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Abstract A new class of state-space models, reservoir models, with a fixed state tran-

sition structure (the “reservoir”) and an adaptable readout from the state space has re-

cently emerged as a way for time series processing/modelling. Echo State Network

(ESN) is one of the simplest, yet powerful, reservoir models. ESN models are generally

constructed in a randomized manner. In our previous study (Rodan & Tino, 2011) we

showed that a very simple, cyclic, deterministically generated reservoirs can yield per-

formance competitive with standard ESN. In this contribution we extend our previous

study in three aspects:1) We introduce a novel simple deterministic reservoir model,

Cycle Reservoir with Jumps (CRJ), with highly constrained weight values, that has su-

perior performance to standard ESN on a variety of temporal tasks of different origin

and characteristics.2) We elaborate on the possible link between reservoir character-

izations, such as eigenvalue distribution of the reservoirmatrix or pseudo-Lyapunov

exponent of the input-driven reservoir dynamics, and the model performance. It has

been suggested that a uniform coverage of the unit disk by such eigenvalues can lead to

superior model performances. We show that despite highly constrained eigenvalue dis-

tribution, CRJ consistently outperform ESN (that have muchmore uniform eigenvalue



coverage of the unit disk). Also, unlike in the case of ESN, pseudo-Lyapunov expo-

nents of the selected ‘optimal’ CRJ models are consistentlynegative.3) We present a

new framework for determining short term memory capacity oflinear reservoir mod-

els to a high degree of precision. Using the framework we study the effect of shortcut

connections in the CRJ reservoir topology on its memory capacity.

1 Introduction

Reservoir Computing (RC) (Lukosevicius & Jaeger, 2009) is anew class of state-

space models based on a fixed randomly constructed state transition mapping (real-

ized through so-calledreservoir) and an adaptable (usually linear)readoutmapping

from the reservoir. Echo State Networks (ESNs) (Jaeger, 2001), Liquid State Machines

(LSMs) (Maass et al., 2002) and the back-propagation decorrelation neural network

(Steil, 2004) are examples of popular RC methods. For a comprehensive review of RC

see (Lukosevicius & Jaeger, 2009).

In this contribution we concentrate on Echo State Networks,one of the simplest, yet

effective forms of reservoir computing. Briefly, ESN is a recurrent neural network with

a non-trainable sparse recurrent part (reservoir) and a simple linear readout. Typically,

the reservoir connection weights, as well as the input weights are randomly generated.

The reservoir weights are then scaled so that the spectral radius of the reservoir’s weight

matrix W is < 1. This ensures a sufficient condition for the“Echo State Property”

(ESP): the reservoir state is an“echo” of the entire input history. ESN has been success-

fully applied in time-series prediction tasks (Jaeger & Hass, 2004), speech recognition

(Skowronski & Harris, 2006), noise modelling (Jaeger & Hass, 2004), dynamic pattern

classification (Jaeger, 2002b), reinforcement learning (Bush & Anderson, 2005), and in

language modelling (Tong et al., 2007).

A variety of extensions/modifications of the classical ESN can be found in the lit-

erature, e.g. intrinsic plasticity (Schrauwen et al., 2008b; Steil, 2007), refined training

algorithms (Jaeger & Hass, 2004), leaky-integrator reservoir units (Jaeger et al., 2007a),

support vector machine (Schmidhuber et al., 2007), filter neurons with delay&sum read-

out (Holzmann & Hauser, 2009), pruning connections within the reservoir (Dutoit et al.,

2009) etc. There have also been attempts to impose specialized interconnection topolo-
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gies on the reservoir, e.g. hierarchical reservoirs (Jaeger, 2007), small-world reservoirs

(Deng & Zhang, 2007) and decoupled sub-reservoirs (Xue et al., 2007).

There are still problems preventing ESN to become a widely accepted tool, e.g.

poorly understood reservoir properties (Xue et al., 2007),reservoir specification re-

quires numerous trails and even luck (Xue et al., 2007), random connectivity and weight

structure of the reservoir is unlikely to be optimal (Ozturket al., 2007). Typically, in

order to construct a reservoir model one needs to specify thereservoir size, sparsity of

reservoir and input connections, scaling of input and reservoir weights.

Simple reservoir topologies have been proposed as alternative to the randomized

ESN reservoir - e.g. ‘feedforward’ reservoirs with tap delay connections (Cernansky

& Makula, 2005), reservoir with diagonal weight matrix (self-loops) (Fette & Eggert,

2005) and cycle topology of reservoir connections (Rodan & Tino, 2011). The Simple

Cycle Reservoir (SCR) introduced in (Rodan & Tino, 2011) achieved comparable per-

formances to ‘standard’ ESN on a variety of data sets of different origin and memory

structure. We also proved that the memory capacity of linearSCR can be made arbi-

trarily close to the proven optimal value (for any recurrentneural network of the ESN

form).

In this paper we extend the cycle reservoir of (Rodan & Tino, 2011) with a regular

structure of shortcuts (Jumps) -Cycle Reservoir with Jumps(CRJ). In the spirit of SCR

we keep the reservoir construction simple and deterministic. Yet, it will be shown that

such an extremely simple regular architecture can significantly outperform both SCR

and standard randomized ESN models. Prompted by these results, we investigate some

well known reservoir characterizations, such as eigenvalue distribution of the reservoir

matrix, pseudo-Lyapunov exponent of the input-driven reservoir dynamics, or memory

capacity and their relation to the ESN performance.

The paper is organized as follows. Section 2 gives a brief overview of Echo state

network design and training. In Section 3 we present our proposed model - CRJ. Exper-

imental results are presented and discussed in Sections 4 and 5, respectively. Section

6 investigates three reservoir characterizations (eigen-spectrum of the reservoir weight

matrix, short term memory capacity and pseudo-Lyapunov exponent) in the context of

reservoir models studied in this paper. Finally, the work isconcluded in section 7.
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2 Echo State Networks

Echo state network is a recurrent discrete-time neural network with K input units,N

internal (reservoir) units, andL output units. The activation of the input, internal,

and output units at time stept are denoted by:s(n) = (s1(t), ..., sK(t))T , x(t) =

(x1(t), ..., xN(t))T , andy(t) = (y1(t), ..., yL(t))T respectively. The connections be-

tween the input units and the internal units are given by anN × K weight matrixV ,

connections between the internal units are collected in anN ×N weight matrixW , and

connections from internal units to output units are given inL×N weight matrixU .

