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Abstract—Unlike evolutionary dynamics, co-evolutionary dy- stochastic search process, in CEAs the solution quality can

namics can exhibit a wide variety of complex regimes. This pe estimated only with respect to its performance against a

has been confirmed by numerical studies e.g. in the context of
(usually) small sample of test cases (e.g. members of a co-

Evolutionary Game Theory (EGT) and population dynamics of

simple two-strategy games with various types of replication and evolving (sub-)population) [1]. In cases where an absolute

selection mechanisms. Using the framework of shadowing lemma duality measurement is not available, CEAs can still sohee t
we study to what degree can such infinite population dynamics problem by making use of some form strategicinteractions

be trusted to represent co-evolutionary dynamics of possibly search [2]. A significant body of work on co-evolution has

very large, but finite populations. In a simple EGT setting of

. . . been devoted to the development of CEAs in the context of
two-player symmetric games with two pure strategies and a

polymorphic equilibrium we prove that for (u,)), truncation, 9a@me playing (see e.g. [3]).

sequential tournament, best-of-group tournament and linear Despite ear|y success of CEAs (eg in So|ving games),

ranking selections, the co-evolutionary dynamics do not POSSeSSiare have been well-documented failures leading to poor

the shadowing property. In other words, infinite population . .
) _ ) _ performance of CEAs under certain conditions. One exam-
simulations cannot be guaranteed to represent real trajectorige

or to be representative of co-evolutionary dynamics of potentity ple is theoverspecializatiorof evolved game strategies that

very large, but finite populations. specialize to and perform well only against specific type of
opponents, rather than being able to compete against a wide
|. INTRODUCTION range of opponent types [2], [4]. Such effects can result in

. . oscillatory behavior or much more complex dynamical regime
In this study we concentrate on a class of evolution-

. . . even chaos [5]) that are not to be seen in the context of
ary algorithms (EAs) known as co-evolutionary algorlthmg (5D

(CEAs). Unlike classical EAs that require absolutequal- classical EAs employing an absolute fitness measure. Most

. . . . studies of complex co-evolutionary dynamics are usualhd(a
ity measurement of solutions to guide the populatlon—baseé1 P yay thel

conveniently) performed under the assumption of infinitp-po
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signs of chaotic behavior. While such studies are very vdduab In this study we propose to address all the issues raised
for true appreciation of dynamical intricacies that can bgreviously in the context of structural stability of dynarail
associated with co-evolutionary dynamics, it has nevenbegystems. In particular, we will use the framework of shadmvi
shown that complex dynamics represented through numesmma developed for certain classes of chaotic dynamical
ically generated trajectories can actually represent @nevsystems (see e.g. [8]). For brevity we will consider pogatat
approximate theoretically true co-evolutionary dynamibs dynamics under co-evolution in games with two pure strate-
chaotic dynamics, nearby trajectories get locally exptinbyp  gies. However, the framework efisolating fixed point of the
separated and so round-off errors of computer arithmetic wpopulation dynamics (introduced in this study) can be used
lead to numerical trajectories very different from the lfeain more general settings, e.g. games with more than two pure
ones described by the infinite population equations. Unlesisategies.

one uses methods of constructive mathematics to generat&he paper has the following organization: In section Il
trajectories to arbitrary precision [6], one can legitielgt we introduce the concepts of pseudo-trajectories and their
ask how informative the observed ‘chaotic’ trajectorieg,arshadowing by true trajectories. We also prove a result about
given that the computer precision is limited. There is a mothe lack of shadowing in a class of dynamical systems related
subtle issue associated with this research question: eventd population dynamics considered in this paper. Section Il
the case of infinite populations, the population ratios cannbriefly introduces EGT and studies discontinuity at equilliin

be irrational. Yet, there is no guarantee that the images fof several types of selection mechanisms. In section IV we
population ratios under the non-linear dynamical map wéll bstate the main results concerning shadowing of infinite popu
rational. This does not lead to major complications when EAation replication dynamics. The main findings are discdsse
with relatively simple dynamics are considered. Howewver, iand summarized in section V.

the case of complex co-evolutionary dynamics the situason
much less clear. I[l. THE SHADOWING PROPERTY

Even more fundamental is the question whether the theoretonsider a discrete time dynamical systém X — X on
ically described or numerically observed dynamical irtdi@s 5 metric spacéX, d). Given an initial conditionz, € X, the
of infinite population models have any relation to the dyr@mi yap  generates an orbit,, = F(zp_1) € X,n=12,...
of potentially very large, but finite populations. In otheomds, |t instead of the true iterands,, we observedr,, corrupted

how informative are the infinite population studies abow thyy 5 hounded noise, but still used the dynamfitsve would
finite population ‘practice’ and is there a fundamental timigpigin apseudo-trajectory{#,, } >0,

that hampers applicability of infinite population studies t

finite population scenarios (even in the case of ‘very large’ d(Z0,20) <0, d(F(¥n-1):¥n) <8 m 21,
populations)? The effects of finite populations on repéicat wheres > 0 is the range of the bounded noise. Such a pseudo-
dynamics in two-strategy games with polymorphic fitnessrajectory is often referred to &pseudo-trajectory9].
equilibrium (between the two pure strategies) were studiedGiven ane > 0, we say that a trajectorfy,, },>o e-shadows

