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Generalized Learning Riemannian Space

Quantization: a Case Study on Riemannian

Manifold of SPD Matrices
Fengzhen Tang, Mengling Fan, Peter Tiňo

Abstract—Learning vector quantization is a simple and effi-
cient classification method, enjoying great popularity. However,
in many classification scenarios, such as electroencephalogram
(EEG) classification, the input features are represented by sym-
metric positive-definite matrices that live in a curved manifold
rather than vectors that live in the flat Euclidean space. In this
paper, we propose a new classification method for data points
that live in curved Riemannian manifolds in the framework
of learning vector quantization. The proposed method alters
generalized learning vector quantization with Euclidean distance
to the one operating under the appropriate Riemannian metric.
We instantiate the proposed method for the Riemannian manifold
of symmetric positive-definite matrices equipped with Rieman-
nian natural metric. Empirical investigations on synthetic data
and real-world motor imagery EEG data demonstrates that the
performance of the proposed generalized learning Riemannian
space quantization can significantly outperform the Euclidean
generalized learning vector quantization (GLVQ), generalized
relevance learning vector quantization (GRLVQ), and generalized
matrix learning vector quantization (GMLVQ). The proposed
method also shows competitive performance to the state-of-the-
art methods on the EEG classification of motor imagery tasks.

Index Terms—Learning Vector Quantization, Generalized
Learning Vector Quantization, Riemannian manifold, Rieman-
nian geodesic distances

I. INTRODUCTION

Learning vector quantization (LVQ), introduced by Kohonen

in 1986, is a prototype-based supervised classification algo-

rithm based on metric comparisons of data [1]. The approach

has enjoyed great popularity because of its simplicity, intuitive

nature, and natural accommodation of multiclass classifica-

tion problems. Unlike deep networks, the LVQ system is

straightforward to interpret. The classifier constructed by LVQ

is parametrized by a set of labeled prototypes living in the

data space. The classification of an unknown instance takes

place as an inference of the class of the closest prototype

in terms of the involved metric. The learning rules of LVQ

are typically based on intuitive Hebbian Learning. Thus, the

implementation and realization of the method is very simple.
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Unlike many alternatives such as the perceptron or support

vector machines which are in their basic form restricted to

only two classes, LVQ can naturally deal with any number

of classes without making the classification rule or learning

algorithm more complicated. Indeed, LVQ has been used in a

variety of applications such as image and signal processing,

the biomedical field and medicine, and industry [2].

In Brain-Computer Interface (BCI), motor imagery is a

very promising modality compared with other alternatives, as

the subject voluntarily produces electroencephalogram (EEG)

signal by imaging movements of different parts of the body,

without external stimulus. The topological representation and

band power change of brain signals during motor imagery

tasks are well-known. Imaging movements of different body

parts will activate (or deactivate) the activities of different area

in the motor cortex of the brain, e. g. roughly, imagination of

right hand movement associates with C3 electrode, left hand

C4, foot Cz , etc [3]. Thus, in motor imagery classification,

the spatial covariance matrix of the EEG signal provides

enough discriminative information for different classes. This

is corroborated by most commonly used Common Spatial

Pattern (CSP) [4] algorithm, which is completely based on

the estimation of the spatial covariance matrices, where spatial

filters can be derived to enhance the class separability. Thus,

the EEG signal can be represented by the corresponding

sample covariance matrix, summarizing spatial information in

the signal with temporal content integrated out [5]–[7].

Current LVQ and its extensions are designed to deal with

data items in the form of finite dimensional real vectors. Nev-

ertheless, covariance matrices are symmetric positive-definite

(SPD), and as such live in a curved manifold, rather than

the flat Euclidean space. The structure information of the

original matrix is useful and informative for the classification

task. Directly applying the existing vector based learning algo-

rithms through vectorizing matrices into vectors may lead to

poor generalization performance, as vectorization may destroy

crucial tensor structure of matrix data. Several approaches

extending vector based learning algorithms to SPD matrix

data targeted for motor imagery classifcation have been sug-

gested, e.g. Fisher Geodesic Discriminant Analysis (FGDA)

[3], Minimum Distance to Riemannian Mean (MDRM) [8],

and Tangent Space Linear Discriminat Analyisis (TSLDA)

[8]. MDRM is a straightforward extension of the minimum

distance to mean classification algorithm using Riemannian

geometric distance and Riemannian geometric mean. It learns

a cluster center (i. e. Riemannian geometric mean ) for each
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class of instances and predicts the class label of an unknown

instance by finding the center with shortest Riemnnian geomet-

ric distance to the instance. The classification performance of

MDRM was showed inferior to other alternatives [9]. Unlike

the MDRM method, the FGDA and TSLDA methods, based

on discriminant analysis, are intrinsically binary classifiers.

To deal with multi-class classification of SPD matrices, we

would need to decouple the problem into multiple binary

classification problems using an appropriate heuristics (e.g.

one-vs-one, or one-vs-the rest), thus not fully taking advan-

tages of the overall picture of the multiclass structure. Both

FGDA and TSLDA project SPD matrices from the training

set onto the tangent space at their Riemannian geometric

mean. Standard Euclidean Fisher linear discriminate analysis

and standard Euclidean linear discriminate analysis are then

applied in the tangent space, respectively. However, mapping

data to a tangent space at a particular point gives a first-order

approximation of the data which can be distorted, especially

in regions that is far from the origin of the tangent space.

In this paper, we propose to extend the successful Gen-

eralized Learning Vector Quantization (GLVQ) method [9]

to a curved Riemannian manifold and specify the gener-

al framework for the Riemannian manifold of symmetric

positive-definite matrices equipped with Riemannian natural

metric tensor. The proposed method is named as Generalized

Learning Riemannian Space Quantization (GLRSQ). To show

the appropriateness of our proposed GLRSQ method, we also

create simple and naive extensions of GLVQ, Generalized

Relevance Learning Vector Quantization (GRLVQ) [10], and

Generalized Matrix Learning Vector Quantization (GMLVQ)

[11] to deal with SPD matrix classification through simply

concatenating the upper triangle of SPD matrices into vec-

tors and then applying the standard learning rule of GLVQ,

GRLVQ, or GMLVQ targeted for vectors, totally ignoring the

nonlinear structure of the Riemannian manifold. To ensure

that the learned prototype is positive-definite, the updated

vector is reshaped into symmetric matrix and the matrix is

then projected onto its closest SPD matrix under the Frobenius

norm. In contrast, the proposed GLRSQ is naturally formulat-

ed in the appropriate Riemannian space, obtaining superior

generalization performance to the naive extension of LVQs

on both synthetic and real world data sets. In addition to

controlled experiments, we verify the GLRSQ method on EEG

classification of motor imagery tasks, obtaining competitive

performance to the state-of-the-art methods on this problem.

The proposed GLRSQ method is different from the existing

methods for SPD matrix data. In particular, our GLRSQ is im-

plemented by Riemannian stochastic gradient descent algorith-

m. Unlike TSLDA or FGDA, it does not need to approximate

the data by projections to the tangent space at a particular point

on the manifold. Note that the Riemannian stochastic gradient

descent algorithm also introduces projections of SPD matrices

to the tangent spaces, but only at a local scale. The GLRSQ

method shares some properties with MDRM, but it is potential-

ly far more powerful than MDRM in that, if needed, GLRSQ

can learn multiple representatives for each class, as opposed to

only one center per class in MDRM. Even with one prototype

per class, the GLRSQ method shows superior performance

to MDRM, since MDRM finds the class representatives in an

unspurevised manner as class conditional means of the training

data. Our method is also different from recent GLVQ variants

with tangent distances for matrix-shaped data [12], [13]. The

main motivation there is to deal with invariances in the data

(e.g. image objects subject to rotations, scaling and shifts) by

automatically learning lower dimensional tangent basis that

can be used to calculate tangent distances between data points

and class prototypes, providing the best class discrimination.

