Proceedings of International Joint Conference on Neural Networks, Atlanta, Georgia, USA, June 14-19, 2009

Fast Parzen Window Density Estimator

Xiaoxia Wang and Peter Tiflo and Mark A. Fardal and Somak Raychaudhury and Arif Babul

Abstract—Parzen Windows (PW) is a popular non-
parametric density estimation technique. In general the smooth-
ing kernel is placed on all available data points, which makes the
algorithm computationally expensive when large datasets are
considered. Several approaches have been proposed in the past
to reduce the computational cost of PW either by subsampling
the dataset, or by imposing a sparsity in the density model.
Typically the latter requires a rather involved and complex
learning process. In this paper, we propose a new simple and
efficient kernel-based method for non-parametric probability
density function (pdf) estimation on large datasets. We cover the
entire data space by a set of fixed radii hyper-balls with densities
represented by full covariance Gaussians. The accuracy and
efficiency of the new estimator is verified on both synthetic
dataset and large datasets of astronomical simulations of the
galaxy disruption process. Experiments demonstrate that the
estimation accuracy of the new estimator is comparable to that
of the previous approaches but with a significant speed-up.
We also show that the pdf learnt by the new estimator could
used to automatically find the most matching set in large scale
astronomical simulations.

I. INTRODUCTION

In many statistical learning problems, it is desirable to
obtain an estimate of the underlying probability density
function (pdf), given a set of observations. Finite mixture
model is a general and powerful approach to the problem of
probability density estimation. It uses relatively small number
of mixture components to estimate arbitrary density func-
tions. A mixture model provides a condensed representation
of data samples in terms of sufficient statistics of each of
the mixture components and their respective mixing weights.
The parameters of these components (e.g. Gaussians) in the
finite mixture model are usually learnt through an iterative
optimization algorithm such as the likelihood maximizing
Expectation-Maximization (EM) [15] (procedures which are
known to be sensitive to initialization and prone to get
trapped in local minima). Furthermore, when applied to
large-scale datasets, the time spent on the optimization can
be prohibitive [3].

The well known non-parametric Parzen Windows (PW)
estimator can be viewed as a special case of the finite mixture
model with mixture components located at all points of the
data sample. Since all the components (Gaussian smoothing
kernels) in this model have the same width, the parameter
estimation is greatly simplified. Whereas the potentially large
mixture size ensures reliable density estimates, the price to

Email:{X.Wang.1, P.Tino }@cs.bham.ac.uk. School of Computer Science,
University of Birmingham, UK. fardal@fcraol.astro.umass.edu. Dept. of
Astronomy, University of Massachusetts, USA. somak@star.sr.bham.ac.uk.
School of Physics and Astronomy, University of Birmingham, UK.
babul@uvic.ca. Department of Physics and Astronomy, University of Vic-
toria, Canada.

978-1-4244-3553-1/09/$25.00 ©2009 IEEE

be paid is a heavy computational cost incured in the test
phase.

To reduce the computational cost, several algorithms have
been devised to either reduce the sample size, or to reduce
the amount of components (kernels) in the original complex
Parzen Windows model. The latter approaches, introduced
recently, have proved successful in several applications [2],
[4], [6]. The idea is to simplify a complex model (Parzen
Windows in density estimation) while minimizing the dis-
tance between the new model and the target function.
However, this process usually has complexity of O(N?)
or larger, where N is the size of the dataset. Compared
with considering fewer points in the estimation, optimizing
the simplified density model by using all of the available
observations could avoid sacrificing useful information, but
it also loses the simplicity of the non-parametric density
model. On the other hand, the limitation of Parzen Windows,
could also be noticed when the data points distribute along,
or partially along, low dimensional structures [1]. In such
cases, spherical smoothing kernels are not optimal.

In this paper, we propose a new algorithm to reduce the
computational cost of PW but also to keep the simplicity
of the nonparametric model by avoiding complex model
construction procedures. The idea is to cover the entire
data space by a set of hyper-balls of fixed radii. For each
hyper-ball, the local density is captured by a full covariance
Gaussian kernel. With carefully chosen radii, the density
of the partitioned disk cells can be described by a single
Gaussian kernel and the local data structure could be well
preserved. Our model is formed by a mixture of such locally
fitted Gaussians with appropriately set mixing weights.