in [7]. However, the framework there is completely diffe'fenanothertrajector;{xn}nzo, if {yn }n>0 Stays within the-tube

from that adopted in this study. While we consider replicatcground{xn}nzo;
dynamics as deterministic processes operating on infioite (
) . . A(Xp,yn) <€, n>0.
very large) populations of pure-strategists, the previaask
[7] studiedstochasticreplicator dynamics operating on possi- The Shadowing lemma (e.g. [8]) tells us that (remarkably)

bly small finite pure-strategies’ populations. even for the most complex and locally exploding chaotic maps



under some circumstances, the corrupted pseudo-traggtorr € X ande > 0, e-neighborhood of: is an open set/ C X
are informative: Forany ¢ > 0, there exists & > 0, such of diametef ¢ containingz. The subsets ok are defined as
that for every j-pseudo-trajectory{z,,},>o there is a true open according to the topology induced on X by the mefric
(uncorrupted) trajectoryy, },>o underF' thate-shadows the If U is ane-neighborhood of: € X, then the neighborhootd
pseudo-trajectorf{ Z,, },,>o: with « taken out will be denoted by _,, i.e.U_, = U\ {z}.

d(invyn) <€ Yny1 = F(yn)a n > 0.
Definition 1: Consider a metric spacé€X,d) and a map

Hence, even though one could be tempted to assume tk},at.,X — X. For a given; > 0 we say that a poing € X is

under chaos, trajectories that are disrupted at every jbyiret ann-isolating point of discontinuity of", if there exists > 0

bounded noise cannot possibly represent anything reafdn fSuch that for every-neighborhood/ C X of ¢, 0 < ¢ < p,
such trajectories can be closely shadowed by true trajestor it hold<?
Under what conditions can the shadowing property be
. . . F(U—q) n Bn(F(Q)) =10,
guaranteed? Virtually all studies of the shadowing propert
have been performed in the framework of continuous angh e e
smooth dynamical systems. If a system is (uniformly) hy-

B,(y)={ze X | dz,y) <
perbolic on an invariant sgtthen the system will have the nW) =1 | dlz,y) <n}

shadowing property [10]. However, in general, establighing the open ball of radiug aroundy € X.

that a dynamical system is hyperbolic can be rather difficult

For discontinuous systems, the shadowing property must beThe next theorem not only tells us that dynamical systems

more-or-less established on a case-by-case basis. with discontinuities at fixed points cannot have shadowing

The key idea of this paper is illustrated in figure 1. Conproperty but also quantifies *to what degree” the shadowing

sider (a possibly complex) infinite-population dynamigs cannot be guaranteed in such systems.
An infinite population stater,, at time stepn gets mapped
to the infinite population state, .1 = F(z,). If instead Theorem 2:Consider a discrete time dynamical systém
of z,+1 we used its ‘corrupted’ versio@,,11 - €.g.z,4+1 X — X on a metric spacéX,d) with a fixed pointq =
corrupted by finite computer precision, or state of a largd;(q) € X. If for somen > 0, ¢ is an n-isolating point of
but finite sub-population - to which the true dynamiés discontinuity of /', then the dynamic$’ does not possess the
is applied, we would obtain a pseudo-trajectory I6f The shadowing property. In particular, neshadowing is possible
key question is whether such pseudo-trajectories canlggssifor 0 < ¢ < 7 in the sense that for eadh < ¢ < 1 no
represent anything about the real infinite population dyisgam § > 0 can be found so that evektpseudo-trajectory would
F. In other words, whether they can be shadowed by trioe e-shadowed by a true trajectory under
F-trajectories{yy, }n>0.

We will now show, in a rather general setting, that a certain  Proof: For somed > 0, consider aj-pseudo-trajectory
class of (discrete time) dynamical systems particuladguant .... £, Z,—1 &, Of F' that gets withinj-neighborhood of;,
to the co-evolutionary population dynamics considerechia t i.e. d(F(z,),q) < 6. We can then set,,; = ¢ and sincey
paper does not possess the shadowing property. Recalbthati$ a fixed point of /', the pseudo-trajectory can stay d¢nfor

2Loosely speaking, at each pointof the invariant set the (linearized) sys- 3Supremum of pairwise distances (undgrof points fromU.
tem has only local contracting and expanding subspaceg#tatonsistently 4The domain ofF" can be extended to subsetsXfin the obvious manner:

translated byF' into the local contracting and expanding subspaces(at). for any B C X, F(B) = {F(z)|z € B}.



