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Complex Co-Evolutionary Dynamics – Structural

Stability and Finite Population Effects
Peter Tǐno, Siang Yew Chong, and Xin Yao

Abstract—Unlike evolutionary dynamics, co-evolutionary dy-

namics can exhibit a wide variety of complex regimes. This

has been confirmed by numerical studies e.g. in the context of

Evolutionary Game Theory (EGT) and population dynamics of

simple two-strategy games with various types of replication and

selection mechanisms. Using the framework of shadowing lemma

we study to what degree can such infinite population dynamics

(1) be reliably simulated on finite precision computers and (2)

be trusted to represent co-evolutionary dynamics of possibly

very large, but finite populations. In a simple EGT setting of

two-player symmetric games with two pure strategies and a

polymorphic equilibrium we prove that for (µ, λ), truncation,

sequential tournament, best-of-group tournament and linear

ranking selections, the co-evolutionary dynamics do not possess

the shadowing property. In other words, infinite population

simulations cannot be guaranteed to represent real trajectories

or to be representative of co-evolutionary dynamics of potentially

very large, but finite populations.

I. I NTRODUCTION

In this study we concentrate on a class of evolution-

ary algorithms (EAs) known as co-evolutionary algorithms

(CEAs). Unlike classical EAs that require anabsolutequal-

ity measurement of solutions to guide the population-based
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stochastic search process, in CEAs the solution quality can

be estimated only with respect to its performance against a

(usually) small sample of test cases (e.g. members of a co-

evolving (sub-)population) [1]. In cases where an absolute

quality measurement is not available, CEAs can still solve the

problem by making use of some form ofstrategicinteractions

between competing solutions in the population to guide the

search [2]. A significant body of work on co-evolution has

been devoted to the development of CEAs in the context of

game playing (see e.g. [3]).

Despite early success of CEAs (e.g. in solving games),

there have been well-documented failures leading to poor

performance of CEAs under certain conditions. One exam-

ple is theoverspecializationof evolved game strategies that

specialize to and perform well only against specific type of

opponents, rather than being able to compete against a wide

range of opponent types [2], [4]. Such effects can result in

oscillatory behavior or much more complex dynamical regimes

(even chaos [5]) that are not to be seen in the context of

classical EAs employing an absolute fitness measure. Most

studies of complex co-evolutionary dynamics are usually (and

conveniently) performed under the assumption of infinite pop-

ulations, where the entities of interest are, e.g., the ratios of

individuals adopting a particular strategy.

Dynamical maps [5] were used for a simple two-strategy

game and various types of replication and selection pressure

mechanisms. Dynamics of the maps were then studied in

a series of numerical simulations. Under a wide range of

parameter settings1, the population dynamics showed clear

1Payoff parameters, as well as selection and replication parameters.
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signs of chaotic behavior. While such studies are very valuable

for true appreciation of dynamical intricacies that can be

associated with co-evolutionary dynamics, it has never been

shown that complex dynamics represented through numer-

ically generated trajectories can actually represent or even

approximate theoretically true co-evolutionary dynamics. In

chaotic dynamics, nearby trajectories get locally exponentially

separated and so round-off errors of computer arithmetic will

lead to numerical trajectories very different from the ‘real’

ones described by the infinite population equations. Unless

one uses methods of constructive mathematics to generate

trajectories to arbitrary precision [6], one can legitimately

ask how informative the observed ‘chaotic’ trajectories are,

given that the computer precision is limited. There is a more

subtle issue associated with this research question: even in

the case of infinite populations, the population ratios cannot

be irrational. Yet, there is no guarantee that the images of

population ratios under the non-linear dynamical map will be

rational. This does not lead to major complications when EAs

with relatively simple dynamics are considered. However, in

the case of complex co-evolutionary dynamics the situationis

much less clear.

Even more fundamental is the question whether the theoret-

ically described or numerically observed dynamical intricacies

of infinite population models have any relation to the dynamics

of potentially very large, but finite populations. In other words,

how informative are the infinite population studies about the

finite population ‘practice’ and is there a fundamental limit

that hampers applicability of infinite population studies to

finite population scenarios (even in the case of ‘very large’

populations)? The effects of finite populations on replicator

dynamics in two-strategy games with polymorphic fitness-

equilibrium (between the two pure strategies) were studied

in [7]. However, the framework there is completely different

from that adopted in this study. While we consider replicator

dynamics as deterministic processes operating on infinite (or

very large) populations of pure-strategists, the previouswork

[7] studiedstochasticreplicator dynamics operating on possi-

bly small finite pure-strategies’ populations.

In this study we propose to address all the issues raised

previously in the context of structural stability of dynamical

systems. In particular, we will use the framework of shadowing

lemma developed for certain classes of chaotic dynamical

systems (see e.g. [8]). For brevity we will consider population

dynamics under co-evolution in games with two pure strate-

gies. However, the framework ofη-isolating fixed point of the

population dynamics (introduced in this study) can be used

in more general settings, e.g. games with more than two pure

strategies.

The paper has the following organization: In section II

we introduce the concepts of pseudo-trajectories and their

shadowing by true trajectories. We also prove a result about

the lack of shadowing in a class of dynamical systems related

to population dynamics considered in this paper. Section III

briefly introduces EGT and studies discontinuity at equilibrium

for several types of selection mechanisms. In section IV we

state the main results concerning shadowing of infinite popu-

lation replication dynamics. The main findings are discussed

and summarized in section V.

II. THE SHADOWING PROPERTY

Consider a discrete time dynamical systemF : X → X on

a metric space(X, d). Given an initial conditionx0 ∈ X, the

mapF generates an orbitxn = F (xn−1) ∈ X, n = 1, 2, ....

