
TO APPEAR IN IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART B: CYBERNETICS, 1999. 1

Spatial Representation of Symbolic Sequences

through Iterative Function Systems

Peter Ti�no

Abstract| Je�rey proposed a graphic representation of

DNA sequences using Barnsley's iterative function systems.

In spite of further developments in this direction, the pro-

posed graphic representation of DNA sequences has been

lacking a rigorous connection between its spatial scaling

characteristics and the statistical characteristics of the DNA

sequences themselves. We 1) generalize Je�rey's graphic

representation to accommodate (possibly in�nite) sequences

over an arbitrary �nite number of symbols, 2) establish a di-

rect correspondence between the statistical characterization

of symbolic sequences via R�enyi entropy spectra and the

multifractal characteristics (R�enyi generalized dimensions)

of the sequences' spatial representations, 3) show that for

general symbolic dynamical systems, the multifractal f

H

-

spectra in the sequence space coincide with the f

H

-spectra

on spatial sequence representations.

Keywords| Multifractal theory, Iterative function sys-

tems, Chaos game representation, Entropy spectra.

I. Introduction

P

ERCEIVED order, disorder and recurrence are com-

mon features observed in complex symbolic sequences.

Such sequences can be found in �nance, or nature, or can

be produced by chaotic dynamical systems via symbolic

dynamics. This observation has lead researches to design

simple but informative sequence representations for quick

detection of subsequence topological and metric structures.

For example, Mayer-Kress et al. [1] proposed a system for

auditory representation of chaotic sequences, Berthelsen,

Glazier and Skolnik [2] converted DNA sequences into data-

driven pseudo-random walks in two- or four-dimensional

spaces. Movements in dimensions two and four are driven

by the base and dimer sequences, respectively. The au-

thors estimated the fractal dimension of the pseudoran-

dom walks for various DNA sequences and compared them

with the fractal dimensions of pseudorandom walks of arti-

�cial sequences whose base and dimer statistics matched

those of the DNA sequences. Compared with the arti-

�cial sequences, the estimated fractal dimensions of the

DNA-driven pseudorandom walks were signi�cantly lower

indicating an information content in DNA sequences not

explained by the base or dimer frequencies. For pointers

to other work in this direction see [2], [3].

In [4] Je�rey investigated a graphic representation of

DNA sequences using iterative function systems [5]. A
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DNA sequence is represented by points within a unit

square, where the four corners of the square correspond

to the four DNA bases. The �rst point, representing the

�rst base in the DNA sequence, is plotted half way between

the center of the square and the corner representing that

base. The second point is plotted half way between the

previous point and the corner representing the second base

etc... The result, the chaos game representation (CGR)

of the DNA sequence, is an image where sparse areas cor-

respond to rare subsequences and dense regions represent

frequent subsequences.

Je�rey [4] expressed a need to have a mathematical de-

scription of the CGR and concluded that in an intuitive

sense, the CGR represents statistical properties of DNA

sequences.

The same sentiment was expressed by Berthelsen,

Glazier and Skolnik [2]: while the CGR method provided

an interesting tool for visualizing subsequence structure

through geometric patterns, it lacks a mathematical char-

acterization in terms of their fractal dimension.

Oliver et al. [6] and Rom�an-Roldan et al. [7] used CGR

(under the name chaos sequence representation) as a ba-

sis for computation of information theory based features of

DNA strands such as subsequence entropic pro�les with re-

spect to block lengths and sequence non-randomness mea-

sures.

Basu et al. [8], Solovyev et al. [9], Fiser et al. [10]

and others (see also references in [10]) generalized CGR

to accommodate larger alphabets while remaining in low-

dimensional visualization spaces.

In spite of further developments in GCR-based methods

[11], [12], [6], [7], [13], the GCR methodology for graphic

representation of DNA sequences has been lacking a rig-

orous connection between its spatial scaling characteristics

and the statistical characteristics of the DNA sequences

themselves.

In this contribution, we rigorously analyze the properties

of geometric sequence representations introduced by Je�rey

[4] within the framework of multifractal theory [14].

After an intuitive explanation of the ideas behind Jef-

frey's CGR in section 2, in the subsequent section (section

3) we formally de�ne three types of geometric sequence rep-

resentations and show how they relate to each other. Sec-

tion 3 also brings a brief introduction to statistical quan-

tities on symbolic sequences and scaling characteristics of

multifractal measures. Formal properties of geometric rep-

resentations of symbolic sequences and symbolic dynamical

systems are then studied in sections 4 and 5 respectively.

In section 6, we mention related work predominantly done

in the image compression and dynamical systems' commu-
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nities. The conclusion sums up key results of the paper

and discusses possible applications of geometric sequence

representations in modeling complex symbolic sequences.