Fig. 1. lllustration of pseudo-trajectofyz, }» of F, shadowed by the actudl-trajectory {y» }n.

an arbitrary numberm of time steps, cannot bee-shadowed by a true trajectory undét. For e-

shadowing we would neef-trajectories to be able to stay
T =2z =..=I =q. L .
T e ntm =4 close tog, for arbitrarily smalle > 0 and for arbitrary number

Sinceq is both a fixed point ofF (i.e. ¢ = F(¢)) and an m of time steps. After that thé’-trajectories would need to

n-isolating point of discontinuity of”, there existp > 0 such jump at least-far from ¢. But this is not possible, because

that for everye-neighborhood of ¢, 0 < ¢ < p, we have sinceq is anp-isolating point of discontinuity of’, the only

F(U_,) N B,(g) = 0. Denote the sphere of radius > 0 way for a true trajectory to stay for arbitrary number of time
—q 2(q) = 0.

aroundy € X by S,(y), i.e stepse-close tog is to stay exactly iy, from which there is no

escape undeF'. Hence, noe-shadowing by a true trajectory
Su(y) ={z € X | d(z,y) =v}. under F is possible for) < e < 1. [

Having stayed iny for m time steps, we let the next element , . )
g stayed i P We are now ready to discuss the kinds of co-evolutionary

of the §-pseudo-trajectory be
pseu J y population dynamics to which our results can be applied.

jn+m+1 S SV(F(q))

= Su (Q)? (1)

IIl. EVOLUTIONARY GAME THEORY AND ISOLATING

DISCONTINUITIES OFREPLICATION DYNAMICS

for some 0 < v < min{p,d}. That implies EGT [11] provides a natural testbed in which CEAs can
A(F(Znt+m+1),9) = 0. be analyzed. In classical game theory a rational individual
Now, setZ, mi2 = F(Z,1ms1) and fix e such thato < (player) has to choose between distinct strategies - the one
e < 7. Recall that for shadowing property to hold we wouldhat maximizes its payoff when interacting against another
need to have that for any > 0, there is aé > 0, such player, who in turn, also maximizes its own payoff. In costra
that everyd-pseudo-trajectory can beshadowed by arF- the EGT setting involves an infinitely large population of
trajectory. However, the pseudo-trajectory players that are allowed to use a set of predefined strate-
gies. These strategies areneritable and all players compete
Tn=2; Tn—ts Ty Tnp1 = 4 Tnta =45 - for payoffs that decide their average reproductive success
Tntm = ¢, Tnymt1 € Su(q), [12]. Different constructions (e.g., different games,fefiént

Zntmt2 = F(Zntmt1) selection mechanisms etc.) will lead to different frequenc



dependent population dynamics [13]. As such, EGT providesAs already mentioned, each player in the population chooses

a framework in which one can study the conditions that affeonly one of the two pure strategies. Assume that fractien

the success of some strategies over others in the populatjoni] of players in the population chose to play. Then1—p

under evolutionary process. is the proportion of players in the population that played
There have been few studies that employed EGT to analykle cumulative payoffe,, andws, for pure strategies; and

CEAs. For example, a simple EGT setting of the hawk-dowve, respectively, are given by

game that involves interactions between two strategies has

: : . s = b(1 —
been used to investigate the evolutionary process of CEAs Wer ap+b(1 —p)
under various conditions - Fogel et al. [14] investigated th ws, = cp+d(l—p) ®3)

impact of finite population, while the study in [5] investtgd
To ensure existence of a population state in which the cu-

the impact of selection mechanisms.

mulative scores for both strategies are the same & ws,),

Standard EGT framework is based on several assumptions. .

we constrain the payoff structure so thak ¢ andb > d [5].
First, populations have infinitely many players (agentaghe o ) ] o

Such ‘equilibrium’ state is know agolymorphic equilibrium
of which has a finite set gbure strategieso choose from in ) ) )

In our case for each allowed payoff setting there is a unique
every round of the game. Second, every player interacts with ) o

polymorphic equilibrium
all the other players in the populatiocomplete mixing Each
d—>b

player accumulates payoff depending on the outcome of the )
a—c+d—b

PEQ = 4)

games. Third, players reproduce in proportion to their cumu
lative payoffs. Reproduction is asexual and without vasigt ~ Interpreting the population as a mixed strategyi.e. use
i.e., players generate clones as their offspring. pure strategiess; and sy with probability p and 1 — p,
As in [5], we consider a simple EGT setting with a twolespectively), the statprq is a Nash equilibrium whereby
player game. Each player has a finite set of pure strategiedh§ mixed strategy is its own best reply If a player uses
choose from. For brevity, we concentrate symmetric games $» the opponent obtains highest payoff when usings well.
where the set of pure strategies is the same for every play@gnce, in Nash equilibrium neither of the two players has an
When a player chooses strategwhile the opponent choosesincentive to deviate unilaterally to use a different stggte
strategyj, the payoff (game outcome) for the first player is An example of a game that satisfies the constraints c,
denoted by g;;. b > d, is the classical game setting of theawk-dove game
For two pure strategiess, s» the possible payoffs for the which involves interactions of two distinct behaviors (pur

first player (row) playing against the opponent (column) catfrategies)hawk anddove competing for gaing+ upon win-

be represented as2x 2 payoff matrix ning under the costS' of injury. Hawks are aggressive and two
hawks will fight until one retreats with an injury. Interamtis
S S
- b2 @ between hawks lead to the expected pay6ff-C')/2, given a
S1 a

