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Abstract A new class of state-space models, reservoir models, witked Btate tran-
sition structure (the “reservoir”) and an adaptable readiaun the state space has re-
cently emerged as a way for time series processing/modellicho State Network
(ESN) is one of the simplest, yet powerful, reservoir modeSN models are generally
constructed in a randomized manner. In our previous studggR & Tino, 2011) we
showed that a very simple, cyclic, deterministically geted reservoirs can yield per-
formance competitive with standard ESN. In this contribative extend our previous
study in three aspectd:) We introduce a novel simple deterministic reservoir model,
Cycle Reservoir with Jumps (CRJ), with highly constrainexight values, that has su-
perior performance to standard ESN on a variety of tempasks of different origin
and characteristics2) We elaborate on the possible link between reservoir chaeract
izations, such as eigenvalue distribution of the resemmatrix or pseudo-Lyapunov
exponent of the input-driven reservoir dynamics, and thelehperformance. It has
been suggested that a uniform coverage of the unit disk Hyaigenvalues can lead to
superior model performances. We show that despite highigtcained eigenvalue dis-

tribution, CRJ consistently outperform ESN (that have mondre uniform eigenvalue



coverage of the unit disk). Also, unlike in the case of ESNsyao-Lyapunov expo-
nents of the selected ‘optimal’ CRJ models are consistemgative.3) We present a
new framework for determining short term memory capacityiredar reservoir mod-
els to a high degree of precision. Using the framework weysthd effect of shortcut

connections in the CRJ reservoir topology on its memory cipa

1 Introduction

Reservoir Computing (RC) (Lukosevicius & Jaeger, 2009) isea class of state-
space models based on a fixed randomly constructed stagtismarmapping (real-
ized through so-calledeservoii) and an adaptable (usually lineagadoutmapping
from the reservoir. Echo State Networks (ESNs) (Jaegerl R2Q@quid State Machines
(LSMs) (Maass et al., 2002) and the back-propagation deletion neural network
(Steil, 2004) are examples of popular RC methods. For a celnemsive review of RC
see (Lukosevicius & Jaeger, 2009).

In this contribution we concentrate on Echo State Netwarke,of the simplest, yet
effective forms of reservoir computing. Briefly, ESN is augent neural network with
a non-trainable sparse recurrent part (reservoir) and plsilimear readout. Typically,
the reservoir connection weights, as well as the input weighe randomly generated.
The reservoir weights are then scaled so that the speatiiakraf the reservoir’'s weight
matrix W is < 1. This ensures a sufficient condition for tiécho State Property”
(ESP): the reservoir state is @cho” of the entire input history. ESN has been success-
fully applied in time-series prediction tasks (Jaeger & $]&004), speech recognition
(Skowronski & Harris, 2006), noise modelling (Jaeger & H&4), dynamic pattern
classification (Jaeger, 2002b), reinforcement learning(B& Anderson, 2005), and in
language modelling (Tong et al., 2007).

A variety of extensions/modifications of the classical ES be found in the lit-
erature, e.g. intrinsic plasticity (Schrauwen et al., 28(8teil, 2007), refined training
algorithms (Jaeger & Hass, 2004), leaky-integrator reseunits (Jaeger et al., 2007a),
support vector machine (Schmidhuber et al., 2007), filterores with delay&sum read-
out (Holzmann & Hauser, 2009), pruning connections withmreservoir (Dutoit et al.,
2009) etc. There have also been attempts to impose spedaiierconnection topolo-



gies on the reservoir, e.g. hierarchical reservoirs (1a2@€7), small-world reservoirs
(Deng & Zhang, 2007) and decoupled sub-reservoirs (Xue ,2@0D7).

There are still problems preventing ESN to become a widetepied tool, e.g.
poorly understood reservoir properties (Xue et al., 200&3ervoir specification re-
quires numerous trails and even luck (Xue et al., 2007),aancbnnectivity and weight
structure of the reservoir is unlikely to be optimal (Oztetkal., 2007). Typically, in
order to construct a reservoir model one needs to specifyefervoir size, sparsity of
reservoir and input connections, scaling of input and reseweights.

Simple reservoir topologies have been proposed as alteznat the randomized
ESN reservoir - e.g. ‘feedforward’ reservoirs with tap get@nnections (Cernansky
& Makula, 2005), reservoir with diagonal weight matrix (skelops) (Fette & Eggert,
2005) and cycle topology of reservoir connections (Rodan®;72011). The Simple
Cycle Reservoir (SCR) introduced in (Rodan & Tino, 2011)ieedd comparable per-
formances to ‘standard’ ESN on a variety of data sets of @iffeorigin and memory
structure. We also proved that the memory capacity of lig2R can be made arbi-
trarily close to the proven optimal value (for any recurreatiral network of the ESN
form).

In this paper we extend the cycle reservoir of (Rodan & Tir@dl, ) with a regular
structure of shortcuts (JumpsEycle Reservoir with Jumg€RJ). In the spirit of SCR
we keep the reservoir construction simple and determmi¥tt, it will be shown that
such an extremely simple regular architecture can signifigautperform both SCR
and standard randomized ESN models. Prompted by theséstegealinvestigate some
well known reservoir characterizations, such as eigemvdistribution of the reservoir
matrix, pseudo-Lyapunov exponent of the input-drivenmasie dynamics, or memory
capacity and their relation to the ESN performance.

The paper is organized as follows. Section 2 gives a briefvow of Echo state
network design and training. In Section 3 we present ourgsed model - CRJ. Exper-
imental results are presented and discussed in Sectiond 8,aaspectively. Section
6 investigates three reservoir characterizations (egpaetrum of the reservoir weight
matrix, short term memory capacity and pseudo-Lyapunowe&pt) in the context of

reservoir models studied in this paper. Finally, the workascluded in section 7.



2 Echo State Networks

Echo state network is a recurrent discrete-time neural ovtwith K input units, N
internal (reservoir) units, and output units. The activation of the input, internal,
and output units at time stepare denoted byis(n) = (s1(t), ..., sk ()T, z(t) =
(x1(t), ...,zn(t)T, andy(t) = (yi(t),...,yr(t))T respectively. The connections be-
tween the input units and the internal units are given byvar K weight matrixV,
connections between the internal units are collected iN anN weight matrixi’, and

connections from internal units to output units are giveh ir N weight matrixU.
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Figure 1: Echo State Network (ESN) Architecture

The internal units are updated accordinib:to
x(t+1)=f(Vs(t+1)+Wa(t) + 2(t + 1)), (1)

where f is the reservoir activation function (typically tanh or semther sigmoidal
function); z(¢ + 1) is an optional uniform i.i.d. noise. The linear readout isnpaited

a521

y(t+ 1) =Uz(t +1). (2)

Elements ofl¥ and V' are fixed prior to training with random values drawn from a
uniform distribution over a (typically) symmetric intetvalo account for echo state

property, the reservoir connection matkix is typically scaled a8V — aW/| A4z,

1There are no feedback connections from the output to thewa@sand no direct connections from
the input to the output.
2The reservoir activation vector is extended with a fixed @etaccounting for the bias term.