II. Preliminary examples

Iterated function system (IFS) used by Je�rey [4] to

construct chaos game representations (CGRs) of DNA se-

quences is a collection of four maps i = 1; 2; 3; 4,

i(x) =

1

2

(x+ t

i

) ; t

i

2 f0; 1g

2

; t

i

6= t

j

for i 6= j; (1)

operating on the unit square X = [0; 1]

2

.

We identify the DNA bases A,C,T and G with the four

maps 1,2,3 and 4 respectively. The chaos game represen-

tation CGR(S) of a sequence S = s

1

s

2

:::, s

j

2 f1; 2; 3; 4g

is obtained as follows:

1. Start in the middle of the unit square, x

0

= f

1

2

g

2

.

2. Plot the point x

n

= i(x

n�1

); n � 1, provided the n-th

base s

n

is i.

Each map i maps the unit square X into one of its four

quadrants. Each dimer ij 2 f1; 2; 3; 4g

2

corresponds to the

composition (j � i) of maps i, j, that maps X into one of

its 16 subquadrants, etc...

If a DNA sequence S were generated by a Bernoulli

source

1

with equal symbol probabilities, the set CGR(S)

would \uniformly" sample the unit square X. Natural

DNA sequences convey a genetic information and there-

fore it is reasonable to expect that some base subsequences

will be highly accentuated, while others may be completely

missing. Frequent subsequences with long common su�ces

form densely populated areas in the unit square. Miss-

ing subsequences manifest themselves through uninhabited

\white" regions in X.

As an example, we generated a long sequence S

1

of

20,000 symbols from a Bernoulli source with equal sym-

bol probabilities p

1

= p

2

= p

3

= p

4

=

1

4

. The represen-

tation CGR(S

1

) can be seen in �gure 1a. Then, we gen-

erated another sequence S

2

(also containing 20,000 sym-

bols) from a Bernoulli source with symbol probabilities

p

1

= p

2

= p

3

=

10

31

, p

4

=

1

31

. This time, subsequences

containing the symbol 4 are very rare, which is demon-

strated by white regions in CGR(S

2

) shown in �gure 1b.

Points in CGR(S

2

) approximate a \noisy" Sierpinski tri-

angle [5]. Chaos game representations of chaotic symbolic

sequences and sequences generated by stochastic automata

can be found in [15].

III. Formal definitions

Consider a �nite alphabet A = f1; 2; :::;Ag. The sets of

all �nite

2

and in�nite sequences over A are denoted by A

+

and A

!

respectively. The set of all sequences consisting of

a �nite, or an in�nite number of symbols from A is then

A

1

= A

+

[ A

!

. The set of all sequences over A with

exactly n symbols (i.e. of length n) is denoted by A

n

.

1

each symbol in S is generated with respect to a given distribution

on the alphabet f1;2; 3;4g, independently of all the other symbols in

S

2

excluding the empty word

For each sequence S = s

1

s

2

:::s

n

2 A

+

, S

R

denotes the

reversed sequence S

R

= s

n

s

n�1

:::s

1

. De�nition of the re-

verse operator can be extended to sets of sequences: for

any Q � A

+

, Q

R

= fS

R

j S 2 Qg.

Let S = s

1

s

2

::: 2 A

1

and i � j. By S

j

i

we denote the

string s

i

s

i+1

:::s

j

, with S

i

i

= s

i

.

A. Geometric representations of symbolic sequence struc-

ture

In this paper we study iterative function systems (IFSs)

[5] acting on the N -dimensional unit hypercube X =

[0; 1]

N

, where

3

N = dlog

2

Ae. To keep the notation simple,

we slightly abuse mathematical notation and, depending

on the context, regard the symbols 1; 2; :::; A, as integers,

or as maps on X. The maps i = 1; 2; :::; A, constituting the

IFS are a�ne contractions

i(x) = kx+ (1� k)t

i

; t

i

2 f0; 1g

N

; t

i

6= t

j

for i 6= j; (2)

with contraction coe�cient k 2 (0;

1

2

].

The attractor of the IFS (2) is the unique set K �

X, known as the Sierpinski sponge [16], for which K =

S

A

i=1

i(K) [5].

For a string u = u

1

u

2

:::u

n

2 A

n

and a point x 2 X, the

point

u(x) = u

n

(u

n�1

(:::(u

2

(u

1

(x))):::))

= (u

n

� u

n�1

� ::: � u

2

� u

1

)(x) (3)

is considered a geometrical representation of the string u

under the IFS (2). For a set Y � X, u(Y ) is then fu(x)j x 2

Y g.

