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Highlights

• two sparsification methods for indefinite learning models
are proposed

• a formulation of an indefinite core vector regression is de-
rived

• sparsification is evaluated on supervised classification and
regression problems
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ABSTRACT

Supervised learning employing positive semi definite kernels has gained wide attraction and lead to a variety of successful
machine learning approaches. The restriction to positive semi definite kernels and a hilbert space is common to simplify
the mathematical derivations of the respective learning methods, but is also limiting because more recent research indicates
that non-metric, and therefore non positive semi definite, data representations are often more effective. This challenge is
addressed by multiple approaches and recently dedicated algorithms for so called indefinite learning have been proposed.
Along this line, the Krĕin space Support Vector Machine (KSVM) and variants are very efficient classifiers for indefinite
learning problems, but with a non-sparse decision function. This very dense decision function prevents practical applications
due to a costly out of sample extension. We focus on this problem and provide two post processing techniques to sparsify
models as obtained by a Krĕin space SVM approach. In particular we consider the indefinite Core Vector Machine and
indefinite Core Vector Regression Machine which are both efficient for psd kernels, but suffer from the same dense decision
function, if the Krĕin space approach is used. We evaluate the influence of different levels of sparsity and employ a Nyström
approach to address large scale problems. Experiments show that our algorithm is similar efficient as the non-sparse Krĕin
space Support Vector Machine but with substantially lower costs, such that also problems of larger scale can be processed.

c© 2019 Elsevier Ltd. All rights reserved.

Learning of classification models for indefinite kernels re-
ceived substantial interest with the advent of domain specific
similarity measures. Indefinite kernels are a severe problem for
most kernel based learning algorithms because classical math-
ematical assumptions such as positive definiteness, used in the
underlying optimization frameworks are violated. As a conse-
quence e.g. the classical Support Vector Machine (SVM) (Vap-
nik, 2000) has no longer a convex solution - in fact, most stan-
dard solvers will not even converge for this problem (Loosli
et al., 2016). Researchers in the field of e.g. psychology (Hod-
getts and Hahn, 2012), vision (Scheirer et al., 2014; Xu et al.,
2011)and machine learning (Duin and Pekalska, 2010) have
criticized the typical restriction to metric similarity measures.
In (Duin and Pekalska, 2010) it is shown that many real life
problems are better addressed by e.g. kernel functions which
are not restricted to be based on a metric. Non-metric mea-
sures (leading to kernels which are not positive semi-definite
(non-psd)) are common in many disciplines. The use of diver-
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gence measures (Schnitzer et al., 2012; Zhang et al., 2009) is
very popular for spectral data analysis in chemistry, geo- and
medical sciences (Mwebaze et al., 2010; van der Meer, 2006),
and are in general not metric. Also the popular Dynamic Time
Warping (DTW) (Sakoe and Chiba, 1978) algorithm provides
a non-metric alignment score which is often used as a prox-
imity measure between two one-dimensional functions of dif-
ferent length. In image processing and shape retrieval indefi-
nite proximities are often obtained by means of the inner dis-
tance (Ling and Jacobs, 2007) - another non-metric measure.
Further prominent examples for genuine non-metric proxim-
ity measures can be found in the field of bioinformatics where
classical sequence alignment algorithms (e.g. smith-waterman
score (Gusfield, 1997)) produce non-metric proximity values.
Multiple authors argue that the non-metric part of the data con-
tains valuable information and should not be removed (Scheirer
et al., 2014; Pekalska and Duin, 2005). Furthermore, it has
been shown (Loosli et al., 2016; Schleif and Tiño, 2015) that
work-arounds such as eigenspectrum modifications are often
inappropriate or undesirable, due to a loss of information and
problems with the out-of sample extension. Nevertheless they
are still often used and can serve as a baseline approach. Due
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Table 1: Overview of the different datasets. We provide the dataset size (N) and the origin of the indefiniteness. For vectorial data the indefiniteness is caused
artificial by using the tanh kernel.