It is assumed that the inherent data manifold dimensionality is

much lower than that of the emebdding data space. The data

manifold is considered implicitly and exclusively based on the

data sample. In contrast, we know the Riemannian manifold

structure of SPD matrices and take the full use of it when

formulating the GLRSQ method. In connection to this work,

it is worth mentioning that variants of vector quantization

capable of operating on Grassman manifolds have recently

been developed [14], [15]. Grassman manifold Gkn is a space

parameterizing all k-dimensional linear subspaces of the n-

dimensional embedding vector space. Each point on Gkn can

be thought of as a k-dimensional vector space represented

through a representative n × k basis matrix. If n = k the

Grassman manifold is trivially a singleton - the embedding

space itself. In our case, the manifold is the space of full rank

squared n×n symmetric positive-definite matrices, requiring a

very different metric structure from that used in Grasmannians.

The rest of the paper is organized as follows. In Section II,

we briefly introduce learning vector quantization. In Section

III, we derive the novel general framework of Generalized

Learning Riemannian Space Quantization (GLRSQ) and in

Section IV specify the GLRSQ for the Riemannian manifold of

symmetric positive-definite matrices equipped with Riemanni-

an natural metric. Experimental results are in Section V. Main

findings and conclusions are presented in Section VI.

II. LEARNING VECTOR QUANTIZATION

Our approach is developed within the framework of learning

vector quantization (LVQ) [1]. In this section, we will briefly

introduce the concept of LVQ.

Consider a training dataset (xi, yi) ∈ R
n × {1, ..., C},

i = 1, ..,m, where n is the input dimension, C is the

number of classes and m is the number of training examples.

A typical LVQ classifier consists M (M ≥ C) prototypes

wj ∈ R
n, labeled by c(wj) ∈ {1, ..., C}, j = 1, 2, ...,M . The

classification is implemented in a winner-takes-all scheme. For

a data point x ∈ R
n, the output class is determined by the class

label of its closest prototype: i.e. ŷ(x) := c(wj∗) such that

j∗ = argminj d(x,wj), where d(·, ·) is a distance measure

in R
n. Each labeled prototype wj with label c(wj) defines a

receptive filed in the input space – a set of points which pick

this prototype as their winner. The goal of learning the LVQ

classifier is to adapt prototypes automatically such that the

class labels of data points within the receptive field coincide

with the label of the respective prototype as much as possible.

A generalization of LVQ, termed generalized learning vec-

tor quantization (GLVQ), was introduced in [9]. In GLVQ

the prototypes are updated based on the steepest descent
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method on a well-defined cost function. The cost function

is determined so that the obtained learning rule satisfies the

convergence condition. In the training phase of GLVQ, for

each labeled input xi, a pair of prototypes will be updated.

The closest prototype to xi with the same label yi (correct

prototype) is rewarded by dragging it closer to xi, while the

closest prototype with a different label (incorrect prototype) is

penalized by pushing it away from xi.

We collect all the model parameters (i.e. labelled prototype

positions) in vector w and denote by wJ and wK the closest

correct and incorrect prototypes to the training example xi,

respectively. The GLVQ cost function is defined by

E(w) =

m
∑

i=1

Φ(f(xi,w)), (1)

f(xi,w) =
d(xi,wJ)− d(xi,wK)

d(xi,wJ) + d(xi,wK)
, (2)

where Φ(·) is a monotonically increasing scaling function (e.g.

e.g. the identity Φ(x) = x or the logistic function Φ(x) =
1/(1 + e−x)). Interested reader can find more details on the

meaning Φ in e.g. [9] and [10].

For vector data, the squared Euclidean distance i.e.

d(xi,wJ) = |xi − wJ |2 is commonly used in the cost

function. The learning rule for prototypes can be obtained

by minimizing the cost function based on stochastic steepest

gradient descent algorithm. For a given instance xi, denoting

dJ = d(xi,wJ) and dK = d(xi,wK), we obtain the

following learning rules:

∆wJ = α(t)
∂Φ

∂f

4dK
(dJ + dK)2

(xi −wJ ) (3)

∆wK = −α(t)
∂Φ

∂f

4dJ
(dJ + dK)2

(xi −wK) (4)

where 0 < α(t) < 1 is the learning rate that satisfies
∑

∞

t=1 α(t) =∞ and
∑

∞

t=1 α
2(t) <∞.

The generalized learning vector quantization algorithm is

designed for data points living in Euclidean space. In the

following section, we extend the generalized learning quan-

tization algorithm to data points that live in a Riemannian

Manifold.

III. GENERALIZED LEARNING RIEMANNIAN SPACE

QUANTIZATION ON RIEMMANNIAN MANIFOLDS

In this section, we present the general framework of extend-

ing the generalized learning vector quantization to a Riemanni-

an manifold. Before we present the proposed method in details,

we briefly introduce several important concepts in Riemannian

manifold, including tangent spaces, geodesic curve, geodesic

distance, and Riemannian gradient. More detailed information

can be found in the appendix and e.g. in [16], [17].

A. Riemannian manifolds

A topological manifold (or simply manifold) is a topological

space that is locally homeomorphic to the n-dimensional

Euclidean space Rn, where n is the dimension of the manifold.

A differential manifold is a topological manifold that has a

defined differential structure. To any point on such a manifold

we can attach the tangent space, which can be viewed as a

vector space containing tangent vectors of all possible curves

on the manifold passing through that point.

A Riemnnian manifold is a differentiable manifold equipped

with a smoothly varying inner product acting on tangent

spaces. The family of inner products on all tangent spaces

is referred to as the Riemannian metric tensor. With the

definition of the inner product, the angles between tangent

vectors from the same tangent space, as well as the length of

each tangent vector can be quantified. In particular, this allows

us to measure the length of curves on Riemnnian manifolds

by gluing together the lengths of infinitesimal scale tangent

vectors along the curve. The (geodesic) distance between two

distinct points on the manifold is then the shortest length

among all curves connecting the two points on the manifold.

We denote a Riemannian manifold as M, its tangent space

at point X ∈ M by TXM. Note that we denote points on

manifold M with bold capital letters (e.g. X), since in this

paper we concentrate on the manifold of symmetric positive-

definite matrices. Given any pair of vectors V,W ∈ TXM,

their inner product 〈V,W〉X ∈ R is defined through the

associated Riemannian metric tensor on TXM. A smooth

mapping parametrized by γ : R→M : t 7→ γ(t) is referred to

as a curve inM. Since the set of points forming the curve (the

image of γ) can be parametrized in many ways, with varying

speed of parametrization, we will consider the parametriza-

tions by arc length - so called naturally parameterized curves.