4



where |\,....| is the spectral radigsof 17 and0 < o < 1is a scaling paramel‘ér

(Jaeger, 2002b).

ESN memoryless readout can be trained both offline (Batathpafine by minimizing

a given loss function. In most cases we evaluate the moderp&nce via Normalized
Mean Square Error (NMSE):

) — vl
NMSE =0y — o)) )

where(t) is the readout outputy(t) is the desired output (target),|| denotes the
Euclidean norm and) denotes the empirical mean.

In the offline (Batch) trainingmode one first runs the network on the training set,
and subsequently computes the output weights that minithe®&MSE. In summary,

the following steps are performed:
1. Initialize W with a scaling parameter < 1 and run the ESN on the training set.

2. Dismiss data from initial ‘washout’ period and collecethemaining network

states(t) into a matrixX .
3. The target values from the training set are collected iactory.

4. The output unit weights are computed using ridge regrassi
U=y X"(XX"+p1)7", 4)
where/ is the identity matrix angh > 0 is a regularization factor determined on
a hold-out validation set .

Standard recursive algorithms, such as Recursive Leastr&(RLS), for NMSE
minimization can be used ionline readout training In RLS, after the initial washout

period the output weights are recursively updated at every time step

P(t —1) ()
M= TP D) ©
P(t) = A7 (P(t—1) = k(t) 2" (t) P(t - 1)) (6)
Ut) = Ut —1)+k(t) [y(t) —4(t)] (7)

3The largest among the absolute values of the eigenvalués of
4Such scaling corresponds to the sufficient condition for B8I. For necessary condition, maxi-

mum singular value would need to be used.



where k stands for the innovation vectoy; and y correspond to the desired and
calculated (readout) output unit activitieB;is the error covariance matrix initialized
with large diagonal values. ‘Forgetting parametek ~ < 1 is usually set to a value
close tol.0. In this work~ is set on a hold-out validation set.

3 Cycle Reservoir with Jumps

In (Rodan & Tino, 2011) we proposed a Simple Cycle Resen®CR) with perfor-
mance competitive to that of standard ESN. Unlike ESN, tmstraction of SCR model
is completely deterministic and extremely simple. All égekservoir weights have the
same value; all input connections also have the same abs@llute. Viewing reservoir
interconnection topology as a graph, the SCR has a smakédegtocal clustering and
a large average path length. In contrast, ESN (a kind of nangetwork) has small de-
gree of local clustering and small average path length.dtdeen argued that reservoirs
should ideally have small clustering degree (sparse ressj\Jaeger & Hass, 2004)
so that the dynamic information flow through the reservoule®is not ‘too cluttered’.
Also a small average path length, while having longer irdinal paths within the reser-
voir, can allow for representation of a variety of dynamitade scales. We propose a
Cycle Reservoir with Jumps (CRJ) which, compared with SGRld4o slightly higher
degree of local clustering while achieving much smallerage path length.

The CRJ model has a fixed simple regular topology: the regemeadles are con-
nected in a uni-directional cycle (as in SCR) with bi-direoal shortcuts (jumps) (Fig.
2). All cycle connections have the same weight- 0 and likewise all jumps share the

same weight; > 0. In other words, non-zero elementslot are:
e the ‘lower’ sub-diagonal;, ; = r., fori = 1..N — 1,
e the ‘upper-right cornerlV; y = r. and

e the jump entries;. Consider the jump size< ¢ < | N/2|. If (N mod ¢) = 0,
then there areéV/¢ jumps, the first jump being from unit 1 to unit+ ¢, the last
one from unitN + 1 — ¢ to unit 1 (see Figure 2 (A)). [N mod ¢) # 0, then
there are| N//| jumps, the last jump ending in un¥ + 1 — (N mod /) (see
Figure 2 (B)). In such cases, we also consider extendingebervoir size by:
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units (I < k < ¢), such thatV. mod (N + k) = 0. The jumps are bi-directional

sharing the same connection weight

Figure 2: An Example of CRJ Reservoir Architecture with= 18 Units and Jump
Sizel = 3 (A) and/ = 4 (B).

As with the SCR model, in the CRJ model we use full input-teergoir connec-
tivity with the same absolute value > 0 of the connection weight. It is shown in
(Rodan & Tino, 2011) that an aperiodic character of signshef input weights in
V = (V1, Vs, ..., Vi) is essential for the SCR model. Unlike in (Rodan & Tino, 2011)
in this contribution we use the same method for obtainingripat weight signs, uni-
versally across all data sets. In particular, the inputsaye determined from decimal
expansiondy.d;dsds... of an irrational number - in our case The first/V decimal
digitsdy, ds, ..., dy are thresholded at 4.5, i.e.(f< d, < 4 and5 < d,, < 9, then the
n-th input connection sign (linking the input to theth reservoir unit) will be— and+,

respectively. The values r., andr; are chosen on the validation set.

4 Experiments

In this section we test and compare our simple CRJ resempology with standard
ESN and SCR on a variety of timeseries tasks widely used ife®M literature and

covering a wide spectrum of memory structure (Schrauweh,&2G@8b; Cernansky &



Tino, 2008; Jaeger, 2001, 2002a, 2003; Jaeger & Hass, 2@ddiraeten et al., 2007;
Steil, 2007).

4.1 Experimental Setup

For each data set and each model class (ESN, SCR, and CRXked pn the valida-
tion set a model representative to be evaluated on the teStrs=readout mapping was
fitted both using offline (Ridge Regression) and online (Rit&ning. Then, based on
validation set performance, the offline or online traineati@ut was selected and tested
on the test set.

For RLS training we add noise to the internal reservoir atitbns where the noise
IS optimized for each dataset and each reservoir size usiidption set (Wyffels et al.,
2008). For SCR architecture the model representative inetkty the absolute input
weight valuev € (0, 1] and the reservoir cycle connection weighte (0,1]. For
the CRJ architecture the model representative is definetidwplisolute input weight
valuev € (0, 1], the reservoir cycle connection weight € (0, 1], the jump sizel <
¢ < |N/2| and the jump weight; € (0,1]. For the ESN architecture, the model
representative is specified by the reservoir sparsity,teda@adius) of the reservoir
weight matrix, input weight connectivity and input weiglainge[—a, a]. We present
the results for three reservoir siz&s= 100, 200, 300.