Dataset #samples proximity measure and data source
Sonatas 1068 normalized compression distance on midi files (Schleif and Tiño, 2015)
Delft 1500 dynamic time warping (Schleif and Tiño, 2015)
a1a 1605 tanh kernel (Luss and d’Aspremont, 2009)
zongker 2000 template matching on handwritten digits (Pekalska and Haasdonk, 2009)
prodom 2604 pairwise structural alignment on proteins (Pekalska and Haasdonk, 2009)
PolydistH57 4000 Hausdorff distance (Pekalska and Haasdonk, 2009)
chromo 4200 edit distance on chromosomes (Pekalska and Haasdonk, 2009)
Mushrooms 8124 tanh kernel (Srisuphab and Mitrpanont, 2009)
swiss-10k ≈ 10k smith waterman alignment on protein sequences (Schleif and Tiño, 2015)
checker-100k 100.000 tanh kernel (indefinite)
skin 245.057 tanh kernel (indefinite)(UCI, 2016)
checker 1 Mill tanh kernel (indefinite)

to its strong theoretical foundations, Support Vector Machine
(SVM) has been extended for indefinite kernels in a number of
ways (Haasdonk, 2005; Luss and d’Aspremont, 2009; Gu and
Guo, 2012). A recent survey on indefinite learning is given in
(Schleif and Tiño, 2015). In (Loosli et al., 2016) a stabiliza-
tion approach was proposed to calculate a valid SVM model
in the Krĕin space which can be directly applied on indefinite
kernel matrices. This approach has shown great promise in a
number of learning problems, but has intrinsically quadratic to
cubic complexity and provides a dense decision model. The
approach can also be used for the recently proposed indefinite
Core Vector Machine (iCVM) (Schleif and Tiño, 2017) which
has better scalability but still suffers from the dense model. The
initial sparsification approach of the iCVM proposed in (Schleif
and Tiño, 2017) is not always applicable and we will provide an
alternative in this paper.

Another indefinite SVM formulation was provided in (Al-
abdulmohsin et al., 2016), but it is based on an empirical fea-
ture space technique, which changes the feature space represen-
tation. Additionally, the imposed input dimensionality scales
with the number of input samples, which is unattractive in out
of sample extensions.

The present paper improves the work of (Schleif and Tiño,
2017) by providing a sparsification approach such that the oth-
erwise very dense decision model becomes sparse again. The
new decision function approximates the original one with high
accuracy and makes the application of the model practical.

We now review the main parts of the Krĕin space SVM pro-
vided in (Loosli et al., 2016) showing why the obtained α-
vector is dense. The effect is the same for to the Core Vector
Machine as shown in (Schleif and Tiño, 2017). For details on
the iCVM derivation we refer the reader to (Schleif and Tiño,
2017).

1. Learning with non-psd kernels

Learning with non-psd kernels can be a challenging prob-
lem and may occur very quickly as discussed before, if domain
specific measure are used or simply due to noise. The met-
ric violations cause negative eigenvalues in the eigenspectrum

of the kernel matrix K, leading to non-psd similarity matrices
or indefinite kernels. Many learning algorithms are based on
kernel formulations which have to be symmetric and psd. The
mathematical meaning of a kernel is the inner product in some
Hilbert space (Shawe-Taylor and Cristianini, 2004). However,
it is often loosely considered simply as a pairwise ”similarity”
measure between data items, leading to a similarity matrix S

If a particular learning algorithm requires the use of Mercer
kernels and the similarity measure does not fulfill the kernel
conditions, steps must be taken to ensure a valid model.

1.1. Eigenspectrum approaches

A natural way to address the indefiniteness problem and to
obtain a psd similarity matrix is to correct the eigenspectrum of
the original similarity matrix S . Popular strategies include flip-
ping, clipping and shift correction. The non-psd similarity ma-
trix S is decomposed by an eigen decomposition: S = UΛU>,
where U contains the eigenvectors of S and Λ contains the cor-
responding eigenvalues. One can now adapt the eigenvalues to
get rid of the negative eigenvalues and to end up with a psd
kernel.

Clip eigenvalue correction:. All negative eigenvalues in Λ are
set to 0. Spectrum clip leads to the nearest psd matrix S in terms
of the Frobenius norm (Higham, 1988).

Flip eigenvalue correction:. All negative eigenvalues in Λ are
set to λi := |λi| ∀i which at least keeps the absolute values of
the negative eigenvalues and can be relevant if these eigenvalue
contain important information (Pekalska and Duin, 2005).

Shift eigenvalue correction:. The shift operation was already
discussed earlier by different researchers (Filippone, 2009) and
modifies Λ such that Λ := Λ−mini j Λ. Spectrum shift enhances
all the self-similarities by the amount of ν and does not change
the similarity between any two different data points, but it may
also increase the intrinsic dimensionality of the data space and
amplify noise contributions.

In the experiments we will only compare with the clip and
flip approach. The latter one is also an algorithmic part of the
Krĕin space SVM model. If one of the former corrections is
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applied to the input kernel any standard kernel based learning
method like SVM can be used. One major drawback of these
approaches is the rather complicated out of sample extension to
new test points but also that the data representation may have
changed completely, leading to inferior results.