Loosely speaking, moving parameter t with constant speed in

[0, 1], the images γ(t) should move with constant speed with

respect to the Riemannian metric. In other words, the ratio of

the arc length (γ(0), γ(t)) to the total length of the curve is t.
Given two points X1,X2 ∈ M, let γ(t) : [0, 1] → M

be a naturally parametrized curve connecting the two points,

i.e. γ(0) = X1 and γ(1) = X2 with tangent vectors γ̇(t) ∈
Tγ(t)M along the way. The length of the curve γ is given by

L(γ) =

∫ 1

0

√

〈γ̇(t), γ̇(t)〉γ(t)dt (5)

A curve that minimizes the distance between two points

on the manifold is called geodesic curve. Note that geodesics

are not merely the curves of the shortest path between two

points but they are also parameterized with “constant speed”.

Given two points, geodesic curve connecting them may not be

unique, as there can be multitude of such geodesic curves -

for example geodesic curves connecting north and south poles

on a sphere. The length of any geodesic curve connecting X1

and X2 is referred to as the Riemannian geodesic distance

between X1 and X2. If any two points can be connected

with a geodesic, the manifold is complete. However, without

completeness, this is not necessarily true. In this paper, we

only consider geometrically complete Riemannian manifolds.

Given a point X on a curved manifold M, the tangent

space to M at X can usefully function as a vector space

approximation of M only to within a certain neighborhood

of X on M. This is formalized by the notion of injective

radius. Loosely speaking, it defines the maximum radius of

of a ball B(X) in M centered at X so that there exits a
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diffeomorphism between B(X) and its image in the tangent

space through the log map. For any point X′ ∈ B(X) there is

the unique minimizing geodesic connecting X and X
′.

Given a smooth real-valued function f(X) defined on M,

its Riemannian gradient ∇Vf(X) at X ∈M in the direction

of the vector V ∈ TXM measures the rate of change of the

function f in the direction V. Given a naturally parametrized

smooth curve γ : [0, 1] → M, such that γ(0) = X and

γ̇(0) = V, the composite function f ◦ γ : t 7→ f(γ(t)) is

a smooth function from R to R with a well-defined classical

derivative. Given the direction V ∈ TXM, the Riemannian

gradient ∇Vf(X) is the unique tangent vector in TXM such

that

〈V,∇Vf(X)〉X =
d

dt
f(γ(t))

∣

∣

∣

∣

t=0

(6)

Thus, the computation of Riemannian gradient can be per-

formed through the calculation of the classical derivative of

the composite function f ◦ γ. The exponential map at point

X denoted by Exp
X

is a map from the tangent space of

the manifold M at point X to the manifold M itself, i.e.

Exp
X

: TXM → M and the exponential map is defined by

Exp
X
(V) = γ(1). The exponential map provides a way to

access to the corresponding point on the manifold, given a

tangent vector.

B. Generalized Learning Riemannian Space Quantization on

a General Riemannian manifold

Consider a training data set {(Xi, yi)}
m
i=1, where Xi ∈M

is the i-th training point which lives on the Riemannian

Manifold M and yi ∈ {1, ..., C} is the label of this point.

Assume that the classifier consists of M (M ≥ C) prototypes

Wj ∈M labeled by cj ∈ {1, ..., C}. On a curved Riemannian

manifold, the distance between a prototype Wj and a training

instance Xi is the length of the geodesic curve between them,

rather the straight line as illustrated in Fig. 1. The closest

correct prototype to an instance should be dragged towards

it along the geodesic curve, rather than along the straight

line between the prototype and the instance. Otherwise, the

prototype may leave the manifold. In the same way, the closest

incorrect prototype to the instance should be push away from

the instance along the corresponding geodesic.

Fig. 1: Illustration of generalized learning Riemannian space

quantization. The closest correct (circle) and incorrect (trian-

gle) prototypes are respectively dragged towards and pushed

away from the instance (square) along the geodesic curve,

rather than the straight line between them.

The cost function of the GLVQ classifier on the Riemannian

Manifold can be directly extended from the original GLVQ

(i.e. Eqs. (1) and (2)) by replacing the squared Euclidean

distance d by the squared Riemannian distance δ:

E(W) =
m
∑

i=1

Φ(µ(Xi,W)), (7)

µ(Xi,W) =
δ(Xi,WJ)− δ(Xi,WK)

δ(Xi,WJ) + δ(Xi,WK)
(8)

where WJ ∈ M and WK ∈ M are the closest correct

and incorrect prototypes to the training point Xi in terms of

δ, respectively. Again, the updating rule can be obtained by

minimizing the above cost function through stochastic deepest

gradient descent algorithm on the manifold M.

Given an example Xi, let γJ (t) be a geodesic curve

connecting Xi with its closest correct prototype WJ , starting

in WJ with initial speed VJ ∈ TWJ
M. Analogously, let

γK(t) be a geodesic curve connecting Xi with its closest

incorrect prototype WK , starting in WK with initial speed

VK ∈ TWK
M. The cost function for this example along the

two curves reads:

E(γJ (t), γK(t))

= Φ

(

δ (Xi, γJ(t))− δ(Xi, γK(t))

δ(Xi, γJ(t)) + δ(Xi, γK(t))

)

.

Let δJ and δK denote the distances δ(Xi,WJ) and

δ(Xi,WK), respectively. Following Eq. (6), the Riemannian

gradient ∇VJ
E can be computed as:

〈VJ ,∇VJ
E〉WJ

=
∂E(γJ(t), γK(t))

∂γJ(t)

∣

∣

∣

∣

t=0

= Φ′
2δK

(δJ + δK)2
d

dt
δ(Xi, γJ(t))

∣

∣

∣

∣

t=0

(9)

Similarly, the Riemannian gradient ∇WK
E can be computed

via:

〈VK ,∇VK
E〉WK

=
∂E(γJ(t), γK(t))

∂γK(t)

∣

∣

∣

∣

t=0

= Φ′
−2δJ

(δJ + δK)2
d

dt
δ(Xi, γK(t))}

∣

∣

∣

∣

t=0

(10)

Given a particular Riemannian manifold with a specifically de-

fined Riemannian structure, the geodesics and time derivatives

of the geodesic distance dδ
dt will be uniquely determined.

Once we have the Riemannian gradients ∇VJ
E and

∇VK
E, the prototypes WJ and WK are updated following

[18]:

W
new
J = Exp

WJ
(−α(t)∇VJ

E) (11)

W
new
K = Exp

WK
(−α(t)∇VK

E) (12)

where Exp
W

is the exponential map at W, determined by

the Riemannian metric associated with a specific Riemannian

manifold [19] and 0 < α(t) < 1 is the learning rate that

satisfies
∑

∞

t=1 α(t) =∞ and
∑

∞

t=1 α
2(t) <∞.

IV. GENERALIZED LEARNING RIEMMANNIAN SPACE

QUANTIZATION ON SPD RIEMMANNIAN MANIFOLD

In this section, we present the approach of extending the

generalized learning vector quantization to the specific Rie-

mannian manifold consisting of symmetric, positive-definite
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(SPD) matrices. Before describing our method, we briefly

introduce some basic concepts of this particular manifold and

the calculation of Riemannian mean of SPD matrices which

have been also introduced in [20]–[22].

A. Manifold of SPD matrices

Let S(n) represent the space of all n×n symmetric matrices

and S
+(n) denote the space of all n×n symmetric, positive-

definite matrices. The training points Xi ∈ S
+(n), i = 1, ...,m

are n × n SPD matrices. The S
+(n) space forms a curved

manifold, known as Riemannian symmetric space [20] if each

tangent space of S
+(n) is equipped with the Riemannian

natural metric.

