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Abstract

We present two approaches to the analysis of the relationship between a recurrent neural

network (RNN) and the �nite state machine M the network is able to exactly mimic. First,

the network is treated as a state machine and the relationship between the RNN and M is

established in the context of algebraic theory of automata. In the second approach, the RNN

is viewed as a set of discrete-time dynamical systems associated with input symbols of M. In

particular, issues concerning network representation of loops and cycles in the state transition

diagram of M are shown to provide a basis for the interpretation of learning process from the

point of view of bifurcation analysis. The circumstances under which a loop corresponding

to an input symbol x is represented by an attractive �xed point of the underlying dynamical

system associated with x are investigated. For the case of two recurrent neurons, under some

assumptions on weight values, bifurcations can be understood in the geometrical context of

intersection of increasing and decreasing parts of curves de�ning �xed points. The most typical

bifurcation responsible for the creation of a new �xed point is the saddle node bifurcation.



1 Introduction

The relationship between recurrent neural networks (RNN) and automata has been treated by

many [29], [26], [8], [10], [15], [17], [5], [38], [39], [28], [11], [23]. State units' activations represent

past histories and clusters of these activations can represent the states of the generating automaton

[18].

In this contribution, the relationship between a RNN and a �nite state machine it exactly mimics

is investigated from two points of view. First (section 5), the network is treated as a state machine.

The concept of state equivalence is used to reduce the in�nite, non-countable set of network states

(activations of RNN state neurons) to a �nite factor state set corresponding to the set of states of

M. Second (section 6), the RNN is viewed as a set of discrete-time dynamical systems associated

with input symbols of M. The dynamical systems operate on (0; 1)

L

, where L is the number

of recurrent neurons of the RNN. In our experiments, loops and cycles corresponding to an input

symbol x ofM have stable representation as attractive �xed points and periodic orbits respectively

of the dynamical system associated with the input x. Suppose there is a loop associated with an

input x in a state q ofM. Denote the set of network states equivalent to q by (q)

N

. Then, if there

is a vertex v 2 f0; 1g

L

such that v is in the closure of (q)

N

, the loop is likely to be represented by

an attractive �xed point

1

\near" v.

A related work was independently done by Casey [5], [6]. In his setting, RNN is assumed to

operate in a noisy environment (representing for example a noise corresponding to round-o� errors

in computations performed on a digital computer). RNNs are trained to perform grammatical

inference. It is proved that a presence of a loop in the state transition diagram of the automaton

2

necessarily implies the presence of an attractive set inside RNN state space (see the discussion

in section 6). It is also shown that the method for extraction of an automaton from a trained

RNN introduced in [17] is consistent: the method is based on dividing RNN state space into equal

hypercubes and there is always a �nite number of hypercubes one needs to unambiguously cover

regions of equivalent network states.

In section 7 a more detailed analysis of the case when RNN has two state neurons is presented.

1

of the corresponding dynamical system

2

recognizing the same language as the RNN

1



Under some conditions on weight values, the number, position and stability types of �xed points of

the underlying dynamical systems are analyzed and bifurcation mechanism is clari�ed. The most

typical bifurcation responsible for the creation of a new �xed point as the saddle node bifurcation. A

mechanism of correct behaviour of RNN for short input strings, when for long strings, the network

is known to generalize poorly is investigated in section 8. In such cases, a correct state transition

diagram of a FSM the network was trained with can still be extracted [17]. A tool called the

state degradation diagram is developed to illustrate how regions of network state space, initially

acting as if they assumed the role of states of the FSM in which there is a loop associated with an

input symbol x, gradually degradate upon repeated presentation of x. Sections 2 and 3 bring brief

introductions to state machines and dynamical systems respectively. Section 4 is devoted to the

model of RNN [31] used for learning FSMs.

2 State Machines

This section introduces the concept of state machine, which is a generalized �nite state machine

with possibly uncountable number of states. When viewed as automata, RNNs can be described

in terms of state machines.

A state machine (SM) is a 6-tuple M=(X;Y; S; f

s

; f

o

; s

0

), where

� X is a nonempty �nite set called the input set

� Y is a nonempty �nite set called the output set

� S is a nonempty set called the set of internal states

� f

s

is a map f

s

: S �X ! S called the next-state function

� f

o

is a map f

o

: S �X ! Y called the output function

� s

0

2S is called the initial state

SMs with a �nite internal state set are called �nite state machines (FSMs).

We assume that the reader is familiar with the notion of monoid of words over a �nite set.

Following the standard notation, �;X

�

;X

+

and uv denote the empty word, the set of all words

over X, the set of all nonempty words over X, and concatenation of words u and v respectively.

2



In every moment M is in exactly one state s 2 S. When an element x 2 X is read in, the

machine changes its state to f

s

(s; x) and yields the output f

o

(s; x). The processing of any input

word w2X

+

by M always starts with M being in the initial state.

If for some x 2 X and s 2 S, it holds f

s

(s; x) = s, then it is said that there is an x-loop in the

state s. If there exist m (m � 2) distinct states s

1

; :::; s

m

2 S and an input x 2 X, such that

f

s

(s

i

; x) = s

i+1

; for all i = 1; :::;m� 1 and f

s

(s

m

; x) = s

1

; then the set fs

1

; :::; s

m

g is said to be

an x-cycle of length m passing through the states s

1

; :::; s

m

.

It is convenient to extend the domain of f

s

and f

o

from S�X to S�X

�

and S�X

+

respectively:

� 8s2S; f

s

(s;�)=s;

� 8s2S; 8w2X

�

; 8x2X; f

s

(s; wx)=f

s

(f

s

(s; w); x) and f

o

(s; wx)=f

o

(f

s

(s; w); x):

Yet further generalization of f

o

is useful:

8s2S; 8w=x

1

x

2

:::x

n

2X

+

; f

+

o

(s; w)=f

o

(s; x

1

)f

o

(s; x

1

x

2

):::f

o

(s; x

1

x

2

:::x

n

):

A distinguishing sequence of M is a word w 2 X

+

such that there are no two states s

1

; s

2

of M

for which f

+

o

(s

1

; w) = f

+

o

(s

2

; w).

The behaviour of M is a map B

M

:X

+

!Y : 8w2X

+

; B

M

(w)=f

o

(s

0

; w):

A state s

2

2S is said to be accessible and x-accessible from the state s

1

2S if there exists some

w 2 X

�

and w 2 fxg

�

respectively, such that s

2

= f

s

(s

1

; w). M is said to be connected if every

state s2S is accessible from s

0

. The set of all states that are x-accessible from a state s 2 S is

denoted by Acc(x; s). An x-cycle 
 = fs

1

; :::; s

m

g is said to be x-accessible from a state p 2 S, if


 � Acc(x; p).

An input word w 2X

�

is leading to a state q if f

s

(s

0

; w) = q. An input word leading to q is

minimal if there is no input word leading to q of shorter length.

We shall also need some concepts concerning state and machine equivalence. Let M

i

=

(X;Y; S

i

; f

i

s

; f

i

o

; s

0i

); i = 1; 2 be two SMs. States s

1

2 S

1

and s

2

2 S

2

are said to be equivalent

if there is no non-empty word over X which would cause M

1

to give di�erent output from that

given byM

2

, providedM

1

andM

2

started from s

1

and s

2

respectively. This is formally represented

by the equivalence relation E(M

1

;M

2

) � S

1

�S

2

:

(s

1

; s

2

)2E(M

1

;M

2

) i� 8w2X

+

; f

1

o

(s

1

; w)=f

2

o

(s

2

; w):

3



The set fp 2 S

2

j(q; p) 2 E(M

1

;M

2

)g of all states of M

2

that are equivalent to a state q 2 S

1

of

M

1

is denoted by [q]

E(M

1

;M

2

)

. WhenM

1

=M

2

=M, the equivalence relation E(M;M) partitions

the state set S of M into the set of disjoint equivalence classes S=E(M;M).

M

1

and M

2

are said to be equivalent if for every state s

1

2S

1

there exists a state s

2

2S

2

such

that (s

1

; s

2

)2E(M

1

;M

2

), and vice-versa. If there exists a bijection b

S

: S

1

! S

2

satisfying:

� 8s2S

1

; 8x2X; b

S

(f

1

s

(s; x))=f

2

s

(b

S

(s); x) and f

1

o

(s; x)=f

2

o

(b

S

(s); x)

� b

S

(s

1

0

)=s

2

0

;

then M

1

and M

2

are said to be isomorphic. Isomorphic SMs can be considered identical since

they di�er only in names of states.

An SM is said to be reduced if no two of its states are equivalent to each other. Reduced SM

equivalent toM=(X;Y; S; f

s

; f

o

; s

0

) is (X;Y; S=E(M;M); f

0

s

; f

0

o

; [s

0

]

E(M;M)

), with f

0

s

: S=E(M;M)�

X

�

!S=E(M;M) and f

0

o

: S=E(M;M)�X

+

!S=E(M;M) de�ned as follows:

8s2S;8w2X

�

; f

0

s

([s]

E(M;M)

; w)=[f

s

(s; w)]

E(M;M)

; (1)

8s2S;8w2X

+

; f

0

o

([s]

E(M;M)

; w)=f

o

(s; w): (2)

3 Dynamical Systems

Analysis of dynamical systems (DSs) via state space structures plays an important role in ex-

perimenting and interpreting complex systems. Most of the important qualitative behaviors of a

nonlinear system can be made explicit in the state space with a state space analysis. In this paper

only discrete-time DSs (i.e. DSs evolving in discrete time) will be considered. Our theoretical

knowledge about nonlinear DSs is far from complete. The state space of a nonlinear DS often con-

sists of qualitatively di�erent regions. It is useful to take into account the geometric information

about the structures and spatial arrangements of these regions.