If instead of the true iterandsxn we observedxn corrupted

by a bounded noise, but still used the dynamicsF , we would

obtain apseudo-trajectory{x̃n}n≥0,

d(x̃0, x0) < δ, d(F (x̃n−1), x̃n) < δ, n ≥ 1,

whereδ > 0 is the range of the bounded noise. Such a pseudo-

trajectory is often referred to aδ-pseudo-trajectory[9].

Given anǫ > 0, we say that a trajectory{yn}n≥0 ǫ-shadows

another trajectory{xn}n≥0, if {yn}n≥0 stays within theǫ-tube

around{xn}n≥0:

d(xn, yn) < ǫ, n ≥ 0.

The Shadowing lemma (e.g. [8]) tells us that (remarkably)

even for the most complex and locally exploding chaotic maps,
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under some circumstances, the corrupted pseudo-trajectories

are informative: Forany ǫ > 0, there exists aδ > 0, such

that for every δ-pseudo-trajectory{x̃n}n≥0 there is a true

(uncorrupted) trajectory{yn}n≥0 underF that ǫ-shadows the

pseudo-trajectory{x̃n}n≥0:

d(x̃n, yn) < ǫ, yn+1 = F (yn), n ≥ 0.

Hence, even though one could be tempted to assume that,

under chaos, trajectories that are disrupted at every pointby a

bounded noise cannot possibly represent anything real, in fact

such trajectories can be closely shadowed by true trajectories.

Under what conditions can the shadowing property be

guaranteed? Virtually all studies of the shadowing property

have been performed in the framework of continuous and

smooth dynamical systems. If a system is (uniformly) hy-

perbolic on an invariant set2, then the system will have the

shadowing property [10]. However, in general, establishing

that a dynamical system is hyperbolic can be rather difficult.

For discontinuous systems, the shadowing property must be

more-or-less established on a case-by-case basis.

The key idea of this paper is illustrated in figure 1. Con-

sider (a possibly complex) infinite-population dynamicsF .

An infinite population statexn at time stepn gets mapped

to the infinite population statexn+1 = F (xn). If instead

of xn+1 we used its ‘corrupted’ versioñxn+1 - e.g. xn+1

corrupted by finite computer precision, or state of a large,

but finite sub-population - to which the true dynamicsF

is applied, we would obtain a pseudo-trajectory ofF . The

key question is whether such pseudo-trajectories can possibly

represent anything about the real infinite population dynamics

F . In other words, whether they can be shadowed by true

F -trajectories{yn}n≥0.

We will now show, in a rather general setting, that a certain

class of (discrete time) dynamical systems particularly relevant

to the co-evolutionary population dynamics considered in this

paper does not possess the shadowing property. Recall that for

2Loosely speaking, at each pointx of the invariant set the (linearized) sys-

tem has only local contracting and expanding subspaces thatget consistently

translated byF into the local contracting and expanding subspaces atF (x).

x ∈ X andǫ > 0, ǫ-neighborhood ofx is an open setU ⊆ X

of diameter3 ǫ containingx. The subsets ofX are defined as

open according to the topology induced on X by the metricd.

If U is anǫ-neighborhood ofx ∈ X, then the neighborhoodU

with x taken out will be denoted byU−x, i.e.U−x = U \{x}.

Definition 1: Consider a metric space(X, d) and a map

F : X → X. For a givenη > 0 we say that a pointq ∈ X is

anη-isolating point of discontinuity ofF , if there existsρ > 0

such that for everyǫ-neighborhoodU ⊂ X of q, 0 < ǫ < ρ,

it holds4

F (U−q) ∩Bη(F (q)) = ∅,

where

Bη(y) = {x ∈ X | d(x, y) < η}

is the open ball of radiusη aroundy ∈ X.

The next theorem not only tells us that dynamical systems

with discontinuities at fixed points cannot have shadowing

property but also quantifies “to what degree” the shadowing

cannot be guaranteed in such systems.

Theorem 2:Consider a discrete time dynamical systemF :

X → X on a metric space(X, d) with a fixed pointq =

F (q) ∈ X. If for some η > 0, q is an η-isolating point of

discontinuity ofF , then the dynamicsF does not possess the

shadowing property. In particular, noǫ-shadowing is possible

for 0 < ǫ < η in the sense that for each0 < ǫ < η no

δ > 0 can be found so that everyδ-pseudo-trajectory would

be ǫ-shadowed by a true trajectory underF .

Proof: For someδ > 0, consider aδ-pseudo-trajectory

.... x̃n−2 x̃n−1 x̃n of F that gets withinδ-neighborhood ofq,

i.e. d(F (x̃n), q) < δ. We can then set̃xn+1 = q and sinceq

is a fixed point ofF , the pseudo-trajectory can stay inq for

3Supremum of pairwise distances (underd) of points fromU .
4The domain ofF can be extended to subsets ofX in the obvious manner:

for any B ⊆ X, F (B) = {F (x)|x ∈ B}.
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Fig. 1. Illustration of pseudo-trajectory{x̃n}n of F , shadowed by the actualF -trajectory{yn}n.

an arbitrary numberm of time steps,

x̃n+1 = x̃n+2 = ... = x̃n+m = q.

Sinceq is both a fixed point ofF (i.e. q = F (q)) and an

η-isolating point of discontinuity ofF , there existsρ > 0 such

that for everyǫ-neighborhoodU of q, 0 < ǫ < ρ, we have

F (U−q) ∩ Bη(q) = ∅. Denote the sphere of radiusν > 0

aroundy ∈ X by Sν(y), i.e.