K Input  un i ts
     s( t )  

 Dynamica l  Reservo i r
     N in ternal  un i ts
            x( t )

L  output  un i ts
       y( t )  

V U 
W  

Figure 1: Echo State Network (ESN) Architecture

The internal units are updated according to1:

x(t + 1) = f(V s(t + 1) + Wx(t) + z(t + 1)), (1)

wheref is the reservoir activation function (typically tanh or some other sigmoidal

function);z(t + 1) is an optional uniform i.i.d. noise. The linear readout is computed

as2:

y(t + 1) = Ux(t + 1). (2)

Elements ofW andV are fixed prior to training with random values drawn from a

uniform distribution over a (typically) symmetric interval. To account for echo state

property, the reservoir connection matrixW is typically scaled asW ← αW/|λmax|,
1There are no feedback connections from the output to the reservoir and no direct connections from

the input to the output.
2The reservoir activation vector is extended with a fixed element accounting for the bias term.
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where |λmax| is the spectral radius3 of W and 0 < α < 1 is a scaling parameter4

(Jaeger, 2002b).

ESN memoryless readout can be trained both offline (Batch) and online by minimizing

a given loss function. In most cases we evaluate the model performance via Normalized

Mean Square Error (NMSE):

NMSE =
〈‖ŷ(t)− y(t)‖2〉
〈‖y(t)− 〈y(t)〉‖2〉 , (3)

where ŷ(t) is the readout output,y(t) is the desired output (target),‖.‖ denotes the

Euclidean norm and〈·〉 denotes the empirical mean.

In the offline (Batch) trainingmode one first runs the network on the training set,

and subsequently computes the output weights that minimizethe NMSE. In summary,

the following steps are performed:

1. InitializeW with a scaling parameterα < 1 and run the ESN on the training set.

2. Dismiss data from initial ‘washout’ period and collect the remaining network

statesx(t) into a matrixX.

3. The target values from the training set are collected in a vectory.

4. The output unit weights are computed using ridge regression:

U = y XT (XXT + ρ2I)−1, (4)

whereI is the identity matrix andρ > 0 is a regularization factor determined on

a hold-out validation set .

Standard recursive algorithms, such as Recursive Least Squares (RLS), for NMSE

minimization can be used inonline readout training. In RLS, after the initial washout

period the output weightsU are recursively updated at every time stept:

k(t) =
P (t− 1) x(t)

xT (t) P (t− 1) x(t) + γ
(5)

P (t) = γ−1(P (t− 1)− k(t) xT (t) P (t− 1)) (6)

U(t) = U(t− 1) + k(t) [y(t)− ŷ(t)] (7)

3The largest among the absolute values of the eigenvalues ofW .
4Such scaling corresponds to the sufficient condition for ESPonly. For necessary condition, maxi-

mum singular value would need to be used.
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wherek stands for the innovation vector;y and ŷ correspond to the desired and

calculated (readout) output unit activities;P is the error covariance matrix initialized

with large diagonal values. ‘Forgetting parameter’0 < γ < 1 is usually set to a value

close to1.0. In this workγ is set on a hold-out validation set.

3 Cycle Reservoir with Jumps

In (Rodan & Tino, 2011) we proposed a Simple Cycle Reservoir (SCR) with perfor-

mance competitive to that of standard ESN. Unlike ESN, the construction of SCR model

is completely deterministic and extremely simple. All cyclic reservoir weights have the

same value; all input connections also have the same absolute value. Viewing reservoir

interconnection topology as a graph, the SCR has a small degree of local clustering and

a large average path length. In contrast, ESN (a kind of random network) has small de-

gree of local clustering and small average path length. It has been argued that reservoirs

should ideally have small clustering degree (sparse reservoirs) (Jaeger & Hass, 2004)

so that the dynamic information flow through the reservoir nodes is not ‘too cluttered’.

Also a small average path length, while having longer individual paths within the reser-

voir, can allow for representation of a variety of dynamicaltime scales. We propose a

Cycle Reservoir with Jumps (CRJ) which, compared with SCR leads to slightly higher

degree of local clustering while achieving much smaller average path length.

The CRJ model has a fixed simple regular topology: the reservoir nodes are con-

nected in a uni-directional cycle (as in SCR) with bi-directional shortcuts (jumps) (Fig.

2). All cycle connections have the same weightrc > 0 and likewise all jumps share the

same weightrj > 0. In other words, non-zero elements ofW are:

• the ‘lower’ sub-diagonalWi+1,i = rc, for i = 1...N − 1,

• the ‘upper-right corner’W1,N = rc and

• the jump entriesrj. Consider the jump size1 < ℓ < ⌊N/2⌋. If (N mod ℓ) = 0,

then there areN/ℓ jumps, the first jump being from unit 1 to unit1 + ℓ, the last

one from unitN + 1 − ℓ to unit 1 (see Figure 2 (A)). If(N mod ℓ) 6= 0, then

there are⌊N/ℓ⌋ jumps, the last jump ending in unitN + 1 − (N mod ℓ) (see

Figure 2 (B)). In such cases, we also consider extending the reservoir size byκ
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units (1 ≤ κ < ℓ), such thatN mod (N + κ) = 0. The jumps are bi-directional

sharing the same connection weightrj.
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Figure 2: An Example of CRJ Reservoir Architecture withN = 18 Units and Jump

Sizeℓ = 3 (A) andℓ = 4 (B).

As with the SCR model, in the CRJ model we use full input-to-reservoir connec-

tivity with the same absolute valuev > 0 of the connection weight. It is shown in

(Rodan & Tino, 2011) that an aperiodic character of signs of the input weights in

V = (V1, V2, ..., VK) is essential for the SCR model. Unlike in (Rodan & Tino, 2011),

in this contribution we use the same method for obtaining theinput weight signs, uni-

versally across all data sets. In particular, the input signs are determined from decimal

expansiond0.d1d2d3... of an irrational number - in our caseπ. The firstN decimal

digitsd1, d2, ..., dN are thresholded at 4.5, i.e. if0 ≤ dn ≤ 4 and5 ≤ dn ≤ 9, then the

n-th input connection sign (linking the input to then-th reservoir unit) will be− and+,

respectively. The valuesv, rc, andrj are chosen on the validation set.

4 Experiments

In this section we test and compare our simple CRJ reservoir topology with standard

ESN and SCR on a variety of timeseries tasks widely used in theESN literature and

covering a wide spectrum of memory structure (Schrauwen et al., 2008b; Cernansky &
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Tino, 2008; Jaeger, 2001, 2002a, 2003; Jaeger & Hass, 2004; Verstraeten et al., 2007;

Steil, 2007).

4.1 Experimental Setup

For each data set and each model class (ESN, SCR, and CRJ) we picked on the valida-

tion set a model representative to be evaluated on the test set. The readout mapping was

fitted both using offline (Ridge Regression) and online (RLS)training. Then, based on

validation set performance, the offline or online trained readout was selected and tested

on the test set.

For RLS training we add noise to the internal reservoir activations where the noise

is optimized for each dataset and each reservoir size using validation set (Wyffels et al.,

2008). For SCR architecture the model representative is defined by the absolute input

weight valuev ∈ (0, 1] and the reservoir cycle connection weightrc ∈ (0, 1]. For

the CRJ architecture the model representative is defined by the absolute input weight

valuev ∈ (0, 1], the reservoir cycle connection weightrc ∈ (0, 1], the jump size1 <

ℓ < ⌊N/2⌋ and the jump weightrj ∈ (0, 1]. For the ESN architecture, the model

representative is specified by the reservoir sparsity, spectral radiusλ of the reservoir

weight matrix, input weight connectivity and input weight range[−a, a]. We present

the results for three reservoir sizesN = 100, 200, 300.