Among the most important characteristics of a DS are the �xed points, periodic orbits, their

stability types, and the spatial arrangement of the corresponding stability regions. We review some

of the basic concepts in DS theory.

4



A discrete-time DS can be represented as the iteration of a (di�erentiable, invertible) function

f : A! A (A � <

n

), i.e.

x

t+1

= f(x

t

); t 2 Z; (3)

where Z denotes the set of all integers. For each x 2 A, the iteration (3) generates a sequence

of distinct points de�ning the orbit, or trajectory of x under f . Hence, the (forward) orbit of x

under f is the set ff

m

(x)j m � 0g. For m � 1, f

m

is the composition of f with itself m times.

f

0

is de�ned to be the identity map on A.

A point x

�

2 A is called a �xed point of f , if f

m

(x

�

) = x

�

, for all m 2 Z. A point x

�

2 A is a

periodic point of f , if f

q

(x

�

) = x

�

for some q � 1. The least such a value of q is called the period

of the point x

�

and the orbit of x

�

. The set fx

�

; f(x

�

); :::; f

q�1

(x

�

)g is said to be a periodic orbit

of x

�

of period q. Notice that a �xed point is a periodic point of period one, and a periodic point

of f with period q is a �xed point of f

q

. If x

�

is a periodic point of period q for f , then so are

all of the other points in the orbit of x

�

.

Fixed and periodic points can be classi�ed according to the behaviour of the orbits of points in

their vicinity. A �xed point x

�

is said to be asymptotically stable (or an attractive point of f), if

there exists a neighborhood O(x

�

) of x

�

, such that lim

m!1

f

m

(x)=x

�

, for all x 2 O(x

�

). As m

increases, trajectories of points near to an asymptotically stable �xed point tend to it. The basin

of attraction of an attractive �xed point x

�

is the set fx 2 Aj lim

m!1

f

m

(x)=x

�

g:

A �xed point x

�

of f is asymptotically stable only if for each eigenvalue � of Df(x

�

), the

Jacobian of f at x

�

, j�j < 1 holds. The eigenvalues of Df(x

�

) govern whether or not the map f

in a vicinity of x

�

has contracting or expanding directions. Eigenvalues larger in absolute value

than one lead to expansion, whereas eigenvalues smaller than one lead to contraction. If all the

eigenvalues of Df(x

�

) are outside the unit circle, x

�

is a repulsive point, or repellor. All points from

a neighborhood of a repellor move away from it as m increases, or equivalently, move towards it as

�m decreases

3

. If some eigenvalues of Df(x

�

) are inside and some are outside the unit circle, x

�

is said to be a saddle point. There is a set W

s

of points x such that the trajectory of x tends to

x

�

for m!1. W

s

is called the stable invariant manifold of x

�

. Similarly, the unstable invariant

manifold of x

�

, W

u

, is the set of points x such that the trajectory of x tends to x

�

for m! �1.

3

f

�m

= (f

�1

)

m

5



Since any periodic point of period q can be thought of as a �xed point of f

q

, these remarks

apply to periodic points as well.

An absorbing set of a set B �A under the map f is a set P such that for all x2B, there

exists m

0

� 0, for which f

m

(x)2P , for all m � m

0

. For a given x2B, the least such a value of

m

0

is called the absorption level of x in P under the map f . An absorption region of P under the

map f is de�ned as follows:

A

f

(P ) = fx 2 Aj there exists m

0

� 0; such that f

m

(x)2P; for all m � m

0

g:

When A � <, or A � <

2

, it is useful to code with colors (or di�erent gray levels) the absorption

levels of points from A

f

(P ) in P . We will refer to such a diagram as an absorption diagram of P

under the map f .

B�A is said to be positively invariant set of f if f(B)�B, i.e. trajectories of points from B

stay in B. Trivially, A is positively invariant set of f , but in an e�ort to understand the dynamics of

(3), we are usually interested in �nding as minimal positively invariant set

4

as possible. If B is open

and

5

f(B) � B then the set

~

B =

T

m�0

f

m

(B) is not only positively invariant, but also attracting,

meaning that there is a neighborhood of

~

B such that all orbits starting in that neighborhood

converge to

~

B. Attractive �xed points and periodic orbits are trivial examples of attractive sets.

Much more complicated attractive sets can be found in dynamical systems literature under the

name strange attractors

6

[12]. As in the case of an attractive �xed point, the basin of attraction of

an attractive set

~

B is the set of all points whose orbits converge to

~

B.

If B�A is positively invariant set of f then it is certainly an absorbing set of itself under f . B

may be an attracting set of f , or it may contain an attractive set of f

7

, or none of the two

8

.

To learn more about the theory of DSs, see for example [19].

4

in sense of inclusion

5

B denotes the closure of B

6

Loosely speaking, strange attractors are attractive sets that are topologically distinct from (i.e. cannot be

transformed by a homeomorphism to) trivial attractive sets mentioned above.

7

Note that this does not necessarily imply that B is part of basin of attraction of an attractive set contained in

B. Think of attractive periodic orbit inside B that encircles a repelling �xed point.

8

Identity map constitutes a simple example

6



Figure 1: RNN model used for learning FSMs.

4 Recurrent Neural Network

The RNN presented in �gure 1 was shown to be able to learn mappings that can be described by

�nite state machines [31]. A binary input vector I

(t)

= (I

(t)

1

; :::; I

(t)

N

) corresponds to the activations

of N input neurons. There are two types of hidden neurons in the network.

� K hidden nonrecurrent neurons H

1

,...,H

K

, activations of which are denoted by H

(t)

j

; j =

1; :::;K.

� L hidden recurrent neurons S

1

,...,S

L

, called state neurons. We refer to the activations of

state neurons by S

(t)

i

; i = 1; :::; L. The vector S

(t)

= (S

(t)

1

; :::; S

(t)

L

) is called the state of the

network.

7



W

iln

; Q

jln

and V

mk

are real-valued weights and g is a sigmoid function g(x) = 1=(1+ e

�x

). The

activations of hidden nonrecurrent neurons are determined by

H

(t)

j

= g(

X

l;n

Q

jln

�S

(t)

l

� I

(t)

n

):

The activations of state neurons at the next time step (t+ 1) are computed as follows:

S

(t+1)

i

= g(

X

l;n

W

iln

�S

(t)

l

� I

(t)

n

) = S

i

(S

(t)

; I

(t)

): (4)

The output of the network at time t is the vector (O

(t)

1

; :::; O

(t)

M

) of activations ofM output neurons

O

1

,...,O

M

. The network output is determined by

O

(t)

m

= g(

X

k

V

mk

�H

(t)

k

) = O

m

(S

(t)

; I

(t)

): (5)

Network states are elements of the L-dimensional open interval (0; 1)

L

, the internal region of

the L-dimensional hypercube.

A unary encoding of symbols of both the input and output alphabets is used with one input

and one output neuron for each input and output symbol respectively.

The bijection de�ning the encoding of N input symbols into N -dimensional binary vectors with

just one active bit is denoted by c

I

. Similarly, the bijection that de�nes the encoding of M output

symbols into M -dimensional one-active-bit binary vectors is denoted by c

O

.

The vector I(t) = (I

(t)

1

; :::; I

(t)

N

) 2 f0; 1g

N

of activations of input neurons corresponds to the

input symbol c

�1

I

(I

(t)

1

; :::; I

(t)

N

).

Activation of each output neuron is from the open interval (0; 1). A threshold � 2 (0;

1

2

) is

introduced, such that any value from (0;�) is assumed to be an approximation of 0, and any value

from (1��; 1) represents the value 1. A mapping r : (0; 1)! f0; 1;�1g is de�ned as follows

9

:

r(x) =

8

>

>

>

<

>

>

>

:

0 if x 2 (0;�)

1 if x 2 (1��; 1)

�1 otherwise:

9

�1 represents don't know output of an output neuron

8



Interpretation of network output in terms of output symbols of the FSM it models is performed

via mapping D

10

:

D(y

1

; :::; y

M

) =

(

c

�1

O

(y

1

; :::; y

M

) if y

i

2 f0; 1g; i = 1; :::;M

� otherwise:

If the output of the network, O(t) = (O

(t)

1

; :::; O

(t)

M

), falls into ((0;�) [ (1 � �; 1))

M

, then it

corresponds to the output symbol

D(r(O

(t)

1

); :::; r(O

(t)

M

)) = c

�1

O

(r(O

(t)

1

); :::; r(O

(t)

M

)) = c

�1

O

(R(O

(t)

1

; :::; O

(t)

M

)) = c

�1

O

(R(O

(t)

));

where the map R is the component-wise application of the map r.

Each input word (a word over the input alphabet of the FSM used for training) is encoded into

the input neurons one symbol per discrete time step t, yielding the corresponding output, as well

as the network new state.

Training is performed via optimization with respect to the error function

E =

1

2

X

m

(T

(t)

m

�O

(t)

m

)

2

;

where T

(t)

m

2f0; 1g is the desired response value for the m{th output neuron at the time step t. For

a more detailed explanation of the training procedure see [31].