Sν(y) = {x ∈ X | d(x, y) = ν}.

Having stayed inq for m time steps, we let the next element

of the δ-pseudo-trajectory be

x̃n+m+1 ∈ Sν(F (q))

= Sν(q), (1)

for some 0 < ν < min{ρ, δ}. That implies

d(F (x̃n+m+1), q) ≥ η.

Now, set x̃n+m+2 = F (x̃n+m+1) and fix ǫ such that0 <

ǫ < η. Recall that for shadowing property to hold we would

need to have that for anyǫ > 0, there is aδ > 0, such

that everyδ-pseudo-trajectory can beǫ-shadowed by anF -

trajectory. However, the pseudo-trajectory

... x̃n−2, x̃n−1, x̃n, x̃n+1 = q, x̃n+2 = q, ...,

x̃n+m = q, x̃n+m+1 ∈ Sν(q),

x̃n+m+2 = F (x̃n+m+1)

cannot beǫ-shadowed by a true trajectory underF . For ǫ-

shadowing we would needF -trajectories to be able to stayǫ-

close toq, for arbitrarily smallǫ > 0 and for arbitrary number

m of time steps. After that theF -trajectories would need to

jump at leastη-far from q. But this is not possible, because

sinceq is anη-isolating point of discontinuity ofF , the only

way for a true trajectory to stay for arbitrary number of time

stepsǫ-close toq is to stay exactly inq, from which there is no

escape underF . Hence, noǫ-shadowing by a true trajectory

underF is possible for0 < ǫ < η.

We are now ready to discuss the kinds of co-evolutionary

population dynamics to which our results can be applied.

III. EVOLUTIONARY GAME THEORY AND ISOLATING

DISCONTINUITIES OFREPLICATION DYNAMICS

EGT [11] provides a natural testbed in which CEAs can

be analyzed. In classical game theory a rational individual

(player) has to choose between distinct strategies - the one

that maximizes its payoff when interacting against another

player, who in turn, also maximizes its own payoff. In contrast,

the EGT setting involves an infinitely large population of

players that are allowed to use a set of predefined strate-

gies. These strategies areinheritableand all players compete

for payoffs that decide their average reproductive success

[12]. Different constructions (e.g., different games, different

selection mechanisms etc.) will lead to different frequency-
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dependent population dynamics [13]. As such, EGT provides

a framework in which one can study the conditions that affect

the success of some strategies over others in the population

under evolutionary process.

There have been few studies that employed EGT to analyze

CEAs. For example, a simple EGT setting of the hawk-dove

game that involves interactions between two strategies has

been used to investigate the evolutionary process of CEAs

under various conditions - Fogel et al. [14] investigated the

impact of finite population, while the study in [5] investigated

the impact of selection mechanisms.

Standard EGT framework is based on several assumptions.

First, populations have infinitely many players (agents), each

of which has a finite set ofpure strategiesto choose from in

every round of the game. Second, every player interacts with

all the other players in the population (complete mixing). Each

player accumulates payoff depending on the outcome of the

games. Third, players reproduce in proportion to their cumu-

lative payoffs. Reproduction is asexual and without variation,

i.e., players generate clones as their offspring.

As in [5], we consider a simple EGT setting with a two-

player game. Each player has a finite set of pure strategies to

choose from. For brevity, we concentrate onsymmetric games

where the set of pure strategies is the same for every player.

When a player chooses strategyi while the opponent chooses

strategyj, the payoff (game outcome) for the first player is

denoted by5 gij .

For two pure strategiess1, s2 the possible payoffs for the

first player (row) playing against the opponent (column) can

be represented as a2 × 2 payoff matrix

s1 s2

s1 a b

s2 c d

(2)

where each entry gives the respective payoff for the chosen

pair of strategies. For example, the first player receives the

payoff b when it chooses strategys1 while its opponent

choosess2.

5Payoff for the second player is thengji.

As already mentioned, each player in the population chooses

only one of the two pure strategies. Assume that fractionp ∈

[0, 1] of players in the population chose to plays1. Then1−p

is the proportion of players in the population that playeds2.

The cumulative payoffsws1
andws2

for pure strategiess1 and

s2, respectively, are given by

ws1
= ap+ b(1 − p)

ws2
= cp+ d(1 − p). (3)

To ensure existence of a population state in which the cu-

mulative scores for both strategies are the same (ws1
= ws2

),

we constrain the payoff structure so thata < c andb > d [5].

Such ‘equilibrium’ state is know aspolymorphic equilibrium.

In our case for each allowed payoff setting there is a unique

polymorphic equilibrium

pEQ =
d− b

a− c+ d− b
. (4)

Interpreting the population as a mixed strategys (i.e. use

pure strategiess1 and s2 with probability p and 1 − p,

respectively), the statepEQ is a Nash equilibrium, whereby

the mixed strategys is its own best reply. If a player uses

s, the opponent obtains highest payoff when usings as well.

Hence, in Nash equilibrium neither of the two players has an

incentive to deviate unilaterally to use a different strategy.

An example of a game that satisfies the constraintsa < c,

b > d, is the classical game setting of thehawk-dove game

which involves interactions of two distinct behaviors (pure

strategies),hawkanddove, competing for gainsG upon win-

ning under the costsC of injury. Hawks are aggressive and two

hawks will fight until one retreats with an injury. Interactions

between hawks lead to the expected payoff(G−C)/2, given a

probability of1/2 for injury. Two doves, in contrast, will avoid

a fight and perform threatening postures until both retreats

without injury. In such a case, they share the gainG/2. Any

interaction between a hawk and a dove will lead to the dove

retreating immediately. The hawk will take the full gainG,

while the dove has zero gain, with no cost on injury incurred

to both parties. The payoff matrix reads:
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Hawk Dove

Hawk (G− C)/2 G

Dove 0 G/2

(5)

When the cost of injury is greater than the gain in winning

the game,G < C, the constraintsa < c, b > d are satisfied and

the game has a unique polymorphic equilibriumpEQ = G/C.