1.2. Krĕin space SVM
The Krĕin Space SVM (KSVM) (Loosli et al., 2016), re-

placed the classical SVM minimization problem by a stabiliza-
tion problem in the Krĕin space. The respective equivalence
between the stabilization problem and a standard convex op-
timization problem was shown in (Loosli et al., 2016). Let
xi ∈ X, i ∈ {1, . . . ,N} be training points in the input space X,
with labels yi ∈ {−1, 1}, representing the class of each point.
The input space X is often considered to be Rd , but can be
any suitable space due to the kernel trick. For a given positive
C, SVM is the minimum of the following regularized empirical
risk functional

JC( f , b) = min
f∈H ,b∈R

1
2
‖ f ‖2H + C · H( f , b) (1)

H( f , b) =

N∑

i=1

max(0, 1 − yi( f (xi) + b))

Using the solution of Equation (1) as ( f ∗C , b
∗
c) :=

arg min JC( f , b) one can introduce τ = H( f ∗C , b
∗
C) and the

respective convex quadratic program (QP)

min
f∈H ,b∈R

1
2
‖ f ‖2H s.t.

N∑

i=1

max(0, 1 − yi( f (xi) + b)) ≤ τ (2)

where we detail the notation in the following. This QP can be
also seen as the problem of retrieving the orthogonal projection
of the null function in a Hilbert space H onto the convex fea-
sible set. The view as a projection will help to link the original
SVM formulation in the Hilbert space to a KSVM formulation
in the Krein space. First we need a few definitions, widely fol-
lowing (Loosli et al., 2016). A Krĕin space is an indefinite inner
product space endowed with a Hilbertian topology.

Definition 1 (Inner products and inner product space). LetK be
a real vector space. An inner product space with an indefinite
inner product 〈·, ·〉K on K is a bi-linear form where all f , g, h ∈
K and α ∈ R obey the following conditions:

• Symmetry: 〈 f , g〉K = 〈g, f 〉K ,

• linearity: 〈α f + g, h〉K = α〈 f , h〉K + 〈g, h〉K
• and 〈 f , g〉K = 0 ∀g ∈ K implies f = 0.

An inner product is positive definite if ∀ f ∈ K , 〈 f , f 〉K ≥
0, negative definite if ∀ f ∈ K , 〈 f , f 〉K ≤ 0, otherwise it is
indefinite. A vector space K with inner product 〈·, ·〉K is called
inner product space.

Definition 2 (Krĕin space and pseudo Euclidean space). An in-
ner product space (K , 〈·, ·〉K ) is a Krĕin space if there exist two
Hilbert spaces H+ and H− spanning K such that ∀ f ∈ K ,
f = f+ + f− with f+ ∈ H+, f− ∈ H− and ∀ f , g ∈ K ,
〈 f , g〉K = 〈 f+, g+〉H+

− 〈 f−, g−〉H− . A finite-dimensional Krĕin-
space is a so called pseudo Euclidean space (pE).

IfH+ andH− are reproducing kernel hilbert spaces (RKHS),
K is a reproducing kernel Krĕin space (RKKS). For details
on RKHS and RKKS see e.g. (Pekalska and Duin, 2005).
In this case the uniqueness of the functional decomposition
(the nature of the RKHSs H+ and H− ) is not guaranteed.
In (Ong et al., 2004) the reproducing property is shown for
a RKKS K . There is a unique symmetric kernel k(x, x) with
k(x, ·) ∈ K such that the reproducing property holds (for all
f ∈ K , f (x) = 〈 f , k(x, ·)〉K ) and k = k+ − k− where k+ and k−
are the reproducing kernels of the RKHSsH+ andH−.

As shown in (Ong et al., 2004) for any symmetric non-
positive kernel k that can be decomposed as the difference of
two positive kernels k+ and k−, a RKKS can be associated to
it. In (Loosli et al., 2016) it was shown how the classical SVM
problem can be reformulated by means of a stabilization prob-
lem. This is necessary because a classical norm as used in Eq.
(2) does not exist in the RKKS but instead the norm is reinter-
preted as a projection which still holds in RKKS and is used as
a regularization technique (Loosli et al., 2016). This allows to
define SVM in RKKS (viewed as Hilbert space) as the orthog-
onal projection of the null element onto the set (Loosli et al.,
2016):