For ESN we calculated out-of sample (test set) performance measures over 10 sim-

ulation runs (presented as mean and StDev). The selected SCRand CRJ representatives

are evaluated out-of-sample only once, since their construction is completely determin-

istic. The only exception is the speech recognition experiment - due to limited test set

size, following (Verstraeten et al., 2007), a 10-fold cross-validation was performed (and

paired t-test was used to assess statistical significance ofthe result).

Details of the experimental setup, including ranges for cross-validation based grid

search on free-parameters, are presented in Table 1. Detailed parameter settings of the

selected model representatives can be found in the Appendix.
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Table 1: Summary of the Experimental Setup. Grid Search Ranges are Specified in

MATLAB Notation, i.e. [s : d : e] Denotes a Series of Numbers Starting froms,

Increased by Increments ofd, Until the Ceilinge is Reached.

Reservoir topologies ESN, SCR and CRJ

Readout learning RLS with dynamic noise injection, Ridge Regression

ESN (random weights with spectral radiusα in [0.05 : 0.05 : 1] ,

Reservoir matrix and connectivitycon in [0.05 : 0.05 : 0.5])

CRJ and SCR (rc in [0.05 : 0.05 : 1], rj in [0.05 : 0.05 : 1] )

jump size 1 < ℓ < ⌊N/2⌋, whereN is the reservoir size.

reservoir size N in [100 : 100 : 300]

input scale v (for SCR and CRJ) anda (for ESN) from[0.01 : 0.005 : 1]

input sign generation SCR and CRJ: thresholded decimal expansion ofπ

readout regularization reservoir noise size (RLS), regularization factor (ridge regression)

10q, q = [−15 : 0.25 : 0]

4.2 Experimental Tasks and Results

System Identification

As a System Identification task, we considered a NARMA systemof order 10 (Atiya &

Parlos, 2000) given by eq. (8).

y(t + 1) = 0.3y(t) + 0.05y(t)
9
∑

i=0

y(t− i) + 1.5s(t− 9)s(t) + 0.1, (8)

wherey(t) is the system output at timet, s(t) is the system input at timet (an i.i.d

stream of values generated uniformly from[0, 0.5]. The current output depends on

both the input and the previous outputs. In general, modelling this system is difficult

due to the non-linearity and possibly long memory. The networks were trained on

system identification task to outputy(t) based ons(t). The inputs(t) and target data

y(t) are shifted by -0.5 and scaled by 2 as in (Steil, 2007).NARMAsequence has a

length of 8000 items where the first 2000 were used for training, the following 5000 for

validation, and the remaining 2000 for testing. The first 200values from the training,

validation and test sequences were used as the initial washout period.
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The results are presented in Table 2. Even though SCR is slightly inferior to the

standard ESN construction, the simple addition of regular shortcuts (jumps) to the SCR

leads to a superior performance of CRJ topology.

Table 2: Test Set NMSE Results of ESN, SCR, and CRJ Reservoir Models on the 10th

Order NARMA System. Reservoir Nodes withtanh Transfer Function were Used.

reservoir model N = 100 N = 200 N = 300

ESN 0.0788 (0.00937) 0.0531 (0.00198) 0.0246 (0.00142)

SCR 0.0868 0.0621 0.0383

CRJ 0.0619 0.0196 0.0130

Time Series Prediction

The Santa Fe Laser dataset (Jaeger et al., 2007a) is a cross-cut through periodic to

chaotic intensity pulsations of a real laser. The task was topredict the next valuey(t+1).

The dataset contains 9000 values, the first 2000 values were used for training, the next

5000 for validation, and the remaining 2000 values was used for testing the models.

The first 200 values from training, validation and testing sequences were used as the

initial washout period.

The results are shown in Table 3. Again, ESN and SCR are almoston-par, with SCR

slightly inferior. However, the CRJ topology can outperform the other architectures by

a large margin.

Table 3: Test Set NMSE Results of ESN, SCR, and CRJ Reservoir Models on the Santa

Fe Laser Dataset. Reservoir Nodes withtanh Transfer Function were Used.
reservoir model N = 100 N = 200 N = 300

ESN 0.0128 (0.00371) 0.0108 (0.00149) 0.00895 (0.00169)

SCR 0.0139 0.0112 0.0106

CRJ 0.00921 0.00673 0.00662
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Speech Recognition

For this task we used the Isolated Digits dataset5. It is a subset of the TI46 dataset

which contains 500 spokenIsolated Digits(zero to nine), where each digit is spoken

10 times by 5 female speakers. Because of the limited test setsize, 10-fold cross-

validation was performed (Verstraeten et al., 2007) and paired t-test was used to assess

whether the perceived differences in model performance arestatistically significant.

The Lyon Passive Ear model (Lyon, May 1982) is used to convertthe spoken digits

into 86 frequency channels. Following the ESN literature using this dataset, the model

performance will be evaluated using the Word Error Rate (WER), which is the number

of incorrect classified words divided by the total number of presented words. The 10

output classifiers are trained to output 1 if the corresponding digit is uttered and -1

otherwise. Following (Schrauwen et al., 2007) the temporalmean over complete sample

of each spoken digit is calculated for the 10 output classifiers. The Winner-Take-All

(WTA) methodology is then applied to estimate the spoken digit’s identity. We use

this data set to demonstrate the modelling capabilities of different reservoir models

on high-dimensional (86 input channels) time series. The results confirming superior

performance of the simple CRJ model are shown in Table 4. For reservoir sizeN =

100 the CRJ model is significantly superior to ESN at the confidence level96%. For

reservoirs withN = 200 andN = 300 neurons CRJ beats ESN at significance levels

greater than99%.

Table 4: WER Results of ESN, SCR, and CRJ Models on theIsolated Digits(Speech

Recognition) Task. Reservoir Nodes withtanh Transfer Functionf were Used.

reservoir model N = 100 N = 200 N = 300

ESN 0.0296 (0.0063) 0.0138 (0.0042) 0.0092 (0.0037)

SCR 0.0329 (0.0031) 0.0156 (0.0035) 0.0081 (0.0022)

CRJ 0.0281 (0.0032) 0.0117 (0.0029) 0.0046 (0.0021)

5obtained from http://snn.elis.ugent.be/rctoolbox
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Memory and Non-Linear Mapping Task

The last task, used in Verstraeten et al. (2010), is a generalization of the delay XOR-task

used in (Schrauwen et al., 2008a). It allows one to systematically study two character-

istics of reservoir topologies: memory and the capacity to process non-linearities in the

input time series. The memory is controlled by the delayd of the output, and the ‘degree

of non-linearity’ is determined by a parameterp > 0. The input signals(t) contains

uncorrelated values from a uniform distribution over the interval [−0.8, 0.8]. The task

is to reconstruct a delayed and non-linear version of the input signal:

yp,d(t) = sign[β(t− d)] · |β(t− d)|p, (9)

whereβ(t− d) is the product of two delayed successive inputs,

β(t− d) = s(t− d) · s(t− d− 1).