For ESN we calculated out-of sample (test set) performarezsores over 10 sim-
ulation runs (presented as mean and StDev). The selecte@S€CRBRJ representatives
are evaluated out-of-sample only once, since their cocistruis completely determin-
istic. The only exception is the speech recognition expenin due to limited test set
size, following (Verstraeten et al., 2007), a 10-fold crealdation was performed (and
paired t-test was used to assess statistical significante oésult).

Details of the experimental setup, including ranges fossrealidation based grid
search on free-parameters, are presented in Table 1. &bpmtameter settings of the

selected model representatives can be found in the Appendix



Table 1: Summary of the Experimental Setup. Grid Search &aage Specified in
MATLAB Notation, i.e. [s : d : e] Denotes a Series of Numbers Starting from

Increased by Increments d@f Until the Ceilinge is Reached.

Reservoir topologies ESN, SCR and CRJ

Readout learning RLS with dynamic noise injection, Ridge Regression

ESN (random weights with spectral radiusn [0.05 : 0.05 : 1] ,

Reservoir matrix and connectivity-on in [0.05 : 0.05 : 0.5])
CRJ and SCRi{. in [0.05: 0.05 : 1], 7; in [0.05 : 0.05 : 1] )
jump size 1 < ¢ < [N/2], whereN is the reservoir size.
reservoir size N in [100 : 100 : 300]
input scale v (for SCR and CRJ) and (for ESN) from[0.01 : 0.005 : 1]
input sign generation SCR and CRJ: thresholded decimal expansiom of

readout regularization reservoir noise size (RLS), regularization factor (ridggression
107, ¢ = [-15:0.25 : 0]

4.2 Experimental Tasks and Results
System Identification

As a System Ildentification task, we considered a NARMA sysiéarder 10 (Atiya &
Parlos, 2000) given by eq. (8).

y(t+ 1) = 0.3y(t) + 0.05y(t) Y " y(t —i) + LB5s(t — 9)s(t) + 0.1, (8)

1=0

wherey(t) is the system output at time s(¢) is the system input at time(an i.i.d
stream of values generated uniformly frdm0.5]. The current output depends on
both the input and the previous outputs. In general, mouagthis system is difficult
due to the non-linearity and possibly long memory. The net&avere trained on
system identification task to outputt) based ons(¢). The inputs(¢) and target data
y(t) are shifted by -0.5 and scaled by 2 as in (Steil, 200NARMAsequence has a
length of 8000 items where the first 2000 were used for trgirtime following 5000 for
validation, and the remaining 2000 for testing. The first 28ies from the training,

validation and test sequences were used as the initial wapleaod.



The results are presented in Table 2. Even though SCR idlgligiferior to the
standard ESN construction, the simple addition of reguiartsuts (jumps) to the SCR
leads to a superior performance of CRJ topology.

Table 2: Test Set NMSE Results of ESN, SCR, and CRJ Resenalel on the 10th
Order NARMA System. Reservoir Nodes witlvmh Transfer Function were Used.

reservoir mode N =100 N =200 N =300
ESN 0.0788 (0.00937) 0.0531 (0.00198) 0.0246 (0.00142
SCR 0.0868 0.0621 0.0383
CRJ 0.0619 0.0196 0.0130

Time Series Prediction

The Santa Fe Laser dataset (Jaeger et al., 2007a) is a ctods-@ugh periodic to
chaotic intensity pulsations of a real laser. The task wasddict the next valug(t+1).
The dataset contains 9000 values, the first 2000 values wgerkfar training, the next
5000 for validation, and the remaining 2000 values was usedekting the models.
The first 200 values from training, validation and testinguences were used as the
initial washout period.

The results are shown in Table 3. Again, ESN and SCR are almnegsar, with SCR
slightly inferior. However, the CRJ topology can outpenficthe other architectures by

a large margin.

Table 3: Test Set NMSE Results of ESN, SCR, and CRJ Resenailel on the Santa

Fe Laser Dataset. Reservoir Nodes withh Transfer Function were Used.

reservoir mode N =100 N =200 N =300
ESN 0.0128 (0.00371) 0.0108 (0.00149) 0.00895 (0.00169
SCR 0.0139 0.0112 0.0106
CRJ 0.00921 0.00673 0.00662
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Speech Recognition

For this task we used the Isolated Digits dat3sdt is a subset of the TI46 dataset
which contains 500 spokdsolated Digits(zero to nine), where each digit is spoken
10 times by 5 female speakers. Because of the limited testizet 10-fold cross-
validation was performed (Verstraeten et al., 2007) ancepditest was used to assess
whether the perceived differences in model performancestatistically significant.
The Lyon Passive Ear model (Lyon, May 1982) is used to corthertspoken digits
into 86 frequency channels. Following the ESN literatunagi$his dataset, the model
performance will be evaluated using the Word Error Rate (WERich is the number
of incorrect classified words divided by the total number mfgented words. The 10
output classifiers are trained to output 1 if the correspagdiigit is uttered and -1
otherwise. Following (Schrauwen et al., 2007) the tempordn over complete sample
of each spoken digit is calculated for the 10 output clagsifidhe Winner-Take-All
(WTA) methodology is then applied to estimate the spokent’'digientity. We use
this data set to demonstrate the modelling capabilitiesiftérdnt reservoir models
on high-dimensional (86 input channels) time series. Tkalte confirming superior
performance of the simple CRJ model are shown in Table 4. és@rvoir sizeV =
100 the CRJ model is significantly superior to ESN at the confiddegel 96%. For
reservoirs withV = 200 and N = 300 neurons CRJ beats ESN at significance levels

greater tha99%.

Table 4: WER Results of ESN, SCR, and CRJ Models onigbkated Digits(Speech

Recognition) Task. Reservoir Nodes witlnh Transfer Functiorf were Used.
reservoir mode N =100 N =200 N =300

ESN 0.0296 (0.0063) 0.0138 (0.0042) 0.0092 (0.0037
SCR 0.0329 (0.0031) 0.0156 (0.0035) 0.0081 (0.0022
CRJ 0.0281 (0.0032) 0.0117 (0.0029) 0.0046 (0.0021

5obtained from http://snn.elis.ugent.be/rctoolbox
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Memory and Non-Linear Mapping Task

The last task, used in Verstraeten et al. (2010), is a genatiah of the delay XOR-task
used in (Schrauwen et al., 2008a). It allows one to systeaibtistudy two character-
istics of reservoir topologies: memory and the capacityrae@ss non-linearities in the
input time series. The memory is controlled by the delaythe output, and the ‘degree
of non-linearity’ is determined by a parameger> 0. The input signak(t) contains
uncorrelated values from a uniform distribution over theeimal [—0.8, 0.8]. The task

Is to reconstruct a delayed and non-linear version of thetisjgnal:

Ypa(t) = sign[B(t — d)] - |5(t = ), 9)

wheref(t — d) is the product of two delayed successive inputs,
Bt—d)=s(t—d)- s(t—d—1).

