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Abstract: Studies of learning algorithms typically concentrate on situations where1

potentially ever growing training sample is available. Yet, there can be situations (e.g.2

detection of differentially expressed genes on unreplicated data or estimation of time delay3

in non-stationary gravitationally lensed photon streams)where only extremely small samples4

can be used in order to perform an inference. On unreplicateddata, the inference has5

to be performed on the smallest sample possible - sample of size 1. We study whether6

anything useful can be learnt in such extreme situations by concentrating on a Bayesian7

approach that can account for possible prior information onexpected counts. We perform8

a detailed information theoretic study of such Bayesian estimation and quantify the effect9

of Bayesian averaging on its first two moments. Finally, to analyze potential benefits of the10

Bayesian approach we also consider Maximum Likelihood (ML) estimation as a baseline11

approach. We show both theoretically and empirically that the Bayesian model averaging12

can be potentially beneficial.
13

Keywords: Poisson distribution; unreplicated data; Bayesian learning, expected K-L14

divergence
15

1. Introduction
16

Studies in (computational) learning theory mostly tend to concentrate on situations where potentially17

ever increasing number of training examples is available. While such results can lead to deep insights18

into the workings of learning algorithms, e.g. linking together characteristics of the data generating19

distributions, learning machines and sample sizes, there can be situations where, by very nature of the20

problem, only extremely small samples are available. In such situations it is of utmost importance to21

theoretically analyze exactly what and under what circumstances can be learnt. One example of such a22
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scenario in count data is detection of differentially expressed genes, where even subtle changes in gene23

expression levels can be indicators of biologically crucial processes [1]. When replicas are costly to24

obtain one can attempt to use the limited data at one’s disposal to make the relevant inferences, as for25

example in the Audic and Claverie approach [2–6]. Another situation where available count data can26

be extremely sparse is estimation of time delay in non-stationary gravitationally lensed photon streams.27

When the scale of variability of the source is of order, say, ofmore than tens of days and observation gaps28

are not too long, one can resolve the time delay between lensed images of the same source by working29

directly with daily measurements of fluxes in the radio, optical or X-ray range [7–10]. However, when30

the variability scale is of the order of hours one must turn tophoton streams in the lensed images. One31

possibility of time delay detection in such cases is throughcomparing counts in relatively short and32

time-shifted moving time windows in the lensed photon streams.33

In this paper we theoretically study what happens in the extreme situation of unreplicated data when34

the inference has to be performed on the smallest sample possible - sample of size 1. We consider a35

model-based Bayesian approach that averages over possible Poisson models with weighting determined36

by the posterior over the models, given the single observation. In fact, such a Bayesian approach has been37

considered in the Bioinformatics literature under the assumption of flat improper prior over the Poisson38

rate parameter [2–6]. One can, of course, be excused for being highly sceptical about the relevance of39

such inferences, yet the methodology has apparently been used in a number of successful studies. In an40

attempt to build theoretical foundations behind such inference schemes, we proved a rather surprising41

result [11]: The expected K-L divergence from the true unknown Poissondistribution to itsmodel learnt42

from a single realizationnever exceeds 1/2 bit.43

Even though the field of Bioinformatics is moving fast and better procedures for detection of44

differentially expressed genes have been introduced (e.g.not relying on the Poisson assumption,45

specifically taking into account potential dependencies among the genes etc.), the primary focus of this46

study is different: Irrespective of the application domain, we theoretically investigate how reliably can a47

model for count data be build from a single count observation, under the assumption of a Poisson source.48

There are two issues that need careful consideration:49

1. Equal a-priori weighting (flat prior) over possible (unknown) Poisson sources is unrealistic.50

Typical values of observed counts are usually bounded by thenature of the problem (e.g. gene51

magnification setting used in the experiments or time windowon the photon streams). One52

may have a good initial (a-priori) guess as to what ranges of typical observed counts might be53

reasonably expected. In particular, we are interested in the low count regimes. In such cases, it is54

desirable to incorporate such prior knowledge into the inference mechanism. In this study do this55

in the Bayesian framework through prior distribution over the expected counts.56

2. To understand potential benefits of the proposed learning/inference method (in our case Bayesian57

approach), it is important to compare it with a simple straightforward baseline (here maximum58

likelihood estimation). We contrast the expected K-L divergences from the true unknown Poisson59

distribution to its Bayesian and maximum likelihood estimates, inferred from a single realization.60

The paper has the following organization: In section2 we introduce the maximum likelihood and61