From now on, the center f

1

2

g

N

of the hypercube X will

be denoted by x

�

. Given a sequence S = s

1

s

2

::: 2 A

1

,

its chaos game representation is formally de�ned as the

sequence of points

4

CGR

k

(S) =

�

S

i

1

(x

�

)

	

i�1

: (4)

The chaos game representation CGR
2

5

of a sequence with

20,000 symbols generated by a Bernoulli source with equal

symbol probabilities p

1

= p

2

= p

3

= p

4

=

1

4

can be seen in

�gure 2. It approximates the attractor of the IFS (2) with

contraction coe�cient k =

2

5

.

When k =

1

2

and A = f1; 2; 3; 4g, we recover the IFS

used by Je�rey and others [4], [6], [7] to construct the chaos

game representation of DNA sequences.

It will be more instructive �rst to work with a geomet-

ric representation of the n-block structure in symbolic se-

quences. Using the IFS (2), the chaos n-block represen-

tation CBR

n:k

(S) of a sequence S = s

1

s

2

::: 2 A

1

is the

sequence of points

CBR

n;k

(S) =

�

S

i+n�1

i

(x

�

)

	

i�1

: (5)

3

for x 2 <, dxe is the smallest integer y, such that y � x

4

the subscript k in CGR

k

(S) identi�es the contraction coe�cient

of the IFS used for the geometric sequence representation
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The reversed n-block structure in the sequence S is geo-

metrically interpreted via the reversed chaos n-block repre-

sentation

CBR

R

n;k

(S) =

n

�

S

i+n�1

i

�

R

(x

�

)

o

i�1

: (6)

The sequences CBR

n;k

(S) and CBR

R

n;k

(S) contain a

point for each n-block in S.

Let the distance between any two equally long sequences

fx

i

g

i�1

and fy

i

g

i�1

of points in <

N

be de�ned as

d

S

(fx

i

g; fy

i

g) = sup

i

d

E

(x

i

; y

i

);

where d

E

is the Euclidean distance. It is easy to see

that for large enough n, up to points associated with

the initial n-block, the n-block representations CBR

n;k

(S)

closely approximate the original chaos game representa-

tions CGR

k

(S).

Theorem 1: Consider a sequence S = s

1

s

2

::: 2 A

1

. De-

note by CGR

n;k

(S) the sequence CGR

k

(S) without the

�rst n� 1 points. Then,

d

S

(CBR

n;k

(S); CGR

n;k

(S)) � k

n

p

N:

Proof: First, note that if v 2 A

+

is a su�x of a string

u = rv, r; u 2 A

+

, then u(X) � v(X). To see this, recall

that compositions of contractions are themselves contrac-

tions and so r(X) � X. Therefore u(X) = v(r(X)) �

v(X).

The set v(X) is an N -dimensional hypercube of side

length k

jvj

, where jvj is the length of the string v. It follows

that

Diam(v(X)) = max

x;y2v(X)

fd

E

(x; y)g = k

jvj

p

N:

Now, for any position i � 1, the n-block

S

i+n�1

i

= s

i

s

i+1

:::s

i+n�1

at the position i is a su�x of the initial (i + n� 1)-block

S

i+n�1

1

= s

1

s

2

:::s

i+n�1

:

Hence, S

i+n�1

1

(X) � S

i+n�1

i

(X), and

Diam(S

i+n�1

i

(X)) = k

n

p

N:

Consequently,

d

S

(CBR

n;k

(S); CGR

n;k

(S)) � max

w2A

n

fDiam(w(X))g

= k

n

p

N: (7)

B. Statistics on symbolic sequences

Let S = s

1

s

2

::: 2 A

1

be a sequence generated by a

stationary information source [17]. Denote the (empirical)

probability of �nding an n-block w 2 A

n

in S by P

n

(w).

A string w 2 A

n

is said to be an allowed n-block in the

sequence S, if P

n

(w) > 0. The set of all allowed n-blocks

in S is denoted by [S]

n

.

A measure of n-block uncertainty in S is given by the

block entropy

H

n

(S) = �

X

w2[S]

n

P

n

(w) logP

n

(w):

If information is measured in bits, then log � log

2

. The

limit of the average uncertainty per symbol h

n

(S) =

H

n

(S)=n is the entropy rate h(S) = lim

n!1

h

n

(S). The

entropy rate quanti�es the predictability of an added sym-

bol (independent of block length).