5 RNN as a State Machine

In this section we assume that a RNN N of the type described above has learned to exactly mimic

the behaviour of a reduced, connected FSM M=(X;Y;Q; �; �; s

o

) it was trained with. It follows

that there exists a network state S

0

, for which network output will always be in ((0;�)[(1��; 1))

M

upon presentation of any input word, and such that the following correspondence holds (time is set

to t = 1 ):

11

8w = x

1

:::x

n

2X

+

; �(q

i

; x

i

)=D(R(O

(i)

)); for all i = 1; :::; n; (6)

10

It is assumed that * does not belong to the set of output symbols of the FSM modeled by the RNN. * stands for

don't know output of the net.

11

In practical terms, during learning phase, the network is trained to respond to a special "reset" input symbol

# (# =2 X) by changing its state to a state equivalent to s

0

, the initial state of M (more details in [31]). S

0

is the

\next-state" computed in the layer of recurrent state neurons when the symbol # is presented to the network input

after training process has been completed.

9



where

� q

1

= s

0

,

� S

(1)

= S

0

,

� q

i+1

= �(q

i

; x

i

); i = 1; :::; n� 1, and

� the network input I

(i)

at the time step i is the code c

I

(x

i

) of the i-th input symbol x

i

of the

input word w.

Automata theory provides us with the ability to connect structural and behavioural equivalence

of automata [32]. In particular, it can be shown, that for any couple (M

1

;M

2

) of connected FSMs

with equal input, as well as output sets it holds: if B

M

1

=B

M

2

, then M

1

and M

2

are equivalent

and their reduced forms are isomorphic. To investigate the correspondence between N and M in

this context, we represent the network N as a SM

�

N =(X;Y [ f�g;

�

S; �; �; S

0

), where the maps �

and � are de�ned as follows:

for any S=(S

1

; :::; S

L

)2

�

S; and any x2X;

�(S; x)=D(R(O

1

(S; c

I

(x)); :::;O

M

(S; c

I

(x))));

and

�(S; x)=(S

1

(S; c

I

(x)); :::;S

L

(S; c

I

(x)));

with O

i

and S

j

de�ned by (5) and (4) respectively.

From (6) it follows that

8w2X

+

; �

+

(s

0

; w)=�

+

(S

0

; w): (7)

The set

�

S = (0; 1)

L

of states of

�

N can be partitioned into the set of equivalence classes corre-

sponding to the equivalence relation E(

�

N ;

�

N ). By presenting inputs to the network and considering

only the de-coded network outputs, it is impossible to distinguish between equivalent network states.

[S

0

]

E(

�

N ;

�

N )

is the set of all network states equivalent to S

0

. Denote the set of network states

accessible from states from [S

0

]

E(

�

N ;

�

N )

by

�

S

acc

. Note that for every state S 2

�

S

acc

and for each

input word w 2 X

+

, �

+

(S;w) does not contain the don't know symbol �. From

�

N , a reduced,

connected SM

�

N

1

= (X;Y;

�

S

acc

=E(

�

N ;

�

N ); �

1

; �

1

; [S

0

]

E(

�

N ;

�

N )

) is constructed, where �

1

and �

1

are

10



de�ned according to (1) and (2) respectively, and respectively restricted to

�

S

acc

=E(

�

N ;

�

N )�X

�

and

�

S

acc

=E(

�

N ;

�

N )�X

+

.

�

N

1

has the same behaviour asM. It is easy to see that the number of states

of

�

N

1

is �nite and hence

�

N

1

is a FSM. It follows that

�

N

1

and M are isomorphic.

The set [q]

E(M;

�

N )

of all network states equivalent to the state q of M is denoted by (q)

N

.

States of a SM code the information about \what has happened so far in the course of input word

processing". From that point of view, all network states from (q)

N

code the same information, the

information that is coded by the state q of M.

So far we have dealt with the existence issues concerning nonempty regions of network states

equivalent to states of the FSM the network is capable to exactly mimic. For a \constructive"

approach to determination of (q)

N

, the regions N

y

x

of network state space are identi�ed, for which

the network N gives the (decoded) output y provided the code of the input symbol x is presented

at network input. In particular, N

y

x

= fS 2

�

Sj�(S; x) = yg. Note that for each x 2 X and y 2 Y ,

N

y

x

is an open set. For a given input word w = x

1

x

2

:::x

n

2 X

+

, the set of all network states

N

�

+

(q;w)

w

originating the output equal to �

+

(q; w) is

N

�

+

(q;w)

w

= N

�(q;x

1

)

x

1

\

"

n

\

i=2

(�

x

i�1

� ::: � �

x

2

� �

x

1

)

�1

(N

�(q;x

1

x

2

:::x

i

)

x

i

)

#

; (8)

where

�

x

(S)=�(S; x); for each x2X: (9)

By f

�1

(A), where f is a map and A is a set, we denote the set of all points whose images under

f are in A. For any x 2 X; �

x

is continuous, and so is the composition �

x

m

� ::: � �

x

2

� �

x

1

for any

word x

1

x

2

:::x

m

2 X

+

. It follows that the sets N

�

+

(q;w)

w

are open. However, the set

(q)

N

=

\

w2X

+

N

�

+

(q;w)

w

(10)

of network states equivalent to the state q ofM is not necessarily open, since an in�nite, countable

intersection of open sets is not guaranteed to be open

12

. If (q)

N

is open, (q)

N

6= ; implies there

exists a (�nite) length L of input words such that

13

(q)

N

=

T

jwj�L

N

�

+

(q;w)

w

.

12

The case when trajectories in the RNN state space may be corrupted by a noise is not discussed in this paper.

However, we note that if (q)

N

is not open, arbitrarily close to a state S2(q)

N

there is a network state not equivalent

to the state q of M and an arbitrarily small perturbation of S may cause failure in the RNN modeling of M.

13

jwj denotes length of the word w, i.e. the number of symbols contained in w

11



From (8) and (10) it follows that if there is an x-loop in a state q of M producing an output

symbol y, then

�

x

((q)

N

) � (q)

N

�

\

i�0

(�

i

x

)

�1

(N

y

x

): (11)

As in section 3, �

i

x

is the composition of �

x

with itself i times. �

0

x

is de�ned to be the identity map.

Analogically, if there is an x-cycle of length m passing through states q

1

; :::; q

m

with outputs

y

i

= �(q

i

; x); i = 1; :::;m, then

(q

1

)

N

�

m

\

j=1

(�

j�1

x

)

�1

0

@

\

i�0

(�

im

x

)

�1

(N

y

j

x

)

1

A

: (12)

Similar bounds can be found for (q

2

)

N

; :::; (q

m

)

N

, in particular

�

m

x

((q

j

)

N

) � (q

j

)

N

�

\

i�0

(�

im

x

)

�1

(N

y

j

x

); j = 1; :::;m: (13)

Some researchers attempted to extract learned automaton from a trained recurrent network

[17], [8], [37], [31]. Extraction procedures rely on the assumption that equivalent network states

are grouped together in well-separated regions in the recurrent neurons' activation space. After

training, the network state space is partitioned into clusters using some clustering tool and for each

q 2 Q, the region (q)

N

is approximated by (possibly) several of such obtained clusters. For example,

in [17] the network state neurons' activation space is divided into several equal hypercubes. When

the number of hypercubes is su�ciently high, each hypercube is believed to contain only mutually

equal states. After training, Ti�no and

�

Sajda [31] present a large number of input words to the

network input. All states the network passes through during the presentation are saved. Then

the clustering of those states is performed using Kohonen map with "star" topology of neural �eld

consisting of several \branches" of neurons connected to one \central" neuron. Such a topology

helped to reduce great sensitivity to initial conditions found in vector-coding algorithms using

independent cluster centers, while avoiding time consuming approximation of input space topology

typical of classical regular-grid topologies of Kohonen Map [30]. Other approaches to RNN state

space clustering are discussed in [31].

Having approximated the regions (q)

N

, the automaton

�

N

1

is constructed via determining arcs in

the corresponding transition diagram, followed by non-determinism eliminating and minimization

procedures.

12



All ideas presented in this section stem from the assumption, that the network N exactly mimics

the FSMM it was trained with. However, it is possible that a correct automaton is extracted from

trained RNN even though the network is known to generalize poorly on long, unseen input words

[17]. This is discussed in section 8.

5.1 Experiments

Number of experiments were performed in which RNNs with two or three state neurons were trained

simple FSMs. To show how the network learned to organize its state space in order to mimic a given

FSM, the regions corresponding to (q)

N

were detected. The network state space was \covered"

with a regular grid G of R � R points (R is of order of hundreds) and a �nite vocabulary � of

distinguishing sequences ofM was created. Regions (q)

N

were approximated by grouping together

those network states from the grid that, for each input word from the vocabulary, lead to equal

output strings. In other words, (q)

N

=

T

w2X

+

N

�

+

(q;w)

w

were approximated by

T

w2�

N

�

+

(q;w)

w

\G.

For example, in �gure 3 approximations of regions of equivalent network states corresponding to

states of a FSM shown in �gure 2 can be seen. Figure 3 should be compared with �gure 4 showing

activations of state neurons during presentation of training set to the RNN after training.

Generally, in our experiments, regions approximating (q)

N

were observed to be connected and

of \simple shape". Further study needs to be devoted to that matter. However, at least empirically

and for simple tasks, our use of the Kohonen Map as a clustering tool [31], as well as the use of

simple clustering technique introduced in [17] are supported.