The rest of paper is organized as follows. In Section 2
we review the algorithms and models proposed to deal with
large-scale datasets for kernel density estimators. Section 3
describes our efficient kernel-based density estimator: fast
Parzen Windows (FPW). In section 4, we report experimental
results on synthetic data set, as well as on data sets obtained
from galaxy disruption simulations. Finally, Section 5 brings
concluding remarks.

II. SPARSE KERNEL ESTIMATORS

Consider a probability density estimator f (x,0) (with pa-
rameters 6) fitted on a finite data sample D = {x1,...,xn},
x; € RY i = 1,2,...,N. When no a priori information
is available to guide the choice of the precise form of the
density, nonparametric probability density estimation termed
Parzen Windows (PW) [11] is particularly attractive:

) 1 &
Flxih) = 55 DK X0,), Q)
n=1

3267

where N is the total number of data points, K(.; x,, h) is a
kernel function centered on x,, and having a scale parameter
(width) h. For each component K(x;xXp,,h), the mixing
coefficient 1/N can be thought to represent the probability
p(x,) of picking x,, (and hence the n-th mixture component
of the PW estimator) from D. Rewriting Eq.(1), we obtain

N
Fxh) = p(xn)K(x; %0,). @)

The choice of K and the scale parameter h > 0 determines
the performance of f(.). However, as mentioned earlier,
the main disadvantage of such an approach is the high
computational cost when large data samples are involved.

The computational complexity reduction strategies to ker-
nel density estimation are developed in two ways. One
group of such approaches represents the whole dataset by
a condensed dataset maintaining the statistical properties
of the original one. Another recently introduced group of
approaches approximates complex models containing a large
number of components with simpler ones having less com-
ponents. Parameters of the simpler models are estimated in a
complex optimization procedure. In the following, we shall
briefly review some of those approaches.

A. Data Reduction Methods

Data reduction methods could be used simply as a pre-
processing step to machine learning algorithms (such as
classification or density estimation) to deal with the large
sample size problem. The simplest way is to randomly draw
the desired number of samples from the original data set.
However, we could expect that the performance of machine
learning algorithms with this subset is random as well.
Data condensation of more generic nature is performed by
classical vector quantization methods using a set of codebook
vectors which minimize the quantization error [12]. Recently,
[10] introduced a density-based multiscale data condensation
method that uses discs of adaptive radii for both density
estimation and sample pruning.

More sophisticated approaches explicitly sample more
data points from densely populated arecas of the data space,
while fewer data points are drawn from the sparse areas.
Alternatively, the original data set is represented by a set of
reference vectors and their associated weights. For example,
[7] prebinned data samples (from low dimensional data
space), and the kernel density estimator employed the bin
centers as the “sample” points which are each weighted by
the normalized bin-counts. A multivariate form of the binned
kernel density estimator was analyzed in [8].

B. Model Simplifying Methods

Rather than shrinking the size of the dataset, computational
savings could also be obtained by reducing the number of
components (model complexity). The idea is to employ an
optimization process to minimize a distance between the
simplified model and the complex one. [2] presented a prob-
ability density estimator which employs a small percentage

of the data sample. Kernel weighting coefficients associated
with each data sample were estimated in a sparsity enforcing
optimization routine. Since many of the weights are set to
values close to 0 in this optimization process, the algorithm
automatically removes most of the redundant data points.
In [4], mixture components of a large mixture model are
grouped into clusters. In the simplified model, each cluster
is represented by a single component. The parameters are
found by minimizing the upper bound on the approximation
error (in the L, sense) between the original and the simplified
models. An earlier work along those lines has been done
by Goldberger and Roweis [5]. There the distance between
the original and the simplified model is measured by a
local Kullback-Leibler (KL) divergence. [6] uses forward
constrained regression to construct a sparse kernel density
estimator. Components of the kernel density estimator are
selected from the existing components in Parzen Windows
by minimizing the mean square error.