The block entropies H

n

and entropy rates h

n

are special

cases of R�enyi entropies and entropy rates [18]. The �-

order R�enyi entropy of the n-block distribution (� 2 <)

H

�;n

(S) =

1

1� �

log

X

w2[S]

n

P

�

n

(w);

and the �-order R�enyi entropy rate

h

�;n

(S) =

H

�;n

(S)

n

(8)

reduce to the block entropy H

n

(S) and entropy rate h

n

(S)

when � = 1 [19]. The formal parameter � can be thought

of as the inverse temperature in the statistical mechanics

of spin systems [20]. In the in�nite temperature regime,

� = 0, the R�enyi entropy rate h

0;n

(S) is just a logarithm

of the number of allowed n-blocks, divided by n. The limit

h

(0)

(S) = lim

n!1

h

0;n

(S) gives the asymptotic exponen-

tial growth rate of the number of allowed n-blocks, as the

block length increases.

The entropy rates h(S) = h

(1)

(S) = lim

n!1

h

1;n

(S)

and h

(0)

(S) are also known as the metric and topological

entropies respectively.

Varying the parameter � amounts to scanning the orig-

inal n-block distribution P

n

: the most probable and the

least probable n-blocks become dominant in the positive

zero (� = 1) and the negative zero (� = �1) tempera-

ture regimes respectively. Varying � from 0 to 1 amounts

to a shift from all allowed n-blocks to the most probable

ones by accentuating still more and more probable subse-

quences. Varying � from 0 to �1 accentuates less and less

probable n-blocks with the extreme of the least probable

ones.

C. Scaling behavior on multifractals

Loosely speaking, a multifractal is a fractal set support-

ing a probability measure [21]. The degree of fragmenta-

tion of the fractal support M is usually quanti�ed through

its fractal dimension D(M ) [5]. Denote by N (`) the mini-

mal number of hyperboxes of side length ` needed to cover
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M . The fractal (box-counting) dimensionD(M ) relates the

side length ` with N (`) via the scaling law N (`) � `

�D(M)

.

For 0 < k �

1

2

, the n-th order approximation D

n;k

(M )

of the fractal dimensionD(M ) is given by the box-counting

technique with boxes of side ` = k

n

:

N (k

n

) = (k

n

)

�D

n;k

(M)

:

Just as the R�enyi entropy spectra describe (non-

homogeneous) statistics on symbolic sequences, general-

ized R�enyi dimensions D

�

capture multifractal probabilis-

tic measures � [22]. Generalized dimensions D

�

(M ) of an

object M describe a measure � on M through the scaling

law

X

B2B

`

; �(B)>0

�

�

(B) � `

(��1)D

�

(M)

; (9)

where B

`

is a minimal set of hyperboxes with sides of length

` disjointly

5

covering M .

In particular, for 0 < k �

1

2

, the n-th order approxima-

tion D

�;n;k

(M ) of D

�

(M ) is given by

X

B2B

`

; �(B)>0

�

�

(B) = `

(��1)D

�;n;k

(M)

; (10)

where ` = k

n

.

The in�nite temperature scaling exponent D

0

(M ) is

equal to the box-counting fractal dimension D(M ) of M .

Dimensions D

1

and D

2

are respectively known as the in-

formation and correlation dimensions [21]. Of special im-

portance are the limit dimensions D

1

and D

�1

describ-

ing the scaling behavior of regions where the probability is

most concentrated and rare�ed, respectively.

IV. Chaos representations of single sequences

Intuitively, for any k 2 (0;

1

2

], the degree of fragmenta-

tion of the chaos n-block representation CBR

n;k

(S) of a

sequence S is closely related to the growth rate of allowed

n-blocks in S, i.e. to the topological entropy h

0

(S) of S

(see section III-B).

If S is a periodic sequence of period r, then CBR

n;k

(S)

will have precisely r distinct points for all n � r. Hence,

for large block lengths n, the n-th order approximation

D

n;k

(CBR

n;k

(S)) of the fractal dimension of CBR

n;k

(S)

tends to zero. On the other hand, the number of points in

the chaos n-block representation of a \chaotic" sequence

S with positive topological entropy increases with increas-

ing n. As the block length n grows, the fractal dimen-

sion approximationD

n;k

(CBR

n;k

(S)) does not decrease to

zero. Actually, as we will show, it approaches the (properly

scaled) topological entropy of the sequence S.

Let the measures �

n

and �

n

on X = [0; 1]

N

de-

scribe the relative frequencies of points from the sequences

CBR

n;k

(S) and CBR

R

n;k

(S), respectively, on the Lebesgue

subsets of X. The next theorem establishes the relation-

ship between the R�enyi entropy spectra of a sequence S

and the generalized dimension spectra of its chaos block

representations.

5

at most up to Lebesgue measure zero borders

Theorem 2: For any sequence S 2 A

1

, and any n =

1; 2; :::, the n-th order approximations of the generalized

dimensions of its n-block representations are equal (up to

a scaling constant log k

�1

) to the sequence n-block R�enyi

entropy rate estimates:

D

�;n;k

(CBR

n;k

(S)) = D

�;n;k

(CBR

R

n;k

(S)) =

h

�;n

(S)

log

1

k

:

In particular, for any S 2 A

!