6 RNN as a Collection of Dynamical Systems

RNNs can be viewed as discrete-time DSs. Literature dealing with the relationship between RNNs

and DSs is quite rich: [20], [3], [16], [6], [7] [24], [26], [35], [36], [34], [2], [21], for example. However,

as it has been already mentioned, the task of complete understanding of the global dynamical

behaviour of a given DS is not at all an easy one. In [36] it is shown that networks with just two

recurrent neurons can exhibit chaos and hence the asymptotic network dynamical behaviour (on a

chaotic attractor) can be very complex.

In order to describe the behaviour of the RNN N by an iterative map, we con�ne ourselves

13



Figure 2: FSMM used for training RNN. M=(X;Y; S; f

s

; f

o

; s

0

) is represented as a directed graph

called the state transition diagram. The graph has node for each state, and every node has jXj

(jXj denotes the number of elements of a �nite set X ) outgoing arcs labeled with xjy (x2X; y2Y )

according to the rule: The arc from the node labeled with s

1

2S to the node labeled with s

2

2S is

labeled with xjy if s

2

= f

s

(s

1

; x); and y = f

o

(s

1

; x). The node corresponding to the initial state

is indicated by an arrow labeled with START.

Figure 3: Regions of equivalent network states. Capital letter inside each region indicates to which

state of M the network states from that region are equivalent. � = 0:1. Two lines stemming from

the origin are the lines �

a

(s)

1

= 1=2 and �

a

(s)

2

= 1=2, between them is the region P

a;(1;1)

(see

section 6).
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Figure 4: Activations of state neurons when training set is presented to the network after training

process has �nished (weights are frozen).

to only one input symbol x from the input alphabet of the FSM used for training N , the code of

which is repeatedly presented to the network input. The evolution of the network is described in

terms of trajectories fS; �

x

(S); �

2

x

(S); :::g in (0; 1)

L

. The iterative map �

x

: (0; 1)

L

! (0; 1)

L

is

de�ned in (9).

As in the previous section, here we also assume that a RNN N exactly mimics the behaviour of

a reduced, connected FSM M=(X;Y;Q; �; �; s

o

). In this section we deal with the problem of how

certain features of M found in its STD (such as loops and cycles) induce some speci�c features

(such as attractive points and periodic orbits) of network global dynamical behaviour.

Assume that there is an x-loop in a state q ofM and �(q; x) = y. Then according to (11), (q)

N

is a positively invariant set of �

x

and hence an absorbing set of itself under �

x

. From (8) it follows

that, under �

x

, (q)

N

is an absorbing set of all sets (p)

N

such that q is x-accessible from p. If there

is an open set B such that B � (q)

N

and �

x

(B) � B, or (q)

N

� B and �

x

(B) � (q)

N

, then there

is an attractive set

T

m�0

f

m

(B) of �

x

in (q)

N

that constitutes a stable network representation of

the x-loop in a state q of M.

Similarly, assume that there is an x-cycle 
 of length m passing through states q

1

; :::; q

m

with

outputs y

j

= �(q

j

; x); j = 1; :::;m. Then according to (13), (q

j

)

N

are positively invariant sets of �

m

x

and

S

m

j=1

(q

j

)

N

is positively invariant set of �

x

. A statement concerning the existence of attractive

sets of �

m

x

inside (q

j

)

N

(or an attractive set of �

x

inside

S

m

j=1

(q

j

)

N

) can be made analogically to

15



the statement above. Considering (8) it can be seen that under �

x

,

S

q2


(q)

N

is an absorbing set

of itself and all sets (p)

N

such that 
 is x-accessible from p.

Observation 1 formulates these ideas in a more compact form.

Observation 1: Assume that a RNN N exactly mimics the behaviour of a reduced, connected FSM

M=(X;Y;Q; �; �; s

o

). Then

� if there is an x-loop in a state q of M, then (q)

N

� N

�(q;x)

x

is positively invariant set of �

x

and

14

S

q2Acc(x;p)

(p)

N

� A

�

x

((q)

N

).

� if there is an x-cycle 
 of length m passing through states q

1

; :::; q

m

of M, then (q

j

)

N

; j =

1; :::;m are positively invariant sets of �

m

x

and

S

m

j=1

(q

j

)

N

is positively invariant set of �

x

.

(q

1

)

N

; :::; (q

m

)

N

are periodically visited in the process of iteration of �

x

, and

S


�Acc(x;p)

(p)

N

�

A

�

x

�

S

q2


(q)

N

�

.

When there was an x-loop in a state q of M in all our experiments an attractive �xed point S

�

of

�

x

\near" a vertex v 2 f0; 1g

L

was detected (see subsection Experiments bellow). If S

�

2 (q)

N

, S

�

constitutes a plausible network representation of the x-loop. If furthermore S

�

is the only attractive

set of �

x

inside (q)

N

, then

S

q2Acc(x;p)

(p)

N

is a subset of its basin of attraction.

For each input symbol x of M and each vertex v = (v

1

; :::; v

L

) 2 f0; 1g

L

de�ne the set

15

P

x;v

=

�

s 2 <

L

j �

x

(s)

i

<

1

2

if v

i

= 0; �

x

(s)

i

>

1

2

if v

i

= 1; i = 1; :::; L

�

:

Hyperplanes �

x

(s)

i

= 1=2 separate <

L

into 2

L

partitions P

x;v

. The map �

x

is transformed to

the map �

�

x

by multiplying weights W

iln

by a scalar � > 0, i.e. �

�

x

(s) = �

x

(�s). � is also called

the neuron gain. The following Lemma was proved by Li [27]. It is stated for maps �

x

and

accommodated with our notation. It tells us under what conditions one may expect an attractive

�xed point of �

�

x

to exist \near" a vertex v 2 f0; 1g

L

.

Lemma 1: (Li, 1992) Suppose that for some input symbol x of M there exists a vertex v 2

P

x;v

\ �

x

(P

x;v

). Then there exists a neuron gain �

0

such that for all � > �

0

there is an attractive

�xed point of �

�

x

in P

x;v

\ �

x

(P

x;v

).

14

recall that A

�

x

((q)

N

) is the absorbing region of (q)

N

under map �

x

15

�

x

(s)

i

denotes the i-th component of �

x

(s). When viewed as an iterative map, �

x

operates on (0; 1)

L

, but here

we allow s 2 <

L

.
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It was also shown that as � tends to in�nity, the attractive �xed point tends to the vertex v. For

two recurrent neurons, under certain conditions on weights W

iln

, this is made more speci�c in the

next section (Corollary 1).

Theorem 1: In addition to the assumptions in Observation 1, assume there is an x-loop in a

state q of M. Suppose there is a vertex v 2 f0; 1g

L

such that (q)

N

� P

x;v

and v 2 �

x

((q)

N

).

Then there exists a neuron gain �

0

such that for all � > �

0

there exists an attractive �xed point

S

�

2 P

x;v

\ �

x

(P

x;v

) of �

�

x

.

Proof: From

�

x

((q)

N

) � (q)

N

� P

x;v

and �

x

((q)

N

) � �

x

(P

x;v

)

it follows that �

x

((q)

N

) � P

x;v

\ �

x

(P

x;v

). Hence

v 2 �

x

((q)

N

) � P

x;v

\ �

x

(P

x;v

):

Employing Lemma 1, the result follows immediately. 2

Loosely speaking, Theorem 1 says that if arbitrarily close to a vertex v 2 f0; 1g

L

there is a network

state from �

x

((q)

N

) � (q)

N

� P

x;v

, i.e. if network states that are equivalent to the state q of M

in which there is an x-loop are \accumulated" around the vertex v within P

x;v

, then if the weights

are \large enough", so that �

0

< 1, an attractive �xed point of �

x

exists in a neighborhood of v

(�gures 3 and 5).

As mentioned in the introduction, the approach presented in [6] addresses representational issues

concerning recurrent neural networks trained to act as regular language recognizers. Recurrent

neural networks are assumed to operate in a noisy environment. Such an assumption can be

supported by an argument that in any system implemented on a digital computer there is a �nite

amount of noise due to round-o� errors and \we are only interested in solutions wich work in spite

of round-o� errors" [6]. Orbits of points under a map f and attractive sets of f are substituted

for by the notions of �-pseudo-orbit of points under f and �-pseudo-attractor of f . These concepts

correspond to the idea that instead of the precise trajectory of a point under a map we should

consider each sequence of points (pseudotrajectory) having the distance from the precise trajectory

less than � > 0. It is proved that when there is a loop in the reduced acceptor of a regular language
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also recognized by the network, then there must be an �-pseudo-attractor (and hence an attractor)

of the corresponding map in the network state space. The network accepts and rejects a string

of symbols if �-pseudo-orbits driven by the string end in subregions denoted by accept and reject

regions respectively. It is assumed that the accept and reject regions are closed in the network state

space.

6.1 Experiments

To see how loops and cycles of a FSM M are transformed into global dynamical properties of a

RNN N that is able to exactly mimic M, the following experiments were performed:

Consider again the FSM M presented in �gure 2. In �gure 3 it can be seen how the RNN

N with two state neurons organizes its state space, (0; 1)

2

, into three distinct, connected regions

(A)

N

, (B)

N

, and (C)

N

, corresponding to states A, B, and C respectively. It was observed

16

that

trajectories starting in (A)

N

converged to a single attractive point placed inside (A)

N

. The same

applies to the state C, and its corresponding region (C)

N

. So the a-loops in the states A and C

induce attractive points of �

a

placed inside the corresponding regions of equivalent RNN states.

Actually, this represents the only RNN stable representation of loops inM we have observed during

our simulations.

