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Abstract. Given two scaled, phase shifted and irregularly sampled noisy
realisations of the same process, we attempt to recover the phase shift
in this contribution. We suggest a kernel-based method that directly
models the underlying process via a linear combination of Gaussian ker-
nels. We apply our method to estimate the phase shift between temporal
variations, in the brightness of multiple images of the same distant grav-
itationally lensed quasar, from irregular but simultaneous observations
of all images. In a set of controlled experiments, our method outperforms
other state-of-art statistical methods used in astrophysics, in particular
in the presence of realistic gaps and Gaussian noise in the data. We apply
the method to actual observations (at several optical frequencies) of the
doubly imaged quasar Q0957+561. Our estimates at various frequencies
are more consistent than those of the currently used methods.
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1 Introduction

According to the General theory of Relativity, a ray of light (or any other form
of electromagnetic radiation, e.g. radio or x-rays) travels along a geodesic, which
could be locally curved due to the gravitational effect of clumps of matter like
stars or galaxies. This is known as Gravitational lensing [1] and gives rise to
interesting cosmic illusions like magnified and seriously distorted images of dis-
tant sources, sometimes splitting into multiple images (e.g. Fig. 1), caused by
intervening matter along the line of sight. Since the distortion of the images de-
pends on the distribution of matter in the lensing object, this is the most direct
method of measuring matter (which is often dark) in the Universe [2].

The quasar Q0957+561, an ultra-bright galaxy with a super massive central
black hole (see Fig. 1), was the first lensed source to be discovered and it is the
most studied so far. The source is 3.2 × 1010 light-years away from us, being
lensed by a galaxy (visible in Fig. 1), along the line of sight, only 0.6 × 1010

light-years away. The effect of the lens is to create two distinct images of the



same source. The brightness of quasars varies on the time scales of days- and this
variation shows up at different times in the two images since the path of light
travel is different for them. Since such a time delay (phase shift) can provide a
rare direct measure of the distances involved, this quantity is of great importance
in astronomy, and thus it is not surprising that many attempts have been made
to estimate it, e.g. see [3–6].

The observations can be made by both radio and optical astronomers, since
theory predicts that the time delay is independent of the frequency of obser-
vation. For our purposes, the data are available as two unevenly sampled time
series of fluxes (or logarithm thereof) of the two images. The observations are
made at irregular intervals due to weather conditions, equipment availability,
object visibility, among other practical considerations.

Elsewhere, we have empirically shown, using artificial irregularly sampled
time series with noise and gaps (typical of radio observations), that a kernel-
based approach to measure the time delay between two such time series outper-
forms typical statistical methods used by astronomers [7]. In this contribution,
we extend, improve and test this approach to analyse actual optical observations
(and artificial data representing such data), which shows high variability com-
pared with radio observations. We compare results with the dispersion spectra
method [3, 4], which is the most reliable of methods used by astronomers, and
thus very widely used [8].

The remainder of this paper is organised as follows: §2 describes the optical
data, and §3 the methods. Results of our method are compared to those from
the dispersion spectra method in §4, and in §5 we show results from our analysis
of optical-like artificial data, followed by comments and conclusions.

2 Astronomical Observations

In this work, we analyse the brightness of the two images of quasar Q0957+561
(Fig. 1) as a function of time, to find the phase shift between the time series.
The data sets analysed here are summarised in Table 1. Optical astronomers
measure the brightness of a source using imaging devices, with filters to restrict
the range of wavelength/frequency of light observed. The flux f of light from a
source is expressed in logarithmic units known as magnitudes (mag), defined as
mag = −2.5 log10 f + constant. The errors on mag mainly measurement errors,
assumed to be zero-mean Gaussian. The green (g) and red (r) bands repre-
sent measurements obtained with filters in the wavelength range 400–550 nm
and 550–700 nm, respectively. We use the data sets DS1 and DS2 [5], obtained
through a monitoring program at the Apache Point Observatory, New Mexico,
USA, and DS3, from images taken at Fred Lawrence Whipple Observatory, Mt.
Hopkins, Arizona, USA. [6]. The results of this analysis are presented in §4.
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Fig. 1. Quasar Q0957+561. (a) Image taken by the Hubble Space telescope
(http://www.cfa.harvard.edu/castles). The two point images are of the same distant
quasar, 32 billion light-years away, multiply-imaged due to the gravitational effect of
the “lensing” galaxy, seen as the extended object, which is along the line of sight, 6
billion light-years away from us. (b) The two time series represent the brightness of
the two images (in logarithmic units (mag), such that brighter means lower values; see
text) as a function time (the abscissa is measured in days). Image A is shifted up by
0.2 mag for visualisation purposes. This is data set DS3 with measurement error bars
(std. deviations), see §2 and Table 1 for details.