The sign and absolute values are introduced to assure a symmetric output even in the

case of even powers (Verstraeten et al., 2010). Following (Verstraeten et al., 2010), we

considered delaysd = 1, ..., 15 and powersp = 1, ..., 10 with a total of 150 output

signalsyp,d (realized as 150 readout nodes). The main purpose of this experiment is to

test whether a single reservoir can have rich enough pool of internal representations of

the driving input stream so as to cater for the wide variety ofof outputs derived from

the input for a range of delay and non-linearity parameters.

We used time series of length 8000, where a new time series wasgenerated in each

of 10 runs. The first 2000 items were used for training, the next 3000 for validation, and

the remaining 3000 for testing the models. The first 200 values from training, validation

and test sequences were used as the initial washout period. As in (Verstraeten et al.,

2010), we used reservoirs of size 100 nodes.

Figure 3 illustrates the NMSE performance for ESN (A) , SCR (B) and CRJ (C).

Shown are contour plots across the two degrees of freedom – the delayd and the non-

linearity parameterp. We also show difference plots between the respective NMSE

values: ESN - SCR(D), ESN - CRJ (E) and SCR - CRJ (F). When the task becomes

harder (non-linearity and delay increase - upper-right corner of the contour plots) the

performance of the simple reservoir constructions, SCR andCRJ, is superior to that

of standard ESN. Interestingly, the simple reservoirs seemto outperform ESN by the
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largest margin for moderate delays and weak non-linearity (small values ofp). We do

not have a clear explanation to offer but note that our later studies in section 6.2 show

that, compared with ESN, the SCR and CRJ topologies have a potential for greater

memory capacity. This seems to be reflected most strongly if the series is characterized

by weak non-linearity.

5 Discussion

The experimental results clearly demonstrate that our verysimple deterministic reser-

voir constructions have a potential to significantly outperform standard ESN random-

ized reservoirs. We propose that instead of relying on unnecessary stochastic elements

in reservoir construction, one can obtain superior (and sometimes superior by a large

margin) performance by employing the simple regular unidirectional circular topology

with bi-directional jumps with fixed cycle and jump weights.However, it is still not

clear exactly what aspects of dynamic representations in the reservoirs are of importance

and why. In later sections we concentrate on three features of reservoirs - eigenspec-

trum of the reservoir weight matrix, (pseudo) Lyapunov exponent of the input-driven

reservoir dynamics and short term memory capacity - and discuss their relation (or lack

of) to the reservoir performance on temporal tasks.

Besides the symmetric bi-directional regular jumps we considered uni-directional

jumps (both in the direction and in the opposite direction tothe main reservoir cycle),

as well as jumps not originating/ending in a regular grid of ‘hub-like’ nodes6. In all

cases, compared with our regular CRJ topology, the performance was slightly worse.

Of course, when allowing for two different weight values in the bidirectional jumps

(one for forward, one for backward jumps), the performance improved slightly but not

significantly over CRJ.

Our framework can be extended to more complex regular hierarchical reservoir con-

structions. For example, we can start with a regular structure of relatively short ‘lower

level’ jumps in the style of CRJ topology. Then another layerof longer jumps over

the shorter ones can be introduced etc. We refer to this architecture asCycle Reservoir

with Hierarchical Jumps(CRHJ). Figure 4 illustrates this idea on a 3-level hierarchy of

6For example, when a jump lands in unitn, the next jump originates in unitn + 1 etc.
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jumps. As before, the cycle weights are denoted byrc. The lowest level jump weights

are denoted byrj1, the highest byrj3 . On each hierarchy level, the jump weight has a

single fixed value.

Table 5: Test Set NMSE Results of Deterministic CRHJ Reservoir Model on the Santa

Fe Laser Dataset and NARMA System. Reservoir Nodes withtanh Transfer Function

were Used.
Dataset N = 100 N = 200 N = 300

laser 0.00743 0.00594 0.00581

NARMA 0.0662 0.0182 0.0133

As an illustrative example, in Table 5 we show test set results for 3-level jump hi-

erarchies with jump sizes 4, 8 and 16. We used the same jump sizes for both laser and

NARMA data sets. The weightsrc, rj1, rj2, rj3 ∈ [0.05, 1) were found on the valida-

tion set. In most cases the performance of reservoirs with hierarchical jump structure

slightly improves over the CRJ topology (see Tables 2 and 3).However, such more

complex reservoir constructions, albeit deterministic, diverge from the spirit of the sim-

ple SCR and CRJ constructions. The potential number of free parameters (jump sizes,

jump weights) grows and the simple validation set search strategy can quickly become

infeasible.

The CRHJ structure differs from hierarchically structuredrandomized reservoir

models proposed in the RC community (Jaeger, 2007; Triefenbach et al., 2010), where

the reservoir structures are obtained by connecting7 different smaller reservoirs con-

structed in a randomized manner.

Our CRJ reservoirs can also be related to the work of Deng & Zhang (2007) where

massive reservoirs are constructed in a randomized manner so that they exhibit small-

world and scale-free properties of complex networks. We refer to this model as the

small world network reservoir (SWNR). We trained such SWNR architecture8 on the

laser and NARMA datasets, since for reasonable results the SWNR model needed to

be of larger size, we conducted the comparative experimentswith reservoirs of size

7possibly through trained connections
8We are thankful to the authors of (Deng & Zhang, 2007) for providing us with their code.
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Figure 4: Reservoir Architecture of Cycle Reservoir with Hierarchical Jumps (CRHJ)

with Three Hierarchical Levels. Reservoir SizeN = 18, and the Jump Sizes areℓ = 2

for Level 1 ,ℓ = 4 for Level 2, andℓ = 8 for Level 3.

N = 500. The results (across 10 randomized SWNR model constructionruns) for laser

and NARMA data sets are presented in Table 6 . The performancewas always inferior

to our simple deterministically constructed CRJ reservoir. Detailed parameter settings

of the selected model representatives can be found in the Appendix.