(A)

N

and (C)

N

are absorbing sets of themselves under the map �

a

. Since the state C is a-

accessible from B, (C)

N

is an absorbing set of (B)

N

under �

a

. Absorption diagrams of (A)

N

and

(C)

N

under �

a

together with the attractive points are presented in �gure 5.

If we presented M only with input symbol b, we would end up either in a b-cycle of length

two involving states A and B, or in a b-loop in the state C. When, during the experiments, we

started in a state from (C)

N

, and presented to the network input only the code of the symbol b,

the trajectory converged to an attractive point inside (C)

N

. An absorption diagram of (C)

N

under

�

b

together with the attractive point can be seen in �gure 6.

On the other hand, when started in a state from (A)

N

, the trajectory jumped between the sets

(A)

N

and (B)

N

converging to a periodic orbit of length two. Again, this was observed to be the

typical stable RNN representation of a cycle corresponding to an input symbol of M. The states

16

As before, during the simulations, the network state space was \covered" with a regular grid of points and only

the orbits starting from these points were taken into account.

18



Figure 5: Absorption diagrams of (A)

N

and (C)

N

under the map �

a

. Network states lying in the

lightest region need one or no iteration step under the map G

a

to get to their absorption set. The

more iteration steps are needed, the darker the region is, with the exception of the region "close

to" the "border line" between the two absorption diagrams. The region is light so that the border

contours are clearly visible. The �gure should be compared with the �gure in the previous section

showing (A)

N

and (C)

N

. Note the two attractive points of �

a

placed inside (A)

N

and (C)

N

induced

by a-loops in states A and C respectively.
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Figure 6: Absorption diagram of (C)

N

under the map �

b

. Network states from the two white

regions do not belong to the absorption region of (C)

N

. The �gure should be compared with the

�gure in the previous section showing (C)

N

. Note the attractive point of �

b

placed inside (C)

N

induced by the b-loop in the state C, as well as, two periodic points of �

b

placed inside (A)

N

and

(B)

N

constituting an attractive periodic orbit of period two. The orbit is induced by the b-cycle

fA;Bg.

constituting the orbit can be seen in �gure 6.

In the second experiment, a FSMM shown in �gure 7 was used to generate the training set for a

RNN N with three state neurons. The a-cycle fA;B;C;D;Eg of length �ve induced an attractive

periodic orbit of �

a

of period �ve. Projections of the orbit to a two{dimensional subspace (0; 1)

2

of the network state space can be seen in �gures 8, 9, 10. To illustrate the convergence of orbits,

the orbits were plotted after 60, 100, and 300 pre-iterations (�gures 8, 9, and 10 respectively). No

plotting occurred during the pre-iterations.

7 RNN with Two State Neurons

Usually, studies of the asymptotic behaviour of recurrent neural networks assume some form of

structure in the weight matrix describing connectivity pattern among recurrent neurons. For ex-

ample, symmetric connectivity and absence of self-interactions enabled Hop�eld [22] to interpret

the network as a physical system having energy minima in attractive �xed points of the network.

These rather strict conditions were weakened in [7], where a more easily satis�ed conditions are
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Figure 7: FSM M whose state transition diagram contains cycle of length �ve.

Figure 8:

Figure 9:
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Figure 10:

formulated. Blum and Wang [3] globally analyze networks with nonsymmetrical connectivity pat-

terns of special types. In case of two recurrent neurons with sigmoidal activation function g, they

give results for weight matrices with diagonal elements equal to zero

17

. Recently, Jin, Niki�ruk

and Gupta [25] reported new results on the absolute stability for a rather general class of recur-

rent neural networks. Conditions under which all �xed points of the network are attractive were

determined by the weight matrix of the network.

The purpose of this section is to investigate the position and stability types of �xed points of

maps �

x

under certain assumptions concerning the signs and magnitudes of weights W

iln

. The

iterative map under consideration can be written as follows:

(u

n+1

; v

n+1

) = (g(�u

n

+ �v

n

); g(
u

n

+ �v

n

)); (14)

where (u

n

; v

n

)2(0; 1)

2

is the state of recurrent network with two state neurons at the time step n;

and �; � and �; 
 are positive and negative real coe�cients respectively. Thus we investigate the

case when the two recurrent neurons are self-exciting (�; � > 0), with the tendency to inhibit each

other (�; 
 < 0).

For c > 4, de�ne

�(c) =

1

2

r

1�

4

c

In the following it will be shown how the network state space (0; 1)

2

can be partitioned into regions

17

In such a case the recurrent network is shown to have only one �xed point and no \genuine" periodic orbits (of

period greater than one)
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Figure 11: Partitioning of RNN state space according to stability types of �xed points of maps �
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.

according to the stability types of �xed points of (14) found in the regions.

Regions

�

0;

1

2

��(�)

�

�

�

0;

1

2

��(�)

�

;

�

1

2

��(�);

1

2

�

�

�

0;

1

2

��(�)

�

[

�

0;

1

2

��(�)

�

�

�

1

2

��(�);

1

2

�

and

�

1

2

��(�);

1

2

�

�

�

1

2

��(�);

1

2

�

are denoted by R

A

00

; R

S

00

and R

R

00

respectively. Regions symmetrical to R

A

00

; R

S

00

and R

R

00

with respect

to the line u = 1=2 are denoted by R

A

10

; R

S

10

and R

R

10

respectively:

R

A

10

=

�

1

2

+�(�); 1

�

�

�

0;

1

2

��(�)

�

;

R

S

10

=

�

1

2

;

1

2

+�(�)

�

�

�

0;

1

2

��(�)

�

[

�

1

2

+�(�); 1

�

�

�

1

2

��(�);

1

2

�

;

R

R

10

=

�

1

2

;

1

2

+�(�)

�

�

�

1

2

��(�);

1

2

�

:

Similarly, let R

A

01

; R

S

01

and R

R

01

denote the regions symmetrical to R

A

00

; R

S

00

and R

R

00

with respect to

the line v = 1=2. Finally, R

A

11

; R

S

11

and R

R

11

denote regions that are symmetrical to R

A

01

; R

S

01

and

R

R

01

with respect to the line u = 1=2 (�gure 11).
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Theorem 2: Suppose � > 4; � < 0; 
 < 0; � > 4; � > j�j; � > j
j. Then the following can be said

about the �xed points of (14):

� attractive and repulsive points can lie only in

S

i2I

R

A

i

and

S

i2I

R

R

i

respectively. I is the

index set I = f00; 10; 01; 11g. If maxf�(� � 4); �(� � 4)g < �
, there are no repellors.

� all �xed points in

S

i2I

R

S

i

are saddle points

18

.

Proof: Any �xed point (u; v) of (14) satis�es

(u; v) = (g(�u + �v); g(
u + �v)): (15)

Jacobian J(u; v) of (14) in (u; v) is given by

0

B

@

�G

1

(u; v) �G

1

(u; v)


G

2

(u; v) �G

2

(u; v)

1

C

A

;

where G

1

(u; v) = g

0

(�u+ �v) and G

2

(u; v) = g

0

(
u+ �v). Since g

0

(p) = g(p)(1� g(p)), considering

(15) we have

(G

1

(u; v); G

2

(u; v)) = (u(1� u); v(1 � v)) = �(u; v): (16)

The eigenvalues of J are

19

�

1;2

=

�G

1

+ �G

2

�

p

D

2

;

where D = (�G

1

� �G

2

)

2

+ 4G

1

G

2

�
.

D is always positive and so is �G

1

+ �G

2

. It follows that to identify possible values of G

1

and

G

2

so that j�

1;2

j < 1, it is su�cient to solve the inequality �G

1

+ �G

2

+

p

D < 2, or equivalently

2� �G

1

� �G

2

>

p

D: (17)

Consider onlyG

1

; G

2

such that �G

1

+�G

2

< 2, that is, (G

1

; G

2

) lies under the line � : �G

1

+�G

2

= 2.

All (G

1

; G

2

) above � lead to at least one eigenvalue of J greater than 1. Squaring both sides of

(17) we arrive at

(�� � �
)G

1

G

2

� �G

1

� �G

2

> �1: (18)

18

Note that this does not exclude the existence of saddle �xed points in other regions.

19

to simplify the notation, the identi�cation (u; v) of a �xed point in which (14) is linearized is omitted
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Figure 12:

The \border" curve � : (�� � �
)G

1

G

2

� �G

1

� �G

2

= �1 in (G

1

; G

2

)-space is a hyperbola

G

2

= �(G

1

) = A[1 +B=(G

1

� C)], where

A =

1

� �

�


�

; C =

1

��

�


�

; and B = C �

1

�

:

Since 0 < � � �
=� < � and 0 < � � �
=� < �, it follows that A > 1=�; C > 1=� and B > 0.

�(1=�) = 0; �(0) = 1=� and (G

1

; G

2

) satisfying (18) lie under the \left branch" and above the \right

branch" of � (see �gure 12). It is easy to see that since we are con�ned to the space below the line

�, only (G

1

; G

2

) under the left branch of � will be considered. Indeed, � is a decreasing line going

through (C;P ) and A� P = 2(A� 1=�) > 0, so it never intersects the right branch of �.

A necessary (not su�cient) condition for a �xed point (u; v) of (14) to be attractive is that the

corresponding (G

1

; G

2

) = �(u; v) 2 (0; 1=4]

2

lies in (0; 1=�) � (0; 1=�), where the map � is de�ned

by (16). For each (G

1

; G

2

) 2 (0; 1=4]

2

, under �, there are four preimages

(u; v) = �

�1

(G

1

; G

2

) =

��

1

2

��

�

1

G

1

�

;

1

2

��

�

1

G

2

���

: (19)
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The set of preimages of (0; 1=�) � (0; 1=�) is the set

S

i2I

R

A

i

; I = f00; 10; 01; 11g.