Let X ∈ S
+(n), the tangent space at point X is a space

of symmetric matrices, given by TXS
+(n) = S(n) = {V ∈

R
n×n|VT = V}. The Riemannian natural metric on the

manifold of SPD matrices is defined by the local inner product:

for any V1,V2 ∈ TXS
+(n):

〈V1,V2〉X = Tr(V1X
−1

V2X
−1), (13)

where Tr represents the trace of the matrix. The inner product

induces a norm for the tangent vectors on the tangent space,

i. e. ‖ V ‖2
X
= 〈V,V〉X. Note that at Identity matrix I, this

norm is reduced into Frobenius norm, i. e.

〈V,V〉I =‖ V ‖
2
F .

The geodesic curve at the point X in the direction of V ∈
TXS

+(n) can be expressed as:

γ(t) = X
1/2 exp(tX−1/2

VX
−1/2)X1/2 (14)

Here, exp is the exponential of matrix (see Appendix A).

Obviously, this geodesic curve is entirely contained in the

manifold. For any given pair X1, X2 ∈ S
+(n), we can find a

geodesic curve γ(t) connecting γ(0) = X1 with γ(1) = X2

by taking the initial velocity [22]

γ̇(0) = X
1/2
1 log(X

−1/2
1 X2X

−1/2
1 )X

1/2
1 ∈ TX1

S
+(n),

where log is the principal logarithm of matrix (Appendix

A). According to Eq. (5), the squared Riemannian geodesic

distance between X1 and X2 can be explicitly computed as

follows [21]:

δ(X1,X2) =‖ log(X
−1
1 X2) ‖

2
F=

n
∑

i=1

log2 λi, (15)

where λi, i = 1, ..., n are the real eigenvalues of X−1
1 X2. Note

the definition of the squared Riemannian distance is equivalent

to δ(X1,X2) =‖ log(X
−1/2
1 X2X

−1/2
1 ) ‖2F (see Appendix B

). The main properties of the Riemannian geodesic distance

are listed as follows:

• δ(X1,X2) = δ(X2,X1)
• δ(X−1

1 ,X−1
2 ) = δ(X1,X2)

• δ(WT
X1W,WT

X2W) = δ(X1,X2), ∀W ∈ Gl(n),

where Gl(n) represents the general linear group, consisting

of all nonsingular real matrices. The third property implies

Riemannian geodesic distance between two SPD matrices

is invariant by projection, making classifiers based on this

distance measure robust to transformations.

In the Riemannian manifold of SPD matrices, given a point

X ∈ S
+(n), it is possible for each point in this space Xi ∈

S
+(n), to identify a tangent vector Vi ∈ S(n) such that Vi =

γ̇(0) is the initial speed vector of the geodesic γ(t) between X

and Xi. The Riemannian Log map operator Log
X
: S+(n)→

S(n) achieves the mapping from the manifold to the tangent

space at X, i. e. Log
X
(Xi) = Vi. The Riemannian Exp map

operator Exp
X
(Vi) = Xi allows to go back in the original

manifold of SPD matrices S
+(n) in a one-to-one mapping.

The Riemannian Exp map and Log maps associated with the

Riemannian natural metric given by Eq. (13) are expressed as

follows:

Exp
X
(Vi) = X

1/2 exp(X−1/2
ViX

−1/2)X1/2 (16)

Log
X
(Xi) = X

1/2 log(X−1/2
XiX

−1/2)X1/2 (17)

B. Riemannian Mean of SPD matrices

Consider m symmetric positive-definite matrices

X1, ...,Xm ∈ S
+(n), the Riemannian mean of them is

defined as fololows [20], [21]:

m = arg min
X∈S+(n)

m
∑

i=1

δ(X,Xi). (18)

There is no general closed-form expression for finding m.

Fletcher and Joshi [20] introduced a gradient descent algorithm

to compute the mean. The solution of the minimization prob-

lem ((18)) has been proved to exist and be unique, justifying

the validity of the definition [20]. The space S
+(n) does have

non-positive sectional curvature and for a manifold with non-

positive sectional curvature, the mean is uniquely defined, thus

the Riemannian mean is uniquely defined. In particular, the

gradient for finding the mean reads [21]:

∇ρ = X

m
∑

k=1

log(X−1
k X) = −

m
∑

i=1

Log
X
(Xk) (19)

and the calculation of the Riemannian mean is listed in

Algorithm 1.

Algorithm 1 Riemannian mean

Input: Points X1, ...,Xm ∈ S
+(n), and a very small positive

real number ǫ
Output: The intrinsic mean m ∈ S

+(n)
1: Initialize m0 = I
2: repeat

3: Vi =
1
m

∑m
k=1 Log

mi
(Xk)

4: mi+1 = Exp
mi
(Vi)

5: until ‖ Vi ‖F < ǫ

C. Generalized Learning Riemannnian Space Quantization of

SPD matrices

Consider a training data set {(Xi, yi)}mi=1, Xi ∈ S
+(n),

yi ∈ {1, ..., C}. Assume that the corresponding GLVQ classi-

fier consists of M (M ≥ C) prototypes Wi ∈ S
+(n) labeled
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by ci ∈ {1, ..., C}. Then the generalized learning vector

quantization algorithm for points on the Riemannian manifold

of symmetric positive-definite matrices can be derived by

substituting the Riemannian distance defined by Eq. (15) into

the cost function E(W) given by Eqs. (7) and (8).

To obtain the update rule of the prototypes, we need to

compute the Riemannian gradient of the cost function de-

fined on the manifold of symmetric positive-definite matrices.

Recall that, for a given instance Xi ∈ S
+(n), we denote

its closest correct prototype (under the Riemannian geodesic

distance defined by Eq.(15)) as WJ ∈ S
+(n) and its closest

incorrect prototype as WK ∈ S
+(n). The two geodesic curves

on S
+(n) emitting from WJ and WK towards Xi with the

initial speed VJ = γ̇(0) and VK = γ̇(0) are specified by

γJ (t) = W
1/2
J exp(tW

−1/2
J VJW

−1/2
J )W

1/2
J

and

γK(t) = W
1/2
K exp(tW

−1/2
K VKW

−1/2
K )W

1/2
K

respectively. Substituting the above two curves into Eq.(9) and

Eq.(10), we can obtain the Riemannian gradients of the cost

function with respect to WJ and WK as follows:

∇WJ
E = −Φ′

4δK

(δJ + δK)2
Log

WJ
(Xi) (20)

∇WK
E = Φ′

4δJ

(δJ + δK)
2 Log

WK
(Xi) (21)

where δJ and δK denote the distances δ(Xi,WJ) and

δ(Xi,WK), respectively. The detailed calculation is given in

the Appendix C. Once we have the gradients, we can update

the prototypes via Eq. (11) and Eq. (12) with Exp
W

defined

by Eq. (16). The algorithm of GLVQ in Riemannian SPD

matrix space is summarized by Algorithm 2. Following the

general practice of LVQ algorithm that the class prototypes

are initialized with the mean of examples from each class plus

some random fluctuation, we initialize the prototypes of each

class with the Riemannian mean of examples from that class

plus small random perturbation.