Finally, we mention that in the context of this paper, the work done in the com-

plex network community, relating dynamics of large networks with different degrees of

constrained interconnection topology between nodes, may be of interest. For example,

Watts & Strogatz (1998) consider collective dynamics of networks with interconnec-

tion structure controlled from completely regular (each node on a ring connects to its

k nearest neighbors), through “small-world” (for each node,with some probabilityp

links to the nearest neighbors are rewired to any randomly chosen node on the ring), to

completely random (p=1). However, such studies address different issues from those

we are concerned with in this paper: first, our reservoirs areinput-driven; second, our

interconnection construction is completely deterministic and regular; and third, the dy-

namics of CRJ is given through affine functions in every node,put through a saturation

sigmoid-type activation functions.
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Table 6: Test Set NMSE Results of ESN, SWNR, Deterministic SCR and Deterministic

CRJ reservoir Model on the Santa Fe Laser Dataset and NARMA System. Reservoir

SizeN = 500 and Reservoir Nodes withtanh Transfer Function were Used.
Dataset ESN SWNR SCR CRJ

laser 0.00724 (0.00278) 0.00551 (0.00176) 0.00816 0.00512

NARMA 0.0104 (0.0020) 0.052 (0.0089) 0.0216 0.0081

6 Reservoir Characterizations

There has been a stream of research work trying to find useful characterizations of reser-

voirs that would correlate well with the reservoir performance on a number of tasks.

For example, Legenstein & Maass (2007) introduce a ‘kernel’measure of separability

of different reservoir states requiring different output values. Since linear readouts are

used, the separability measure can be calculated based on the rank of the reservoir de-

sign matrix9. In the same vein, in Bertschinger & Natschlager (2004) it issuggested

that if a reservoir model is to be useful for computations on input time-series, it should

have the “separation property” - different input time series which produce different out-

puts should have different reservoir representations. When linear readouts are used, this

typically translates to ‘significantly’ different states.Moreover, it is desirable that the

separation (distance between reservoir states) increaseswith the difference of the input

signals.

In what follows we examine three other reservoir characterizations suggested in the

literature, namely - eigenspectrum of the reservoir weightmatrix Ozturk et al. (2007),

(pseudo) Lyapunov exponent of the input-driven reservoir dynamics Verstraeten et al.

(2007) and short term memory capacity Jaeger (2002b).

6.1 EigenSpectra of Dynamic Reservoirs

Several studies have attempted to link eigenvalue distribution of the ESN reservoir ma-

trix W with the reservoir model’s performance. First, in order to satisfy necessary

9reservoir states resulting from driving the reservoir withdifferent input streams
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condition for echo state property, the eigenvalues ofW need to lie inside the unit circle.

Ozturk, Xu and Principe (Ozturk et al., 2007) proposed that the distribution of reservoir

activations should have high entropy. It is suggested that the linearized ESN designed

with the recurrent weight matrix having the eigenvalues uniformly distributed inside the

unit circle creates such an activation distribution (compared to other ESNs with random

internal connection weight matrices). In such cases, the system dynamics will include

uniform coverage of time constants (related to the uniform distribution of the poles)

(Ozturk et al., 2007). However, empirical comparison of this type of reservoir with the

standard ESN is still lacking (Lukosevicius & Jaeger, 2009).

It has been also suggested that sparsity of reservoir interconnections (non-zero en-

tries inW ) is a desirable property (Jaeger & Hass, 2004). On the other hand, Zhang &

Wang (2008) argue that sparsely and fully connected reservoirs in ESN have the same

limit eigenvalue distribution inside the unit circle. Furthermore, the requirement that

the reservoir weight matrix be scaled so that the eigenvalues of W lie inside the unit

circle has been criticized in (Verstraeten et al., 2006), where the experiments show that

scaling with a large spectral radius seemed to be required for some tasks. On the other

hand, smaller eigenvalue spread is necessarily for stable online training of the readout

(Jaeger, 2005).

Our experimental results show that the simple CRJ and regular hierarchical CRHJ

reservoirs outperform standard randomized ESN models on a wide variety of tasks.

However, the eigenvalue spectra of our regularly and deterministically constructed reser-

voirs are much more constrained than those of the standard ESN models. Figure 5

shows eigenvalue distribution of representatives of the four model classes - ESN, SCR,

CRJ, and CRHJ - fitted on the isolated digits dataset in the speech recognition task.

Clearly the coverage of the unit circle by the ESN eigenvalues is much greater than

in the case of the three regular deterministic reservoir constructions. While the ESN

eigenvalues cover the unit sphere ‘almost uniformly’, the SCR, CRJ, and CRHJ eigen-

values are limited to a circular structure inside the unit disk. The eigenvalues of SCR

must lie on a circle by definition. On the other hand, the eigenvalue structure of CRJ

and CRHJ can be more varied. However, the eigenvalue distributions of CRJ and CRHJ

reservoirs selected on datasets used in this study were all highly constrained following

an approximately circular structure. This poses a questionas to what aspects of eigen-
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value distribution of the reservoir matrix are relevant fora particular class of problems.

We suspect that the non-linear nature of the non-autonomousreservoir dynamics may

be a stumbling block in our efforts to link linearized autonomous behavior of reservoirs

with their modelling potential as non-linear non-autonomous systems. Deeper investi-

gation of this issue is beyond the scope and intentions of this study, and it is a matter of

future research.
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Figure 5: Eigenvalue Distribution for ESN, SCR, CRJ and CRHJReservoirs ofN =

300 Neurons Selected on the Isolated Digits Dataset in the Speech Recognition Task

(and Hence Used to Report Results in Table 4).

6.2 Memory Capacity

Another attempt at characterization of dynamic reservoirsis in terms of their (short-

term) memory capacity (MC) (Jaeger, 2002a). It quantifies the ability of recurrent net-

work architectures to encode past events in their state space so that past items in an

i.i.d. input stream can be recovered (at least to certain degree). Consider a univariate

stationary input signals(t) driving the network at the input layer. For a given delayk,
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we construct a network with optimal parameters for the task of outputtings(t−k) after

seeing the input stream...s(t − 1)s(t) up to timet. The goodness of fit is measured

in terms of the squared correlation coefficient between the desired output (input signal

delayed byk time steps) and the observed network outputy(t):

MCk =
Cov2(s(t− k), y(t))

V ar(s(t)) V ar(y(t))
, (10)

whereCov denotes the covariance andV ar the variance operators. The short term

memory (STM) capacity is then given by (Jaeger, 2002a):

MC =

∞
∑

k=1

MCk. (11)

Traditionally, memory capacity has been estimated numerically by generating long

input streams of i.i.d data and training different readoutsfor different delaysk from 1 up

to some upper boundkmax. Typically, due to short-term memory of reservoir models,

kmax is of order102. We will later show that such empirical estimations ofMCk, even

for linear reservoirs, are inaccurate, especially for larger values ofk.

Jaeger (2002a) proved that forany recurrent neural network withN recurrent neu-

rons, under the assumption of i.i.d. input stream, MC cannotexceedN . We proved

(Rodan & Tino, 2011) (under the assumption of zero-mean i.i.d. input stream) that MC

of linear SCR architecture withN reservoir units can be made arbitrarily close toN .

In particular,MC = N − (1 − r2N), wherer ∈ (0, 1) is the single weight value for

all connections in the cyclic reservoir. In order to study the memory capacity structure

of linear SCR and the influence of additional shortcuts in CRJ, we first present a novel

way of estimation ofMCk directly from the reservoir matrix.