Although these algorithms claim they provide superior
density estimators for similar levels of data reduction [2],
the relative simplicity of the nonparametric density estimator
is lost in their nonlinear optimization processes. Also, the
target function of the optimization processes is set to be the
PW estimator. Past work [1] demonstrated that PW may not
be optimal for datasets living in a high-dimensional space
but aligned along a low dimensional structure. Compared
with the original PW, manifold Parzen windows, replacing
the spherical kernels by kernels fitted to local distributions,
achieved superior performance [1].

III. FAST PARZEN WINDOWS

The proposed efficient kernel density estimator involves
segmenting the whole data set into hyper-balls with a fix
radii, associating each cell with a kernel and a mixture
weight, and updating the kernels to fit the local distribution.

A. Partition the Dataset

We partition (in a hard or soft manner) the data space with
hyper-discs of fixed radii r and let the data distribution be
approximated by local densities fitted within the hyper-discs.
We use the following algorithm to position the hyperdiscs:

1) SetS=0,7T=0,;=0.

2) While D\ 7 # 0, repeat:

« Randomly select a data point x, € D\ 7 and add
it to the partition set S, as well as to the set 7
(T « T U{x}).
« For every data point x € D\ T
— Compute the (Euclidean) distance D(x,X4)
- if D(x,x4) < 7, where r is a predefined
threshold, add x to the partition S; centered at
sj = Xq and add x to 7.
We thus obtain a set of partition centers S = {sy,...,sp}
(M < N) representing the partitions {S1,...,Sxy} of the
data set D. Note that, unlike in vector quantization, the

3268

partition elements S; cover the same volume but are popu-
lated according to the local density of data points. Compared
with vector quantization based downsampling algorithms,
relatively more data samples are chosen from sparse regions.
Therefore, the local distribution in sparse regions described
by these representative points can be more accurate.

The sets Si,...,Sm, cover the data sample and we
estimate the measures x(S;), ¢ = 1,2,..., M, assigned to
them by the original (unknown) generating distribution in
two ways:

o Hard version:

S;
K(8) ~ P(s) = S,

where |S;| denotes the size of S;.
« Soft version: Points can be assigned to more than one
partition with different weights.

Zg:] K(xna Si, R)

M N
Zj:l > =1 K(xn;sj, R)
where R > 0 is the kernel scale parameter. In our

experiments, R was set to be equal to the hyperdisc
radius 7.

K(S:) ~ Q(S:) =

B. Fast Parzen Windows

Some kernel-based estimators use diagonal Gaussians as
mixture components. If the true density that we would like
to model is indeed ‘close to’ a lower dimensional manifold
embedded in the higher dimensional data space, spherical
Gaussians will spread their density mass equally along all
input space directions, thus giving too much probability mass
to irrelevant regions of the data space. We employ local data-
adaptive kernels (Gaussians) [1]. Our density estimator reads:

M
fa(x;h) =Y Py N(x;m;, C;) ®)
j=1
where either P; = P(S;), or P; = Q(S;), and N(x;s;,C;)
is a multivariate Gaussian density with mean vector m; and
covariance matrix Cj:
N) o~ 3(-m;) "0 (x—my) @
X; mj, i) = .
(2m)1IC
Here |C;| denotes the determinant of C;.
In the hard partition version (FPW-H) we determine the
mean and the covariance matrix of each Gaussian kernel

using
mj = 1 Z X;
Sy
1
G = 157 > (xi—my)(xi —my)T.(5)

The soft partition of S associates an influence weight
p(x;|s;) in the partition s; to any point x; by the neigh-
borhood kemel:

K(x;;8i, R
plxlsy) = copoo o
Y one1 K(xn;sj, R)

©)

Then the weighted means and covariance matrices of the
soft FPW version (FPW-S) are computed as follows:

N

m; = Y p(xils;)x; (7
’L;l

C; = Y plxilsy)(x —my)(x; —my)T. (8
=1

Even though the sums in eqs.(6)-(8) run through all data
points, in practice we need to consider only a small fraction
of points with kernel values or responsibilities p(x;|s;)
larger than some small predefined threshold value (in our
experiments 0.00001).