V. EXPERIMENTAL RESULTS

The performance of our proposed approach is evaluated

on both synthetic data sets and real world motor imagery

data sets. For all LVQ based algorithms, the logistic scaling

function Φ(x) = 1/(1+ e−x) was used and the learning rates

are continuously reduced in the course of learning. We use

the schedule α(t) = n
100 · 0.01

t/T , where n is the dimension

of the manifold, T denotes the number of sweeps through the

training data, and t = 1, ..., T .

A. Baseline Methods

The baseline methods naively utilize Euclidean distance

between matrices to measure the distance between the instance

and the prototype, i. e. δF (X,W) =‖ X −W ‖2F , where

‖ · ‖2F is the Frobenius norm of a matrix and ‖ A ‖2F=
Tr(AA

T ) =
∑

i,j a
2
ij . Replacing the distance in the cost

Algorithm 2 Generalized Learning Riemannian Space Quan-

tization of SPD matrices

Input: m training examples (X1, y1), ..., (Xm, ym), where

Xi ∈ S
+(n) and yi ∈ {1, ..., C}

Output: M labeled prototypes (W1, c1), ..., (WM , cM ),
where Wi ∈ S

+(n) and ci ∈ {1, ..., C}
1: Initialize Wi by the Riemannian mean of examples la-

beled by ci plus small random perturbation.

2: while a stopping criterion is not reached do

3: Randomly select a training example (Xi, yi)
4: Identify the closest correct prototype WJ and the

closest incorrect prototype WK utilizing Riemannian

geodesic distances

5: VJ = α(t)Φ′ 4δK
(δJ+δK)2

Log
WJ

(Xi)

6: VK = −α(t)Φ′ 4δJ
(δJ+δK)2

Log
WK

(Xi)

7: WJ ← Exp
WJ

(VJ )
8: WK ← Exp

WK
(VK)

9: end while

function given by Eqs. (7) and (8) with δF and as the derivative

of Frobenius norm

∂ ‖W ‖2F
∂W

= 2W

(see [23]), we can obtain the updating rule of prototypes as

follows:

∆WJ = α(t)Φ′
4δK

(δJ + δK)2
(Xi −WJ) (22)

∆WK = −α(t)Φ′
4δJ

(δJ + δK)2
(Xi −WK). (23)

Comparing the learning rules for prototypes in Eq. (22) and

(23) with those in Eq. (3) and (4), we find that (unsurprisingly)

GLVQ learning rule for SPD matrices using Euclidean distance

recovers the structure of the original GLVQ learning rule for

vectors.

By closely examining the GLVQ learning rule for SPD

matrices in Euclidean space (i.e. Eq. (22) and (23)), we

find it is equivalent to vectorize the upper triangle of the

SPD matrices and apply the standard GLVQ learning rule

for vectors, since Xi −WK obtains the element difference

between matrix Xi and WK . Following this idea, we can also

vectorize the upper triangle of the SPD matrices and apply

standard Generalized Relevance Learning Vector Quantization

(GRLVQ) [10] and Generalized Matrix Learning Vector Quan-

tization (GMLVQ) [11]. However, there is one problem. Even

though we can initialize the prototypes with SPD matrices, the

updated prototypes are not guaranteed to be positive-definite.

Therefore, for each update of the prototype, we reshape the

vectorized prototype into symmetric matrix and check whether

the matrix is positive-definite. If the matrix leaves out of SPD

space, we project the prototype into its closest SPD matrix,

by eliminating the negative eigenvalues.

Besides the above LVQ baseline methods, we also compare

our method to Minimal Distance to Riemannian Mean method,

which learns a cluster center for each class of instances [8]

on synthetic data sets. With respect to motor imagery data
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sets, besides the above four methods, we also compare the

performance of our method to the state-of-the-art methods in

the literature.

B. Synthetic Data

We first generated synthetic data set to verify our proposed

approach. The instances are generating according to the fol-

lowing equations:

X =

n
∑

i

λiuiu
T
i (24)

where λi represents the i-th eigenvalue of X and ui is the

corresponding eigenvectors. Here, we choose n = 10.

We designed four sets of eigenvalues. The first set of

eigenvalues is from a linearly decreasing function:

ξ̃1(t) = 13− t, t = 1, ..., n,

The second set of eigenvalues follows an exponentially de-

creasing function:

ξ̃2(t) = 1 + 100 exp(−0.5t), t = 1, ..., n,

The third set of eigenvalues also follows from a linearly

decreasing function but with different slope:

ξ̃3(t) = 13− 0.5t, t = 1, ..., n,

The fourth set of eigenvalues follows from a reciprocal func-

tion:

ξ̃4(t) =
1

t
, t = 1, ..., n,

For all four sets of eigenvalues, the mean of the eigenvalues

is normalized to 1, i. e.

ξi(t) = nξ̃i(t)/
n
∑

q=1

ξ̃i(q),

where i = 1, ..., 4. The four sets of eigenvalues are plotted in

Fig. 2.

n
1 2 3 4 5 6 7 8 9 10

λ

0

1

2

3

4
1
2
3
4

Fig. 2: Plot of the four sets of eigenvalues.

We also designed four sets of eigenvectors (basis). To that

end, we generated four n × n random real matrices (each

element generated i.i.d. from N (0, 1). Then, for each matrix,

the Gram-Schmidt orthogonalization was used to obtain the

orthogonal basis - the set of eigenvectors. We denote the four

sets of eigenvectors by {vi
1, ...,v

i
n}, i = 1, 2, 3, 4.

Two synthetic datasets were generated, named SynI, SynII.

For SynI, the first two sets of eigenvalues and the first two

eigenvectors are combined to produce four classes of instances.

The first two classes share the first set of eigenvalues, but

each with different sets of eigenvectors. The remaining two

classes share the second set of eigenvalues, and also each with

different sets of eigenvectors. When instances were generated,

random noise were injected in both its eigenvalues and eigen-

vectors. The eigenvalues λ(t), t = 1, ..., n of the instance were

created according to uniform distribution U(ξ1(t)−ǫ, ξ1(t)+ǫ)
or U(ξ2(t)−ǫ, ξ2(t)+ǫ), depending on its class label. Here we

chose ǫ = 0.1. The eigenvectors ut, t = 1, ..., n of the instance

were the orthonormalized version of v1
t + ǫ or v2

t + ǫ through

Gram-Schmidt orthogonalization depending on its label, where

ǫ follows N (0, σ2
I). Here we chose σ = 0.3. Once the

eigenvalues and eigenvectors of the instance were obtained,

the instance can be acquired by Eq. (24).

The SynII is also of four classes and was generated using the

four sets of eigenvalues and one set of eigenvectors. Instances

of each class has its own set of eigenvalues but share the

common eigenvectors. Each instance was created following

the same procedure of SynI.

The synthetic datasets are summarized in Table I. For both

the SynI and synII, a training set, a validation set, and a test

set were generated independently. All three sets contained 250
instances per class. The generating process of each dataset was

repeated for 30 times, the following results are the average

results over 30 runs.

TABLE I: Descriptions of synthetic datasets. l and k denotes

the number of sets of eigenvalues and eigenvectors that are

used to generate the data, respectively. C denotes the number

of classes, n denotes the rank of the SPD matrix, #Train rep-

resents the number of training instances,#Validation denotes

the number of validation instances, while #Test is the number

of test instances.