Bayesian (with flat prior over mean rates) approaches to inferring predictive distribution over counts62
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based on a single count observation. We also briefly review past work on information theoretic properties63

of the two approaches. Section3 contains derivation of a more general Bayesian approach withgamma64

prior on the mean count parameter. In section4 we calculate the first two central moments of our65

generalized model. This enables us to better understand theinfluence of the prior on the inferred model66

and highlight the differences with the previous approach using the flat (improper) prior. In section567

we perform an information theoretic study of learning capabilities of the generalized model. Empirical68

investigations are presented in section6 and the main findings are discussed and summarized in section69

7.70

2. Single count data - Bayesian and maximum likelihood approaches
71

In this section we will briefly review the original Audic-Claverie [2] and maximum likelihood72

approaches outside the Bioinformatics context.73

2.1. Bayesian averaging in the Audic-Claverie approach
74

Letx be an observed count in an experiment. When repeating the experiment, possibly under different

conditions, we observe a (possibly different) county. The quantity of interest is the probability of

observingy given that we already observedx, not knowing the identity of the generating Poisson source

P (X = x|λ) = e−λλ
x

x!
, (1)

whereλ ≥ 0 is the (unknown) parameter representing the mean count value.75

Under the null hypothesis (not differentially expressed genes), both countsx andy come from the

same underlying Poisson distributionP (·|λ). The key instrument in the Audic-Claverie approach is

a distributionPAC(y|x) over countsy informed by the observed countx, under the null hypothesis.

PAC(y|x) is obtained by Bayesian averaging (infinite mixture) of all possible Poisson distributions

P (y|λ′) with mixing proportions equal to the posteriorsp(λ′|x) under the flat prior overλ. Formally, the

probability of county, given the observed countx from the same (unknown) Poisson distribution is:

P (y|x) =

∫ ∞

0

p(y, λ|x) dλ

=

∫ ∞

0

P (y|λ, x) p(λ|x) dλ

=

∫ ∞

0

P (y|λ)
P (x|λ) p(λ)

∫∞

0
P (x|λ′) p(λ′) dλ′

dλ. (2)

Imposing the flat (improper) priorp(λ) over the Poisson parameterλ results in

PAC(y|x) =
1

y!

∫∞

0
e−2λ λx+y dλ

∫∞

0
e−λ λx dλ

.

Since Gamma distribution parameterized bya, b > 0 takes the form

Gamma(λ|a, b) =
1

Γ(a)
ba λa−1 e−bλ,
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whereΓ(a) =
∫∞

0
ua−1e−udu is the Gamma function, we have

PAC(y|x) =
1

y! 2x+y+1

Γ(x+ y + 1)

Γ(x+ 1)
, (3)

which, sincex andy are integers (i.e.Γ(x) = (x− 1)!), can be rewritten as

PAC(y|x) =
1

2x+y+1

(x+ y)!

x! y!
, (4)

=
1

2x+y+1

(

x+ y

x

)

. (5)

PAC(·|x) can then be used e.g. for principled inferences, construction of confidence intervals or76

statistical testing.77

2.2. Information Theory ofPAC(y|x)
78

Consider a ‘true’ underlying Poisson distributionP (y|λ) (1) over possible countsy ≥ 0. We first79

useP (·|λ) to generate a countx and then employPAC(y|x) (5) as a model distribution overy, given80

the already observed countx. We ask: If we repeated the process above, how different, in terms of81

Kullback-Leibler (K-L) divergence, are on average the two distributions overy? One would naturally82

hope thatPAC(y|x) is sufficiently representative of the true unknown distribution P (y|λ).83

In [11] we proved that, given an underlying Poisson distributionP (x|λ), if we repeatedly generated84

a ‘representative’ countx from P (x|λ), the average divergenceE(λ) of PAC(y|x) from the truthP (y|λ)85

would never exceed 1/2 bit.86

Theorem 1 [11] Consider an underlying Poisson distributionP (·|λ) parameterized by someλ > 0.

Then

E(λ) = EP (x|λ)[ DKL[P (y|λ)‖PAC(y|x)] ] =
1

2
log 2 + O

(

1

λ

)

,

whereDKL[P (y|λ)‖PAC(y|x)] is the K-L divergence fromP (y|λ) to PAC(y|x),

DKL[P (y|λ)‖PAC(y|x)] =
∞
∑

y=0

P (y|λ) log
P (y|λ)

PAC(y|x)
.