Note that calculating the inverse of the covariance matri-
ces may be complicated as C;’s may be ill-conditioned. A
common way to deal with this problem is to add a small
isotropic (spherical) Gaussian noise of variance 72 in all
directions, which is done by simply adding v? to the diagonal
of the covariance matrix: C; = C; + 21, where I is an
identity matrix. In our experiments v2 = 0.000001.

Since the amount of kernels has been reduced to the
number M of the partitions, fitting each kernel to its local
distribution could improve the performance of the density
estimator without increasing the time and memory costs
significantly.

C. Complexity analysis

The most time consuming operation is partitioning the
dataset. The algorithm has complexity of O(NM), where
N is the sample size, M is the number of partitions. We
could estimate the partition number M by dividing the
data volume by the hyper-ball volume r¢, where d is the
dimension of the data space. By adopting k-d tree [16] in
the partitioning operation, the complexity can be reduced
to O(N log(M)). The following experiments demonstrate a
significant advantage of our approach over the alternatives
with respect to the running time.

IV. EXPERIMENTS

In this section, we verify our approach on both synthetic
dataset and real large scale astronomical simulation datasets.
The experiments demonstrate that, compared with other
recently proposed methods for sparse kernel density estima-
tion as well as the classical Parzen Windows and Gaussian
Mixture Model, our Fast Parzen Windows can lead to similar
or better levels of performance in terms of the accuracy and
sparseness of representation, but at much less computational
cost. Furthermore, the advantages of our simple, yet effective
method for density estimation are highlighted in experiments
on large datasets of galaxy disruption simulations.

A. Data aligned along a lower dimensional manifold

We use a sample (300 points) of 2D data aligned along
a 1D structure. We obtain a 300-point training set and a

3269

10000-point test set from the following distribution of two
dimensional points used in [1]:

0.04¢ sin(t) + €y, ,
zo = 0.04¢cos(t) + €z,

where t ~ U(3,15), €;, ~ N(0,0.01), €;, ~ N(0,0.01),
U(a, b) is the uniform distribution over the interval (a, b) and
N (0, 6) is the zero-mean Gaussian distribution with standard
deviation 4.

We compare the performance of Parzen Windows (PW),
Simplified Mixture Model (SMM) [4], Reduced Set Den-
sity Estimator (RSDE) [2], Manifold Parzen Windows [1],
Gaussian Mixture Model (GMM) (We use GMMPF to denote
the model initialized with K-means as opposed to GMM
initialized randomly from the data) and our approaches.
We keep the same parameter setting for Manifold Parzen
Windows as in [1]. Figure 1 shows the training set, as
well as the densities estimated by these algorithms. Note
the excessive ‘bumpiness’ and holes in figures 1 (a)-(c)
caused by the sparseness of the training set. As expected,
the Manifold PW density in figure 1(d) is better aligned with
the underlying manifold. Our approach was not only able to
learn the underlying manifold-aligned density well, but also
to represented it in a sparse manner (see figures 2(a),(b) and
table II).

Quantitative comparison of the models is based on the
average (across 30 randomized initializations) log likelihood
(ALL) on the test dataset and the model sparseness (number
of mixture components M, shown in table II). The perfor-
mance measures along with the parameters used (estimated
via cross-validation) are listed in table I. For each algorithm
A with randomized initialization, when FPW-H and FPW-S
show significantly better performance than A (as detected by
t-test at significance level 0.01), we put h and s in the Signif
column.

ry =

TABLE 1
COMPARISON RESULTS ON THE 2D ARTIFICIAL DATA

Alg Parameters ALL (avetstd) | Signif
PW 0=0.0173 1.3417+0 -
SMM m=20 0.8573+0.3356 h,s
SMM m=50 1.2126+0.0693 h,s
SMM m=100 1.3075+0.0187 h,s
RSED 6=0.0190 1.0515+0 —
GMMF m=50 1.4575+ 0.0243 | s
GMM m=70 1.4609+ 0.0271 s
Man PW || d=1, k=11, §=0.09 | 1.4660 +0 -
FPW-H r=0.141, v=0.0001 | 1.3737+0.0246 s
FPW-S r=0.051, v=0.0001 | 1.5045+0.0090

The results reveal that our approach can preserve the
low dimensional manifold structure while keeping the model
complexity low.