,

lim

n!1

D

�;n;k

(CBR

n;k

(S)) = lim

n!1

D

�;n;k

(CBR

R

n;k

(S))

=

h

(�)

(S)

log

1

k

;

provided the limits exist.

Proof: There is a one-to-one correspondence between

the allowed n-blocks w 2 [S]

n

and the boxes w(X) of side

length ` = k

n

.

From (10)

X

w2[S]

n

�

�

n

(w(X)) = `

(��1)D

�;n;k

(CBR

n;k

(S))

;

and so

log

X

w2[S]

n

�

�

n

(w(X)) = n(1� �)D

�;n;k

(CBR

n;k

(S)) log k

�1

which means that

D

�;n;k

(CBR

n;k

(S)) =

1

n(1� �) log k

�1

log

X

w2[S]

n

�

�

n

(w(X)) =

=

1

n(1� �) log k

�1

log

X

w2[S]

n

P

�

n

(w) =

h

�;n

(S)

log

1

k

:

The entropies introduced in section III-B do not contain

any notion of causality, or time location. Since

X

w2[S]

n

�

�

n

(w(X)) =

X

w2[S]

n

P

�

n

(w)

=

X

w2[S]

R

n

P

�

n

(w

R

) =

X

w2[S]

R

n

�

�

n

(w

R

(X));

where [S]

R

n

is the set of all allowed reversed n-blocks in the

sequence S, the generalized dimensions for the two n-block

representations agree, i.e.

D

�;n;k

(CBR

n;k

(S)) = D

�;n;k

(CBR

R

n;k

(S)):

Note that, with the exception of sequences S = ws

!

,

w 2 A

+

, s 2 A, the limit n-block representations

lim

n!1

CBR

n;k

(S) do not exist. However, the dimen-

sion estimates D

�;n;k

(CBR

n;k

(S)) may still converge. On

the other hand, the reversed limit block representations

lim

n!1

CBR

R

n;k

(S) do exist for all S 2 A

!

.
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Theorem 1 and arguments in its proof tell us that the

chaos game representation CGR

k;n

(S) (without the points

corresponding to the �rst n-block) of a sequence S 2 A

1

creates the same relative frequency of points on boxes

w(X), w 2 A

n

, of side length k

n

as does the chaos n-

block representation CBR

n;k

(S). Theorems 1 and 2 imply

the following corollary.

Corollary 1: For any sequence S 2 A

1

, and any n =

1; 2; :::, the n-th order approximations of the generalized

dimensions of its chaos game representation are related to

the sequence n-block R�enyi entropy rate estimates through

D

�;n;k

(CGR

n;k

(S)) =

h

�;n

(S)

log

1

k

:

Furthermore, for each S 2 A

!

,

D

�;n;k

(CGR

k

(S)) =

h

�;n

(S)

log

1

k

:

Proof: The �rst statement is an immediate corollary of

theorems 1 and 2. To justify the second statement, write

the sequence S 2 A

!

as S = wS

0

, where w 2 A

n

and S

0

2

A

!

. Since n is �nite, the empirical n-block probabilities

P

n

(w), w 2 A

n

, are the same for both sequences S and S

0

.

Hence, for in�nite sequences S 2 A

!

, when k =

1

2

, the

generalized dimension estimates of geometric chaos game

representations exactly equal the corresponding sequence

R�enyi entropy rate estimates. In particular, given an in�-

nite sequence S 2 A

!

, as n grows, the box-counting fractal

dimension and the information dimension estimates D

0;n;

1

2

and D

1;n;

1

2

of the original Je�rey chaos game representa-

tion [4], [6], [7] tend to the sequence topological and metric

entropies respectively.

Besides the generalized dimensions D

�

, a coarse grained

dimension spectrum f

G

, also known as the large deviation

spectrum, is widely used to characterize multifractal mea-

sures [23]. The coarse grained spectrum is related to the

generalized dimension spectrum D

�

through

T

�

= f

�

G

(�) = inf

�2<

(�� � f

G

(�));

where T

�

= (�� 1)D

�

. Stated di�erently, T

�

is the Legen-

dre transform of f

G

[21].

Write T

�;n;k

= (� � 1)D

�;n;k

. Then, according to theo-

rem 2, as the block length grows, the n-th order approxima-

tions T

�;n;k

(CBR

n;k

(S)) and T

�;n;k

(CBR

R

n;k

(S)) approach

the scaled R�enyi entropy

1� �

logk

h

(�)

(S): (11)

It follows that the Legendre transform of the large de-

viation spectrum f

G

of the reversed limit block represen-

tation lim

n!1

CBR

R

n;k

(S) coincides with the scaled R�enyi

entropy rates (11).