J probability of1/2 for injury. Two doves, in contrast, will avoid
S C
? a fight and perform threatening postures until both retreats

where each entry gives the respective payoff for the ChosWﬂhout injury. In such a case, they share the gaire. Any

pair of strategies. For example, the first player receives tn\teraction between a hawk and a dove will lead to the dove

payoff b when it chooses strategy; while its opponent retreating immediately. The hawk will take the full gads,

choosess. while the dove has zero gain, with no cost on injury incurred

Spayoff for the second player is thep;. to both parties. The payoff matrix reads:



Hawk Dove
Hawk | (G —C)/2 G (5)
Dove 0 G/2

Lemma 3:Consider the simple EGT setting of section Il

and a two-player symmetric game with two pure strategies
and a polymorphic equilibriumpzg € (0,1). The population

dynamics is driven by, A)-selection. Lets = min{pgg,1—

When the cost of injury is greater than the gain in winningEQ}_ Then,

the game(G < C, the constraints < ¢, b > d are satisfied and
the game has a unique polymorphic equilibripgy, = G/C.

In EGT the population dynamics is described by tapli-
cator equationthat governs how the frequency/proportion of
strategies in the population changes in the course of @uealut
ary process. Replicator equation under a selection mestmani

based on the proportion of cumulative payoffs is given by

p'wsl
fp) = )
( ) p'w51+(17p)‘w52

where f(p) is the frequency of strategy; in the population
in the following generationt(+ 1), given that its frequency in
the current population (generatiahis p.

In addition to such (classical) fitness-proportional seteg
a variety of alternative selection mechanisms have been pro
posed. In the following we briefly introduce different selen

mechanisms considered in this paper.

A. (u, A)-selection

The (1, \)-selection is usually associated with the selection
operator used in a class of EAs knownea®lution strategies
Each ofy parents generatdsoffspring, which results im\ =
kp offspring. In the case of infinite populations, we are only
concerned with the parents-to-offspring ratic= /) = 1/k.

The replicator equation has the form [5]:

1 if  p<ppgandp>~,
p/v it p<peq andp <7,

fo)=9 1+(p-1)/y if p>ppoandp>1-—»,
0 if p>prgandp <1 -7,
PEQ if  p=peq.

(6)
Note that wherk = 1, we have a trivial case with replicator
function f being the identity function. For largdr we have
the following result for non-trivial equilibrium pointpzg €
(0,1):

1) if A/ =2, for any sufficiently smallp > 0, pgg is a

(k — p)-isolating point of discontinuity off;

2) if A/p > 3, prg is ak-isolating point of discontinuity

of f.

Proof:

1) Letk=)\/pu=2. Theny=1—-~=1/2. We consider
three distinct cases for the value pfg < (0,1) with
respect toy = 1/2.

e prg < 7. In this case we have in the neighborhood

of PEQ:
f-(p)=p/y=2p it pel0,prg),
f®)=4 fr(p)=0 it pe(peo,l
PEQ if p= PEQ-
(7)

From the left, hmpﬂng f-(p) = 2pgg; from
the right, limZHpEQ f+(p) = 0. Hence, for any
sufficiently smallp > 0, pgg is a (peg — p)-
isolating point of discontinuity off.

o Whenpgg > 7, we have in the neighborhood of

PEQ-
f-(p)=1 it pey,req),
fr(p) =142
flp) = T
PEQ if  p=peq.
8
Hence,lim f-(p) = 1 with separation from

P—=Prg
peqg equal to(1l — pgg) and limpHpEQ filp) =
1—-2(1—-pgg) with the same separation fropg.
It follows that, for any sufficiently smapp > 0, pgq
is a (1 —peg — p)-isolating point of discontinuity
of f.

e ppo = 7. Now we have in the neighborhood of



pEQ: .
f-p)=p/vy=2p if pel0,prq),
fr(p)=1+212

fp) = K _
=2p-1 it pe(peg, 1l
PEQ if  p=prq.

9)

It follows that limpﬂpr f-(p) = 1 with sep-

aration from pgqo equal to ppg = 1/2 and

1imp_)p+Q f+(p) = 0 with the same separation from
E

peg- Hence, for any sufficiently small > 0, prq

is a(prq — p)-isolating point of discontinuity off.

2) The casek = A\/u > 3 is a bit more involved but again

peg = 1 —~. In the neighborhood ofg¢:

f-(p)=1 it pe€r.peg),
f(p) = f+(p) = .
1-k(1-p) if peprg,ll,
PEQ if  p=peg.
(12)

The separation ofimp_)pEQ f-(p) =1 from pgg
is1—prg =~ = 1/k. Note that the separation of
hmpﬂpﬁq f+(p) = 0 from pgq is greater, namely
pEQ = 1—1/k. Hencepgg is a(l1—pgg)-isolating
point of discontinuity off. The same analysis holds

for the caseppg = (1 — 7, 1).

can be dealt with easily on a case-by-case basis. The
interval (0, 1) of possible positions opz¢ is now split

into three subintervals with < v <1 -~y < 1. B. Truncation Selection

» prqg < 7. In this case we have in the neighborhood In truncation selection individuals below some quality

of prg: threshold@ are not allowed to create offspring. Truncation is
f_(p) =p/v often used inevolutionary programming15]. The particular
—kp it pel0peg) form of truncation selection analyzed in [5] has the followgi

fp) = () =0 it pe(ppg,1—~], form: 1) The population is sorted according to the agents’
PEQ it p=ppo. evaluation scores; 2) the worstfraction of the population is