To investigate the time consumption of these approaches,
we perform our experiments on desk top computer having
Pentium(R)4, 3.06GHz CPU and 1GB RAM, and all the
algorithms are implemented in Matlab. Table II shows the
running time consumed on this 300-sample dataset and the
model complexity (by components number, denoted by M).
We report the time consumed in the form ¢y + to, where t;
is the time used for building the model and ¢5 is the time of
deploying the model.

TABLE II
TIME CONSUMPTION AND THE MODEL COMPLEXITY
Methods M | CPU Time (sec)
PW 300 0+1.229
SMM 20 | 16.751 + 0.117
SMM 50 | 20.319 +0.215
SMM 100 | 33.319 + 0.686
RSDE 112 | 5.299 + 0.546
GMMF 50 9.162+0.346
GMM 70 12.078+0.463
Manifold PW || 300 0.155+1.312
FPW-H 21 0.156+0.102
FPW-S 57 0.580+0.231

B. Experiments on galaxy disruption simulations

Recent exciting discoveries of low-dimensional structures
such as shells and streams of stars in the vicinity of large
galaxies led the astronomers to investigate the possibility
that such structures are in fact remnants of disrupted smaller
satellite galaxies [14],[13]. A simulation model was designed
to simulate the process of satellite galaxy disruption in the
vicinity of a large galaxy [14]. It is a particle model, with
particles representing stars. Each particle has six dimensions,
three describing the spatial position, the other three describ-
ing the velocity along the spatial coordinates. The particle
evolution is governed by the laws of physics. One particular
stream of research is concerned with simulating the disrup-
tion of satellite galaxy (M32) with the large galaxy (M31). To
track the evolution process starting from a particular initial
condition, the astronomers collect the simulation datasets at
successive evolution stages. Hence, the disruption process is
captured in a series of simulation datasets.

The ultimate goal is to identify the most plausible set of
initial conditions leading to the distribution of stars currently
observed by the astronomers. Of course, particle simulations
cannot be compared with the real observations on a point
by point bases, but the observed density of stars can be
compared with that of the simulated particles. The first step
is to build good density models on the simulated data. The
densities will be then projected into the observation space
(typically 2 spatial coordinates + the line of sight velocity)
and the likelihood given the real observations will be calcu-

3270

(a) Density estimated by PW (b) Density estimated by SMM

(c) Density estimated by RSDE (d) Density estimated by Manifold PW

(e) Density estimated by GMM (M=20) (f) Density estimated by GMM (M=50)

Fig. 1. Densities estimated on 2 dimensional dataset aligned along a 1 dimensional structure

3271

(a) Density estimated by FPW-H

(b) Density estimated by FPW-S

Fig. 2. Densities estimated on 2 dimensional dataset aligned along a 1 dimensional structure

lated. This is a work in progress, here we are only concerned
with models build in the full 6-dimensional phase space.
The number of particles representing the satellite galaxy
being disrupted is typically large (in our case =~ 30,000) and
we found that using RSDE was computationally infeasible.
Encouraged by the results in the previous experiments, we
employ the PW, GMM and our methodology as the principal
density estimators.

We have 22 simulation sets representing 22 stages of
galaxy disruption in a single simulation run. Each set has
32,768 data points.

In the first set of experiments we used 10-fold cross-
validation in each simulation data set to measure the quality
of the estimated density models. The average log-likelihoods
(ALL) on each individual set estimated by PW, our approach
(FPW) and SMM are plotted in figure 3 (using hyper
parameters estimated by 10-fold cross validation within the
training folds). The X-axes indicates the simulation set index
(numbered from 0 to 21), the Y-axes shows the ALLs
estimated by the models. Our FPW method shows a superior

Fig. 3. Average log-likelihood on simulation sets

performance relative to both PW and SMM estimators.