Name l k C n #Train #Validation #Test

SynI 2 2 4 10 250 ∗ 4 250 ∗ 4 250 ∗ 4

SynII 4 1 4 10 250 ∗ 4 250 ∗ 4 250 ∗ 4

The number of prototypes per class and training epochs

were selected from {1, 2, 3} and {20, 50, 100}, respectively,

based on the validation set performance. The test set clas-

sification performance (averaged accuracy over 30 runs with

standard deviation) of different learning vector quantization

approaches on synthetic datasets SynI and synII is presented in

Tables II and III, respectively1. In all experiments GLRSQ pre-

forms significantly better than the other three LVQ approaches

and the MDRM method with p < 0.05 via non-parametric

Wilcoxon signed-rank test [24].

C. Motor Imagery Data sets

Two popular multi-class motor imagery EEG data sets

were used to evaluate our proposed approach, namely BCI

1The selected number of prototypes per class and training epochs are listed
in the Table VIII in Appendix D.
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TABLE II: Comparison of accuracy among different LVQ

approaches on data set SynI. Averaged accuracy over 30 runs

along with standard deviation is given.

m/C GLVQ GRLVQ GMLVQ MDRM GLRSQ

50 0.9028 ± 0.0108 0.9035 ± 0.0108 0.9137 ± 0.0140 0.9671 ± 0.0063 0.9681 ± 0.0072

150 0.9246 ± 0.0070 0.9377 ± 0.0066 0.9320 ± 0.0072 0.9721 ± 0.0073 0.9738 ± 0.0062

250 0.9306 ± 0.0088 0.9490 ± 0.0069 0.9361 ± 0.0078 0.9730 ± 0.0059 0.9750 ± 0.0054

Mean 0.9193 0.9301 0.9258 0.9684 0.9723

TABLE III: Performance comparison among different LVQ

methods on dataset SynII. Averaged accuracy over 30 runs

along with standard deviation is given.

m/C GLVQ GRLVQ GMLVQ MDRM GLRSQ

50 0.7105 ± 0.0234 0.7625 ± 0.0140 0.7838 ± 0.0142 0.8717 ± 0.0120 0.8759 ± 0.0122

150 0.7497 ± 0.0189 0.8167 ± 0.0110 0.8121 ± 0.0160 0.8974 ± 0.0081 0.9037 ± 0.0075

250 0.7621 ± 0.0187 0.8340 ± 0.0130 0.8191 ± 0.0155 0.9040 ± 0.0083 0.9137 ± 0.0095

Mean 0.7408 0.8044 0.8050 0.8910 0.8978

competition III data set IIIa [25], [26] and BCI competition

IV data set 2a [27].The two data sets (BCI III IIIa and BCI

IV 2a) contain EEG signals extracted using n = 60 and

n = 22 electrodes, respectively. The EEG signals will be

transformed into spatial covariance matrices (the hypothesis is

that for the given tasks, the spatial covariance matrix provides

discriminative information of brain states). Suppose the i-th
trial of pre-processed EEG signal is given as follows 2:

Ei = [e(ti), ..., e(ti + l − 1)] ∈ R
n×l (25)

where n and l denote the number of channels and sampled

points, respectively. Each trial of EEG signal is represented

by the sample covariance matrix computed as follows:

Xi =
1

l − 1
EiE

T
i (26)

Thus, elements of the two data sets live in P (60) and P (22),
respectively.

1) Description of Datasets:

a) BCI III IIIa: BCI competition III dataset IIIa consists

of EEG recordings from 3 subjects. Each subject performed 4

different types of motor imagery tasks, including left hand,

right hand, foot or tongue movements according to a cue.

60 Channels were recorded with a 64-channel EEG amplifier

from Neuroscan, using the left mastoid for reference and the

right mastoid as ground. The EEG was sampled with 250

Hz. The subject sat in a relaxing chair with arm rests. After

presentation of a cue, the subject was asked to perform the

indicated imagery task for 4 seconds. The experiment consists

of several runs (at least 6) with 40 trials each. Each of the 4

cues was displayed 10 times within each run in a randomized

order. The time interval of the processed data was restricted

to the time segment comprised between 0.5 and 2.5 s starting

from the cue instructing the user to perform the mental task.

EEG signals from each trial were bandpass filtered by a 5-th

order Butterworth filter in the 10-30 Hz frequency band to

analyze the µ and β rhythms. The preprocessed segmented

EEG signals were then used to obtain the sample covariance

matrices by Eq. (26).

2After pre-processing, Xi becomes zero mean.

b) BCI IV 2a: BCI competition IV data set 2a consists

of EEG signals from 9 healthy subjects who were performing

four different motor imagery tasks, i.e. imagination of the

movement of the left hand, right hand, both feet and tongue.

The signals were recorded by placing 22 electrodes distributed

over sensorimotor area of the subject at a sampling rate of

250 Hz. For each subject, two sessions were recorded on two

different days, each containing 288 trials with 72 trials per

class. At each trial, a cue was given in the form of an arrow

pointing either to the left, right, down or up, corresponding

to one of the four classes, to prompt the subject to perform

the corresponding motor imagery task. The motor imagination

lasted 4 seconds from the presence of cue till the end of motor

imagery task. The time interval of the processed data was

restricted to the time segment comprised between 0.5 and 2.5 s

starting from the cue instructing the user to perform the mental

task. As before, EEG signals from each trial were bandpass

filtered by a 5-th order Butterworth filter in the 10-30 Hz

frequency band.
2) Results: For each LVQ method, the number of proto-

types per class and training epochs were selected from {1, 2}
and {20, 50, 100}, respectively, using 5-fold cross validation

on the training fold.
a) Results of Dataset BCI III IIIa: We first compared

our GLRSQ with other three LVQ methods using 30 fold

cross validation. The results reported are averaged results

over 30 runs. The mean classification accuracy together with

standard deviation is given in Table IV. From Table IV, we

can see that the proposed Riemannian GLVQ outperformed the

three alternatives significantly (p < 0.03 using non-parametric

Wilcoxon signed-rank test). Interestingly, GLVQ performed

better than both GRLVQ and GMLVQ. One possible reason

is that the training data size is rather small. GLVQ is much

simpler and has much fewer learning parameters than the other

two approaches. We also empirically observed that updated

prototypes of GLVQ are less likely to leave out of the SPD

space.

TABLE IV: Comparison of four different LVQ methods in

terms of classification accuracy on dataset IIIa. 30 fold cross

validation was used. Mean accuracy (± standard deviation) is

given.

Subject GLVQ GRLVQ GMLVQ GLRSQ

K3 0.7333 ± 0.1374 0.3389 ± 0.0846 0.5861 ± 0.1340 0.9139 ± 0.0941

K6 0.5000 ± 0.1353 0.4152 ± 0.1613 0.4041 ± 0.1563 0.6417 ± 0.1633

L1 0.5167 ± 0.1790 0.5250 ± 0.1408 0.4750 ± 0.1369 0.7917 ± 0.1285

Mean 0.5833 0.4255 0.4884 0.7824

We then compared the performance of our method with

the results published on the BCI competition III website and

the MDRM algorithm [8]. The method was trained using

the training set and tested on the separated test set. The

selected number of prototype per class and training epochs

are given in Table IX in the Appendix D. Kappa values are

used measure the performance of the methods. The results

are given by Table V. From Table V, we can see that the

performance of our proposed GLRSQ is quite close to the

second best performance and significantly better than the third

best method. The first two best results were delivered by

methods both related to CSP, suggesting the validity of using
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spatial covariance matrices. However, EEG signals in this data

set consist 60 channels, resulting in very high dimensional

spatial covariance matrices, i. e. 60× 60, compared with the

number of training instances. This might be one reason that

our GLRSQ failed to beat the methods related to CSP.