(10)  removedyy € (0,1/2), and 3) the removed agents are replaced
Now, lim, - f-(p) = kpeq with separation with clones of individuals (no variation operators) in thesb
from pgq equal to(k — 1)peq. On the other hand, --fraction of the population. The replicator equation has th
hmp_)ng f+(p) = 0, which is separated fromzq  form [5):

by peq. Sincek > 3, we have thatpgg is a

1 if p<pggandp>1-—7,
peg-isolating point of discontinuity off. The same p4r  if p<proandp ey l—n),
analysis holds for the cagg:q = . 9 it p<ppoandp < 1,
o When~y < pgg < 1—+, we have in the neighbor- f)=4{ p—n it p>proandp e (1,1 1],
hood ofprq: 2p—1 if p>prpoandp>1-—+,
f-(p)=1 it pe€lv,rrq), 0 if  p>prqgandp <,
f) =94 f+p)=0 if pe(ppg,1-1], veq  if p=pro.
PEQ it p=peq. (13)

(11) In the context of two-strategy games, the replicator equati

The separation oflim,_, - f-(p) 1 and (13) (and hence our analysis here) is the same for the sequen-

lim,_,+ f+(p) = 0 from pgq is (1 — prq) and tial tournament selection [5]. Discontinuity propertietbe

PEQ, respectively. Setting = min{prq, 1 —prq}, replicator map (13) are described in the following lemma.

we can claim thatpEQ is a r-isolating point of 6The threshold can be determined by an absolute or relativditgua

discontinuity of f. measurement.



Lemma 4:Consider the simple EGT setting of section Il pgg = 1 — v equal tory. Moreover,limpﬁp% fi(p) =
E
and a two-player symmetric game with two pure strategies 1 — 2+, which is separated frompgg by 7.

and a polymorphic equilibriumpzg € (0,1). The population e prg > 1 —~. In the neighborhood 0prq:

dynamics is driven by the truncation selection with paramnet f-(p)=1 if pel[l—7,peg)

v € (0,1/2). Let kK = min{pgg, 1 — prq,~}. Then, for any f)=3 fip)=2p-1 if pe (pro,ll,
sufficiently smallp > 0, pgq is a (k — p)-isolating point of PEQ it p=peq.
discontinuity of f. (18)

The separation ofim f-(p)=1frompgg is1—

P=Ppq
Proof: We again proceed on a case-by-case basis, with Pe@. The separation O]ﬁmpﬂng f+(p) =2ppg — 1=

the interval(0, 1) of possible positions ofz¢ split into three peqQ — (1 = pr@) from prq is againl — pgpq.

subintervals deliminated by < v <1 —~v < 1. [ ]

e PE@ < 7. In the neighborhood ofg¢:

C. Best-of-Group Tournament

f-py=2p it pel0prq) The new population is created from the current one by
o) =9 frlp)=0 it pepen], (14 repeating the following process: First, randomly draw fwit
PEQ it p=ppq. replacement)v individuals from the current population and

We havelim,, - f-(p) = 2prq with separation from then allow the fittest member of this subset to parent one
peq equal topgg. Moreover, lim, .+ f+(p) = 0, offspring. In the best-of-group tournament selection gues
which is separated fromgq by peg. increases with the group size

pEqQ = 7- In the neighborhood opxq: The replicator equation has the form [5]:

f-(p)=2p it pel0,peq) 1-(1-p)* i p<pze,
fw)=1 felp)=p—~ it pe(prg.1-1l fp) =4 »* it p>pee, (19)
PEQ it p=peqg. PEQ it p=peq.
(19) Note that whenv = 1, we have a trivial case with replicator
Now hmpﬂng f-(p) = 2ppq and hmpﬂp;c‘, f+() = function f being the identity function. For larges we have
0. the following result for non-trivial equilibrium pointpgg €
Wheny < prg < 1 —~, we have in the neighborhood(()’ 1):
of prg:
f~p)=p+~ 1 peclypee), Lemma 5:Consider the simple EGT setting of section |l
fo)=9q f+lp)=p—7 it peppe.1-1l, and a two-player symmetric game with two pure strategies
PEQ it p=peq. " and a polymorphic equilibriunpzg € (0,1). The population

) dynamics is driven by the best-of-group tournament selacti
The separation of bothm - f_(p) = prq +~ and
] Be ] with group sizew. Then,
hmp_mEQ f+(p) =pEq — 7 from pgq is 7.