The sign and absolute values are introduced to assure a yimowgput even in the
case of even powers (Verstraeten et al., 2010). Followirgsfvaeten et al., 2010), we
considered delayg = 1,...,15 and powerg = 1,...,10 with a total of 150 output
signalsy, q (realized as 150 readout nodes). The main purpose of theriexgnt is to
test whether a single reservoir can have rich enough poaitefnal representations of
the driving input stream so as to cater for the wide varietgfadutputs derived from
the input for a range of delay and non-linearity parameters.

We used time series of length 8000, where a new time seriegeveated in each
of 10 runs. The first 2000 items were used for training, the B8R0 for validation, and
the remaining 3000 for testing the models. The first 200 &l training, validation
and test sequences were used as the initial washout perigdan @erstraeten et al.,
2010), we used reservoirs of size 100 nodes.

Figure 3 illustrates the NMSE performance for ESN (A) , SCR éBd CRJ (C).
Shown are contour plots across the two degrees of freedom detlayd and the non-
linearity parametep. We also show difference plots between the respective NMSE
values: ESN - SCR(D), ESN - CRJ (E) and SCR - CRJ (F). When #ileliacomes
harder (non-linearity and delay increase - upper-righheoof the contour plots) the
performance of the simple reservoir constructions, SCR@RA, is superior to that

of standard ESN. Interestingly, the simple reservoirs seeoutperform ESN by the
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largest margin for moderate delays and weak non-lineasitya({l values op). We do
not have a clear explanation to offer but note that our latetiss in section 6.2 show
that, compared with ESN, the SCR and CRJ topologies have enfit for greater
memory capacity. This seems to be reflected most strondig i§éries is characterized

by weak non-linearity.

5 Discussion

The experimental results clearly demonstrate that our senple deterministic reser-
Voir constructions have a potential to significantly outpen standard ESN random-
ized reservoirs. We propose that instead of relying on uessary stochastic elements
In reservoir construction, one can obtain superior (andetones superior by a large
margin) performance by employing the simple regular uettional circular topology
with bi-directional jumps with fixed cycle and jump weightslowever, it is still not
clear exactly what aspects of dynamic representationgireservoirs are of importance
and why. In later sections we concentrate on three featdresservoirs - eigenspec-
trum of the reservoir weight matrix, (pseudo) Lyapunov exgrt of the input-driven
reservoir dynamics and short term memory capacity - andidsstheir relation (or lack
of) to the reservoir performance on temporal tasks.

Besides the symmetric bi-directional regular jumps we m®red uni-directional
jumps (both in the direction and in the opposite directioth main reservoir cycle),
as well as jumps not originating/ending in a regular grid faib-like’ node§. In all
cases, compared with our regular CRJ topology, the perfocmavas slightly worse.
Of course, when allowing for two different weight values hetbidirectional jumps
(one for forward, one for backward jumps), the performamegroved slightly but not
significantly over CRJ.

Our framework can be extended to more complex regular lulei@al reservoir con-
structions. For example, we can start with a regular streabfirelatively short ‘lower
level’ jumps in the style of CRJ topology. Then another lagEtonger jumps over
the shorter ones can be introduced etc. We refer to thistaothie aLycle Reservoir

with Hierarchical JumpgCRHJ). Figure 4 illustrates this idea on a 3-level hiergrah

6For example, when a jump lands in unitthe next jump originates in unit + 1 etc.
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jumps. As before, the cycle weights are denoted byThe lowest level jump weights
are denoted by;,, the highest by-;,. On each hierarchy level, the jump weight has a

single fixed value.

Table 5: Test Set NMSE Results of Deterministic CRHJ Reselodel on the Santa

Fe Laser Dataset and NARMA System. Reservoir Nodes twith Transfer Function

were Used.
Dataset | N =100 | N =200 | N = 300
laser 0.00743| 0.00594 | 0.00581
NARMA | 0.0662 | 0.0182 | 0.0133

As an illustrative example, in Table 5 we show test set redolt 3-level jump hi-
erarchies with jump sizes 4, 8 and 16. We used the same jurep iz both laser and
NARMA data sets. The weights, r;,,r;,, 7, € [0.05,1) were found on the valida-
tion set. In most cases the performance of reservoirs wérahshical jump structure
slightly improves over the CRJ topology (see Tables 2 andH)wever, such more
complex reservoir constructions, albeit deterministieedye from the spirit of the sim-
ple SCR and CRJ constructions. The potential number of faganpeters (jump sizes,
jump weights) grows and the simple validation set searategiy can quickly become
infeasible.

The CRHJ structure differs from hierarchically structurathdomized reservoir
models proposed in the RC community (Jaeger, 2007; Triefgmbet al., 2010), where
the reservoir structures are obtained by conneZtitdig‘erent smaller reservoirs con-
structed in a randomized manner.

Our CRJ reservoirs can also be related to the work of Deng &g1{a007) where
massive reservoirs are constructed in a randomized maarteasthey exhibit small-
world and scale-free properties of complex networks. Werred this model as the
small world network reservoir (SWNR). We trained such SWNBhiectur® on the
laser and NARMA datasets, since for reasonable results \tH&FS model needed to
be of larger size, we conducted the comparative experimeiiisreservoirs of size

7

8We are thankful to the authors of (Deng & Zhang, 2007) for pimg us with their code.

possibly through trained connections
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Figure 4: Reservoir Architecture of Cycle Reservoir withekirchical Jumps (CRHJ)
with Three Hierarchical Levels. Reservoir Sixe= 18, and the Jump Sizes afe= 2

for Level 1 ,¢ = 4 for Level 2, andd = 8 for Level 3.

N = 500. The results (across 10 randomized SWNR model construaiits) for laser
and NARMA data sets are presented in Table 6 . The performaasealways inferior
to our simple deterministically constructed CRJ reservDetailed parameter settings
of the selected model representatives can be found in thegy.