TABLE V: Comparison between our method and other meth-

ods in the literature on BCI competition III dataset IIIa in

terms of kappa value.

mean kappa K3 K6 L1

1st 0.7926 0.8222 0.7556 0.8000

2nd 0.6872 0.9037 0.4333 0.7111

GLRSQ 0.6765 0.8519 0.4778 0.7000

3rd 0.6272 0.9481 0.4111 0.5222

MDRM 0.6222 0.8222 0.3556 0.6889

GLVQ 0.4481 0.5778 0.3444 0.4222

GMLVQ 0.3716 0.4815 0.1889 0.4444

GRLVQ 0.2654 0.1407 0.2444 0.4111

b) BCI IV 2a: In this same way, we first compared

our GLRSQ with the other three LVQ methods using 30 fold

cross validation on this data set. The results reported are av-

eraged results over 30 runs. The mean classification accuracy

together with standard deviation is given in Table VI. From

TABLE VI: Comparison of four different LVQ methods in

terms of classification accuracy on BCI IV 2a data set. 30

fold cross validation was used.

Subject GLVQ GRLVQ GMLVQ GLRSQ

S1 0.6518 ± 0.1031 0.6315 ± 0.0868 0.5893 ± 0.0809 0.8508 ± 0.0764

S2 0.3753 ± 0.1256 0.2961 ± 0.1066 0.3001 ± 0.0933 0.555 ± 0.0852

S3 0.6772 ± 0.0993 0.4186 ± 0.0823 0.5090 ± 0.1112 0.8955 ± 0.0591

S4 0.4855 ± 0.1189 0.3550 ± 0.0853 0.4596 ± 0.1098 0.6632 ± 0.1011

S5 0.3180 ± 0.1018 0.3078 ± 0.1132 0.3083 ± 0.1002 0.5013 ± 0.1191

S6 0.4701 ± 0.1000 0.3933 ± 0.1096 0.395 ± 0.1089 0.5965 ± 0.0924

S7 0.5951 ± 0.0925 0.5268 ± 0.1043 0.5327 ± 0.1247 0.8483 ± 0.0909

S8 0.6818 ± 0.1219 0.4956 ± 0.1165 0.6002 ± 0.1212 0.8722 ± 0.059

S9 0.6894 ± 0.1009 0.4754 ± 0.0912 0.6879 ± 0.0977 0.8508 ± 0.0766

Mean 0.5494 0.4430 0.4869 0.7371

Table VI, we can see that the GLRSQ methods significantly

outperformed the other three LVQ methods (p < 2.1 × 10−5

using non-parametric Wilcoxon signed-rank test). Again, we

found that GLVQ obtained better results than GRLVQ and

GMLVQ.

We further compared the performance of our GLRSQ with

three winning published on BCI competition IV and the results

of state-of-the-art methods in the literature. Table VII gives the

results in terms of kappa values as it was done for the BCI

completion IV. The selected number of prototype per class

and training epochs of our methods are given in Table IX

in the Appendix D. From Table VII, we can see that our

GLRSQ obtained much better performance than the 1st winner

of BCI competition IV. Our GLRSQ method beat the 1st

winner on 5 subjects over the 9 subjects. Our GLRSQ is

marginally better than the 2nd winner of BCI competition IV.

We also compared our method with the TSLDA method [8],

the MDRM method [8], and two recently published methods:

one method is termed as TSSM+LDA which uses Tangent

Space of Sub-manifold (TSSM) learning for dimension re-

duction and Linear Discriminant Analysis (LDA) as final

classifier [28]; the other method is named as WaSF ConvNet

which utilizes a deep Convolution Network (ConvNet) with

Wavelet and Spatial Filter (WaSF) kernels to learn joint

space-time-frequency features for motor imagery classification

[29]. From Table VII, we can see that our GLRSQ method

significantly beat the MDRM method and also outperformed

the TSLDA method. Our GLRSQ method shows superior

performance to the deep WaSF ConvNet method, too. One

possible reason is that the size of training data (subject-specific

training instances) in BCI is rather small compared to that in

computer vision. Consequently, the deep convolution network

based methods failed to obtain unbeatable performance in BCI

like in computer vision. Our methods obtained comparable

performance to the TSSM+LDA method, as this method takes

advantages of sub-manifold learning, suggesting the dimension

reduction of the covariance matrices may lead to improved

classification performance. Our future work will incorporate

Riemannian manifold dimension reduction in our Riemannian

Learning Vector Quantization framework.

VI. CONCLUSION

We have proposed a new approach to classify data points

living in curved Riemannian manifolds within the learning

vector quantization framework and specifies the approach for

data points that live in the Riemannian manifold of symmetric

positive-definite matrices. This approach extends the existing

generalized learning vector quantization method in Euclidean

space to Riemannian space.

The standard GLVQ can be directly applied to classifying

the SPD matrices by reshaping the upper-triangle of the SPD

matrices into vectors. The prototype can be kept positive-

definite by the proper initialization with symmetric positive-

definite matrix and the projection into its closest SPD matrix.

By the same adaptation, GRLVQ and GMLVQ can also

be applied to classify the SPD matrices. However, through

treating the SPD matrix space as Riemannian manifold and

using the Riemannian geodesic distance instead of Frobenius

norm, the prototype is guaranteed to be SPD matrix without

any heuristic manipulation. We also find that GLVQ with

Riemannian geodesic distance deliver better performance than

GRLVQ and GMLVQ in classifying SPD matrices, suggesting

that the Riemannian geodesic distance is more appropriate than

Mahalanobis distance in the case of SPD matrix classification.

Our proposed generalized learning Riemannian space quan-

tization has inherited the intuitive and simple nature of learning

vector quantization methods. Furthermore, it can naturally

deal with multi-class classification of SPD matrices. More

importantly, the approach is an online learning algorithm can

perform life-long learning and the test is very fast, as it

only needs to compare the test instance to several prototypes.

Empirical experiments have been conducted on EEG data

classification to verify the good performance of our method.

Our proposed method provides an alternative efficient and

effective EEG decoding method for online Brain-computer

interface.

However, the training sample in the BCI research is usually

small, while the number of electrodes can be high3, resulting in

high dimensional and possibly ill-conditioned SPD matrices.