A �xed point (u; v) of (14) is a saddle if j�

2

j < 1 and j�

1

j = �

1

> 1. Since �� > �
,

0 <

q

(�G

1

+ �G

2

)

2

� 4G

1

G

2

(�� � �
) =

p

D < �G

1

+ �G

2

:

It follows that if �G

1

+ �G

2

< 2, i.e. (G

1

; G

2

) lies under the line �, 0 < �G

1

+ �G

2

�

p

D < 2

holds and 0 < �

2

< 1. For (G

1

; G

2

) above the line �, i.e. �G

1

+ �G

2

> 2, we solve the inequality

�G

1

+ �G

2

� 2 <

p

D, that leads to the \border" curve G

2

= �(G

1

) we have already described.

This time, only (G

1

; G

2

) \between" the two branches of hyperbola � are considered.

It can be seen that in all �xed points (u; v) of (14) with

�(u; v) 2

�

0;

1

4

�

�

�

0;min

�

A;

1

4

��

[

�

0;min

�

C;

1

4

��

�

�

0;

1

4

�

;

the eigenvalue �

2

> 0 is less than 1. This is certainly true for all (u; v) such that �(u; v) 2

(0; 1=4] � (0; 1=�) [ (0; 1=�) � (0; 1=4]. In particular, the preimages of (G

1

; G

2

) 2 (1=�; 1=4] �

(0; 1=�) [ (0; 1=�) � (1=�; 1=4] under � de�ne the region

S

i2I

R

S

i

where only saddle �xed points of

(14) can lie.

Fixed points (u; v) whose images under � lie above the right branch of � are repellors. No

(G

1

; G

2

) can lie in that region, if C;A > 1=4, that is, if �(�� 4) < �
 and �(� � 4) < �
, which is

equivalent to maxf�(� � 4); �(� � 4)g < �
. 2

The conditionmaxf�(��4); �(��4)g < �
 implies that when self-excitations of recurrent neurons

are not signi�cantly higher than their mutual inhibition, there are no repulsive �xed points of (14).

As self-excitations � and � grow, stable �xed points of (14) move closer towards f0; 1g

2

. More

precisely:

Corollary 1: Same assumptions as in Theorem 2. All attractive �xed points of (14) lie in the

"-neighborhood of vertices of unit square, where

" =

q

(0:5 ��(�))

2

+ (0:5��(�))

2

:

.

The tendency of attractive �xed points in discrete-time RNNs with exclusively self-exciting recur-

rent neurons to move towards saturation values as neural gain grows is also discussed in [21].
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So far, we have con�ned the areas of the network state space (0; 1)

2

where (under some assump-

tions on weights) �xed points of (14) of particular stability types can lie. In the following, it will

be shown that those regions correspond to monotonicity intervals of functions de�ning �xed points

of (14). The reasoning about the stability type of a �xed point can be based on the knowledge of

where the functions intersect.

Recall that any �xed point (u

�

; v

�

) of (14) satis�es

(u

�

; v

�

) = (g(�u

�

+ �v

�

); g(
u

�

+ �v

�

));

or equivalently, (v

�

; v

�

) lies on the intersection of two curves v = f

�;�

(u); u = f

�;


(v), where

f

c

1

;c

2

: (0; 1) ! <;

f

c

1

;c

2

(`) = �

c

1

c

2

`+

1

c

2

ln

`

1� `

: (20)

lim

`!0

+
f

c

1

;c

2

(`) =1, lim

`!1

�
f

c

1

;c

2

(`) = �1

20

. f

c

1

;c

2

is convex and concave on (0; 0:5) and (0:5; 1)

respectively. If c

1

� 4, f

c

1

;c

2

is nonincreasing, otherwise it is decreasing on (0; 0:5��(c

1

))[ (0:5 +

�(c

1

); 1) and increasing on (0:5 ��(c

1

); 0:5 +�(c

1

)): Graph of f

c

1

;c

2

(`) is presented in �gure 13.

The \bended" graph of f

c

1

;c

2

for c

1

> 4 gives rise to a potentially complicated intersection

pattern of f

�;�

(u) and f

�;


(v). In the following, we shall consider only the case c

1

> jc

2

j, since it

is su�cient to explain some interesting features of training process observed in our experiments.

Note that c

1

> jc

2

j means that for both neurons, the self-excitation is higher than the inhibition

from the other neuron.

Lemma 2: Assume � > 0; � < 0; 
 < 0; � > 0: If � � j�j and � � j
j, then f

�;�

(u) and f

�;


(v) do

not intersect in (0; 0:5)

2

.

Proof: Assume that both f

�;�

(u) and f

�;


(v) lie in (0; 0:5)

2

, otherwise the result follows trivially.

For u 2 (0; 0:5); both (ln(u=(1 � u))=� and ��u=� are positive. It follows that in (0; 0:5)

2

,

f

�;�

(u) lies above the line v=�u=j�j. Similarly, in (0; 0:5)

2

, f

�;


(v) lies above the line u= �v=j
j.

In terms of the co-ordinate system (u; v), this can be restated as follows: in (0; 0:5)

2

, the graph

of f

�;�

lies above the line v=�u=j�j while the graph of f

�;


lies bellow the line v= j
ju=�. Since

j
j=� � 1 � �=j�j, f

�;�

(u) and f

�;


(v) do not intersect in (0; 0:5)

2

. 2

20

note that since �; � and �; 
 are assumed to be positive and negative respectively, we have c

1

> 0 and c

2

< 0
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The correspondence between regions R

Q

i;j

; i; j = 0; 1; Q = A;S;R, and the regions of monotonicity

of f

�;�

(u) and f

�;


(v) enables us to interpret training process as a process of \shaping" f

�;�

and

f

�;


so that the desired behaviour of (14), as prescribed by the training set, is achieved.

Denote the set f(u; f

�;�

(u))j u2(0; 0:5��(�))g of points lying on the \�rst decreasing branch"

of f

�;�

(u) by f

0�

�;�

. Analogically, the set of points f(u; f

�;�

(u))j u 2 (0:5 + �(�); 1)g in the \sec-

ond decreasing branch" of f

�;�

(u) is denoted by f

1�

�;�

. Finally, let f

+

�;�

denote the set of points

f(u; f

�;�

(u))j u2 (0:5 � �(�); 0:5 + �(�))g on the increasing part of f

�;�

(u). Similarly, f

0�

�;


; f

1�

�;


and f

+

�;


are used to denote the sets f(f

�;


(v); v)j v2(0; 0:5��(�))g, f(f

�;


(v); v)j v2(0:5+�(�); 1)g

and f(f

�;


(v); v)j v2(0:5��(�); 0:5 +�(�))g respectively. Using the Theorem 2 and Lemma 2 we

state the following corollary:

Corollary 2: Same assumptions as in Theorem 2. Attractive �xed points of (14) can lie only on

the intersection of decreasing parts of f

�;�

and f

�;


. Whenever the increasing part of f

�;�

intersects

with a decreasing part of f

�;


(or vice-versa), it corresponds to a saddle point of (14). In particular,

all attractive �xed points of (14) are from f

0�

�;�

\ f

1�

�;


, f

1�

�;�

\ f

1�

�;


or f

1�

�;�

\ f

0�

�;


. Every point from

f

+

�;�

\ f

1�

�;


or f

1�

�;�

\ f

+

�;


is a saddle point of (14).

The usual scenario of creation of a new attractive �xed point of (14) is that typical of saddle-

node bifurcation in which a pair attractive + saddle �xed point is created. Attractive �xed points

disappear in a reverse manner: an attractive point coalesces with with a saddle and they are

annihilated. This is illustrated in �gure 14. f

�;


(v) shown as dashed curve intersects f

�;�

(u) in

three points. By increasing �, f

�;


bends further (solid curve) and intersects with f

�;�

in �ve

points

21

. Saddle and attractive points are marked with squares and circles respectively. Note that

as � increases attractive �xed points move closer to vertices f0; 1g

2

.

A similar approach to determining the number and stability types of �xed points of the under-

lying dynamical systems in continuous{time recurrent neural networks can be found in [2].

21

At the same time, j
j has to be also appropriately increased so as to compensate for the increase in � so that the

\bended" part of f

�;


does not move radically to higher values of u.
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Figure 14: Geometrical illustration of saddle-node bifurcation in RNN with two state neurons.

DSTART

a | 1 a | 2 a | 3 a | 4

b | 1

b | 4 b | 3 b | 2
A B C

Figure 15: FSM M with four a-loops and \transition" input symbol b.

8 Experiments { Learning loops of FSM

A RNN with two state neurons was trained with the FSM M presented in �gure 15. In each of

its four states there is an a-loop. Input symbol b causes subsequent transitions between states up

to the \trap" state D. Training set representing M was constructed as follows: Transitions to

states B;C and D from the initial state A are represented by one, two and three consecutive b's

respectively. Apart from transition, each a-loop is represented by strings of consecutive a's up to

length 5. b-loop in the state D is represented by a string of 5 consecutive b's. To each input string

w, its corresponding output string �

+

(A;w) is determined.

During the training, after each epoch, attractive sets of �

a

were numerically detected. The

evolution of position and number of attractive �xed point(s) of �

a

in (0; 1)

2

can be seen in �gure 16.