S = { f ∈ K , b ∈ R|H( f , b) ≤ τ} and 0 ∈ ∂bH( f , b)

where ∂b denotes the sub differential with respect to b. The set
S leads to a unique solution for SVM in a Krĕin space (Loosli
et al., 2016). As detailed in (Loosli et al., 2016) one finally
obtains a stabilization problem which allows one to formulate a
SVM in a Krĕin space.

stab f∈K ,b∈R
1
2
〈 f , f 〉K s.t.

l∑

i=1

max(0, 1−yi( f (xi)+b)) ≤ τ (3)

where stab means stabilize as detailed in the following: In a
classical SVM in RKHS the solution is regularized by mini-
mizing the norm of the function f . In Krĕin spaces however
minimizing such a norm is meaningless since the dot-product
contains both the positive and negative components. That’s why
the regularization in the original SVM through minimizing the
norm f has to be transformed in the case of Krĕin spaces into
a min-max formulation, where we jointly minimize the positive
part and maximize the negative part of the norm. The authors of
(Ong et al., 2004) termed this operation the stabilization projec-
tion, or stabilization. Further mathematical details can also be
found in (Hassibi, 1996). An example illustrating the relations
between minimum, maximum and the projection/stabilization
problem in the Krĕin space is illustrated in (Loosli et al., 2016).

In (Loosli et al., 2016) it is further shown that the stabiliza-
tion problem Eq. (3) can be written as a minimization prob-
lem using a semi-definite kernel matrix. By defining a projec-
tion operator with transition matrices it is also shown how the
dual RKKS problem for the SVM can be related to the dual
in the RKHS. We refer the interested reader to (Loosli et al.,
2016). One - finally - ends up with a flipping operator applied
to the eigenvalues of the indefinite kernel matrix1 K as well as

1Obtained by evaluating k(x, y) for training points x, y.
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Fig. 1: Prediction results for the protein dataset using a varying level of sparsity
and the OMP sparsity methods. For comparison the prediction accuracy of the
non-sparse model is shown by a straight line.

to the α parameters obtained from the stabilization problem in
the Krĕin space, which can be solved using classical optimiza-
tion tools on the flipped kernel matrix. This permits to apply
the obtained model from the Krĕin space directly on the non-
positive input kernel without any further modifications. The
algorithm is shown in Alg. 1. There are four major steps: 1) an
eigen-decomposition of the full kernel matrix, with cubic costs
(which can be potentially restricted to a few dominating eigen-
values - referred to as KSVM-L); 2) a flipping operation; 3) the
solution of an SVM solver on the modified input matrix; 4) the
application of the projection operator obtained from the eigen-
decomposition on the α vector of the SVM model. U in Alg. 1

Algorithm 1 Krĕin Space SVM (KSVM) - adapted from
(Loosli et al., 2016).

Krĕin SVM:
[U,D] := EigenDecomposition(K)
K̂ := US DU> with S := sign(D)
[α, b] := SVMSolver(K̂, Y, C)
α̃ := US U>α (now α̃ is dense)
return α̃, b;

contains the eigenvectors, D is a diagonal matrix of the eigen-
values and S is a matrix containing only {1,−1} on the diagonal
as obtained from the respective function sign.

As pointed out in (Loosli et al., 2016), this solver produces
an exact solution for the stabilization problem. The main weak-
ness of this Algorithm is, that it requires the user to pre-compute
the whole kernel matrix and to decompose it into eigenvec-
tors/eigenvalues. Further today’s SVM solvers have a theoreti-
cal, worst case complexity of ≈ O(N2). The other point to men-
tion is that the final solution α̃ is not sparse. The iCVM from
(Schleif and Tiño, 2017) has a similar derivation and leads to a
related decision function, again with a dense α̃, but the model
fitting costs are ≈ O(N).

2. Sparsification of iCVM

2.1. Sparsification of iCVM by OMP
We can formalize the objective to approximate the decision

function, which is defined by the α̃ vector, obtained by KSVM
or iCVM (both are structural identical), by a sparse alternative
with the following mathematical problem:

min |α̃|0 s.t.
∑

m α̃mΦ(xm)>Φ(x) ≈ f (x)

It is well-known that this problem is NP hard in general, and
a variety of approximate solution strategies exist in the liter-
ature. Here, we rely on a popular and very efficient approxi-
mation offered by orthogonal matching pursuit (OMP) (Ge-
offrey M. Davis, 1994; Pati et al., 1993). Given an acceptable
error ε > 0 or a maximum number n of non-vanishing com-
ponents of the approximation, a greedy approach is taken: the
algorithm iteratively determines the most relevant direction and
the optimum coefficient for this axes to minimize the remaining
residual error.