In EGT the population dynamics is described by therepli-

cator equationthat governs how the frequency/proportion of

strategies in the population changes in the course of evolution-

ary process. Replicator equation under a selection mechanism

based on the proportion of cumulative payoffs is given by

f(p) =
p · ws1

p · ws1
+ (1 − p) · ws2

,

wheref(p) is the frequency of strategys1 in the population

in the following generation (t+1), given that its frequency in

the current population (generationt) is p.

In addition to such (classical) fitness-proportional selection,

a variety of alternative selection mechanisms have been pro-

posed. In the following we briefly introduce different selection

mechanisms considered in this paper.

A. (µ, λ)-selection

The (µ, λ)-selection is usually associated with the selection

operator used in a class of EAs known asevolution strategies.

Each ofµ parents generatesk offspring, which results inλ =

kµ offspring. In the case of infinite populations, we are only

concerned with the parents-to-offspring ratioγ = µ/λ = 1/k.

The replicator equation has the form [5]:

f(p) =











































1 if p < pEQ andp ≥ γ,

p/γ if p < pEQ andp < γ,

1 + (p− 1)/γ if p > pEQ andp > 1 − γ,

0 if p > pEQ andp ≤ 1 − γ,

pEQ if p = pEQ.
(6)

Note that whenk = 1, we have a trivial case with replicator

function f being the identity function. For largerk we have

the following result for non-trivial equilibrium pointspEQ ∈

(0, 1):

Lemma 3:Consider the simple EGT setting of section III

and a two-player symmetric game with two pure strategies

and a polymorphic equilibriumpEQ ∈ (0, 1). The population

dynamics is driven by(µ, λ)-selection. Letκ = min{pEQ, 1−

pEQ}. Then,

1) if λ/µ = 2, for any sufficiently smallρ > 0, pEQ is a

(κ− ρ)-isolating point of discontinuity off ;

2) if λ/µ ≥ 3, pEQ is a κ-isolating point of discontinuity

of f .

Proof:

1) Let k = λ/µ = 2. Thenγ = 1 − γ = 1/2. We consider

three distinct cases for the value ofpEQ ∈ (0, 1) with

respect toγ = 1/2.

• pEQ < γ. In this case we have in the neighborhood

of pEQ:

f(p) =



















f−(p) = p/γ = 2p if p ∈ [0, pEQ),

f+(p) = 0 if p ∈ (pEQ, γ],

pEQ if p = pEQ.
(7)

From the left, limp→p
−

EQ

f−(p) = 2pEQ; from

the right, limp→p
+

EQ

f+(p) = 0. Hence, for any

sufficiently small ρ > 0, pEQ is a (pEQ − ρ)-

isolating point of discontinuity off .

• When pEQ > γ, we have in the neighborhood of

pEQ:

f(p) =































f−(p) = 1 if p ∈ [γ, pEQ),

f+(p) = 1 + p−1
γ

= 2p− 1 if p ∈ (pEQ, 1],

pEQ if p = pEQ.
(8)

Hence,limp→p
−

EQ

f−(p) = 1 with separation from

pEQ equal to (1 − pEQ) and limp→p
+

EQ

f+(p) =

1−2(1−pEQ) with the same separation frompEQ.

It follows that, for any sufficiently smallρ > 0, pEQ

is a (1 − pEQ − ρ)-isolating point of discontinuity

of f .

• pEQ = γ. Now we have in the neighborhood of
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pEQ:

f(p) =































f−(p) = p/γ = 2p if p ∈ [0, pEQ),

f+(p) = 1 + p−1
γ

= 2p− 1 if p ∈ (pEQ, 1],

pEQ if p = pEQ.
(9)

It follows that limp→p
−

EQ

f−(p) = 1 with sep-

aration from pEQ equal to pEQ = 1/2 and

limp→p
+

EQ

f+(p) = 0 with the same separation from

pEQ. Hence, for any sufficiently smallρ > 0, pEQ

is a (pEQ −ρ)-isolating point of discontinuity off .

2) The casek = λ/µ ≥ 3 is a bit more involved but again

can be dealt with easily on a case-by-case basis. The

interval (0, 1) of possible positions ofpEQ is now split

into three subintervals with0 < γ < 1 − γ < 1.

• pEQ < γ. In this case we have in the neighborhood

of pEQ:

f(p) =































f−(p) = p/γ

= kp if p ∈ [0, pEQ),

f+(p) = 0 if p ∈ (pEQ, 1 − γ],

pEQ if p = pEQ.
(10)

Now, limp→p
−

EQ

f−(p) = kpEQ with separation

from pEQ equal to(k− 1)pEQ. On the other hand,

limp→p
+

EQ

f+(p) = 0, which is separated frompEQ

by pEQ. Since k ≥ 3, we have thatpEQ is a

pEQ-isolating point of discontinuity off . The same

analysis holds for the casepEQ = γ.

• Whenγ < pEQ < 1 − γ, we have in the neighbor-

hood ofpEQ:

f(p) =



















f−(p) = 1 if p ∈ [γ, pEQ),

f+(p) = 0 if p ∈ (pEQ, 1 − γ],

pEQ if p = pEQ.
(11)

The separation oflimp→p
−

EQ

f−(p) = 1 and

limp→p
+

EQ

f+(p) = 0 from pEQ is (1 − pEQ) and

pEQ, respectively. Settingκ = min{pEQ, 1−pEQ},

we can claim thatpEQ is a κ-isolating point of

discontinuity off .

