity as the at-the-

money point.
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where the stock exchange closes earlier. The first
quotes of call and put options maturing the next
month with the same strike price as close as possi-
ble to the value of the FTSE 100 at that time are
extracted for the actual trading day (and also for
the next trading day). For these options, which are
roughly at-the-money, the average of bid-ask quotes
is calculated as an approximation of a reasonable op-
tion price. Then the prices of call and put options
are added to obtain straddle prices.

The basic trading strategy is simple [8, 7]: Ev-
ery trading day, predict the change in volatility for
the next trading day. If volatility is predicted to in-
crease, buy near-the-money straddles, otherwise sell
them. On the next trading day, close the position
and restart by predicting the next volatility change.
The straddles bought or sold every day are near-
the-money, i.e., the strike price closest to the at-
the-money point is selected. Therefore, the strad-
dle portfolio is approximately delta-neutral which
means that there is no need to delta-hedge the po-
sition5. Every day, after predicting the direction of
change in volatility, straddles worth a fixed amount
of money are bought or sold. The choice of a fixed
but otherwise arbitrary investment is intended to fa-
cilitate the interpretation of results with respect to
transactions costs. Finally, only straddles maturing
the following month are bought or sold, which avoids
the influence of strong price movements towards the
end of the contracts.

An important issue when dealing with financial
time series analysis is stationarity. A useful method
to deal with non-stationarity of data is the ‘sliding
window technique’: The models are estimated and
evaluated on the first time window. Then the slid-
ing window is shifted by one or several steps. The
models are estimated and evaluated on the second
time window and so on.

Each time window consists of three parts: a train-
ing set, a validation set, and a test set. The train-
ing set is used to estimate the model parameters.
The size of the training set is 500 which means that
the volatility measure is collected over a period of
roughly two years. Several representatives from the
class of NPRVM models with different pruning cut
values (αMAX = 0.25 and αMAX = 0.5) and kernel
width s2 (input lag is fixed to d = 10) are estimated.
Performance of the estimated models (accumulated
profit) on the validation set is the criterion for se-
lecting the best model within the model class. Size

5The sensitivities with respect to the interest rate and the

time to maturity are negligible and inevitable, respectively.

of the validation set is 125 trading days (roughly half
a year). Finally, the out-of-sample profit of the best
model is determined on the test set which covers
5 trading days (one week). Then the sliding win-
dow with a total size of 630 days is shifted by 5
days, the models are re-estimated etc. In particular,
the test sets are non-overlapping and the obtained
profits can be concatenated to form a large series of
out-of-sample profits.

Following [8, 7]. we tested for significance of the
profits by dividing the series into distinct blocks of
length 60 and 40 for DAX and FTSE series, respec-
tively. Due to the central limit theorem, the aver-
age block profit can be assumed to be normally dis-
tributed. Hence we can subject the series of average
block profits to t-tests6

As in [8, 7], we also consider an additional model
class ‘Simple’ that picks one of the four trivial strate-
gies – ‘Always Sell’, ‘Always Buy’, ’Copy the last
trading decision’ and ’Reverse the last trading de-
cision’ – based on their validation set profit. This
model class can gain surprisingly large profits, be-
cause it totally eliminates the need for a training set
potentially containing old (no longer relevant) data.
Compound models ‘NPRVM+Simple’ make predic-
tions in the test week using either the more sophis-
ticated model (NPRVM), or ‘Simple’, depending on
which model gained more profit on the validation
set.

The results are presented in table 1. For compar-
ison, we also include performances of the following
models classes [8]: NN(1) - feedforward neural net-
works with 3 hidden nodes (tanh transfer function),
and a linear output, the input lag (up to 10) is de-
termined on the validation set); MM(5) - Markov
models of order up to 5 (the order is determined on
the validation set) operating on quantized sequences
of volatility differences (binary alphabet); MM(10)
- the same as MM(5), but the order can now be set
to 1,2,...,10 (determined on the validation set).

4 Conclusion

Contrary to our previous conclusions that models
built on quantized sequences give superior results,
when compared to those constructed on the original
real-valued time series, we show that carefully de-
signed probabilistic models trained and regularized

6After calculating the average block profits, a Jarque-Bera

test does not reject the null hypothesis of a normal distribu-

tion at any reasonable significance level.
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Table 1: Profits of the models in the DAX experi-
ment. We also report profits that would be made by
the hypothetical always-correct-predictor, ACP, per-
fectly predicting all the volatility changes. To make
a more realistic assessment of the achieved profits,
we also report the maximal transaction costs (TC)
that one can subtract from each daily profit, so that
when subjected to the t-test (p=0.05), the average
block-profits are still significantly positive.

Model % profit per-day Highest
class Mean Std. TC

ACP 1.310 0.652 1.03
Simple 0.477 0.638 0.21
NPRVM 0.514 0.434 0.34
NPRVM+Simple 0.526 0.572 0.29

NN(10) 0.033 0.576 –
NN(10)+Simple 0.405 0.554 0.18
MM(5) 0.262 0.603 0.01
MM(5)+Simple 0.430 0.458 0.24
MM(10) 0.208 0.668 –
MM(10)+Simple 0.425 0.578 0.19

Table 2: Profits of the models in the FTSE 100 ex-
periment.

Model % profit per-day Highest
class Mean Std. TC

ACP 2.706 1.109 2.13
Simple 1.562 1.135 1.01
NPRVM 3.234 2.804 1.85
NPRVM+Simple 2.018 1.615 1.22

NN(10) 1.331 1.095 0.77
NN(10)+Simple 1.432 1.131 0.85
MM(5) 1.551 0.833 1.12
MM(5)+Simple 1.551 0.833 1.12
MM(10) 1.490 0.894 1.03
MM(10)+Simple 1.489 0.894 1.03

in a Bayesian framework of automatic relevance de-
termination lead to superior trading performances.
Whereas in our previous experiments, the strongest
models were the compound models combining flexi-
bility of more sophisticated models with stability of
the ‘Simple’ model class, the NPRVM achieve sig-
nificantly higher profits (p < 5%) and combination
with ‘Simple’ actually makes their trading perfor-
mance worse.
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