1) if w = 2, for any sufficiently smallp > 0, is a
peg = 1 — . In the neighborhood ofgq: ) ifw Yy y p PEQ

peq(l — prg) — pl-isolating point of discontinuity of

f-p)=p+~y it pely,req) f:
f)=93 f+p)=2p-1 it peppe1], QA7) 2) if w > 3, for any sufficiently smallp > 0, pgq is a
PEQ it p=reo. [k(1 — k*~1) — p]-isolating point of discontinuity off,

We havelimp_)pEQ f-(p) = 1 with separation from wherek = min{prg,1 — pro}-



Proof: The two continuous branches ¢f f_(p) = 1— Analogously, forpgg € (1/2,1), we havex = 1 —
(1-p)* and f4(p) = p* are separated atpq by f-(prg) — pEQ = min{prq,1 —pre} and
peQ = (1—ppQ)ll — (1 —ppQ)*~'] andprq — f+(prqQ) =
prQll — g’ ], respectively.
1) Letw = 2. Then

PEQ — f+(PEQ) > f-(PEQ) —PEQ =K [1 — K.

f-(pso) —pse = (1—po) [1—(1—pgg)]  D- Linear Ranking

= pro [1 - pEg] In ranking selection, the population is first sorted acanydi

to agents’ evaluation scores. The individual’s reproduuctis

= peqQ — f+(PEQ) _ , , , _ N
a linear or exponential function of its ordinal positionr{k.

2) Letw > 3. We have Ranking selection is one of the commonly used schemes in

f-(peg) —Pe@ = (1—DpEOQ)-" (20) genetic algorithmg16]. The particular form of linear ranking
1-(1- pEQ)“_l] analyzed in [5] has the higher-scoring strategy receivingnk
o of 2 while the other strategy receiving a rank of 1.
peQ — f+(pEQ) = pEQ [1-15g (21) ¥ J

The replicator equation for linear ranking is given by [5]:

Consider the difference between the two margins (21) op/(p+1), if p<
p/\p y p PEQ;

and (21), .
(1) f) =1 p/2-p), if p>pgqe, (24)
gp) = (f-(p)—p)—(p— f+(p)) PEQ; if p=peq.
= 1-2p+p* —(1-p)~. (22) Discontinuity properties of the replicator map (24) can be

o stated as:
Its second derivative reads

"p) =wlw—1) p* 2 - (1 —-p)¥ 2. 23
g'(p) ( ) lp =p 3) Lemma 6: Consider the simple EGT setting of section IlI

Note thatg(1/2) = 0. Furthermore, fop € (0,1/2) we and a two-player symmetric game with two pure strategies
havep < 1—p, and sop”~? < (1—p)*~2, meaning that and a polymorphic equilibriunpzq € (0,1). The population
9"(p) < 0. Sinceg is concave on(0,1/2) andg(0) = dynamics is driven by the linear ranking selection. et
9(1/2) =0, g is positive on(0,1/2). min{prg, 1 — pro}. Then for any sufficiently smalp > 0,

We next show that the graph gfis symmetric around pegisal H(1—_~’2) — pl-isolating point of discontinuity off.

1+(1
the point(1/2,0). Consider the transformp = 1 — p.

Then Proof: The two continuous branches ¢f f_(p) =
9F) = 1—25+p —(1—p) 2p/(p+1) and f1(p) = p/(2 — p) are separated atzg by
= 1-20-p)+1-p*—-01—-01-p)~  [-PEQ) —PEQ = p?;Efl —PEQ = W (25)
= —142p—p“+(1-p)"* and
= ) P — F+(p5Q) = ppg — ~PEQ_ — PEQULZPEQ) - ¢

2—ppg 1+ (1—peq)
From the symmetry aroundl/2,0) we immediately  Consider the difference between the two margins,

obtain thatg is negative and convex on the inter-

gp) = (f~-(») —p)— (- f+(p) (27)

val (1/2,1). Hence, for non-trivial equilibriapgg € _ pl—p) pl—p) (28)
(0,1/2), k = ppg = min{prq, 1 — pre} and we have l+p 1+(1-p)

f-(peQ) — PEQ > PEQ — f+(PEQ) =K [L — K] ~24p(1-p)



with second derivative
1 1
/!
p = —4 — .
A [ (R CRr e
Note thatg(0) = 0 and g(1/2) = 0. Forp € (0,1/2) we

havel/(1+p)® > 1/(2—p)3, meaning thay” (p) < 0. Since

g is concave or(0,1/2) andg(0) = ¢g(1/2) = 0, g is positive
on (0,1/2).
We next show that the graph is symmetric around the
point (1/2,0). Consider the transformi = 1 — p. Then
) p(1—p)(1 — 2p)

9(p) = 2 51— (30)
- - (1-p)A—201-p))
= T a-pU-(-p) (1)
__p(l—p)(A—2p)
BT ) (32)
= —g(p) (33)

From the symmetry aroundl/2,0), it follows that g is
negative and convex on the intenal/2, 1). Hence, fopgg €

(0,1/2), k = pro = min{prg,1 — prq} and we have

k(1 — k)
f-(PEQ) —PEQ > PEQ — [+(PEQ) = Tr—r) (34)
Analogously, forpgg € (1/2,1), k = 1 — prgo =
min{pgrg,1 — prg} and we have
k(1 — k)
pEQ — f+(PEQ) > [-(PEQ) — PEQ = Tr=n) (35)
[ |

IV. SHADOWING PROPERTY ANDREPLICATOR MAPPINGS
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2) To investigate whether constraining to the rational do-
main forp will not leave theoretical and empirical inves-
tigations on|0, 1] groundlessTransforming an irrational
p into a rational population ratio close pocan be viewed
as a bounded noise with (arbitrarily) small range size.
Shadowing property would mean that possible complex
chaotic trajectories o0, 1] would still be reflected in
complex trajectories in the rational domain.