V. Chaos block representations of symbolic

dynamical systems

In the previous section we analysed geometric and mea-

sure scaling properties of the chaos sequence/block repre-

sentations of a given (possibly in�nite) symbolic sequence.

In this section we investigate properties of the chaos block

representations in the limit of in�nite block lengths, in the

context of general symbolic dynamical systems.

The set of in�nite sequences S = s

1

s

2

::: 2 A

!

over the

alphabet A = f1; 2; :::; Ag, endowed with a metric

6

d

�

(S; S

0

) =

1

X

i=1

js

i

� s

;

i

j

�

i

; � > 2

forms a metric space (A

!

; d

�

).

Each sequence S 2 A

!

is coded by a point

�(S) = lim

n!1

(S

n

1

)

R

(x

�

) (12)

on the attractor K of the iterative function system (2).

Let � : A

!

!A

!

be a shift map given by �(s

1

s

2

s

3

:::) =

s

2

s

3

:::. Consider a shift dynamical system on a compact

7

and shift-invariant subset Q � A

!

. Let � be a measure

supported on Q and preserved by �.

Even in the very simple case of the full shift Q = A

!

with a measure � on (A

!

; d

�

) de�ned by a Bernoulli source

with unequal symbol probabilities, the distribution of se-

quences S in (A

!

; d

�

), as well as the distribution of points

�(S) on

8

(K; d

E

), are singular [23]. In this case, one cannot

describe the distributions by means of densities. Multifrac-

tal analysis proves useful in characterizing the complicated

geometrical properties of the measure � on (A

!

; d

�

) and its

pushed forward (via the map �) counterpart � on (K; d

E

).

The basic idea is to classify the singularities of the mea-

sure � by \strength". The strength, also known as the

H�older exponent, is measured as a singularity exponent

�(S) = lim

B!fSg

log � (B)

logDiam(B)

;

where B ! fSg means that B � A

!

is a ball containing

the sequence S and that its diameter

Diam(B) = sup

U;V2B

fd

�

(U; V )g

tends to zero.

Usually, points of equal strength lie on interwoven fractal

sets

K

�

= fS 2 A

!

j �(S) = �g :

The geometry of the singular distribution � can then be

characterized by giving the \size" of the sets K

�

, more

precisely their Hausdor� dimension dim

H

(K

�

) [24],

f

H

(�) = dim

H

(K

�

): (13)

6

Usually, the metric d

�

is de�ned for � > 1. In this paper we

con�ne ourselves to the family of metrics d

�

; � > 2.

7

with respect to the topology induced by d

�

8

recall that d

E

denotes the Euclidean metric
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In the limit of in�nite block lengths, the reversed chaos

block representation of the set Q becomes

9

lim

n!1

CBR

R

n;k

(Q) = f�(�

i

(S))j S 2 Q; i = 0; 1; 2; :::g

and so it is natural to connect the multifractal analysis

of the invariant measure � of the shift dynamical sys-

tem (Q; �) on the metric space (A

!

; d

�

) with the pushed

forward (via the map �) measure � on the metric space

(K; d

E

). To this end, we shall prove the metric equivalence

of the two metric spaces (A

!

; d

�

) and (�(A

!

); d

E

) that cor-

respond to each other through the coding map �. Under

such metric equivalence, H�older exponents �(S) of the mea-

sure � coincide with the H�older exponents �(�(S)) of the

pushed forward measure �. Since the Hausdor� dimension

is a metric equivalence invariant [24], we get that the mul-

tifractal spectra f

H

(�) for measures � and � are the same.

In other words, in the limit of in�nite block lengths, the

multifractal f

H

-spectrum in the sequence space (A

!

; d

�

) is

the same as the f

H

-spectrum in the space (�(A

!

); d

E

) of

reversed chaos block representations.

A. Metric equivalence between the spaces (A

!

; d

�

) and

(�(A

!

); d

E

)

The two metrics d

�

and

~

d

�

on A

!

are equivalent if there

exist constants 0 < c

1

< c

2

< 1, such that for all S; S

0

2

A

!

,

c

1

~

d

�

(S; S

0

) � d

�

(S; S

0

) � c

2

~

d

�

(S; S

0

):

The two metric spaces (A

!

; d

�

) and (�(A

!

); d

E

) are equiv-

alent, if there is a bijective map h : A

!

! �(A

!

), such that

the induced metric

~

d

�

~

d

�

(S; S

0

) = d

E

(h(S); h(S

0

))

is equivalent to the metric d

�

.

Theorem 3: The metric spaces (A

!

; d

�

) and (�(A

!