Direct Memory Capacity Estimation for Linear Reservoirs

Given a (one side infinite) i.i.d. zero-mean real-valued input streams(..t) = ... s(t −
3) s(t−2) s(t−1) s(t) emitted by a sourceP , the state (at timet) of the linear reservoir

with reservoir weight matrixW and input vectorV is

x(t) =
∞
∑

ℓ=0

s(t− ℓ) W ℓ V
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For the task of recalling the input fromk time steps back, the optimal least-squares

readout vectorU is given by

U = R−1 p(k), (12)

where

R = EP (s(..t))[x(t) xT (t)]

is the covariance matrix of reservoir activations and

p(k) = EP (s(..t))[s(t− k) x(t)].

The covariance matrix can be evaluated as

R = EP (s(..t))





(

∞
∑

ℓ=0

s(t− ℓ) W ℓ V

)

·
(

∞
∑

q=0

s(t− q) W q V

)T




= EP (s(..t))

[

∞
∑

ℓ,q=0

s(t− ℓ) s(t− q) W ℓ V V T (W q)T

]

=
∞
∑

ℓ,q=0

EP (s(..t))[s(t− ℓ) s(t− q)] W ℓ V V T (W T )q

= σ2

∞
∑

ℓ=0

W ℓ V V T (W T )ℓ, (13)

whereσ2 is the variance of the i.i.d. input stream.

Analogously,

p(k) = EP (s(..t))

[

∞
∑

ℓ=0

s(t− ℓ) s(t− k) W ℓ V

]

=

∞
∑

ℓ=0

EP (s(..t))[s(t− ℓ) s(t− k)] W ℓ V

= σ2 W k V. (14)

ProvidedR is full rank, by (12), (13) and (14), the optimal readout vector U (k) for

delayk ≥ 1 reads

U (k) = G−1 W k V, (15)

where

G =

∞
∑

ℓ=0

W ℓ V V T (W T )ℓ. (16)
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The optimal ‘recall’ output at timet is then

y(t) = xT (t) U (k)

=

∞
∑

ℓ=0

s(t− ℓ) V T (W ℓ)T G−1 W k V, (17)

yielding

Cov(s(t− k), y(t)) =
∞
∑

ℓ=0

EP (s(..t))[s(t− ℓ) s(t− k)] V T (W ℓ)T G−1 W k V

= σ2 V T (W k)T G−1 W k V. (18)

Since for the optimal recall outputCov(s(t−k), y(t)) = V ar(y(t)) (Jaeger, 2002a;

Rodan & Tino, 2011), we have

MCk = V T (W k)T G−1 W k V. (19)

Two observations can be made at this point. First, as proved by Jaeger Jaeger

(2002a),MCk constitute a decreasing sequence ink ≥ 1. From (19) it is clear that

MCk scale as‖W‖−2k, where‖W‖ < 1 is a matrix norm ofW . Second, denote the

image of the input weight vectorV throughk-fold application of the reservoir opera-

tor W by V (k), i.e. V (k) = W k V . Then the matrixG =
∑∞

ℓ=0 V (ℓ) (V (ℓ))T can be

considered a scaled ‘covariance’ matrix of the iterated images ofV under the reservoir

mapping. In this interpretation,MCk is nothing but the squared ‘Mahalanobis norm’ of

V (k) under such covariance structure,

MCk = (V (k))T G−1 V (k)

= ‖V (k)‖2G−1. (20)

We will use the derived expressions to approximate the memory capacity of different

kinds of (linear) reservoirs to a much greater degree of precision than that obtained

through the usual empirical application of the definition in(10) - first generate a long

series of i.i.d. inputs and drive with it the reservoir; thentrain the readout to recover the

inputs delayed byk time steps; finish by numerically estimating the statistical moments

in (10) using the target values (delayed inputs) and their estimates provided at ESN

output.
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We will approximateG =
∑∞

ℓ=0 V (ℓ) (V (ℓ))T by a finite expansion of the firstL

terms

Ĝ(L) =

L
∑

ℓ=0

V (ℓ) (V (ℓ))T . (21)

We have

‖V (ℓ)‖2 ≤ ‖W ℓ‖F · ‖V ‖2
≤
√

N · ‖W ℓ‖2 · ‖V ‖2
≤
√

N · ‖W‖ℓ2 · ‖V ‖2
=
√

N · (σmax(W ))ℓ · ‖V ‖2, (22)

where‖ · ‖2 and ‖ · ‖F is the (induced)L2 and Frobenius norm, respectively, and

σmax(W ) is the largest singular value ofW . Furthermore,

‖V (ℓ) (V (ℓ))T‖2 = ‖V (ℓ)‖22
≤ N · (σmax(W ))2ℓ · ‖V ‖22,

and so, given a smallǫ > 0, we can solve for the number of termsL(ǫ) in the approxi-

mation (21) ofG so that the norm of contributionsV (ℓ) (V (ℓ))T , ℓ > L(ǫ), is less than

ǫ. Sinceσmax(W ) < 1,

‖
∞
∑

ℓ=L(ǫ)

V (ℓ) (V (ℓ))T‖2 ≤
∞
∑

ℓ=L(ǫ)

‖V (ℓ) (V (ℓ))T‖2

≤ N ‖V ‖22
∞
∑

ℓ=L(ǫ)

(σmax(W ))2ℓ

= N ‖V ‖22
(σmax(W ))2L(ǫ)

1− (σmax(W ))2
, (23)

we have that for

L(ǫ) >
1

2

log ǫ (1−(σmax(W ))2)

N ‖V ‖2

2

log σmax(W ))
, (24)

it holds

‖
∞
∑

ℓ=L(ǫ)

V (ℓ) (V (ℓ))T‖2 ≤ ǫ,

and so withL(ǫ) terms in (21),G can be approximated in norm up to a term< ǫ.
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The Effect of Shortcuts in CRJ on Memory Capacity

In (Rodan & Tino, 2011) we proved that the ‘k-step recall’ memory capacityMCk for

the SCR with reservoir weightr ∈ (0, 1) is equal to

MCk = r2k (1− r2N ) ζ
k modN

,

whereζj = r−2j, j = 0, 1, 2, ..., N − 1. It follows that fork ≥ 1,

MCk = r2k (1− r2N) r−2 (k modN)

= (1− r2N) r2 [k−(k modN)]

= (1− r2N) r2N (k div N), (25)

where div represents integer division. Hence, for linear cyclic reservoirs with reservoir

weight 0 < r < 1, MCk is a non-increasing piecewise constant function ofk, with

blocks of constant value

MCqN+j = (1− r2N) r2Nq, q ≥ 0, j ∈ {0, 1, ..., N − 1}. (26)

In order to study the effect of reservoir topologies on the contributionsMCk to

the memory capacityMC, we first selected three model class representatives (on the

validation set) withN = 50 linear unit reservoirs on the system identification task (10-

th order NARMA), one representative for each of the model classes ESN, SCR and CRJ

(jump length 4). Linear and non-linear reservoirs of size 50had similar performance

levels on the NARMA task. To make theMCk plots directly comparable, we then re-

scaled the reservoir matricesW to a common spectral radiusρ ∈ (0, 1). In other words,

we are interested in differences in the profile ofMCk for different reservoir types, ask

varies. Of course, for smaller spectral radii, the MC contributions will be smaller, but

the principal differences can be unveiled only if the same spectral radius is imposed on

all reservoir structures.