RSDE involves calculations with matrices of size N x V.
As mentioned earlier, running the algorithm on N = 32,768
points proved to be infeasible. To be able to investigate
the performance of RSDE and compare it to our approach,
for each of the 22 stages, we estimated the density from
a downsampled simulation set (10% of the original set)
and tested on the hold-out data (90% of the original set).
Analogously, we demonstrate the performance of GMMs
on the downsampled simulation sets due to computational
demanding E-M parameter fitting. The process was repeated
10 times. The results for RSDE, GMM and FPW are shown
in figure 4. In figure 5, we report the time consumed on

Fig. 4. Average log-likelihood on simulation sets of models trained on
reduced size datasets

building the density model by using these approaches on
the 22 stages of galaxy disruption. The X-axes indicates
the simulation sets, and the Y-axis to show the time used
(seconds). Note algorithm RSDE, GMM and GMMF are
estimated on the downsampled simulation set (10% of the
original set). A clear advantage of our approaches on running
times are illustrated.

In the second set of experiments, we investigate how

3272

Fig. 5. Time consumed on running these experiments

reliably can a stage in the galaxy disruption process be
detected based on “observations” not used in the model
building process. We run a rolling window of size 3 over the
series of 22 simulation data sets. We thus obtain a set of 20
simulation set triplets (f, g, h), starting with simulation sets
(f,9,h) at stages (0,1,2) and ending with the triplet (f, g, h)
containing simulation set for stages (20,21,22). For each
triplet of consecutive simulation sets (f, g, h), we estimate
3 models, one on 90% of data from f, one on 90% of data
from g, and one on 90% of data from h. (We use 10% here
for GMM and GMMF¥) All three models are then tested on
the 10% hold-out set from g. In this way we can determine
how well can the “true” source density g be distinguished
from the densities at the nearby stages f and h. This process
is repeated 10 times. The densities corresponding to the
nearby stages of galaxy disruption can be quite similar and
obtaining an accurate density model is essential for further
investigations by the astronomers. As an illustration, we
present in figure 6 two sets of 3-dimensional projections of
the simulation data for the triplet (f,g,h) = (20,21,22).
The first projection is onto the spatial coordinates, the second
is onto the leading 3 eigenvectors found by the Principal
Component Analysis of the merged f, g and h sets.

The models constructed on the set g have the highest hold-
out ALL in each of the 20 triplets ((f, g, h). To qualify the
confidence margin with which the true source is detected, we
calculate likelihood ratios (LR) :

efaul

LRf!] = eYall (9)
ehatt

LRhg = eJall (10)

where fu11, gan and hgy denote the ALL on the testing
data from g obtained by models built on the sets f, g
and h, respectively. Figures 7 and 8 show the likelihood
ratios LRy, and LRy, respectively, for the PW and FPW
methods. The likelihood rations of the two FPW versions
are almost the same and in both cases the variations in LR
due to different experimental runs are negligible. The FPW
methods outperform the classical PW estimation and show

performance levels very similar to those of GMM, but with
much less computational effort (as illustrated in figure 5).
The number of components in FPW-H and FPW-S varied
from 150 to 850 and 700 to 4000, respectively. Note that the
number of components in PW estimates was N =~ 30, 000.

Fig. 7. Likelihood Ratios for finding the best matching source.

Fig. 8. Likelihood Ratios for finding the best matching source.

V. CONCLUSION

We presented an efficient probability density estimator for
large-scale datasets, termed fast Parzen Windows (FPW).
This algorithm reduces the computational cost by first par-
titioning the data space into a set of fixed radii hyper-balls,
and then letting a Gaussian with full covariance matrix to
represent the probability density in each hyper-ball. In this
way, global density in the data space is approximated by
a mixture of Gaussians. Since all densities are estimated
locally, no global optimization is required in FPW.