); d

E

)

are equivalent if and only if � =

1

k

, k 2 (0;

1

2

).

Proof: Sequences S 2 A

!

are coded as points on

�(A

1

) � K via the map � (eq. (12)). The map � is

one-to-one. We will show that

8S; S

0

2 A

!

; 9 0 < c

1

< c

2

<1 such that

c

1

d

E

(�(S); �(S

0

)) � d

�

(S; S

0

) � c

2

d

E

(�(S); �(S

0

)): (14)

Suppose S and S

0

have the longest common pre�x of

length L, i.e. S = ws

1

S

1

, S

0

= ws

2

S

2

, w 2 A

L

, S

1

; S

2

2

A

!

and s

1

; s

2

2 A are di�erent symbols.

First, we shall take care of the second part of the inequal-

ity (14) by concentrating on sequences S; S

0

with maximal

distance d

�

(S; S

0

) in (A

!

; d

�

), but minimal code distance

d

E

(�(S); �(S

0

)) in (K; d

E

).

Since the longest common su�x of S; S

0

has length L,

the distance d

�

(S; S

0

) can be upper bounded by

d

�

(S; S

0

) �

1

X

i=L+1

A � 1

�

i

=

1

�

L

A � 1

� � 1

: (15)

9

�

0

(S) = S, �

n

(S) = �(�

n�1

(S)); n = 1;2; :::

The minimal distance d

E

(S; S

0

) can be bounded from

bellow by

d

E

(�(S); �(S

0

)) � k

L

(1 � 2k); (16)

because the two sequences S; S

0

di�er in the (L+1)-st sym-

bol and so the points �(S), �(S

0

) lie in distinct subcubes

(ws

1

)

R

(X), (ws

2

)

R

(X) of the cube w

R

(X) with side length

k

L

.

From (14), (15) and (16), we get for the constant c

2

1

�

L

A� 1

� � 1

� c

2

k

L

(1 � 2k);

which means (for k 2 (0;

1

2

))

c

2

�

1

(�k)

L

A� 1

� � 1

1

1� 2k

: (17)

We now take a closer look at the �rst part of the inequal-

ity (14).

The distance d

�

(S; S

0

) is minimal when the sequences

S; S

0

di�er by a minimum amount just in their (L + 1)-st

symbols. In this case

d

�

(S; S

0

) =

1

�

L+1

: (18)

The maximal distance between the codes �(S); �(S

0

) of

any two in�nite sequences S; S

0

having the longest com-

mon pre�x w of length L can be bounded from above by

10

Diam(w(X)) (see eq. (7))

d

E

(�(S); �(S

0

)) � k

L

p

N; (19)

and so, from (14), (18) and (19),

c

1

k

L

p

N �

1

�

L+1

;

which implies

c

1

�

1

(�k)

L

1

�

p

N

: (20)

The inequalities (17) and (20) should hold for all pre-

�x lengths L = 0; 1; 2; ::: and c

1

; c

2

are bounded positive

constants. This is possible only when � =

1

k

.

Theorem 3 is an extension of the known metric equiv-

alence between the sequence metric space (f0; 1; 2; :::;A�

1g

!

; d

A

) and the (A + 1)-ary Cantor set K in ([0; 1]; d

E

).

The set K consists of all points whose (A+1)-ary represen-

tation does not contain the digit A (see for example [5]).

VI. Related work

The ideas behind Je�rey's chaos sequence representa-

tion of symbolic sequences were independently studied in

the image compression community. Quadtree [5] is an ad-

dressing scheme used in computer science for addressing

small squares in the unit square X (representing the com-

puter display). The square is broken into four quadrants

10

recall that N = dlog

2

Ae
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i = 0; 1; 2; 3. Points in the quadrant i have addresses be-

ginning with i. Each quadrant i is split into four sub-

quadrants ij; j = 0; 1; 2; 3. Points in the subquadrant ij

have addresses beginning with ij, etc... Using our notation,

points whose addresses start with v 2 f0; 1; 2; 3g

n

lie in the

square v

R

(X), where the maps 0; 1; 2 and 3 are de�ned in

(1). So the quadtree scheme is equivalent to our reversed

n-block representations of symbolic sequences over the al-

phabet f0; 1; 2; 3g, with contraction ratio k =

1

2

. Staiger

[25] showed that the Hausdor� dimension of pictures ad-

dressed by sequences obeying a given regular expression is

just a logarithm of the maximum modulus of the connec-

tion matrix of the underlying �nite automaton (which is in

fact the topological entropy of the set of sequences speci�ed

by the underlying automaton).

Culik II and Dube [26], [27] investigated several meth-

ods for fractal image description (compression) based on

iterative function systems driven by a prescribed set L of

symbolic sequences. Typically, the set L was taken to be a

regular language.