Finally, we mention that in the context of this paper, the kvdone in the com-
plex network community, relating dynamics of large netvgorkth different degrees of
constrained interconnection topology between nodes, reaf mterest. For example,
Watts & Strogatz (1998) consider collective dynamics ofwaeks with interconnec-
tion structure controlled from completely regular (eachi®@on a ring connects to its
k nearest neighbors), through “small-world” (for each nod#h some probabilityp
links to the nearest neighbors are rewired to any randondgeh node on the ring), to
completely randomp=1). However, such studies address different issues fraseth
we are concerned with in this paper: first, our reservoirsrgyat-driven; second, our
interconnection construction is completely determiniatd regular; and third, the dy-
namics of CRJ is given through affine functions in every ngae through a saturation

sigmoid-type activation functions.
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Table 6: Test Set NMSE Results of ESN, SWNR, DeterministiR&@d Deterministic
CRJ reservoir Model on the Santa Fe Laser Dataset and NARM#e8y Reservoir

Size N = 500 and Reservoir Nodes wittunh Transfer Function were Used.
Dataset ESN SWNR SCR CRJ

laser | 0.00724 (0.00278) 0.00551 (0.00176) 0.00816| 0.00512
NARMA | 0.0104 (0.0020) | 0.052(0.0089) | 0.0216 | 0.0081

6 Reservoir Characterizations

There has been a stream of research work trying to find udedwécterizations of reser-
voirs that would correlate well with the reservoir perfomma on a number of tasks.
For example, Legenstein & Maass (2007) introduce a ‘kermelasure of separability
of different reservoir states requiring different outpatues. Since linear readouts are
used, the separability measure can be calculated base@ oartk of the reservoir de-
sign matrixX. In the same vein, in Bertschinger & Natschlager (2004) guggested
that if a reservoir model is to be useful for computationsrguut time-series, it should
have the “separation property” - different input time seféich produce different out-
puts should have different reservoir representations.Mihear readouts are used, this
typically translates to ‘significantly’ different statelloreover, it is desirable that the
separation (distance between reservoir states) increasethe difference of the input
signals.

In what follows we examine three other reservoir charazé¢ions suggested in the
literature, namely - eigenspectrum of the reservoir wergatrix Ozturk et al. (2007),
(pseudo) Lyapunov exponent of the input-driven reservgiragnics Verstraeten et al.

(2007) and short term memory capacity Jaeger (2002hb).

6.1 EigenSpectra of Dynamic Reservoirs

Several studies have attempted to link eigenvalue digiobwf the ESN reservoir ma-
trix W with the reservoir model's performance. First, in order &y necessary

9reservoir states resulting from driving the reservoir vdiffierent input streams
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condition for echo state property, the eigenvalueg/ofieed to lie inside the unit circle.
Ozturk, Xu and Principe (Ozturk et al., 2007) proposed thatdistribution of reservoir

activations should have high entropy. It is suggested tiatihearized ESN designed
with the recurrent weight matrix having the eigenvalue$armly distributed inside the

unit circle creates such an activation distribution (coregddo other ESNs with random
internal connection weight matrices). In such cases, teeesydynamics will include

uniform coverage of time constants (related to the uniforstrithution of the poles)

(Ozturk et al., 2007). However, empirical comparison o$ tiype of reservoir with the

standard ESN is still lacking (Lukosevicius & Jaeger, 2009)

It has been also suggested that sparsity of reservoir orteections (non-zero en-
tries inW) is a desirable property (Jaeger & Hass, 2004). On the otmadt,izhang &
Wang (2008) argue that sparsely and fully connected ressmwwpESN have the same
limit eigenvalue distribution inside the unit circle. Huetmore, the requirement that
the reservoir weight matrix be scaled so that the eigensabiél” lie inside the unit
circle has been criticized in (Verstraeten et al., 2006 emetihe experiments show that
scaling with a large spectral radius seemed to be requiresbfoe tasks. On the other
hand, smaller eigenvalue spread is necessarily for stathigedraining of the readout
(Jaeger, 2005).

Our experimental results show that the simple CRJ and regidaarchical CRHJ
reservoirs outperform standard randomized ESN models orda variety of tasks.
However, the eigenvalue spectra of our regularly and detestically constructed reser-
voirs are much more constrained than those of the standakdr&&lels. Figure 5
shows eigenvalue distribution of representatives of tlue fieodel classes - ESN, SCR,
CRJ, and CRHJ - fitted on the isolated digits dataset in thectpeecognition task.
Clearly the coverage of the unit circle by the ESN eigenwalisemuch greater than
in the case of the three regular deterministic reservoistantions. While the ESN
eigenvalues cover the unit sphere ‘almost uniformly’, tlkRSCRJ, and CRHJ eigen-
values are limited to a circular structure inside the urskdiThe eigenvalues of SCR
must lie on a circle by definition. On the other hand, the ergkre structure of CRJ
and CRHJ can be more varied. However, the eigenvalue distyiis of CRJ and CRHJ
reservoirs selected on datasets used in this study werghlyfconstrained following

an approximately circular structure. This poses a questsoio what aspects of eigen-
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value distribution of the reservoir matrix are relevantdquarticular class of problems.
We suspect that the non-linear nature of the non-autonomes@svoir dynamics may
be a stumbling block in our efforts to link linearized autammus behavior of reservoirs
with their modelling potential as non-linear non-autonamsystems. Deeper investi-
gation of this issue is beyond the scope and intentions sfstioidy, and it is a matter of

future research.

-1 -05 0 05 1 -1 -05 0 05 1

Figure 5: Eigenvalue Distribution for ESN, SCR, CRJ and CHR&3ervoirs ofNV =
300 Neurons Selected on the Isolated Digits Dataset in the $pRecognition Task
(and Hence Used to Report Results in Table 4).

6.2 Memory Capacity

Another attempt at characterization of dynamic reservigine terms of their (short-
term) memory capacity (MC) (Jaeger, 2002a). It quantifiesathility of recurrent net-
work architectures to encode past events in their stateesp@adhat past items in an
I.i.d. input stream can be recovered (at least to certaimed@g Consider a univariate

stationary input signal(t) driving the network at the input layer. For a given dekay

19



we construct a network with optimal parameters for the tdslugputtings(t — k) after
seeing the input streams(t — 1)s(t) up to timet. The goodness of fit is measured
in terms of the squared correlation coefficient between #s#red output (input signal
delayed byk time steps) and the observed network outpij:

Cov*(s(t —k),y(t))

MGy = Var(s(t)) Var(y(t))’

(10)

where C'ov denotes the covariance amthr the variance operators. The short term

memory (STM) capacity is then given by (Jaeger, 2002a):

MC = i MGy, (11)

k=1

Traditionally, memory capacity has been estimated nuralyiby generating long
input streams of i.i.d data and training different readdoitslifferent delays: from 1 up
to some upper bounkl,,.... Typically, due to short-term memory of reservoir models,
Emae is of order102. We will later show that such empirical estimationsidt”;,, even
for linear reservoirs, are inaccurate, especially fordasglues of:.