3) To investigate whether the complex dynamical co-
evolutionary patterns under infinite populations indicate
complex dynamics in large finite population computer
simulations. For large population size, the effects of
finite population size on the strategy ratipscan be
considered as bounded noise. Furthermore, the larger
the population, the smaller the range size of the noise.
In a system with shadowing property, finite population
pseudo-trajectories are shadowed by the complex trajec-

tories from the original infinite population model.

Unfortunately, all selection mechanisms considered in Sec

tion Il are discontinuous at equilibrium. Hence none of¢ho
co-evolutionary dynamics possesses the shadowing pyopert
In particular, using Theorem 2 and Lemmas 3-6, we obtain

the following main results:

Theorem 7:Consider the simple EGT setting of Section Ill

and a two-player symmetric game with two pure strategies

Recall, that we would like to use the shadowing lemmand a polymorphic equilibriunpxq € (0,1). The population

framework for three purposes:

1) To investigate whether the simulated complex c

dynamics is driven by(y, A)-selection withA/u > 2. Then,

g-shadowing of the population dynamics is not possible for

evolutionary trajectories under the infinite populatior? < € < min{ppg, 1 - pre}-

assumption represent anything re@he computer arith-

metic operates with finite precision and can only yield

Proof: For A/u > 3, the result is a direct corollary of

pseudo-trajectories that cannot bepriori guaranteed theorem 2 and lemma 3.

to represent any true trajectory of the given complex For A\/p = 2, choose any) < ¢ < min{pgg,1 — pro}-

system. If the co-evolutionary system has the shadowif@ne can always pick a value @f > 0 such thate < ¢ =

property then one can be assured that the observeth{pgg,1 — peg} — p. By lemma 3 we have thapgg

pseudo-trajectories are shadowed by true ones generatea -isolating point of discontinuity off and hence, by

by the underlying system.

theorem theorem 2)-shadowing of the population dynamics
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is not possible. Since < 1, no e-shadowing of the population p. The possible dynamics include periodic orbits of arbitrar
dynamics is possible either. B periods, a-periodic and ‘chaotic’ orbits (arising fromaitional
initial conditions). The difference between the well sadli

mapr(p) = 2p mod 1 in chaotic dynamics (e.g. [8]) and the

Theorem 8:Consider the simple EGT setting of Section Il
P g map f(p) in (36) - the existence of the additional equilibrium

and a two-player symmetric game with two pure strategies . . . .
player sy g P ngQ = 1/2 for f - is crucial. Sincer(p) is a smooth

I hi ilibri 1). Th lati
and a polymorphic equilibriunppq € (0,1) € population expanding map on a smooth manifold (unit circle) [17], it

dynamics is driven by the truncation selection with paramnet .
4 y P has the shadowing property. However, Theorem 7 shows that

1/2). Then, e-shadowi f th lation d ics, . .
7 €(0.1/2) en., e-shadowing of the poptiation yrlamICSthls is not the case for the system (36).

's not possible fo0 < e < min{prq, 1 = peg: 7} However, on a reduced set of initial conditions, one can
argue that a ‘shadowing-like’ property holds at least for a

Theorem 9:Consider the simple EGT setting of Section Ilarticular interpretation of the computer round-off erft8]:
and a two-player symmetric game with two pure strategiesthe computer can guarantee onld exact binary digits,
and a polymorphic equilibriumpzg € (0,1). The population then iterative application of on 0.z1zx5... will lead to the
dynamics is driven by the best-of-group tournament sedacti pseudo-trajectory):
with group sizew. Then, e-shadowing of the population

L1223 XN —1T 0y 0.22X3...C 01— 1T 01Y1,

dynamics is not possible fab < ¢ < k(1 — xk*~1), where

. O0.z3..cpm—12mY1Y2s - 0.01Y2.-.Ynrs O0-Y2...ynrt1, -
k =min{pgg,l — pro}-

for somey; € {0,1}, j > 1. Consider now the sef of all

re-images undef of =1/2,
Theorem 10:Consider the simple EGT setting of SectiorP g f of peq /

lIl and a two-player symmetric game with two pure strategies € = {p € [0,1] | f"(p) = prq for somen > 0}.
and a polymorphic equilibriumpgg € (0,1). The population The reg| trajectory of (36) starting Mzozs...2 01T 1 Y1Ya...

dynamics is driven by the linear ranking selection. Then, fom the f-invariant setQ = (0,1) \ & will e-shadow the

shadowing of the population dynamics is not possibledfer pseudo-trajectony) with ¢ = 2~ M+1,

K(l—k .
€< 1+((17,2)’ wherer = min{ppq, 1 — prq}- The set€ contains alp € [0, 1] whose binary expansidp]-
contains any finite word over the alphaljét 1} (including the
A. A Hawk-Dove Game Example empty word), followed by digit 1, followed by the right-inte