• pEQ = 1 − γ. In the neighborhood ofpEQ:

f(p) =































f−(p) = 1 if p ∈ [γ, pEQ),

f+(p) =

1 − k(1 − p) if p ∈ (pEQ, 1],

pEQ if p = pEQ.
(12)

The separation oflimp→p
−

EQ

f−(p) = 1 from pEQ

is 1 − pEQ = γ = 1/k. Note that the separation of

limp→p
+

EQ

f+(p) = 0 from pEQ is greater, namely

pEQ = 1−1/k. Hence,pEQ is a(1−pEQ)-isolating

point of discontinuity off . The same analysis holds

for the casepEQ = (1 − γ, 1).

B. Truncation Selection

In truncation selection individuals below some quality

threshold6 are not allowed to create offspring. Truncation is

often used inevolutionary programming[15]. The particular

form of truncation selection analyzed in [5] has the following

form: 1) The population is sorted according to the agents’

evaluation scores; 2) the worstγ-fraction of the population is

removed,γ ∈ (0, 1/2), and 3) the removed agents are replaced

with clones of individuals (no variation operators) in the best

γ-fraction of the population. The replicator equation has the

form [5]:

f(p) =



































































1 if p < pEQ andp ≥ 1 − γ,

p+ γ if p < pEQ andp ∈ [γ, 1 − γ),

2p if p < pEQ andp < γ,

p− γ if p > pEQ andp ∈ (γ, 1 − γ],

2p− 1 if p > pEQ andp > 1 − γ,

0 if p > pEQ andp ≤ γ,

pEQ if p = pEQ.
(13)

In the context of two-strategy games, the replicator equation

(13) (and hence our analysis here) is the same for the sequen-

tial tournament selection [5]. Discontinuity properties of the

replicator map (13) are described in the following lemma.

6The threshold can be determined by an absolute or relative quality

measurement.
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Lemma 4:Consider the simple EGT setting of section III

and a two-player symmetric game with two pure strategies

and a polymorphic equilibriumpEQ ∈ (0, 1). The population

dynamics is driven by the truncation selection with parameter

γ ∈ (0, 1/2). Let κ = min{pEQ, 1 − pEQ, γ}. Then, for any

sufficiently smallρ > 0, pEQ is a (κ − ρ)-isolating point of

discontinuity off .

Proof: We again proceed on a case-by-case basis, with

the interval(0, 1) of possible positions ofpEQ split into three

subintervals deliminated by0 < γ < 1 − γ < 1.

• pEQ < γ. In the neighborhood ofpEQ:

f(p) =



















f−(p) = 2p if p ∈ [0, pEQ),

f+(p) = 0 if p ∈ (pEQ, γ],

pEQ if p = pEQ.

(14)

We havelimp→p
−

EQ

f−(p) = 2pEQ with separation from

pEQ equal to pEQ. Moreover, limp→p
+

EQ

f+(p) = 0,

which is separated frompEQ by pEQ.

• pEQ = γ. In the neighborhood ofpEQ:

f(p) =



















f−(p) = 2p if p ∈ [0, pEQ),

f+(p) = p− γ if p ∈ (pEQ, 1 − γ],

pEQ if p = pEQ.
(15)

Now limp→p
−

EQ

f−(p) = 2pEQ and limp→p
+

EQ

f+(p) =

0.

• When γ < pEQ < 1 − γ, we have in the neighborhood

of pEQ:

f(p) =



















f−(p) = p+ γ if p ∈ [γ, pEQ),

f+(p) = p− γ if p ∈ (pEQ, 1 − γ],

pEQ if p = pEQ.
(16)

The separation of bothlimp→p
−

EQ

f−(p) = pEQ + γ and

limp→p
+

EQ

f+(p) = pEQ − γ from pEQ is γ.

• pEQ = 1 − γ. In the neighborhood ofpEQ:

f(p) =



















f−(p) = p+ γ if p ∈ [γ, pEQ),

f+(p) = 2p− 1 if p ∈ (pEQ, 1],

pEQ if p = pEQ.

(17)

We have limp→p
−

EQ

f−(p) = 1 with separation from

pEQ = 1 − γ equal toγ. Moreover,limp→p
+

EQ

f+(p) =

1 − 2γ, which is separated frompEQ by γ.

• pEQ > 1 − γ. In the neighborhood ofpEQ:

f(p) =



















f−(p) = 1 if p ∈ [1 − γ, pEQ),

f+(p) = 2p− 1 if p ∈ (pEQ, 1],

pEQ if p = pEQ.
(18)

The separation oflimp→p
−

EQ

f−(p) = 1 from pEQ is 1−

pEQ. The separation oflimp→p
+

EQ

f+(p) = 2pEQ − 1 =

pEQ − (1 − pEQ) from pEQ is again1 − pEQ.

C. Best-of-Group Tournament

The new population is created from the current one by

repeating the following process: First, randomly draw (with

replacement)ω individuals from the current population and

then allow the fittest member of this subset to parent one

offspring. In the best-of-group tournament selection pressure

increases with the group sizeω.

The replicator equation has the form [5]:

f(p) =



















1 − (1 − p)ω if p < pEQ,

pω if p > pEQ,

pEQ if p = pEQ.