We presented two versions of FPW: FPW-H uses a hard-
partitioning of the data sample, while FPW-S partitions the
data sample in a soft manner. The former version is sim-
pler and computationally more efficient than the latter one.
Compared with the soft version, the hard version typically
leads to only small performance degradation. Compared with

3273

Fig. 6.

3-dimensional projections of the simulation data for the triplet (f, g, h) = (20, 21, 22). The first projection (Ist column) is onto the 3 spatial

coordinates, the second (2nd column) is onto the leading 3 eigenvectors found by the Principal Component Analysis of the merged f, g and h sets.

other sparse kernel based density estimation methods, FPW
methods often showed comparable or superior performance
at a much lower computational cost.

In the future work, the proposed FPW methods will be em-
ployed to identify the most plausible astronomical simulation
dataset among a large group of simulation datasets, given
the real observed galaxy distribution. We also plan to put
our density estimation framework on a stronger theoretical
footing.

REFERENCES

[1] P. Vincent and Y. Bengio, Manifold Parzen windows, Advances in
Neural Information Processing Systems 15, (2003), pp. 825-832.

[2] M. Girolami and C. He, Probability Density Estimation from Optimally
Condensed Data Samples, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 25 (2003), pp. 1253-1264.

[3] K. Popat and R. W. Picard, Cluster-based probability model and its
application to image and texture processing , IEEE Transactions on
Image Processing, 6 (1997), pp. 268-284.

[4] K. Zhang and J. T. Kwok, Simplifying Mixture Models through Function
Approximation, Advances in Neural Information Processing Systems 15,
Englewood Cliffs, NJ, (2006), pp. 825-832.

[5] J. Goldberger and S. Roweis, Hierarchical clustering of a mixture
model, Advances in Neural Information Processing Systems 17, (2005),
pp. 505-512.

[6] X. Hong, S. Chen and C. J. Harris, A forward-constrained regression
algorithm for sparse kernel density estimation, IEEE Transactions on
Neural Networks, 19 (2008), pp. 193-198.

[7] D. W. Scott and S. J. Sheather, Kernel density estimation with binned
data, Comm. Statistics—Theory and Methods, 14 (1985), pp. 1353-1359.

[8] L. Holmstrdm , The accuracy and the computational complexity of
a multivariate binned kernel density estimator, J. Multivar. Anal.,72
(2000), pp. 264-309.

[9] J. Byeungwoo and D. A. Landgrebe, Fast Parzen density estimation us-
ing clustering-based branch and bound, Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 16 (1994), pp. 950 — 954.

[10] P. Mitra, C. A. Murthy and S. K. Pal, Density-Based Multiscale Data
Condensation, IEEE Trans. Pattern Anal. Mach. Intell.,, 24 (2002),
pp. 734-747.

[11] E. Parzen, On Estimation of a Probability Density Function and Mode,
The Annals of Mathematical Statistics, 33 (1962), pp. 1065-1076.

[12] A. Gersho and R. M. Gray, Vector Quantization and Signal Compres-
sion, Springer, 1991.

[13] M. A. Fardal and P. Guhathakurta and A. Babul and A. W. Mc-
Connachie, Investigating the Andromeda stream - Ill. A young shell
system in M31, Monthly Notices of the Royal Astronomical Society,
380 Sept (2007), pp. 15-32.

[14] M. A. Fardal and A. Babul and J. J. Gechan and P. Guhathakurta,
Investigating the Andromeda stream - II. Orbital fits and properties of
the progenitor, Monthly Notices of the Royal Astronomical Society,
366 Mar (2006), pp. 1012-1028.

[15] A. Dempster and N. Laird and D. Rubin, Maximum likelihood from
incomplete data via the EM algorithm, Journal of the Royal Statistical
Society, Series B 39(1) (1977), pp. 1-38.

[16] J. M. Kubica and J. Masicro and A. Moore and R. Jedicke and
A. J. ConnollyVariable KD-Tree Algorithms for Spatial Pattern Search
and Discovery, Neural Information Processing Systems, Dec (2005).

3274