30



1

137

139

139

321

59

59

225

225

225
512

511

s2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s1

0.0 0.2 0.4 0.6 0.8 1.0

Figure 16: Evolution of position of attractive sets of �

a

during RNN training on FSMM (two state

neurons).

Near the points the corresponding epoch numbers are shown. At the beginning, there is only one

�xed point of �

a

. A bifurcation during the 59th epoch produces two attractive �xed points. Since

the 138th epoch till the 321st epoch there are three attractive �xed points and two saddle points

of �

a

. These are determined by the intersection of the corresponding lines f

�

a

;�

a

and f

�

a

;


a

, where

�

a

; �

a

; 


a

and �

a

are coe�cients of the map �

a

as in (14). The episode of existence of the attractive

�xed point f

1�

�

a

;�

a

\f

1�

�

a

;


a

begins when f

�

a

;�

a

is \bended" enough so that f

1�

�

a

;


a

intersects with both

increasing and decreasing parts f

+

�

a

;�

a

and f

1�

�

a

;�

a

respectively. At the same time, in order for the

intersection f

1�

�

a

;�

a

\ f

+

�

a

;


a

to exist, f

�

a

;


a

needs also to be su�ciently \bended" (�gure 17). The

degree to which f

�

a

;�

a

and f

�

a

;


a

are \bended" is primarily controlled by �

a

and �

a

respectively,

while the vertical positions of bended parts are mainly determined by respectively �

a

and 


a

. During

the 322nd epoch, the attractive �xed point f

1�

�

a

;�

a

\ f

1�

�

a

;


a

together with saddle point f

1�

�

a

;�

a

\ f

+

�

a

;


a

disappear because the increase in j


a

j pushes the "bended" part of f

�

a

;


a

inside the state space

(0; 1)

2

(�gure 18).

The training error was 0:08, yet the only attractive sets of �

a

that were detected were two

attractive �xed points S

A

and S

D

near vertices (0; 1) and (1; 0) corresponding to a-loops in states
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Figure 17: f

�

a

;�

a

(u) and f

�

a

;


a

(v) after 150th training epoch. Coe�cients of the map �

a

are

�

a

= 5:21; �

a

= �2:58; 


a

= �2:63; �

a

= 5:23.
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Figure 18: f

�

a

;�

a

(u) and f

�

a

;


a

(v) after 1000th training epoch. Coe�cients of the map �

a

are

�

a

= 8:61; �

a

= �3:96; 


a

= �3:08; �

a

= 5:17.
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A and D respectively. Starting in a small neighborhood of S

A

and S

D

, upon repeated presentation

of input a, the decoded network outputs are 1 and 4 with trajectories of �

a

approaching S

A

and

S

D

respectively. There is no stable representation of the a-loops in states B and C, i.e. there are

no positively invariant sets of �

a

leading to the network output 2 and 3 respectively when input a

is presented to the network.

However, the net is able to simulate the training set perfectly. It follows that after it is reset

22

and presented with b, when �ve consecutive a's arrive, the decoded output will be �ve consecutive

2's. Hence, the network must have developed a mechanism for acting as if the a-loops in B and C

were represented in a stable manner, at least for strings having no more than �ve consecutive a's.

It turns out that the underlying mechanism for pretending that there are stable representations

of a-loops for short input strings involves a behaviour of trajectories starting \near" the stable

manifold W

s

of the saddle �xed point S

S

lying \between" attractive points S

A

and S

D

, with W

s

constituting the border of regions of attraction of S

A

and S

D

.

Consider a point S \near" W

s

. Due to the continuity of �

a

, the orbit of S under �

a

�rst moves

towards S

S

along W

s

and then away from S

S

along a branch of the unstable manifold W

u

of

S

S

gradually approaching one of the attractive points S

A

, S

D

. To which of the two points the

trajectory actually converges is determined by the \side" of W

s

on which the initial point S lies.

Assume that the trajectory of S converges to S

A

. If we slightly displace S into S

0

on \the other

side" of the curveW

s

, trajectories trajectories of S and S

0

move towards S

S

close to each other, but

as they approach S

S

, the trajectory of S

0

follows the other branch ofW

u

towards S

D

(see �gure 19).

As we move starting point S towards S

A

and S

D

, the trajectories less and less follow the pattern

described above, move towards S

A

and S

D

in a straightforward manner

23

and approach a vicinity

of S

A

and S

D

respectively much faster than trajectories starting \near" W

s

. Hence, the network is

able to \cheat" by pretending stable behaviour as described by the a-loop in the state B because

it takes advantage of di�erent convergence rates of orbits starting near W

s

and S

D

. The decoded

output of the net with input a and a state near S

D

is 4 (region D ), while for states involving �rst

several steps in trajectories starting near W

s

, the output is 2 (region B ). Analogical statement can

22

with (possibly repeated) presentation of \reset" input #

23

Due to the coe�cients of �

a

, eigenvalues of its Jacobian in every point from (0; 1)

2

are real thus implying an

absence of rotation in neighborhoods of �xed points.
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Figure 19: Illustration of a mechanism that enables RNN to \pretend" stable representation of

loops in M for short input strings.

be made about trajectories starting near S

A

andW

s

, and regions A and C respectively. Most of the

time towards the end of learning session was spent on learning the output function �

a

(S) = �(S; a)

in closely neighboring regions of B and C so that the outputs for states from B and C are 2 and 3

respectively (see �gures 20, 21). The map �

#

associated with the \reset" input symbol # has one

attractive �xed point in the region A. Under the \reset" map �

#

, trajectories of network states

S2(0; 1)

2

quickly approach region A thus preparing ground for processing of a new input word.

The key role, however, is played by the transfer function �

b

. It simulates transition between

states with a-loops in M. Starting in S 2 A, �

b

(S) 2 B and �

2

b

(S) 2 C lie near W

s

and the

behaviour of �

a

in B and C appears to be stable for several iterations. Upon repeated presentation
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Figure 20: The map (�

a

)

2

representing the output of the second output neuron that corresponds

to the output symbol 2. Note the sharp activity change along border of regions of attraction of S

A

and S

D

.
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Figure 21: The map (�

a

)

3

representing the output of the third output neuron that corresponds to

the output symbol 3. A sharp activity change along border of regions of attraction of S

A

and S

D

is clearly visible.
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of a, �

3

b

(S) 2 D converges to S

D

with network output 4.

The delicate role of �

b

responsible for transitions A ! B ! C ! D with jumping on the

\appropriate" sides of W

s

while staying close to W

s

, together with di�erent convergence rates of

orbits under �

a

starting close to W

s

and near S

A

, S

D

are principal tools enabling the net to behave

nicely for testing strings of smaller length, although it generalizes poorly on strings with many

consecutive a's after b or bb. In particular, the outputs of the net for input strings ba

n

and bba

m

are consistent with training set for n = 8 and m = 10. As further a's keep coming, trajectories of

�

a

move away from B and C towards S

D

and S

A

respectively.

To visualize the process of state degradation upon repeated presentation of input a a state

degradation diagram for input a is constructed as follows (M

a

denotes the set of states of M in

which there is an a-loop):

� Construct a �nite vocabulary � of short distinguishing words for M

a

, such that � does not

contain a word ua

i

v; i � 2, where u is leading to a state of M in which there is an a-loop.

With each state q of M

a

associate a minimal input word m

q

leading to q.

� For each i 2 f1; 2; :::; N

max

g

{ For each w 2 �

� For each state q2M

a

� present the reset network with m

q

a

i

and then

� present the network with w and check whether the net output equals �

+

(q; w).

If not, check whether there is a state p ofM such that the network output equals

�

+

(p;w) { if so, draw an arrow in a diagram from q to p.

State degradation diagram for input a is presented in �gure 22. Note that when only short input

strings are presented to the network, and quantization of network state space individually captures

regions A;B; C;D a correct state transition diagram can be obtained, even though, on longer input

strings the net generalizes poorly.

When the network with three state neurons was trained with the FSM M, it generalized cor-

rectly over the training set by forming four attractive �xed points of �

a

corresponding to loops

in states A;B;C;D of M. The training process looked at from the point of view of asymptotic
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DA C B

Figure 22: State degradation diagram for input a. N

max

= 100.

behaviour of �

a

is illustrated in �gure 23. Horizontal axis correspond to time (in epochs), network

state space (0; 1)

3

is orthogonally projected into 2-dimensional space of activations of a couple of

state neurons. Bifurcations leading to formation of new attractive �xed points appeared during

the 53rd,115th and the 121st epoch. If the network is able to exactly mimic the FSM M the state

degradation diagram for each input symbol has no arrows.

As another example, Consider a FSM M in �gure 24. It is a FSM taken from the database

of the International Symposium on Circuits and Systems (Portland, Oregon, 1989) [4]. In each of

its 7 states there is an a-loop with output 0 except for a-loops in states 4 and 7. The training

set consists of 3500 training strings

24

of input string length 3{35 and is ordered according to their

length starting with the shortest ones. The machine M is hard to learn because the training set

is very sparse in output symbols other than 0. Training process is disrupted by a tendency to �nd

trivial solution represented by the automaton with only one state and loops for every input symbol

with the output 0. An example of a part of the training set is given in table 1.