The memory capacity of the reservoir models was estimated through estimation of

MCk, k = 1, 2, ..., 200, in two ways:

1. Empirical Estimation:The i.i.d. input stream consisted of 9000 values sampled

from the uniform distribution on[−0.5, 0.5]. The first 4000 values were used

for training, the next 2000 for validation (setting the regularization parameter of
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Ridge regression in readout training), and the remaining 3000 values was used for

testing the models (prediction of the delayed input values). After obtaining the

test outputs, the memory capacity contributionsMCk were estimated according

to (10). This process was repeated 10 times (10 runs), in eachrun a new input

series has been generated. FinalMCk estimates were obtained as averages of the

MCk estimated across the 10 runs. This represents the standard approach toMC

estimation proposed by Jaeger (2002a) and used in the ESN literature (Fette &

Eggert, 2005; Ozturk et al., 2007; Verstraeten et al., 2007;Steil, 2007).

2. Theoretical Estimation:TheMC contributionsMCk were calculated from (19),

with G approximated as in (21). The number of termsL has been determined

according to (24), where the precision parameterǫ was set toǫ = 10−60.

Figures 6(A) and (B) present theoretical and empirical estimates, respectively, of

MCk for ρ = 0.8. Analogously, Figures 6(C) and (D) show theoretical and empirical

estimates ofMCk for ρ = 0.9. The direct theoretical estimation (Figures 6(A,C)) is

much more precise than the empirical estimates (Figures 6(B,D)). Note the clear step-

wise behavior ofMCk for SCR predicted by the theory (eq. (26)). As predicted, the

step size isN = 50. In contrast, the empirical estimations ofMCk can infer the first

step atk = 50, but lack precision thereafter (fork > 50). Interestingly, SCR topology

can keep information about the lastN − 1 i.i.d. inputs to a high level of precision

(MCk = 1− r2N , k = 1, 2, ..., N − 1), but then loses the capacity to memorize inputs

more distant in the past in a discontinuous manner (jump atk = N = 50). This behavior

of MCk for SCR is described analytically by eq. (26). In contrast, as a consequence

of ‘cross-talk’ effects introduced by jumps in CRJ, theMC contributionsMCk start to

rapidly decrease earlier than atk = N , but the reservoir can keep the information about

some of the later inputs better than in the case of SCR (roughly for 50 ≤ k ≤ 60). In

the case of ESN, theMCk values decrease more rapidly than in the case of both SCR

and CRJ. Using the standard empirical estimation ofMCk, such a detailed behavior of

memory capacity contributions would not be detectable. To demonstrate the potential

of our method, we show in Figures 7(A,B) theoretically determined graphs ofMCk for

delays up tok = 400 usingρ = 0.8 (A) andρ = 0.9 (B).
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Figure 6: Theoretical (A,C) and Empirical (B,D) k-Delay MC of ESN (dotted line),

SCR (solid line), and CRJ (dashed line) for Delaysk = 1, ..., 200. The Graphs ofMCk

are Shown forρ = 0.8 (A,B) andρ = 0.9 (C,D).
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6.3 Lyapunov Exponent

Verstraeten et al. (2007) suggest to extend numerical calculation of the well known Lya-

punov exponent characterization of (ergodic) autonomous dynamical systems to input-

driven systems. The same idea occurred previously in the context of recurrent neural

networks for processing symbolic streams (Tabor, 2001) While the reservoir is driven

by a particular input sequence, at each time step the local dynamics is linearized around

the current state and the Lyapunov spectrum is calculated. The largest exponents thus

collected are then used to produce an estimate of the averageexponential divergence

rate of nearby trajectories along the input-driven reservoir trajectory. Even though for

input-driven systems this is only a heuristic measure10, it nevertheless proved use-

ful in suggesting the ‘optimal’ reservoir configuration across several tasks (Verstraeten

et al., 2007). Indeed, in our experiments the selected ESN configurations in the laser,

NARMA and speech recognition tasks all lead to pseudo-Lyapunov exponents ranging

from 0.35 to 0.5. As in (Verstraeten et al., 2007), the exponents are positive, suggest-

ing local exponential divergence along the sampled reservoir trajectories, and hence

locally expanding systems (at least in one direction). For our simple reservoir architec-

tures, SCR and CRJ, the selected configurations across the data sets also lead to similar

pseudo-Lyapunov exponents, but this time in the negative range. For example the CRJ

exponents ranged from -0.4 to -0.25. All exponents for the selected architectures of

both SCR and CRJ were negative, implying contractive dynamics.

To study the pseudo-Lyapunov exponents of the selected reservoir architectures

along the lines of (Verstraeten et al., 2007), for each data set, the reservoir matrix of

each selected model representative from ESN, SCR and CRJ wasrescaled so that the

spectral radius ranged from 0.1 to 2. The resulting pseudo-Lyapunov exponents are

shown in Figure 8 for the NARMA (A), laser (B), and speech (C) data sets. The vertical

lines denote the spectral radii of the selected ‘optimal’ model representatives and black

markers show the corresponding exponents. Interestingly,for all data sets, the pseudo-

Lyapunov exponent lines of ESN are consistently on top of theSCR ones, which in

turn are on top of those of CRJ. This ranking holds also for theselected model repre-

10Deep results of autonomous systems theory e.g. linking positive Lyapunov exponents to topolog-

ical entropy (Pesin Theorem) no longer apply, nor do apply traditional notions of ‘chaos’ and ‘order’

developed in the context of autonomous systems.
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sentatives on different tasks. Our results show that a reservoir model can have superior

performance without expanding dynamics. In fact, in our experiments the CRJ reser-

voir achieved the best results while having on average contractive dynamics along the

sampled trajectories and the least pseudo-Lyapunov exponent.
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Figure 8: Pseudo-Lyapunov Exponents for ESN, SCR, and CRJ onthe NARMA (A),

Laser (B), and Speech Recognition (C) Tasks. The Vertical Lines Denote the Spectral

Radii of the Selected ‘Optimal’ Model Representatives and Black Markers Show the

Corresponding Exponents.
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7 Conclusion

A large variety of reservoir computing models have been proposed, differing in reservoir

generation and readout formulation (Lukosevicius & Jaeger, 2009). Echo state networks

(ESN) (Jaeger, 2001) typically have a linear readout and a reservoir formed by a fixed

recurrent neural network type dynamics.Liquid state machines(LSM) (Maass et al.,

2002) have also mostly linear readout and the reservoirs aredriven by the dynamics of

a set of coupled spiking neuron models.Fractal prediction machines(FPM) (Tino &

Dorffner, 2001) for processing symbolic sequences have fixed affine state transitions

and the readout is constructed as a collection of multinomial distributions over next

symbols. Continuously adaptable reservoirs were suggested by Steil (2007). Many

other forms of reservoirs can be found in the literature (e.g. (Jones et al., 2007; Deng

& Zhang, 2007; Dockendorf et al., 2009; Bush & Anderson, 2005; Ishii et al., 2004;

Schmidhuber et al., 2007; Ajdari Rad et al., 2008)). However, exactly what aspects

of reservoirs are responsible for their often reported superior modelling capabilities

(Jaeger, 2001, 2002a,b; Jaeger & Hass, 2004; Maass et al., 2004; Tong et al., 2007) is

still unclear.