Recently, there has been an extensive research activity

in fractal and multifractal analysis of strange sets arising

in chaotic dynamical systems. The strange sets are mod-

elled using Moran-like constructions [14], [28]. Brie
y, the

Moran-like geometric constructions iteratively construct

limit sets using a collection of basic sets that may have

a very complicated geometry. The basic sets have sym-

bolic addresses and are increasingly re�ned (with increas-

ing address length) according to a given symbolic dynami-

cal system. As the construction proceeds, the diameter of

the basic sets diminishes to zero. In the limit of in�nite

block lengths, our reversed chaos block representations of

symbolic dynamical systems are special cases of Moran-

like geometric constructions. Actually, they correspond to

Moran constructions [29] driven by general symbolic dy-

namical systems.

The setting of Moran-like geometric constructions is

much more general than our setting of chaos block repre-

sentations and the multifractal analysis of Moran-like con-

structions is primarily concerned with validity of the mul-

tifractal formalism [30] (i.e. the

T

-shape of the f

H

-spectra

for dimensions, di�erentiability of the spectra, Legendre re-

lations between the multifractal quantities, etc..., see [31]).

An important result of Pesin and Weiss [28] states that

the Hausdor� and box-counting dimensions of the limit sets

of Moran-like constructions coincide. Consequently, for ge-

ometric representations considered in this paper, the n-th

order dimension approximations D

0;n;k

tend to the repre-

sentations' both box-counting and Hausdor� dimensions.

VII. Conclusion

We investigated how the scaling properties of the chaos

game sequence representations proposed by Je�rey [4] cor-

respond to the statistical properties of the sequences they

represent. Although closely related to the original Je�rey's

approach, our investigation was performed in a more gen-

eral setting:

1. We allowed alphabets with an arbitrary �nite number

of symbols A � 2.

2. Besides the chaos game representation, spatial repre-

sentations of sequence n-block structure were studied and

shown to be closely related to the original chaos game rep-

resentation.

3. Contraction ratios k other than

1

2

were allowed (k 2

(0;

1

2

]).

4. We studied geometric representations of single se-

quences, as well as general symbolic dynamical systems.

We have shown that

1. the generalized dimension estimates of the geometric se-

quence representations directly correspond to the sequence

R�enyi entropy rates. In particular, by considering �ner and

�ner scales, the box-counting fractal dimension and the in-

formation dimension estimates of the geometric sequence

representations tend to the (scaled) sequence topological

and metric entropies respectively.

2. In the limit of in�nite block lengths

� the Legendre transform of the large deviation spectra

f

G

of the reversed chaos block representations is equal to

the (scaled) spectrum of sequence R�enyi entropy rates

� the multifractal f

H

-spectrum for dimensions in the se-

quence space (A

!

; d

�

) coincides with the f

H

-spectrum of

the geometric reversed chaos block representation, pro-

vided � is the inverse of the geometric representations' con-

traction coe�cient k.

For alphabets A of up to eight symbols, theorem 2

and corollary 1 suggest using the geometric representations

studied in this paper as illustrative, visual codings of the

n-block statistical structures in sequences over A. For each

n-block w 2 A

n

, the cube w(X) is colored according to its

probabilityP

n

(w). This approach was taken in [15] to mon-

itor the training process of recurrent neural networks and

stochastic machines on chaotic symbolic sequences. At cer-

tain stages of the training process the modelsM were used

to generate sequences M (S) of length equal to the length of

the training sequence S. Then, the n-block representations

of the sequences S and M (S) were compared.

The geometric representations of symbolic sequences S

can also be used to construct context sensitive predic-

tive models similar in spirit to variable memory length

Markov models [32], [33]. The history of the input stream

S is translated into clusters in the chaos representations

CGR

k

(S) and CBR

n;k

(S). Points lying in a close neigh-

borhood code histories with a long common su�x (e.g.

histories that are likely to produce similar continuations),

whereas histories with di�erent su�ces (and potentially dif-

ferent continuations) are mapped to points lying far from

each other. We then apply a vector quantizer to the se-

quence representations and interpret codebook vectors as

prediction contexts. Dense areas correspond to contexts

with common su�ces and are given more attention by the

vector quantizer. Consequently, more information process-

ing states of the predictive model are devoted to these po-

tentially \problematic" contexts. This directly corresponds

to the idea of variable length Markov models, where the

length of the past history considered in order to predict
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the future is not �xed, but context dependent.

The results in modeling long, complex symbolic se-

quences are very promising [34]. In comparison with the

traditional variable length Markov models, the context sen-

sitive prediction models based on chaos sequence represen-

tations are cheaper to construct and have a comparable or

better modeling performance

11

.
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