(19)

Note that whenω = 1, we have a trivial case with replicator

function f being the identity function. For largerω we have

the following result for non-trivial equilibrium pointspEQ ∈

(0, 1):

Lemma 5:Consider the simple EGT setting of section III

and a two-player symmetric game with two pure strategies

and a polymorphic equilibriumpEQ ∈ (0, 1). The population

dynamics is driven by the best-of-group tournament selection

with group sizeω. Then,

1) if ω = 2, for any sufficiently smallρ > 0, pEQ is a

[pEQ(1 − pEQ) − ρ]-isolating point of discontinuity of

f ;

2) if ω ≥ 3, for any sufficiently smallρ > 0, pEQ is a

[κ(1− κω−1)− ρ]-isolating point of discontinuity off ,

whereκ = min{pEQ, 1 − pEQ}.
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Proof: The two continuous branches off , f−(p) = 1−

(1−p)ω andf+(p) = pω are separated atpEQ by f−(pEQ)−

pEQ = (1− pEQ)[1− (1− pEQ)ω−1] andpEQ − f+(pEQ) =

pEQ[1 − pω−1
EQ ], respectively.

1) Let ω = 2. Then

f−(pEQ) − pEQ = (1 − pEQ) [1 − (1 − pEQ)]

= pEQ [1 − pEQ]

= pEQ − f+(pEQ)

2) Let ω ≥ 3. We have

f−(pEQ) − pEQ = (1 − pEQ) · (20)

[1 − (1 − pEQ)ω−1]

pEQ − f+(pEQ) = pEQ [1 − pω−1
EQ ] (21)

Consider the difference between the two margins (21)

and (21),

g(p) = (f−(p) − p) − (p− f+(p))

= 1 − 2p+ pω − (1 − p)ω. (22)

Its second derivative reads

g′′(p) = ω(ω − 1) [pω−2 − (1 − p)ω−2]. (23)

Note thatg(1/2) = 0. Furthermore, forp ∈ (0, 1/2) we

havep < 1−p, and sopω−2 < (1−p)ω−2, meaning that

g′′(p) < 0. Sinceg is concave on(0, 1/2) and g(0) =

g(1/2) = 0, g is positive on(0, 1/2).

We next show that the graph ofg is symmetric around

the point (1/2, 0). Consider the transform̃p = 1 − p.

Then

g(p̃) = 1 − 2p̃+ p̃ω − (1 − p̃)ω

= 1 − 2(1 − p) + (1 − p)ω − (1 − (1 − p))ω

= −1 + 2p− pω + (1 − p)ω

= −g(p).

From the symmetry around(1/2, 0) we immediately

obtain that g is negative and convex on the inter-

val (1/2, 1). Hence, for non-trivial equilibriapEQ ∈

(0, 1/2), κ = pEQ = min{pEQ, 1− pEQ} and we have

f−(pEQ) − pEQ > pEQ − f+(pEQ) = κ [1 − κω−1].

Analogously, forpEQ ∈ (1/2, 1), we haveκ = 1 −

pEQ = min{pEQ, 1 − pEQ} and

pEQ − f+(pEQ) > f−(pEQ) − pEQ = κ [1 − κω−1].

D. Linear Ranking

In ranking selection, the population is first sorted according

to agents’ evaluation scores. The individual’s reproduction is

a linear or exponential function of its ordinal position (rank).

Ranking selection is one of the commonly used schemes in

genetic algorithms[16]. The particular form of linear ranking

analyzed in [5] has the higher-scoring strategy receiving arank

of 2 while the other strategy receiving a rank of 1.

The replicator equation for linear ranking is given by [5]:

f(p) =



















2p/(p+ 1), if p < pEQ,

p/(2 − p), if p > pEQ,

pEQ, if p = pEQ.

(24)

Discontinuity properties of the replicator map (24) can be

stated as:

Lemma 6:Consider the simple EGT setting of section III

and a two-player symmetric game with two pure strategies

and a polymorphic equilibriumpEQ ∈ (0, 1). The population

dynamics is driven by the linear ranking selection. Letκ =

min{pEQ, 1 − pEQ}. Then for any sufficiently smallρ > 0,

pEQ is a [ κ(1−κ)
1+(1−κ) − ρ]-isolating point of discontinuity off .

Proof: The two continuous branches off , f−(p) =

2p/(p+ 1) andf+(p) = p/(2 − p) are separated atpEQ by

f−(pEQ)− pEQ =
2pEQ

pEQ + 1
− pEQ =

pEQ(1 − pEQ)

1 + pEQ

(25)

and

pEQ −f+(pEQ) = pEQ −
pEQ

2 − pEQ

=
pEQ(1 − pEQ)

1 + (1 − pEQ)
. (26)

Consider the difference between the two margins,

g(p) = (f−(p) − p) − (p− f+(p)) (27)

=
p(1 − p)

1 + p
−

p(1 − p)

1 + (1 − p)
(28)

=
p(1 − p)(1 − 2p)

2 + p(1 − p)
, (29)
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with second derivative

g′′(p) = −4

[

1

(1 + p)3
−

1

(2 − p)3

]

.

Note thatg(0) = 0 and g(1/2) = 0. For p ∈ (0, 1/2) we

have1/(1+ p)3 > 1/(2− p)3, meaning thatg′′(p) < 0. Since

g is concave on(0, 1/2) andg(0) = g(1/2) = 0, g is positive

on (0, 1/2).