3 Methods for time delay estimation

We model a pair of time series, obtained by monitoring the brightness (in mag
units) of image A and image B, as follows

xA(ti) = hA(ti) + εA(ti)
xB(ti) = hB(ti) + M + εB(ti),

(1)

where M is the offset between the two images, and ti, i = 1, 2, ..., n are discrete
observation times. The observation errors εA(ti) and εB(ti) are modelled as zero-
mean Normal distributions N(0, σA(ti)) and N(0, σB(ti)), respectively; σA(ti)
and σB(ti) are given. Now,

hA(ti) =
N∑

j=1

αjK(tj , ti) (2)

is the “underlying” light curve that underpins image A, whereas

hB(ti) =
N∑

j=1

αjK(tj + ∆, ti) (3)



Table 1. 0957+561 optical data sets analysed here

id band # Samples Date Reference

DS1 g 97 2/12/94 to 6/7/96 [5]
DS2 r 100 2/12/94 to 6/7/96 [5]
DS3 r 422 2/6/92 to 8/4/97 [6]

is a time-delayed (by ∆) version of hA(ti) underpinning image B. The Gaussian
kernels K(·, ·) are centred at either tj , j = 1, 2, ..., N (function fA), or tj + ∆,
j = 1, 2, ..., N (function fB) [9, 10]. We use widths ωcj

> 0 determining the
‘degree of smoothness’ of the models hA and hB . The widths ωj ≡ ωcj are
determined through the k nearest neighbours of tj as follows:

ωj =
k∑

d=1

(tj − tj−d) + (tj+d − tj) =
k∑

d=1

(tj+d − tj−d).

The value of parameter k can be estimated via cross validation.
The weights α in (2-3) are given by

Kα = x, (4)

where α = (α1, α2, ..., αN )T ,

K =




KA(·, ·)

KB(·, ·)


 , x =




xA(·)/σA(·)

xB(·)/σB(·)


 , (5)

and the kernels KA(·, ·), KB(·, ·) have the form [7]:

KA(tj , ti) =
K(tj , ti)
σA(ti)

, KB(tj , ti) =
M + K(tj + ∆, ti)

σB(ti)
. (6)

Our aim is to estimate the time delay ∆ between the temporal light curves
corresponding to images A and B. Given the observed data and a suggested delay
∆ ([∆min, ∆max]), free parameters of the model (1-3) are determined within the
maximum likelihood framework. Since the model is linear in parameters, we
regularise K in the model fitting via singular value decomposition (SVD) [11,
12].

We use model formulation (1-3), because (1) linearity in parameters en-
ables us to use tools of linear algebra in parameter fitting and regularisation,
(2) Gaussian kernel formulation using variable kernel widths is natural in cases
of irregularly sampled data, (3) parameter sharing in (2) and (3) provides a
transparent tool for coupling the two observed images.

To measure the time delay between time series, astrophysicists often use the
Dispersion, which is a weighted sum of squared differences between xA(ti) and



xB(ti). We use the D2
1 [3] and D2

4,2 [4] methods. The latter has a free parameter,
decorrelation length δ, that signifies the maximum distance between observations
we are willing to consider when calculating the correlations. The estimated time
delay, ∆, is found by minimising D2 over a range of time delay trials [∆min,
∆max].

4 Analysis of optical monitoring of gravitational lens
Q0957+561

We apply both the Dispersion method, which astrophysicists commonly use, and
our method on the observational data sets, summarised in Table 1, consisting of
measures of the brightness of the two images at irregular intervals.

For the time delay, we use bounds of ∆min = 400 and ∆max = 450 days given
that our prior knowledge (from other analyses) is that the best delay is around
420 days [5, 6]. So, we evaluate D2

1 and D2
4,2 in this range with increments of

one day. The results are in Table 2. The decorrelation length δ in Table 2 is the
same adopted by [5] and [6].

The confidence intervals were estimated through 500 Monte Carlo simulations
over the observation noise processes by fixing the parameters M and δ to the
best values, as in Table 2. The results are in Table 3, where µ∆ is the mean of
the time delay and the confidence intervals are given by the standard deviations
(σ∆).