Algorithm 2 OMP to approximate the α vector.
1: OMP:
2: I := ∅; r := y := Kα̃; % initial residuum
3: while |I| < n do
4: l0 := argmaxl|[Kr]l|; % find relevant direction + index
5: I := I ∪ {l0} % track relevant indices
6: γ̃ := (K·I)+ · y % restricted (inverse) projection
7: r := y − (K·I) · γ̃ % residuum of the approximated

decision function
8: end while
9: return γ̃ (as the new sparse α̃)

In line 2 of Alg. 2 we define the initial residuum to be the
vector Kα̃ as part of the decision function. In line 4 we iden-
tify the most contributing dimension (assuming an empirical
feature space representation of our kernel - it becomes the dic-
tionary). Then in line 6 we find the current approximation of
the sparse α̃-vector - called γ̃ to avoid confusion, where + in-
dicates the pseudo inverse. In line 7 we update the residuum
by removing the approximated Kα̃ from the original unapprox-
imated one. A Nyström based approximation of the Algorithm
2 is straight forward using the concepts provided in (Gisbrecht
and Schleif, 2015; Schleif and Gisbrecht, 2013). There it is
also shown that the Nyström approximation holds for non-psd
kernels, with a simplified proof given in (Oglic and Gärtner,
2019). With the Nyström technique a symmetric matrix psd
(Williams and Seeger, 2000) or non-pdf (Gisbrecht and Schleif,
2015; Schleif and Gisbrecht, 2013) is approximated by a low-
rank approach using a subset of the original datapoints, called
landmarks. As shown in (Williams and Seeger, 2000; Gisbrecht
and Schleif, 2015) this approximation is exact if the rank of
original data is smaller or equal to the number of landmarks.
The landmarks are often chosen randomly, with more advanced
strategies proposed e.g. in (Musco and Musco, 2017)

2.2. Sparsification of iCVM by late subsampling

The parameters α̃ are dense as already noticed in (Loosli
et al., 2016). A naive sparsification by using only α̃i with large
absolute magnitude is not possible as can be easily checked by
counter examples. One may now approximate α̃ by using the
(for this scenario slightly modified) OMP algorithm from the
former section or by the following strategy, both compared in
the experiments.

As a second sparsification strategy we can use the approach
suggested by (Schleif and Tiño, 2017), to restrict the projec-
tion operator and hence the transformation matrix of iCVM to

                  



6

a subset of the original training data. We refer to this approach
as iCVM-sparse-sub.

To get a consistent solution we have to recalculate parts of
the eigen-decomposition as shown in Alg. 3. To obtain the re-
spective subset of the training data we use the samples which
are core vectors2. The number of core vectors is guaranteed to
be very small (Tsang et al., 2006) and hence even for a larger
number of classes the solution remains widely sparse. The sug-
gested approach is given in Alg. 3. We assume that the original

Algorithm 3 Sparsification of iCVM by late subsampling
1: Sparse iCVM:
2: Apply iCVM - see (Schleif and Tiño, 2017)
3: ζ - vector of projection points by using the core set points
4: construct a reduced K′ using indices ζ as K̄
5: [U,D] := EigenDecomposition(K̄); S := sign(D)
6: ᾱ := US U>α %U restricted to core set indices
7: α̃ := 0 α̃ζ := ᾱ % assign ᾱ to α̃ using indices of ζ
8: b := Yα̃> % recalculate bias using the sparse α̃
9: return α̃, b;

projection function (line 6 of Algorithm 3, detailed in (Loosli
et al., 2016)), is smooth and can be potentially restricted to a
small number of construction points with low error. We ob-
served that in general few construction points are sufficient to
keep high accuracy, as seen in the experiments.

3. Indefinite Core-Vector-Regression - iCVR

As already indicated in (Schleif and Tiño, 2017) the Krĕin
space approach considered before can also be used in similar
minimum enclosing ball (MEB) based optimization problems.
In particular we will consider the sparsification in the context
of core vector regression for indefinite kernels, subsequently
referred to as iCVR.