3See http://bnci-horizon-2020.eu/database/data-sets
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TABLE VII: Performance comparison between our method and the state-of-the-art methods in terms of kappa value on BCI

competition IV dataset 2a.

mean kappa S1 S2 S3 S4 S5 S6 S7 S8 S9

TSSM+LDA [28] 0.593 0.77 0.33 0.77 0.51 0.35 0.36 0.71 0.72 0.83

GLRSQ 0.586 0.79 0.32 0.76 0.55 0.34 0.36 0.66 0.70 0.79

WaSF ConvNet [29] 0.58 0.63 0.32 0.75 0.44 0.60 0.38 0.69 0.71 0.73

1st 0.57 0.68 0.42 0.75 0.48 0.40 0.27 0.77 0.75 0.61

TSLDA [8] 0.57 0.74 0.38 0.72 0.50 0.26 0.34 0.69 0.71 0.76

MDRM [8] 0.52 0.75 0.37 0.66 0.53 0.29 0.27 0.56 0.58 0.68

2nd 0.52 0.69 0.34 0.71 0.44 0.16 0.21 0.66 0.73 0.69

GLVQ 0.35 0.50 0.16 0.50 0.31 0.13 0.25 0.33 0.51 0.44

3rd 0.31 0.38 0.18 0.48 0.33 0.07 0.14 0. 29 0. 49 0.44

GMLVQ 0.31 0.40 0.15 0.36 0.29 0.06 0.20 0.33 0.50 0.55

GRLVQ 0.24 0.40 0.08 0.28 0.16 0.06 0.15 0.31 0.42 0.34

However, not all the recorded electrodes may provide equal-

ly useful information [30]. Hence, in our future work will

consider learning of lower-dimensional SPD manifold relevant

for the given classification task along the lines of [31]. This

can be expressed as an optimization problem on a Grassmann

manifold [31], [32].
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APPENDIX A

MATRIX EXPONENTIAL AND LOGARITHMS

The exponential of a matrix X is given by the convergent

series:

exp(X) =
∞
∑

k=0

1

k!
X

k (27)

For symmetric matrix X ∈ S(n), the exponential of the matrix

X can be computed via eignvalue decomposition of X:

X = U diag(λ1, ..., λn) U
T (28)

where λ1, ..., λn are eignvalues of X, U is the matrix of

eigenvectors of X, and diag denotes the diagonal matrix with

the arguments of diag being the diagonal elements of the

matrix. Note that as X is symmetric, U−1 = U
T . Then the

exponential of the matrix of X is:

exp(X) = U diag(exp(λ1), ..., exp(λn)) U
T (29)

Logarithm of a matrix P are solutions of the matrix equation

exp(X) = P. When P does not have eigenvalues in the

closed negative real line, there exists a unique real logarithm,

called the principal logarithm,denoted by log(P), defined by

the convergent series

log(P) = −
∞
∑

k=1

(I−P)k

k
(30)

We have the following properties:

• If A and B are both positive-definite matrices, then

Tr (log(AB)) = Tr (log(A)) + Tr (log(B)) (31)

• If positive-definite matrices A and B commute, i.e.,

AB = BA, then

log(AB) = log(A) + log(B) (32)

• Substituting B = A
−1 in Eq. (32), we have

log(A−1) = − log(A) (33)

For SPD matrix P, the logarithm can be computed by:

log(P) = U diag(log(λ1), ..., log(λn)) U
T

where λ1, ..., λn are eignvalues of P and U is the matrix

of eigenvectors of P. The exponential of any symmetric

matrix is a positive-definite symmetric matrix and the inverse

of exponential (i.e. the principal logarithm) of any positive-

definite symmetric matrix is a symmetric matrix, i.e. :

• ∀ P ∈ S
+(n), log(P) ∈ S(n)

• ∀ S ∈ S(n), exp(S) ∈ S
+(n)

Note that for all square matrices A and B, and all scalars c,
we have the following properties with respect to Tr operator:

Tr(A+B) = Tr(A) + Tr(B) (34)

Tr(c ·A) = c · Tr(A) (35)

APPENDIX B

PROOF OF EQUIVALENT DEFINITION OF RIEMANNIAN

GEODESIC DISTANCE

According to the property of trace operator given by E-

q. (34), we have:

δ(X1,X2) = ‖ log(X
−1/2
1 X2X

−1/2
1 ) ‖2F

= Tr

[

(

log(X
−1/2
1 X2X

−1/2
1 )

)2
]

= 2Tr
[

log(X
−1/2
1 X2X

−1/2
1 )

]

As the matrix X1 is symmetric positive-definite, X
−1/2
1 is

also symmetric positive-definite. Since X2 is also symmetric
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positive-definite, according to the properties given by Eqs.(31)

and (33), we have:

Tr
[

log(P
−1/2
1 P2P

−1/2
1 )

]

= −
1

2
Tr [log(P1)] + Tr [log(P2)]−

1

2
Tr [log(P1)]

= −Tr [log(P1)] + Tr (log(P2)]

= Tr
[

log(P−1
1 P2)

]

consequently, we have

δ(X1,X2) =‖ log(X
−1/2
1 X2X

−1/2
1 ) ‖2F=‖ log(X

−1
1 X2) ‖

2
F

.

APPENDIX C

CALCULATION OF RIEMANNIAN GRADIENT

The derivative of Riemannian distance δ(Xi, γJ (t) with

respect to t is as follows [20], [21]:

d

dt
δ(Xi, γJ(t))

∣

∣

∣

∣

t=0

=
d

dt
‖ log(X

−1/2
i γJ (t)X

−1/2
i ) ‖2F

∣

∣

∣

∣

t=0

=
d

dt
Tr

[

(

log(X
−1/2
i γJ (t)X

−1/2
i )

)2
]
∣

∣

∣

∣

t=0

= 2Tr
[

VJ log(X−1
i WJ)W

−1
J

]

= −2Tr
[

VJ log(W−1
J Xi)W

−1
J

]

(36)

Using the definition of the Riemannian inner product given

by Eq. (13), Eq. (36) can be written as the inner product as

follows:

d

dt
δ(Xi, γJ(t))

∣

∣

∣

∣

t=0

= 〈VJ ,−2WJ log(W
−1
J Xi)〉WJ

As log(A−1BA) = A−1(logB)A, for all A ∈ Gl(n) and for

all S+(n), the above equation can be rewritten as follows:

d

dt
δ(Xi, γJ (t))

∣

∣

∣

∣

t=0

= 〈VJ ,−2WJ log(W
−1/2
J W

−1/2
J XiW

−1/2
J W

1/2
J )〉WJ

= 〈VJ ,−2W
1/2
J log(W

−1/2
J Xi)W

−1/2
J )W

1/2
J 〉WJ

= 〈VJ ,−2Log
WJ

(Xi)〉WJ
(37)

Similarly, we can obtain the derivative of Riemannian distance

δ(Xi, γK(t) with respect to t:

d

dt
δ(Xi, γK(t))

∣

∣

∣

∣

t=0

= −2Tr
[

VK log(W−1
K Xi)W

−1
K

]

= 〈VK ,−2WK log(W−1
K Xi)〉WK

= 〈VK ,−2Log
WK

(Xi)〉WK
(38)

Substituting Eqs. (37) and (38) into Eq. (9) and Eq. (10),

respectively, we can obtain

〈VJ ,∇WJ
E〉WJ

= Φ′
2δK

(δJ + δK)2
〈VJ ,−2Log

WJ
(Xi)〉WJ

= 〈VJ ,Φ
′
−4δK

(δJ + δK)2
Log

WJ
(Xi)〉WJ

(39)

and

〈VK ,∇WK
E〉WK

=
−2δJ

(δJ + δK)2
〈VJ ,−2Log

WK
(Xi)〉WK

= 〈VK ,Φ′
4δJ

(δJ + δK)2
Log

WK
(Xi)〉WK

(40)

respectively. Consequently, we can obtain the Riemannian

gradients of the cost function with respect to WJ and WK

as follows:

∇WJ
E = −Φ′

4δK

(δJ + δK)
2 Log

WJ
(Xi) (41)

∇WK
E = Φ′

4δJ

(δJ + δK)
2 Log

WK
(Xi) (42)

APPENDIX D

OPTIMAL PARAMETERS

The optimal parameters used in the synthetic experiments

are listed in Table VIII, while those used in the motor imagery

classification are given in Table IX.
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