We next show that the graphg is symmetric around the

point (1/2, 0). Consider the transform̃p = 1 − p. Then

g(p̃) =
p̃(1 − p̃)(1 − 2p̃)

2 + p̃(1 − p̃)
(30)

=
(1 − p)(1 − (1 − p))(1 − 2(1 − p))

2 + (1 − p)(1 − (1 − p))
(31)

= −
p(1 − p)(1 − 2p)

2 + p(1 − p)
(32)

= −g(p) (33)

From the symmetry around(1/2, 0), it follows that g is

negative and convex on the interval(1/2, 1). Hence, forpEQ ∈

(0, 1/2), κ = pEQ = min{pEQ, 1 − pEQ} and we have

f−(pEQ) − pEQ > pEQ − f+(pEQ) =
κ(1 − κ)

1 + (1 − κ)
. (34)

Analogously, for pEQ ∈ (1/2, 1), κ = 1 − pEQ =

min{pEQ, 1 − pEQ} and we have

pEQ − f+(pEQ) > f−(pEQ) − pEQ =
κ(1 − κ)

1 + (1 − κ)
. (35)

IV. SHADOWING PROPERTY ANDREPLICATOR MAPPINGS

Recall, that we would like to use the shadowing lemma

framework for three purposes:

1) To investigate whether the simulated complex co-

evolutionary trajectories under the infinite population

assumption represent anything real.The computer arith-

metic operates with finite precision and can only yield

pseudo-trajectories that cannot bea-priori guaranteed

to represent any true trajectory of the given complex

system. If the co-evolutionary system has the shadowing

property then one can be assured that the observed

pseudo-trajectories are shadowed by true ones generated

by the underlying system.

2) To investigate whether constraining to the rational do-

main forp will not leave theoretical and empirical inves-

tigations on[0, 1] groundless.Transforming an irrational

p into a rational population ratio close top can be viewed

as a bounded noise with (arbitrarily) small range size.

Shadowing property would mean that possible complex

chaotic trajectories on[0, 1] would still be reflected in

complex trajectories in the rational domain.

3) To investigate whether the complex dynamical co-

evolutionary patterns under infinite populations indicate

complex dynamics in large finite population computer

simulations.For large population size, the effects of

finite population size on the strategy ratiosp can be

considered as bounded noise. Furthermore, the larger

the population, the smaller the range size of the noise.

In a system with shadowing property, finite population

pseudo-trajectories are shadowed by the complex trajec-

tories from the original infinite population model.

Unfortunately, all selection mechanisms considered in Sec-

tion III are discontinuous at equilibrium. Hence none of those

co-evolutionary dynamics possesses the shadowing property.

In particular, using Theorem 2 and Lemmas 3–6, we obtain

the following main results:

Theorem 7:Consider the simple EGT setting of Section III

and a two-player symmetric game with two pure strategies

and a polymorphic equilibriumpEQ ∈ (0, 1). The population

dynamics is driven by(µ, λ)-selection withλ/µ ≥ 2. Then,

ǫ-shadowing of the population dynamics is not possible for

0 < ǫ < min{pEQ, 1 − pEQ}.

Proof: For λ/µ ≥ 3, the result is a direct corollary of

theorem 2 and lemma 3.

For λ/µ = 2, choose any0 < ǫ < min{pEQ, 1 − pEQ}.

One can always pick a value ofρ > 0 such thatǫ < ψ =

min{pEQ, 1 − pEQ} − ρ. By lemma 3 we have thatpEQ

is a ψ-isolating point of discontinuity off and hence, by

theorem theorem 2,ψ-shadowing of the population dynamics
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is not possible. Sinceǫ < ψ, no ǫ-shadowing of the population

dynamics is possible either.

Theorem 8:Consider the simple EGT setting of Section III

and a two-player symmetric game with two pure strategies

and a polymorphic equilibriumpEQ ∈ (0, 1). The population

dynamics is driven by the truncation selection with parameter

γ ∈ (0, 1/2). Then,ǫ-shadowing of the population dynamics

is not possible for0 < ǫ < min{pEQ, 1 − pEQ, γ}.

Theorem 9:Consider the simple EGT setting of Section III

and a two-player symmetric game with two pure strategies

and a polymorphic equilibriumpEQ ∈ (0, 1). The population

dynamics is driven by the best-of-group tournament selection

with group sizeω. Then, ǫ-shadowing of the population

dynamics is not possible for0 < ǫ < κ(1 − κω−1), where

κ = min{pEQ, 1 − pEQ}.

Theorem 10:Consider the simple EGT setting of Section

III and a two-player symmetric game with two pure strategies

and a polymorphic equilibriumpEQ ∈ (0, 1). The population

dynamics is driven by the linear ranking selection. Then,ǫ-

shadowing of the population dynamics is not possible for0 <

ǫ < κ(1−κ)
1+(1−κ) , whereκ = min{pEQ, 1 − pEQ}.

A. A Hawk-Dove Game Example

As an example, consider a hawk-dove game with the cost

of injury twice the gain in winning,C = 2G, and a(µ, λ)

selection withλ = 2µ (each of µ parents generates two

offspring). The replicator equation (6) becomes:

f(p) =



















2p if p ∈ [0, 1/2),

1 + 2(p− 1) if p ∈ (1/2, 1],

1/2 if p = pEQ = 1/2.

(36)

The mapf acts as left-shift on binary representations of

p ∈ [0, 1/2) ∪ (1/2, 1). As such, it can generate a wide

variety of dynamical behaviors, dictated by the distribution

of digits in the binary expansion[p]2 of the initial condition

p. The possible dynamics include periodic orbits of arbitrary

periods, a-periodic and ‘chaotic’ orbits (arising from irrational

initial conditions). The difference between the well studied

map r(p) = 2p mod 1 in chaotic dynamics (e.g. [8]) and the

mapf(p) in (36) - the existence of the additional equilibrium

pEQ = 1/2 for f - is crucial. Sincer(p) is a smooth

expanding map on a smooth manifold (unit circle) [17], it

has the shadowing property. However, Theorem 7 shows that

this is not the case for the system (36).