After 53 training epochs RNN with 6 state neurons is able to perform well on short test strings

(training error was 0.06). Generalization on long test strings was found to be poor. Part of the

problem was unstable network representation of a-loops in M. The state degradation diagram for

input a can be seen in �gure 25. a-loops in states 4,6 and 7 are \well represented" by �xed points

S

4

; S

6

and S

7

respectively in that when starting in a small neighborhood of S

q

; q = 4; 6; 7 , the

resulting output sequences of RNN for input words a

i

w; w 2 �; i � 0 equal �

+

(q; a

i

w). This is not

true of a-loops in states 1,2,3 and 5. When the net is reset and presented with m

q

; q = 1; 2; 3; 5 ,

for i > N

q

it does not emulate �

+

(q; a

i

w); w 2 �. Sates 5 and 3 degradate to states 1 and 2

respectively. In particular, N

5

= 8 and N

3

= 5. Both states 1 and 2 degradate to attractive

�xed point S

0

with N

1

= 27 and N

2

= 40. The network state S

0

does not represent any state

of M even for short input strings. S

j

; j = 0; 4; 6; 7; are the only attractive sets of �

a

that were

detected. There are trajectories of �

a

starting near border of regions of attraction of S

0

and some

24

input word w! corresponding output word �

+

(q

0

; w)
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Figure 23: Evolution of position of attractive sets of �

a

during RNN training on FSM M (three

state neurons).
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.

.

.

dddeadfdaeaafaaadddaddadfeeedeaeee# --> 0000000000000000000000000000000002x

affedfeefaedeededfdefddaafeeeeeadd# --> 0000000000000000000000000000022200x

dffdadedfadaddffeeafeafdffdffefaad# --> 0000000000000000000000000000000000x

fdaadaafddafafdadfdffdeaffaaefeade# --> 0000000000000000000000000000000000x

ddfaddadfaaddddeafdafdfaeedaedeeda# --> 0000000000000000000000000000000000x

defadedefdeffdefdafdaaadeaeddaaefd# --> 0000000000000000000000000000000000x

ddfedaaffdedeaeadeefdfefaadadeaaff# --> 0000000000000000000000000000000000x

aafaaeefafeaffeeefeafaefeeadaefafa# --> 0000000000000000000000000000000000x

dddeeafffafeaadaddfdffadfeafdddefd# --> 0000000001100000000000000000000000x

fdaaddaadadffefaeadddfeddeafdddaea# --> 0000000000000000000000000000000000x

dedaddadaafeaaddaafaaefaefdeeffafe# --> 0000000000000000000000000000000000x

ddaeeafddfaaffffaeeefeadaefdfedfee# --> 0000000000000011100000000000000000x

dddedeeafdfddfaeeaddafdfafadedfaaf# --> 0000000000000000000000000000000000x

.

.

.

Table 1: A part of the training set characterizing the FSMM. Output strings are sparse in output

symbols other than 0.
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other attractive �xed point of �

a

that pass through the region assuming the role of state 5 of M

for short input strings. Then, further towards S

0

, they pass through the region of network states

that for short input strings seem to be equivalent to the state 1 of M, �nally making their way to

a close neighborhood of S

0

and converge to it. A similar statement can be made about states 3

and 2 of M.

9 Discussion

Two views on the relationship between a RNN and a FSM M such that the RNN exactly mimics

M were presented. First, the network was treated as a state machine. The notion of regions of

equivalent network states that are also equivalent to a state of M link the �rst approach with the

second, dynamical systems' approach to the RNN.

Our experiments suggest that the most usual stable RNN N representations of loops and cycles

inM can be described as follows: An x-loop in a state q of M induces an attractive �xed point of

�

x

inside (q)

N

, and an x-cycle fq

1

; :::; q

m

g ofM induces an attractive periodic orbit of period m of

�

x

periodically visiting (q

1

)

N

; :::; (q

m

)

N

:

The present paper provides us with the opportunity to look at the learning process from the

point of view of bifurcation analysis. If the network is supposed to operate as a FSM, its state space

must have multiple attractor basins to store distinct internal states. The network solves the task

of FSM simulation by location of point and periodic attractors and the shaping of their respective

basins of attraction [9]. Before training, the connection weights are set to small random values and

as a consequence, the network has only one attractor basin. This implies that the network must

undergo several bifurcations [13]. This can have an undesirable e�ect on the training process, since

the gradient descent learning may get into trouble. At bifurcations points, the output of a network

can change discontinuously with the change of parameters and therefore convergence of gradient

descent algorithms is not guaranteed [14].

In the following a possible application of these ideas to the problem of determination of the

complexity of language recognition by neural networks will be discussed brie
y.

Any FSM with binary output alphabet f0; 1g can function as a recognizer of a regular language.

A word over the input alphabet belongs to the language only if the output symbol after presentation
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Figure 24: FSM M taken from the database of the International Symposium on Circuits and Sys-

tems (Portland, Oregon, 1989). M is the reduced form of a machine de�ned in the �le bbara.kiss2.

Inputs ��01;��10 and ��00 are represented as the input symbol a since, in every state, they

initiate the same transition with the same output. Inputs 0011;�111 and 1011 are represented

as input symbols d; e and f respectively. Outputs 00; 01 and 10 are coded as output symbols

0; 1 and 2 respectively.
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Figure 25: State degradation diagram for input a extended with network state S

0

not representing

any state of M. S

0

= (0:89; 0:01; 0:55; 0:95; 0:99; 0:92); S

4

= (0:16; 0:98; 0:02; 0:87; 0:04; 0:92); S

6

=

(0:98; 0:03; 0:97; 0:09; 0:99; 0:87); S

7

= (0:94; 0:98; 0:95; 0:01; 0:05; 0:15). N

max

= 100.

of word's last symbol is 1. Hence, the network output is used to decide whether a word does belong

to the language, or not. One of the most promising neural acceptors of regular languages [32] is the

second-order RNN introduced by Giles et al. [17]. However, the practical aspects of the acceptance

issue are still unclear [33]. The di�culty of acceptance of a given language by a neural network (the

neural complexity of the language) can be quanti�ed by the minimal number of neurons needed

to recognize the language. In the context of mealy machines and threshold networks a similar

problem was attacked by Alon et al. [1] and Horne and Hush [23]. An attempt to predict the

minimal second-order RNN size so that the network can learn to accept a given regular language

is presented in [33]. The predicted numbers of neurons were shown to correlate well with the

experimental �ndings.

Essentially, a good starting point for the estimation of neural complexity of a given regular

language is the representation of the language with the reduced recognizer. The most usual, very

rough, approach to the neural complexity estimation takes into account only the number of states

of such a recognizer [33]. What plays a principal role in making the internal structure of a regular

language rich is
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� the number of input symbols of the recognizer

� the number of loops associated with each input symbol

� the number and corresponding lengths of cycles associated with each input symbol

� the relationship among loops and/or cycles (i.e. a x

1

-cycle is passing through a state q in

which there exists a x

2

-loop, etc... ).

In every recognizer of a regular language, for each input symbol there exists at least one loop or a

cycle. During the training process, the weights of a network are modi�ed so that the corresponding

attractive sets evolve in dynamical systems de�ned by the iterative maps �

x

. A hint for a lower

bound on the minimal number of neurons can be obtained by exploring the possibilities of the

existence of attractive points and/or periodic orbits that are to be induced during the training

process. The expected relationship among their basins of attraction has to be taken into account

at the same time [5].

As an example consider the FSMs M

1

and M

2

presented in �gures 26, and 27 respectively.

Apparently, the the internal structure of a regular language accepted by M

2

is \more complex"

than that of accepted by M

1

. In the latter case, only one attractive �xed point of �

a

is su�cient

to represent the a-loop in the state E. The same applies to the b-loop in E, and the map �

b

. In the

former case, an attractive periodic orbit of period four of the map �

a

, and four attractive points of

the map �

b

have to be induced. Even though the FSM M

2

has only four states, the RNN needed

four state neurons to accomplish a successful learning. On the other hand, two state neurons were

su�cient for the RNN to learn the FSM M

1

.

A mechanism underlying generalization loss on longer input strings due to unstable represen-

tation of loops in a FSM to be learned was investigated. It was shown that even in such cases a

correct state transition diagram of the FSM can potentially be extracted even though the network

performs badly on longer input strings (as reported by Giles et al. [17]). The state degradation

diagram for an input symbol x illustrates how regions of network state space, initially acting as if

they assumed the role of states of the FSM in which there is an x-loop, gradually degradate upon

repeated presentation of x. The degradation may lead to a network state not representing any state

of the FSM even for short input strings.
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Figure 26: Acceptor of the language L = L

1

[ L

2

; L

1

= fa; bg

n

b; n 2 f0; 2; 4; 5; 6; :::g; L

2

=

fa; bg

m

a; m 2 f1; 3g.

Figure 27: Acceptor of the language L = L

+

3

, where L

3

= b

�

ab

�

[ (b

�

a)

3

b

+

[ (b

�

a)

4

.
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Zeng et al. [39] and Das and Mozer [11] view the RNN state space quantization as an integral

part of the learning process in which the network is trained to mimic a �nite state machine. In

particular, in [39] state units' activation pattern is mapped at each time step to the nearest corner

of a hypercube as if state neurons had a hard threshold activation function. Das and Mozer [11]

used a \soft" version of the gaussian mixture model

25

in a supervised mode as a clustering tool.

The mixture model parameters were adjusted so as to minimize the overall performance error of

the whole system (recurrent network + clustering tool). Both Zeng et al., and Das and Mozer

report better assymptotical behaviour for long, unseen test input strings. It would be interesting

to investigate such approaches to training RNN on �nite state problems as a form of \dynamical

self-reinforcement" learning encouraging bifurcations to attractive �xed points and periodic orbits

of the underlying dynamical systems.
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