Table 2. Results on observed data

Dispersion spectra Kernel-based approach

Data set D2
1: ∆ (M) D2

4,2: ∆ (M ; δ) ∆ (k)

DS1 417 (0.119) 420 (0.109;7) 420 (3)
DS2 429 (0.210) 446 (0.210;7) 420 (3)
DS3 425 (0.077) 424 (0.077;4) 430 (6)

Quantities in days

When applying our model, we have fixed M to 0.117, 0.21 and 0.076 for
DS1, DS2 and DS3 respectively [5, 6]. Singular values of K less than a threshold
λ = 0.001 are set to zero to avoid ill-conditioning [11, 12] and the smoothing
parameter k was chosen through five-fold cross validation (CV) [7]. The results
are in Table 2. Again, confidence intervals are estimated through 500 Monte
Carlo simulations fixing M , k and λ to their optimal values (see Table 3).

5 Artificial data

Since the true time delay on the quasar Q0957+561 is unknown, the best way to
compare the performance of methods is through a set of controlled experiments



Table 3. Confidence intervals: 500 Monte Carlo simulations

Dispersion spectra Kernel-based approach

Data set D2
1 : µ∆ ± σ∆ D2

4,2 : µ∆ ± σ∆ µ∆ ± σ∆ k

DS1 416.7±0.9 419.9±1.3 419.5±0.8 3
DS2 421.6±2.8 443.5±8.2 421.3±3.6 3
DS3 426.7±2.3 438.5±12.7 432.2±5.3 6

µ∆ and σ∆ are given in days

where the true time delay is known. We use optical-like artificial data to compare
our approach with the commonly used dispersion spectra method. In [7], we
used radio-like artificial data with an imposed time delay of 500 days over an
observational season of 13.6 years.

Here, the artificial data is generated as in [7], but with an observational
season of 1.3 years, 50 irregular samples, a true time delay of 5 days, an offset
M = 0.1 (considered fixed and known for both methods in §3), three levels of
noise of 0.03%, 0.106% and 0.466% of mag (minimum, average and maximum
of DS3, respectively), and ”observational” gap size of zero to five continuously
missing samples per block (five blocks randomly located). We use ten different
underlying functions4, 100 realisations per level of noise and ten realisations per
gap size. This gives us an amount of 153,510 data sets under analysis. So, these
data sets simulate optical data with low time delay and low offset with high
precision [6].

The results are in Fig. 2, mean and standard deviation of time delay esti-
mates are calculated for each underlying function. Then, the mean and standard
deviation across all artificial data sets, µ∆ and σ∆, respectively, are calculated
and depicted in Fig. 2. We stress that to make our comparison fair, each method
was subjected to the same collection of artificial data sets. In all cases the time
delay under analysis is from 0 to 10 days; with increments of 0.1 days. The
parameter λ is fixed as above.

6 Comments and conclusions

On Monte Carlo simulations, the set DS1 leads to the minimum standard de-
viation for both dispersion spectra methods, as well as for our kernel-based
approach; see Table 3. With our methods, we get consistent results for DS1 and
DS2 in Table 2, because they have almost the same sampling. On the other hand,
Kundic et al. did not find such a concord with the four methods studied in [5].
Rather, they adopted the time delay of 417± 3 days given by Linear method [5].
Therefore, the best time delay for DS1 and DS2 is 420 days rather than 417 days
[5]. Nevertheless, nobody knows the true time delay for the quasar Q957+561 so
far, and as more observations are gathered more time delay estimates appear.
4 plots available at http://www.cs.bham.ac.uk/∼jcc/artificial-optical/



Therefore, in Fig. 2, we have a comparison of our approach against dispersion
spectra on artificial data, where the true time delay is known (∆ = 5 days). It
appears that the D2

1 method is less biased than the D2
4,2 method. However,

compared with D2
4,2, the variance of D2

1 estimates is higher. Compared with D2
1,

our method has less bias and less variance, except for cases of 0% of noise and
gap size less than 3, where we observe smaller bias but higher variance. Overall,
compared with our method, D2

1 and D2
4,2 seem more vulnerable to observational

gaps.
Based on the results in Tables 2 and 3, and in Fig. 2, we conclude that our

method is more accurate than dispersion spectra (see caption to Fig. 2). In the
future we also plan to investigate options for speeding up parameter estimation
in our kernel-based approach.
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Fig. 2. Results on all artificial data, see §5 for details. (a) Dispersion spectra D2
1:

values of µ∆ range in [4.83, 5.07], and for σ∆ in [0, 1.68]. (b) Dispersion spectra
D2

4,2: decorrelation length δ was fixed to 5. The values of µ∆ range in [5.17, 5.87], and
for σ∆ in [0, 1.16]. (c) Kernel-based approach: parameter k was fixed to 3, and the
regularisation parameter λ to 0.001. Values of µ∆ range in [4.94, 5.08], and for σ∆ in
[0, 1.30].