Jaeger (2002a) proved that fany recurrent neural network withv recurrent neu-
rons, under the assumption of i.i.d. input stream, MC caexoeedN. We proved
(Rodan & Tino, 2011) (under the assumption of zero-meath imput stream) that MC
of linear SCR architecture withV reservoir units can be made arbitrarily closeNo
In particular,MC = N — (1 — r?V), wherer € (0, 1) is the single weight value for
all connections in the cyclic reservoir. In order to studg themory capacity structure
of linear SCR and the influence of additional shortcuts in GRIfirst present a novel

way of estimation of\/C), directly from the reservoir matrix.

Direct Memory Capacity Estimation for Linear Reservoirs

Given a (one side infinite) i.i.d. zero-mean real-valuedutrgireams(..t) = ... s(t —
3) s(t—2) s(t—1) s(t) emitted by a sourc®, the state (at timé) of the linear reservoir

with reservoir weight matri¥}” and input vectod is

z(t) :is(t—ﬁ) wtv

(=0
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For the task of recalling the input frotntime steps back, the optimal least-squares

readout vectot/ is given by
U=R"p"®,

where
R = Ep(s(“t))[‘f(t) :L’T(t)]

is the covariance matrix of reservoir activations and
p™ = Ep(say st — k) z(t)].

The covariance matrix can be evaluated as

= Ep(a) (Z s(t—0) W' V) : <Z s(t —q) W v)

/=0 q=0

= Epuy | D st =10 st —q W VvV (wo”

L,q=0

= " Brsapls(t = 0) s(t — )] WO VYT (W)

£,q=0
= o) wvvTwh,
=0
whereo? is the variance of the i.i.d. input stream.

Analogously,

/=0
= > Epuaplst—0) s(t— k)] W'V
/=0

= 2 WkV.

(12)

(13)

(14)

ProvidedR is full rank, by (12), (13) and (14), the optimal readout wedt *) for

delayk > 1reads
Uk =gt wk v,

where -
G=>Y wvvtwh
/=0
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The optimal ‘recall’ output at timeis then

y(t) = "(t)u®
= ) st—-0 V" wH et why, (17)
/=0

yielding

Cov(s(t — k),y(t)) = Y Epuoyls(t —0) st — k)] VI (WH" G whv
_ v whHT Gt wk v (18)

Since for the optimal recall outpatov(s(t — k), y(t)) = Var(y(t)) (Jaeger, 2002a;
Rodan & Tino, 2011), we have

MC, =V (WhHT Gt wkv. (19)

Two observations can be made at this point. First, as proyedakger Jaeger
(2002a),M C', constitute a decreasing sequencé:i> 1. From (19) it is clear that
MC}, scale ag|W||~2*, where||[W|| < 1 is a matrix norm ofi¥’. Second, denote the
image of the input weight vectdr throughk-fold application of the reservoir opera-
tor W by V¥, ie. V® = Wk V. Then the matrbxG = >°;°, V@ (V)T can be
considered a scaled ‘covariance’ matrix of the iteratedyeseofl” under the reservoir
mapping. In this interpretatiod/ C'; is nothing but the squared ‘Mahalanobis norm’ of

V) under such covariance structure,

MC, = (V)T gly®
= [VOUR-s. (20)

We will use the derived expressions to approximate the megoapacity of different
kinds of (linear) reservoirs to a much greater degree ofigi@t than that obtained
through the usual empirical application of the definitior(19) - first generate a long
series of i.i.d. inputs and drive with it the reservoir; theain the readout to recover the
inputs delayed by time steps; finish by numerically estimating the stati$ticaments
in (10) using the target values (delayed inputs) and theimases provided at ESN
output.
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We will approximateG = >"72, V) (V)T py a finite expansion of the first
terms

G(L) =) _ vO O (21)
We have

VOl < IWile - V]2
< VN Wl (V]2
< VN W3- VIl
= VN (0ma(W))" - V2, (22)

where|| - ||, and || - || is the (induced)L, and Frobenius norm, respectively, and

omaz (W) is the largest singular value &f . Furthermore,

VO VO, = [[vO3
< N- (O-mam(W))% ' ||VH§7

and so, given a smaidl > 0, we can solve for the number of termge) in the approxi-
mation (21) ofG so that the norm of contributioris® (V)Z, ¢ > L(e), is less than

€. Sinced, ., (W) < 1,

IN

1Y v wvO)T, S IVO @O,
(=L(e) (=L(e)

oo

< NVIE Y (Omac(W)*
L=L(e)

ar (W)

= NV (e (T

1

Om

(23)

we have that for - -
1 log =47y

2 logoma(W))

L(e) > (24)

it holds

[ee]
1Y vO VI, <e
{=L(e)

and so withL(e) terms in (21)( can be approximated in norm up to a tetnz.
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The Effect of Shortcuts in CRJ on Memory Capacity

In (Rodan & Tino, 2011) we proved that thie-Step recall’ memory capacity/C), for
the SCR with reservoir weight< (0, 1) is equal to

where¢; = r=%,5=0,1,2,..., N — 1. It follows that fork > 1,

MC, = 12 (1— er) =2 (k mod )

— (1 — 22 [k—(k Mod )
— (1= V)2 div N, (25)

where div represents integer division. Hence, for lineaticyeservoirs with reservoir
weight0 < r < 1, MC} is a non-increasing piecewise constant functiork ofvith

blocks of constant value
MCyyyj= (17NN g>0, je{0,1,..,N—1}. (26)

In order to study the effect of reservoir topologies on thatdgbutions M Cj, to
the memory capacity/C', we first selected three model class representatives (on the
validation set) withV = 50 linear unit reservoirs on the system identification task (10
th order NARMA), one representative for each of the modeds#g ESN, SCR and CRJ
(jump length 4). Linear and non-linear reservoirs of sizeh&@ similar performance
levels on the NARMA task. To make the (', plots directly comparable, we then re-
scaled the reservoir matric#g to a common spectral radiyse (0, 1). In other words,
we are interested in differences in the profile\ét”;, for different reservoir types, ds
varies. Of course, for smaller spectral radii, the MC cdmitions will be smaller, but
the principal differences can be unveiled only if the samexspl radius is imposed on
all reservoir structures.