Assume points xi ∈ Rd, i ∈ {1, . . . ,N} and real-valued out-
puts yi ∈ R are given. Further, we assume a kernel function
k (for the moment it is assumed this kernel is a psd kernel)
is given with a feature map Φ. A kernel regression trains a
function of the following form: x 7→ w>Φ(x) + b, where w
is a normal vector of a decision plane and b a bias term. The
training objective is to get as many points as possible approx-
imately right while preserving a large margin. In the classical
core vector regression (CVR) (Tsang et al., 2006) an ε-tube for-
malization is used to achieve this objective. For an ε-tube a data
point is correctly predicted iff its image is within ε of the de-
sired value. The corresponding dual core vector regression is
described by (for details see (Tsang et al., 2006)):

max
αi,α

∗
i ≥0,

∑
αi+α

∗
i =1
−1

2
·
∑

i, j

(αi − α∗i )(α j − α∗j)(ki j + 1)

−1
2

N∑

i=1

α2
i /C −

1
2
·

m∑

i=1

(α∗i )2/C +

N∑

i=1

(αi − α∗i )yi

2A similar strategy for KSVM may be possible but is much more compli-
cated because typically quite many points are support vectors and special sparse
SVM solvers would be necessary.

This problem is of the form:

max
αi,α

∗
i ≥0,

∑
αi+α

∗
i =1
−1

2

(
α
α∗

)>
K̃

(
α
α∗

)
+

(
α
α∗

)> (
y
−y

)
(4)

where

K̃ =

(
K + 11> + 1/C · I −(K + 11>)
−(K + 11>) K + 11> + 1/C · I

)

K̃ is a valid kernel and as shown in (Tsang et al., 2006) a core /

MEB algorithm can be used to solve Eq. (4). If the underlying
kernel function k is indefinite also K̃ becomes indefinite. We
can now use the same argumentation as for iCVM (Schleif and
Tiño, 2017) and following the work in (Loosli et al., 2016) to
modify the kernel K̃ by a flipping operation, to calculate a valid
CVR model. Using the projection approach of (Loosli et al.,
2016) the obtained solution vector can again be mapped into
the Krĕin space to obtain a model for iCVR. This final solution
does not need any kernel modification for new test points to
be applied. The whole algorithmic workflow to derive a iCVR
model is described in Algorithm 4. Once more a Nyström

Algorithm 4 Calculating a iCVR model
1: Indefinite CVR (iCVR):
2: [U,D] = EigenDecomposition(K)
3: K̂ = US DU> with S = sign(D)
4: [α] = CoreVectorRegressionSolver(K̂, Y, C)
5: α̃ = US U>α b = Yα̃>

6: return α̃, b;

approximation can be employed in Algorithm 4 line 2, for an
indefinite kernel using the concepts proposed in (Gisbrecht and
Schleif, 2015; Schleif and Gisbrecht, 2013) and also in line 4
following (Williams and Seeger, 2000) for psd kernel matrices.

One can easily see that the solution vector obtained in Algo.
4 is non-sparse. We will therefore apply again the two post-
processing approaches suggested before to sparsify the iCVR
model. This can be done in the same way as for iCVM with
results given in the experimental section.

4. Experiments - iCVM

This part contains a series of experiments that show that our
approach leads to a substantially lower complexity, while keep-
ing similar prediction accuracy compared to the non-sparse ap-
proach. To allow for large datasets with two much hassle we
provide sparse results only for the MEB approaches, namely
iCVM and iCVR. The modified OMP approach will work also
for sparse KSVM or KSVR but the late sampling sparsification
is not well suited if many support vectors are given in the origi-
nal model, asking for a sparse SVM implementation. We follow
the experimental design given in (Loosli et al., 2016). Meth-
ods that require to modify test data are excluded as also done in
(Loosli et al., 2016). Finally we compare the experimental com-
plexity of the different solvers. The used data are explained in
Table 1. Additional larger data sets have been added to motivate
our approach in the line of learning with large scale indefinite
kernels.
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4.1. Experimental setting

For each dataset, we have run 20 times the following proce-
dure: a random split to produce a training and a testing set, a
5-fold cross validation to tune each parameter (the number of
parameters depending on the method) on the training set, and
the evaluation on the testing set. If N > 1000 we use m = 200
randomly chosen landmarks from the given classes to approx-
imate the kernel matrix using the Nyström technique. If the
input data are vectorial data we used a tanh kernel with param-
eters [a = 1, r = 1] to obtain an indefinite kernel. Where tanh
is given as: k(x, y) = tanh(a < x, y > +r).

4.2. Results

In Table 2 we show the results for large scale data (having at
least 1000 points) using iCVM with sparsification. We observe
much smaller models, especially for larger datasets with often
comparable prediction accuracy with respect to the non-sparse
model. The runtimes are similar to the non-sparse case but in
general slightly higher due to the extra eigen-decompositions
on a reduce set of the data as shown in Algorithm 3.But the
focus is not on a faster runtime (which is linear for iCVM and
iCVR), but on a simple, sparse model and hence an easy out of
sample extension. A typical result for the protein data set using
the OMP-sparsity technique and various values for sparsity is
shown in Figure 1.