As an example, consider a hawk-dove game with the cggquence of O's:
of injury twice the gain in winningC' = 2G, and a(u, \) £=1{pel0,1]] [pl =.{0,1}*1000...}.

selection withA = 2u (each of u parents generates two

) ) _ The setf is dense in[0,1], since for anyp € [0,1] and
offspring). The replicator equation (6) becomes:

arbitrarily smalle > 0, there will be ag € [0,1], such that

2p it pe0,1/2), lp—q| < € and[g], has an infinite tail of 0’'s. Analogously, it is
fp)=q 1+200—-1) it pe(1/21], (36) easy to show that the s@tis dense in0, 1] as well. However,
1/2 it p=peo=1/2. Q is much larger tharf - in fact, while £ is countable,

The mapf acts as left-shift on binary representations df2 is uncountable since it contains infinite expansion rationa
p € [0,1/2) U (1/2,1). As such, it can generate a widenumbers and all irrational numbers @, 1]. Under f, the set
variety of dynamical behaviors, dictated by the distribati Q2 contains seeds for a wide variety of dynamical regimes,

of digits in the binary expansiofp]» of the initial condition including periodic and ‘chaotic’ orbits.
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V. DISCUSSION ANDCONCLUSION from (often) easier to analyze infinite population models
cannot be transferred to finite (albeit possibly very large)
In their pioneering work [5], Ficici, Melnik, and Pollack populations. We concentrated on a simple EGT setting of
formalized co—evolution within the EGT framework and intwo-player symmetric games with two pure strategies and
vestigated the impact of various selection mechanisms en # polymorphic equilibrium. In this context we proved that
dynamical behavior arising from interactions in an infinitefgr (1, A\), truncation, sequential tournament, best-of-group
population of pure strategies. Based on simulation studi#s tournament and linear ranking selections, the co-evatatip
computer generated replicator trajectories, it was argheti dynamics do not possess the shadowing property. Analyzing
simple two-strategy games and various types of replicatifther solution concepts, e.g. the intuitive best-scorinategy
and selection pressure mechanisms can lead to co-evaufiorsp|ution concept, is an interesting direction for futurerkvdt
dynamics exhibiting a wide variety of complex regimes. Whilgould also be interesting to extend the framework to include
this argument is very interesting, it is rather loose anduho finjte-time shadowingwhich could open the door for rigorous
be made more rigorous. First, we have rigorously showghalysis of complex trajectories over a long times.
that the simulation studies that formed the main basis for Our main theoretical arguments critically rely on trajets
arguments about complex co-evolutionary dynamics could BAding up in the fixed point. One can argue that there can be
misleading since complex systems without the shadowingly “very few” of such trajectories in systems we study and s
property cannot be faithfully simulated on finite precisionon average” nothing serious happens. We have two replies to
machines in this manner. Second, the replicator maps diich an argument) In a rigorous study, it is enough to find
previous studies were constructed under the assumptionopfe case where things break down to cast doubt on intuitive
infinite populations. When complex dynamics is considerefeliefs about a studied phenomeng®) In Section IV.A we
great care must be taken in studying such replicator dyremigctually show an example of a simple system where it is easy
In infinite populations, only rational proportions of putesse- o see that the set of initial conditions that can eventuaty
gists are possible. The fact that non-linear selectionspres to the fixed point is a dense set ovgr,1]. So the set of
methods can produce irrational proportions cannot be &phor trajectories that can end up in the fixed point is rather gener
In evolutionary systems, the dynamics is usually rathefadli even though the dynamics is not contractive.
and this is not an issue, but in co-evolution complex dynamic e believe that the techniques based on shadowing lemma
can arise and an analysis is needed to resolve whether sggln the field of chaotic dynamics that we introduced heré wil
effects can have long lasting consequences. We have shgygnof wider use in other similar studies of complex dynam-
in this paper that for a range of selection mechanisms thisjig and finite population effects in evolutionary compuaati
indeed the case and one has to be careful about such effegjStems. When there is a suspicion that the dynamics can be
One can no longer simply consider a replicator equatiddbmplex, our framework can provide a bridge between detaile
operating on0, 1], because the proportions may not represefiynamical studies in analytically tractable infinite pagtidn
any real infinite population and any approximation by howeveettings and the finite population computations perfornred i
close rational proportion may be deceiving. practice. In general one would like to avoid ‘uncontrolkbl
In particular, we have used the framework of shadowsomplex dynamics when running an evolutionary computation
ing lemma to address the question of relevance of infinigystem. Tractable infinite population models can provide us
population models for practical finite population regimeful hints about the conditions under which such dynamical
when complex co-evolutionary dynamics occurs in infiniteegimes can occur and about possible forms they can take. It

populations. We have rigorously shown that lessons learnisdvery important to establistil) whether infinite population
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complex dynamic regimes have any relevance for practiqab] K. Sigmund and M. A. Nowak, “Evolutionary game theorgurrent

finite population computations and if s(?) to what degree

(13]

the finite population dynamics approximates the infinite-pop

ulation one. The framework introduced in this paper prosidg14]

a novel approach for addressing these issues.
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