The memory capacity of the reservoir models was estimatedigih estimation of
MCy, k=1,2,...,200, in two ways:

1. Empirical Estimation:The i.i.d. input stream consisted of 9000 values sampled
from the uniform distribution ori—0.5,0.5]. The first 4000 values were used

for training, the next 2000 for validation (setting the rkgization parameter of
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Ridge regression in readout training), and the remainif@3@lues was used for
testing the models (prediction of the delayed input valuéd)er obtaining the
test outputs, the memory capacity contributididg’, were estimated according
to (10). This process was repeated 10 times (10 runs), in each new input
series has been generated. Fih&l'; estimates were obtained as averages of the
MC), estimated across the 10 runs. This represents the stargaahah ta\/C
estimation proposed by Jaeger (2002a) and used in the ESHtlite (Fette &
Eggert, 2005; Ozturk et al., 2007; Verstraeten et al., 2895, 2007).

2. Theoretical EstimationThe M C' contributions)M C, were calculated from (19),
with G’ approximated as in (21). The number of terim$ias been determined

according to (24), where the precision parametens set ta = 107,

Figures 6(A) and (B) present theoretical and empiricalnestes, respectively, of
MCy, for p = 0.8. Analogously, Figures 6(C) and (D) show theoretical and ieog
estimates of\/C, for p = 0.9. The direct theoretical estimation (Figures 6(A,C)) is
much more precise than the empirical estimates (Figure9)BNote the clear step-
wise behavior ofM/ C, for SCR predicted by the theory (eq. (26)). As predicted, the
step size isV = 50. In contrast, the empirical estimations bfC), can infer the first
step atk = 50, but lack precision thereafter (fér> 50). Interestingly, SCR topology
can keep information about the ladt — 1 i.i.d. inputs to a high level of precision
(MC,=1-7r*k=1,2,....N — 1), but then loses the capacity to memorize inputs
more distantin the past in a discontinuous manner (jump-atV = 50). This behavior
of M}, for SCR is described analytically by eq. (26). In contrastaaconsequence
of ‘cross-talk’ effects introduced by jumps in CRJ, the&”' contributions)M C), start to
rapidly decrease earlier thanfat= N, but the reservoir can keep the information about
some of the later inputs better than in the case of SCR (rgughl50 < £ < 60). In
the case of ESN, th&/C}. values decrease more rapidly than in the case of both SCR
and CRJ. Using the standard empirical estimation/af;,, such a detailed behavior of
memory capacity contributions would not be detectable. dimahstrate the potential
of our method, we show in Figures 7(A,B) theoretically detered graphs o/ C, for
delays up td = 400 usingp = 0.8 (A) andp = 0.9 (B).
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Figure 6: Theoretical (A,C) and Empirical (B,D) k-Delay M@ BSN (dotted line),
SCR (solid line), and CRJ (dashed line) for Delays 1, ...,200. The Graphs of\/C),
are Shown fop = 0.8 (A,B) andp = 0.9 (C,D).
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Figure 7: Theoretical k-Delay MC of ESN (dotted line), SCRIig line), and CRJ
(dashed line) for Delayk = 1, ..., 400. The Graphs of\/C}, are Shown fop = 0.8 (A)
andp = 0.9 (B).
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6.3 Lyapunov Exponent

Verstraeten et al. (2007) suggest to extend numerical kedion of the well known Lya-
punov exponent characterization of (ergodic) autonomgusuhical systems to input-
driven systems. The same idea occurred previously in theexbaf recurrent neural
networks for processing symbolic streams (Tabor, 2001)I&\thie reservoir is driven
by a particular input sequence, at each time step the locardics is linearized around
the current state and the Lyapunov spectrum is calculatbd.l8rgest exponents thus
collected are then used to produce an estimate of the averqgpmential divergence
rate of nearby trajectories along the input-driven resetvajectory. Even though for
input-driven systems this is only a heuristic mea%gre't nevertheless proved use-
ful in suggesting the ‘optimal’ reservoir configuration @&s several tasks (Verstraeten
et al., 2007). Indeed, in our experiments the selected ESiligroations in the laser,
NARMA and speech recognition tasks all lead to pseudo-Lyapgexponents ranging
from 0.35 to 0.5. As in (Verstraeten et al., 2007), the exptsare positive, suggest-
ing local exponential divergence along the sampled regetsajectories, and hence
locally expanding systems (at least in one direction). kmrsomple reservoir architec-
tures, SCR and CRJ, the selected configurations acrossttneata also lead to similar
pseudo-Lyapunov exponents, but this time in the negativgaaFor example the CRJ
exponents ranged from -0.4 to -0.25. All exponents for tHecsed architectures of
both SCR and CRJ were negative, implying contractive dynami

To study the pseudo-Lyapunov exponents of the selectedvoesarchitectures
along the lines of (\erstraeten et al., 2007), for each datatlke reservoir matrix of
each selected model representative from ESN, SCR and CRées@aed so that the
spectral radius ranged from 0.1 to 2. The resulting psey@dmlinov exponents are
shown in Figure 8 for the NARMA (A), laser (B), and speech (@jadsets. The vertical
lines denote the spectral radii of the selected ‘optimaldeigepresentatives and black
markers show the corresponding exponents. Interestifaylgll data sets, the pseudo-
Lyapunov exponent lines of ESN are consistently on top ofS38& ones, which in

turn are on top of those of CRJ. This ranking holds also forsdected model repre-

10Deep results of autonomous systems theory e.g. linkingipediyapunov exponents to topolog-
ical entropy (Pesin Theorem) no longer apply, nor do apgditional notions of ‘chaos’ and ‘order’

developed in the context of autonomous systems.
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sentatives on different tasks. Our results show that avesenodel can have superior
performance without expanding dynamics. In fact, in ouresxpents the CRJ reser-
voir achieved the best results while having on average aotite dynamics along the
sampled trajectories and the least pseudo-Lyapunov erpone

NARMA Task
(A)

lyapunov exponent

(B) 2

lyapunov exponent

© 2

lyapunov exponent

1
0 0.2 0.4 0.6 0.8 1 12 14 1.6 1.8 2
scaling parameter

Figure 8: Pseudo-Lyapunov Exponents for ESN, SCR, and CRAeoNARMA (A),
Laser (B), and Speech Recognition (C) Tasks. The Vertiaa¢4iDenote the Spectral
Radii of the Selected ‘Optimal’ Model Representatives atacB Markers Show the
Corresponding Exponents.
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7 Conclusion

A large variety of reservoir computing models have beengseq, differing in reservoir
generation and readout formulation (Lukosevicius & Jagtf#99). Echo state networks
(ESN) (Jaeger, 2001) typically have a linear readout andgerveir formed by a fixed
recurrent neural network type dynamidsquid state machine_SM) (Maass et al.,
2002) have also mostly linear readout and the reservoirdraren by the dynamics of
a set of coupled spiking neuron modelactal prediction machine§~PM) (Tino &
Dorffner, 2001) for processing symbolic sequences havel fatBne state transitions
and the readout is constructed as a collection of multinbch&dributions over next
symbols. Continuously adaptable reservoirs were sugdidsteSteil (2007). Many
other forms of reservoirs can be found in the literature.(éJones et al., 2007; Deng
& Zhang, 2007; Dockendorf et al., 2009; Bush & Anderson, 206hii et al., 2004;
Schmidhuber et al., 2007; Ajdari Rad et al., 2008)). Howeegactly what aspects
of reservoirs are responsible for their often reported sapenodelling capabilities
(Jaeger, 2001, 2002a,b; Jaeger & Hass, 2004; Maass et@4., POng et al., 2007) is
still unclear.