5. Experiments - iCVR

We show the effectiveness of iCVR on a number of simulated
and real life benchmark regression problems and compare with
solutions as obtained by using standard CVR but for flipped
(all signs of the eigenspectrum become positive) and clipped
eigenspectra (negative einvalues are set to 0) of the respective
kernel matrices. Data are given as X ∈ RD. Target function val-
ues yi ∈ R1. The following one-dimensional simulated datasets
have been used:

• (SIM1) basic sinc sample, with 200 samples, f (x) =

sinc(x/π) + 0.05 · σ where σ is gaussian noise and x is
linearly spread in [−30, 30]

• (SIM2) Friedman function, with 200 samples, f (x) = 10 ·
sin(π ·σ1 ·σ2) + 20 · (σ3 − 0.5)2 + 10 ·σ4 + 5 ·σ5 +σ; and
uniform noise σ1, . . . , σ5, σ is gaussian noise

• (SIM3) The Mackey glass data,with 12000 samples, in 1
dimension as detailed in (Mackey and Glass, 1977)

Further we used the following real life regression datasets.

• (DS1) Abalone - age prediction, with 4177 samples, D = 8
taken from (Lichman, 2013)

• (DS2) Forest fires, with 517 samples, D = 13, dimension
13 was used as output variable, taken from (Cortez and
Morais, 2007)

• (DS3) Breast cancer (radius) prediction, with 569 samples,
D = 32, dimension 3 was used as output variable, taken
from (Lichman, 2013) (wdbc)

• (DS4) White wine quality (scored 0-10), with 4898 sam-
ples, D = 12, dimension 12 was used as output variable,
taken from (Cortez et al., 2009) 3

The indefiniteness was caused using a Manhattan kernel
Km = −||X − X>||. The regression profiles for SIM1-SIM3 are
depicted in Figure 2. In the experiments we apply the iCVR ap-
proach on the given datasets and compare it with the standard
CVR algorithm were the indefinite input kernel was corrected
by applying a flip or clip eigenspectrum transformation.

In Figure 3 a plot of the output function for SIM2 and its pre-
diction using iCVR and CVR on a clipped kernel is shown. The
plot shows substantial prediction errors on the clipped kernel in
contrast to the prediction of iCVR with the indefinite maha-
lanobis kernel. Considering the results shown in Table 3 we
observe that the clipping is in general worse than flipping or the
iCVR. The sparse models of iCVR are in general only slightly
worse than the non-sparse model. In parts we can even see a
better performance of the sparse iCVR model (see last column)
compared to the iCVR. This may be due to a denoising effect,
caused by the implicit low rank approach used in OMP.

It should be noted that an application of the standard CVR
on the indefinite kernels is not possible, which was also ex-
perimentally verified, because the obtained problem becomes
non-convex and the solver is unable to provide a solution to the
optimization problem.

6. Complexity analysis

The original KSVM has runtime costs (with full eigen-
decomposition) of O(N3) and memory storage O(N2), where
N is the number of points. The iCVM or respectively iCVR
involves an extra Nyström approximation of the kernel matrix
to obtain K(N,m) and K−1

(m,m), if not already given. If we have m
landmarks, m � N, this gives memory costs of O(mN) for the
first matrix and O(m3) for the second, due to the matrix inver-
sion. Further a Nyström approximated eigendecomposition has
to be done to apply the eigenspectrum flipping operator. This
leads to runtime costs of O(N × m2). The runtime costs for the
sparse iCVM/iCVR are O(N ×m2) and the memory complexity
is the same as for iCVM/iCVR. Due to the used Nyström ap-
proximation the prior costs only hold if m � N, which is the
case for many datasets as shown in the experiments.

The application of a new point to a KSVM, iCVM or iCVR
model requires the calculation of kernel similarities to all N
training points, for the sparse iCVM/iCVR this holds only in
the worst case. In general the sparse iCVM/iCVR provides a
simpler out of sample extension as shown in Table 2, but is data
dependent.

The (i)CVM/(i)CVR model generation has not more than N
iterations or even a constant number of 59 points, if the prob-
abilistic sampling trick is used (Tsang et al., 2006; Smola and
Schölkopf, 2000). As show in (Tsang et al., 2006) the classical
CVM has runtime costs of O(1/ε2). The evaluation of a kernel
function using the Nyström approximated kernel can be done

3Available at: http://www3.dsi.uminho.pt/pcortez/wine/
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Table 2: Prediction errors (mean ± std.-dev.) on the test sets. The percentage of projection points (pts) is calculated using the unique set over core vectors over all
classes in comparison to all training points. All sparse-OMP models use only 10 points in the final models. Best results are shown in bold. Best sparse results are
underlined. Datasets with substantially reduced prediction accuracy are marked by � (anova p < 5%).