Traditionally, reservoirs have been constructed in a randomized manner. Moreover,

there have been several attempts to address the question of what exactly is a ‘good’

reservoir for a given application (Hausler et al., 2003; Ozturk et al., 2007). In our pre-

vious study (Rodan & Tino, 2011) we considered a very simple deterministically con-

structed cyclic reservoir (SCR). Besides eliminating the problem of non-transparency

and trail-and-error construction of standard randomized ESN, the simple deterministi-

cally constructed SCR topologies were shown to yield comparable results to ESN on a

variety of temporal tasks. In this paper we extended this study in several aspects:

1. We introduced a novel simple deterministic reservoir model, Cycle Reservoir with

Jumps (CRJ) with highly constrained weight values, that hassuperior perfor-

mance to standard ESN on four temporal tasks of different origin and character-

istics.

2. We studied the effect of eigenvalue distribution of the reservoir matrix on the

model performance. It has been suggested that a uniform coverage of the unit disk

by such eigenvalues can lead to superior model performances. We showed that
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this is not necessarily so. Despite having highly constrained eigenvalue distribu-

tion the CRJ consistently outperformed ESN with much more uniform eigenvalue

coverage of the unit disk.

3. We presented a new framework for determining short term memory capacityMC

of linear reservoir models to a high degree of precision. Using the framework we

showed the effect of shortcut connections in the CRJ reservoir topology on its

memory capacity. Due to cross-talk effects introduced by the jumps in CRJ, the

MC contributions start to rapidly decrease earlier than in thecase of SCR, but

unlike in SCR, the decrease inMCk in CRJ is gradual, enabling the reservoir to

keep more information about some of the later inputs.

4. Through the study of pseudo-Lyapunov exponents we showedthat even though

(unlike ESN) the simple CRJ reservoirs have (average) contractive dynamics, they

achieved consistently the best performance. This poses a interesting open ques-

tion as to whether and in what contexts the “edge-of-chaos” hypothesis can be

applied to reservoir computations.

We believe that if given a choice whether to construct a modelin a randomized

or completely deterministic manner, having guarantees of ‘similar’ performance levels,

it is more advisable to go for the latter. Besides the advantages mentioned above, in

our framework the important elements of the model structurehave a chance to emerge.

For example, we show that even though simple unidirectionalcycle with fixed weight

(SCR model) is already competitive, adding regular bidirectional shortcuts (of the same

weight) originating and ending in few higher-clustering coefficient nodes (CRJ model),

brings potentially huge performance improvements (and sometimes significantly beats

ESN). Such an insight could not be obtained using traditional randomized reservoir gen-

eration. This opens new research questions as to exactly whysuch a jump modification

has this effect. Such focused research program would not originate from studies consis-

tently using randomized reservoir constructions. On the other hand, using randomized

reservoir construction can have beneficial effects on modelevaluation - in contrast to

deterministically constructed reservoirs, one may need a smaller pool of different tasks

to get the same statistical significance11.

11We thank the anonymous reviewer for pointing this out.
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Compared with traditional ESN, specific reformulations of reservoir models can

often achieve improved performances (Steil, 2007; Xue et al., 2007; Deng & Zhang,

2007), at the price of even less transparent models and less interpretable dynamical or-

ganization. We propose that in order to quantify the benefit of the potentially complex

current or future reservoir formulations, such models should be compared with our sim-

ple, deterministically constructed CRJ model that, as shown in this study, has a potential

to significantly outperform the traditional ESN. Furthermore, it seems that characteriza-

tions of reservoirs in terms of memory capacity, eigenvaluedecomposition of the reser-

voir weight matrix or pseudo-Lyapunov exponents cannot easily capture what makes

reservoirs great temporal modelling tools. Reservoirs arenon-linear non-autonomous

dynamical systems that are difficult to characterize by linearization techniques (eigen-

spectrum), or methods not directly representing task-related useful temporal structure

in the input driving stream (memory capacity). Theory and practice of deep reservoir

characterizations that can be directly linked to their performance is an open problem

and a matter for our future study.
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Appendix

In this appendix we show detailed parameter settings of the selected model represen-

tatives in our experiments. Details of parameter values of models used in section 4.2

are provided in Table 7. Table 8 reports parameters for models used in the comparison

experiment with SWNR (section 5). Finally, we report parameter values of the selected

hierarchical extension (CRHJ) of the CRJ model in Table 9 (section 5).
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Table 7: Parameter Values for the Selected ESN, SCR and CRJ Model Representatives

with Reservoirs ofN units.

Dataset ESN SCR CRJ

laser con = 0.2, λ = 0.95, v = 0.85, rc = 0.7 v = 0.9, rc = 0.7,

N = 200 a = 1 rj = 0.4, ℓ = 5

NARMA con = 0.15, λ = 0.85, v = 0.05, rc = 0.8 v = 0.05, rc = 0.7,

N = 200 a = 0.1 rj = 0.5, ℓ = 5

speech con = 0.4, λ = 0.95, v = 1, rc = 0.95 v = 1, rc = 0.9,

N = 200 a = 1 rj = 0.4, ℓ = 13

memory and nonlinear

mapping task con = 0.2, λ = 0.95, v = 0.025, rc = 0.7 v = 0.025, rc = 0.8,

N = 100 a = 0.05 rj = 0.3, ℓ = 24

Table 8: Parameter Values for the Selected ESN, SWNR, SCR andCRJ Model Repre-

sentatives (Reservoir SizeN = 500).

Dataset ESN SWNR SCR CRJ

laser con = 0.15, λ = 0.9, λ = 5.5, v = 0.7, rc = 0.75 v = 0.7, rc = 0.75,

a = 1 a = 1 rj = 0.15, ℓ = 10

NARMA con = 0.2, λ = 0.95, λ = 2, v = 0.05, rc = 0.8 v = 0.1, rc = 0.8,

a = 0.1 a = 0.2 rj = 0.5, ℓ = 21

Table 9: Parameter Values for the Selected CRHJ Model Representative (Reservoir Size

N = 100).

Dataset CRHJ

NARMA v = 0.05, rc = 0.6, rj1 = 0.05, rj2 = 0.4, rj3 = 0.25

laser v = 1, rc = 1, rj1 = 0.55, rj2 = 0.4, rj3 = 0.1
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