Traditionally, reservoirs have been constructed in a remded manner. Moreover,
there have been several attempts to address the questiohabfewactly is a ‘good’
reservoir for a given application (Hausler et al., 2003;u@ket al., 2007). In our pre-
vious study (Rodan & Tino, 2011) we considered a very simplerninistically con-
structed cyclic reservoir (SCR). Besides eliminating thebfem of non-transparency
and trail-and-error construction of standard randomiz88l BEhe simple deterministi-
cally constructed SCR topologies were shown to yield coaiparresults to ESN on a

variety of temporal tasks. In this paper we extended thidysto several aspects:

1. We introduced a novel simple deterministic reservoir edgdycle Reservoir with
Jumps (CRJ) with highly constrained weight values, that swgserior perfor-
mance to standard ESN on four temporal tasks of differegiroand character-

istics.

2. We studied the effect of eigenvalue distribution of theergoir matrix on the
model performance. It has been suggested that a uniformmageef the unit disk

by such eigenvalues can lead to superior model performamesshowed that
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this is not necessarily so. Despite having highly consae@igigenvalue distribu-
tion the CRJ consistently outperformed ESN with much moréoum eigenvalue

coverage of the unit disk.

3. We presented a new framework for determining short terrmang capacityM C'
of linear reservoir models to a high degree of precisionn¢he framework we
showed the effect of shortcut connections in the CRJ resetopology on its
memory capacity. Due to cross-talk effects introduced leyjdimps in CRJ, the
MC contributions start to rapidly decrease earlier than indhse of SCR, but
unlike in SCR, the decrease M (), in CRJ is gradual, enabling the reservoir to

keep more information about some of the later inputs.

4. Through the study of pseudo-Lyapunov exponents we shoatdceven though
(unlike ESN) the simple CRJ reservoirs have (average) aotive dynamics, they
achieved consistently the best performance. This poseg@ating open ques-
tion as to whether and in what contexts the “edge-of-chagpbthesis can be
applied to reservoir computations.

We believe that if given a choice whether to construct a madel randomized
or completely deterministic manner, having guaranteesiofitar’ performance levels,
it is more advisable to go for the latter. Besides the adgm#anentioned above, in
our framework the important elements of the model strudbaree a chance to emerge.
For example, we show that even though simple unidirectiopelke with fixed weight
(SCR model) is already competitive, adding regular bidiog@l shortcuts (of the same
weight) originating and ending in few higher-clusteringffaient nodes (CRJ model),
brings potentially huge performance improvements (andesiones significantly beats
ESN). Such an insight could not be obtained using traditi@ralomized reservoir gen-
eration. This opens new research questions as to exacthpudtya jump modification
has this effect. Such focused research program would ngihate from studies consis-
tently using randomized reservoir constructions. On tieohand, using randomized
reservoir construction can have beneficial effects on medaluation - in contrast to
deterministically constructed reservoirs, one may neadaller pool of different tasks

to get the same statistical significanlr&e

11We thank the anonymous reviewer for pointing this out.
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Compared with traditional ESN, specific reformulations e$arvoir models can
often achieve improved performances (Steil, 2007; Xue .e2807; Deng & Zhang,
2007), at the price of even less transparent models andnespiietable dynamical or-
ganization. We propose that in order to quantify the benéti® potentially complex
current or future reservoir formulations, such models sthba compared with our sim-
ple, deterministically constructed CRJ model that, as shiawthis study, has a potential
to significantly outperform the traditional ESN. Furthem@dt seems that characteriza-
tions of reservoirs in terms of memory capacity, eigenvadeeomposition of the reser-
voir weight matrix or pseudo-Lyapunov exponents cannotlyeaapture what makes
reservoirs great temporal modelling tools. Reservoirsnarelinear non-autonomous
dynamical systems that are difficult to characterize bydirmation techniques (eigen-
spectrum), or methods not directly representing taskedlaseful temporal structure
in the input driving stream (memory capacity). Theory anacgice of deep reservoir
characterizations that can be directly linked to their @enfance is an open problem

and a matter for our future study.
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Appendix

In this appendix we show detailed parameter settings of elected model represen-
tatives in our experiments. Details of parameter values adiets used in section 4.2
are provided in Table 7. Table 8 reports parameters for nsadsgd in the comparison
experiment with SWNR (section 5). Finally, we report paréangalues of the selected
hierarchical extension (CRHJ) of the CRJ model in Table 8t{ge 5).
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Table 7: Parameter Values for the Selected ESN, SCR and CR&INRepresentatives
with Reservoirs ofV units.

Dataset ESN SCR CRJ
laser con =02,A=095, | v=0.85,1r.=0.7 v=20.9,r.=0.7,
N =200 a=1 r;=04,0=5
NARMA con =0.15,A=0.85,| v=0.05,7.=0.8 | v=0.05r.=0.7,
N =200 a=0.1 rj =0.5,0=5
speech con = 0.4, A = 0.95, v=1,r.=0.95 v=1,r.=0.9,
N =200 a=1 rj=04,0=13

memory and nonlinear

mapping task
N =100

con = 0.2, A\ = 0.95,
a=0.05

v=20.025,r, = 0.7

v =0.025,7. = 0.8,
r;=0.3,0=24

Table 8: Parameter Values for the Selected ESN, SWNR, SCRERJdVIodel Repre-

sentatives (Reservoir SizZé = 500).

Dataset ESN SWNR SCR CRJ
laser | con=0.15,A=09, | A=55,|v=07,r.=0.75 | v=0.7,r.=0.75,
a=1 a=1 r; = 0.15,4 =10
NARMA | con =02, A=0.95,| A=2, |v=0.05,7.=08 | v=0.1,r. = 0.8,
a=0.1 a=0.2 r; = 0.5, =21

Table 9: Parameter Values for the Selected CRHJ Model Repias/e (Reservoir Size

N = 100).
Dataset CRHJ
NARMA | v = 0.05, 7, = 0.6, 7;, = 0.05, 7;, = 0.4, r;, = 0.25
laser v=17r.=1,7, =05571,=04,r;, =0.1
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