Dataset iCVM (sparse-sub) pts iCVM (sparse-OMP) iCVM (non-sparse)

Sonatas 12.64 ± 1.71 76.84% 22.56 ± 4.16� 13.01 ± 3.82
Delft 16.53 ± 2.79� 52.48% 3.27 ± 0.6 3.20 ± 0.84
a1a 39.50 ± 2.88� 1.25% 27.85 ± 2.8 20.56 ± 1.34
zongker 29.20 ± 2.48� 52.81% 7.50 ± 1.7 6.40 ± 2.11
prodom 2.89 ± 1.17 26.31% 3.12 ± 0.11 0.87 ± 0.64
PolydistH57 6.12 ± 1.38 12.92% 29.35 ± 8� 0.70 ± 0.19
chromo 11.50 ± 1.17 33.76% 3.74 ± 0.58 6.10 ± 0.63
Mushrooms 7.84 ± 2.21 6.46% 18.39 ± 5.7� 2.54 ± 0.56
swiss-10k 35.90 ± 2.52� 17.03% 6.73 ± 0.72 12.08 ± 3.47
checker-100k 8.54 ± 2.35 2.26% 19.54 ± 2.1� 9.66 ± 2.32
skin 9.38 ± 3.30 0.06% 9, 43 ± 2.41 4.22 ± 1.11
checker 8.94 ± 0.84 0.24% 1.44 ± 0.3 9.38 ± 2.73
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Fig. 2: Plots of the simulated data.
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Fig. 3: Zoom in a plot of the Friedman output function (green, line). We also
show the predicted output using CVR on a clipped mahalanobis kernel (black
dashed+dotted) and a prediction of the output function using iCVR on the in-
definite mahalanobis kernel (red, dashed).

with cost of O(m2) in contrast to constant costs if the full ker-
nel is available. Accordingly, If we assume m � N the overall
runtime and memory complexity of iCVM/iCVR is linear in N,
this is two magnitudes less as for KSVM for reasonable large N
and for low rank input kernels.

7. Discussions and Conclusions

As discussed in (Loosli et al., 2016), there is no good reason
to enforce positive-definiteness in kernel methods. A very de-
tailed discussion on reasons for using KSVM or iCVM is given
in (Loosli et al., 2016), explaining why a number of alterna-
tives or pre-processing techniques are in general inappropriate.
Our experimental results show that an appropriate Krĕin space
model provides very good prediction results and using one of
the proposed sparsification strategies this can also be achieved
for a sparse model in most cases. The proposed iCVM-sparse-
OMP is only slightly better than the former iCVM-sparse-sub
model with respect to the prediction accuracy but has very few
final modeling vectors, with an at least competitive prediction
accuracy in the vast majority of data sets. Similar observations
are found for the iCVR in comparison to CVR with flipping or
clipping. As is the case for KSVM, the presented approach can
be applied without the need for transformation of test points,
which is a desirable property for practical applications.
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Table 3: Mean square error (mean ± std-dev.) in the 10-fold crossvalidation. The percentage of projection points (pts) is calculated using the unique set over core
vectors over all classes in comparison to all training points. All sparse-OMP models use only 50 points in the final models. Best results are shown in bold.

Dataset iCVR (non-sparse) iCVR-flip iCVR-clip iCVR (sparse-sub) pts iCVR (sparse-OMP)

SIM1 0.25 ± 0.12 0.44 ± 0.43 0.46 ± 0.50 0.33 ± 0.13 17.25% 0.25 ± 0.12
SIM2 0.14 ± 0.16 0.15 ± 0.18 0.15 ± 0.16 0.15 ± 0.16 50% 0.15 ± 0.18
SIM3 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 18.68% 0.06 ± 0.01
DS1 0.83 ± 0.09 0.81 ± 0.07 2.46 ± 4.64 0.85 ± 0.06 7.83% 0.77 ± 0.08
DS2 1.34 ± 0.57 1.19 ± 0.38 2.15 ± 0.61 1.57 ± 1.08 5.03% 1.12 ± 0.15
DS3 0.0 ± 0.0 0.01 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 23.04% 0.05 ± 0.00
DS4 1.17 ± 0.28 1.24 ± 0.23 1.20 ± 0.16 1.29 ± 0.19 5.22% 0.75 ± 0.05
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