However, on a reduced set of initial conditions, one can

argue that a ‘shadowing-like’ property holds at least for a

particular interpretation of the computer round-off error[18]:

If the computer can guarantee onlyM exact binary digits,

then iterative application off on 0.x1x2x3... will lead to the

pseudo-trajectoryO:

0.x1x2x3...xM−1xM , 0.x2x3...xM−1xMy1,

0.x3...xM−1xMy1y2, ... 0.y1y2...yM , 0.y2...yM+1, ...,

for someyj ∈ {0, 1}, j ≥ 1. Consider now the setE of all

pre-images underf of pEQ = 1/2,

E = {p ∈ [0, 1] | fn(p) = pEQ for somen ≥ 0}.

The real trajectory of (36) starting in0.x2x3...xM−1xMy1y2...

from the f -invariant setΩ = (0, 1) \ E will ǫ-shadow the

pseudo-trajectoryO with ǫ = 2−M+1.

The setE contains allp ∈ [0, 1] whose binary expansion[p]2

contains any finite word over the alphabet{0, 1} (including the

empty word), followed by digit 1, followed by the right-infinite

sequence of 0’s:

E = {p ∈ [0, 1] | [p]2 = .{0, 1}∗1000...}.

The setE is dense in[0, 1], since for anyp ∈ [0, 1] and

arbitrarily small ǫ > 0, there will be aq ∈ [0, 1], such that

|p−q| < ǫ and[q]2 has an infinite tail of 0’s. Analogously, it is

easy to show that the setΩ is dense in[0, 1] as well. However,

Ω is much larger thanE - in fact, while E is countable,

Ω is uncountable since it contains infinite expansion rational

numbers and all irrational numbers in[0, 1]. Underf , the set

Ω contains seeds for a wide variety of dynamical regimes,

including periodic and ‘chaotic’ orbits.
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V. D ISCUSSION ANDCONCLUSION

In their pioneering work [5], Ficici, Melnik, and Pollack

formalized co–evolution within the EGT framework and in-

vestigated the impact of various selection mechanisms on the

dynamical behavior arising from interactions in an infinite-

population of pure strategies. Based on simulation studieswith

computer generated replicator trajectories, it was arguedthat

simple two-strategy games and various types of replication

and selection pressure mechanisms can lead to co-evolutionary

dynamics exhibiting a wide variety of complex regimes. While

this argument is very interesting, it is rather loose and should

be made more rigorous. First, we have rigorously shown

that the simulation studies that formed the main basis for

arguments about complex co-evolutionary dynamics could be

misleading since complex systems without the shadowing

property cannot be faithfully simulated on finite precision

machines in this manner. Second, the replicator maps in

previous studies were constructed under the assumption of

infinite populations. When complex dynamics is considered,

great care must be taken in studying such replicator dynamics.

In infinite populations, only rational proportions of pure strate-

gists are possible. The fact that non-linear selection pressure

methods can produce irrational proportions cannot be ignored.

In evolutionary systems, the dynamics is usually rather trivial

and this is not an issue, but in co-evolution complex dynamics

can arise and an analysis is needed to resolve whether such

effects can have long lasting consequences. We have shown

in this paper that for a range of selection mechanisms this is

indeed the case and one has to be careful about such effects.

One can no longer simply consider a replicator equation

operating on[0, 1], because the proportions may not represent

any real infinite population and any approximation by however

close rational proportion may be deceiving.

In particular, we have used the framework of shadow-

ing lemma to address the question of relevance of infinite

population models for practical finite population regimes

when complex co-evolutionary dynamics occurs in infinite

populations. We have rigorously shown that lessons learned

from (often) easier to analyze infinite population models

cannot be transferred to finite (albeit possibly very large)

populations. We concentrated on a simple EGT setting of

two-player symmetric games with two pure strategies and

a polymorphic equilibrium. In this context we proved that

for (µ, λ), truncation, sequential tournament, best-of-group

tournament and linear ranking selections, the co-evolutionary

dynamics do not possess the shadowing property. Analyzing

other solution concepts, e.g. the intuitive best-scoring strategy

solution concept, is an interesting direction for future work. It

would also be interesting to extend the framework to include

finite-time shadowing, which could open the door for rigorous

analysis of complex trajectories over a long times.

Our main theoretical arguments critically rely on trajectories

ending up in the fixed point. One can argue that there can be

only “very few” of such trajectories in systems we study and so

“on average” nothing serious happens. We have two replies to

such an argument:(1) In a rigorous study, it is enough to find

one case where things break down to cast doubt on intuitive

beliefs about a studied phenomenon;(2) In Section IV.A we

actually show an example of a simple system where it is easy

to see that the set of initial conditions that can eventuallylead

to the fixed point is a dense set over[0, 1]. So the set of

trajectories that can end up in the fixed point is rather generic,

even though the dynamics is not contractive.

We believe that the techniques based on shadowing lemma

from the field of chaotic dynamics that we introduced here will

be of wider use in other similar studies of complex dynam-

ics and finite population effects in evolutionary computation

systems. When there is a suspicion that the dynamics can be

complex, our framework can provide a bridge between detailed

dynamical studies in analytically tractable infinite population

settings and the finite population computations performed in

practice. In general one would like to avoid ‘uncontrollable’

complex dynamics when running an evolutionary computation

system. Tractable infinite population models can provide use-

ful hints about the conditions under which such dynamical

regimes can occur and about possible forms they can take. It

is very important to establish(1) whether infinite population
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complex dynamic regimes have any relevance for practical

finite population computations and if so,(2) to what degree

the finite population dynamics approximates the infinite pop-

ulation one. The framework introduced in this paper provides

a novel approach for addressing these issues.
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