The expected divergence (in bits) can be well-approximated(up to orderO(λ−3)) by [11]:

E(λ) ≈
1

2
−

1

12λ

(

1−
1

2

)

−
1

24λ2

(

1−
1

22

)

. (6)

2.3.PAC(y|x) vs. maximum likelihood
87

In this section we will briefly recall information theoreticanalysis of the maximum likelihood estimate88

PML(y|x) in place ofPAC(y|x) [12]. First note that Poisson distributionP (y|λ) is only defined for89

positiveλ. In the case of observing zero countx = 0, we cannot directly use the ‘maximum likelihood90
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estimate’P (y|0). One option for dealing with zero observed counts is to allowfor some form of model91

regularization, e.g. infer a Poisson modelP (y|ǫ), for some smallǫ > 0. In other words, if a count92

x ≥ 1 is observed, follow the standard maximum likelihood procedure and inferPML(y|x) = P (y|x)93

as the Poisson model; if a zero count is observed,x = 0, infer PML(y|0) = P (y|ǫ) for some fixed94

ǫ ∈ (0, 1]. This is the route taken in [12] and adopted in this paper. Only a minimum amount of95

necessary regularization due to zero observed counts is employed in the otherwise straightforward ML96

approach.97

Theorem 2 [12] Consider an underlying Poisson distributionP (·|λ) parameterized by someλ > 0 and

a regularization constantǫ ∈ (0, 1]. The expected divergence in bitsΥ(λ, ǫ) between the true Poisson

source and its (regularized) maximum likelihood estimate based on a single observation,

Υ(λ, ǫ) = EP (x|λ)[ DKL[P (y|λ)‖PML(y|x)] ],

is equal to

Υ(λ, ǫ) = λ

(

log2 λ−

∞
∑

x=1

P (x|λ) log2 x

)

+ e−λ (ǫ− λ log2 ǫ). (7)

Note that the expected divergenceΥ(λ, ǫ) can get prohibitively large when regularizing with small98

ǫ > 0. As an illustration, in figure1 we show expected divergenceΥ(λ, ǫ = 1) of the ML estimation99

(zero count regularized withǫ = 1) for a range of mean parameter valuesλ of the underlying Poisson100

source (solid line). Also shown is the expected divergenceE(λ) of PAC(y|x) (dashed line). Except for101

very small Poisson source ratesλ, PAC(y|x) is clearly benefitting from the stabilizing effect of Bayesian102

averaging, given the extremely small sample size.103

3. GeneralizedPAC(y|x) with Gamma Prior
104

In this section we will generalizePAC(y|x) through the use of (conjugate) gamma prior

P (λ|α, β) =
βα

Γ(α)
λα−1e−βλ,

on the Poisson mean parameterλ. The positive parametersα, β determine the overall shape of the prior.

Given a single observationx, the posterior

P (λ|x, α, β) =
P (x|λ) P (λ|α, β)

∫∞

0
P (x|λ) P (λ|α, β) dλ

is the gamma distribution with parametersα + x andβ + 1,

P (λ|x, α, β) =
(β + 1)α+x

Γ(α + x)
λα+x−1 e−(β+1)λ.

The mean ofP (λ|x, α, β) is equal to(α + x)/(β + 1). A loose intuitive interpretation of the prior105

parametersα, β (assuming they are integers) is that prior to seeing the current data (in our case only106
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Figure 1. Expected divergence (in bits)Υ(λ, ǫ = 1) of the ML estimation (zero count

regularized withǫ = 1) (solid line). Also shown is the expected divergenceE(λ) of PAC(y|x)

(dashed line).
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one observation (count)x), we have seenβ ‘observations’,x′1, x
′
2, ..., x

′
β, with the total cumulative count107

α = x′1 + x′2 + ... + x′β. Hence the mean parameter estimate would shift fromx (ML estimation108

corresponding toα, β → 0) to (x′1 + x′2 + ...+ x′β + x)/(β + 1).109

As in the case ofPAC(y|x), having observed a countx, we build a predictive distribution over future

countsy by integrating out the mean parameterλ with respect to the posteriorP (λ|x, α, β),

PG(y|x, α, β) =

∫ ∞

0

P (y|λ) P (λ|x, α, β) dλ

=
(β + 1)α+x

Γ(α + x)

1

y!

∫ ∞

0

λα+x+y−1 e−(β+2)λ dλ. (8)

From normalization of the gamma distribution we get
∫ ∞

0

λa−1 e−bλ dλ =
Γ(a)

ba

and so
∫ ∞

0

λα+x+y−1 e−(β+2)λ dλ =
Γ(x+ y + α)

(β + 2)x+y+α
,

leading to

PG(y|x, α, β) =
1

y!

Γ(x+ y + α)

Γ(x+ α)

(β + 1)x+α

(β + 2)x+y+α
. (9)

It can be easily verified that the originalPAC(y|x) is obtained as a special case ofPG(y|x, α, β) when110

α = 1 andβ → 0. If Jeffrey’s prior were used instead of the flat prior inPAC(y|x), we would obtain111

PG(y|x, α, β) with α = 1/2 andβ → 0 etc.112
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Figure 2. Gamma priorP (λ|α = 1, β). Shown are the priors for three possible values of

parameterβ, β ∈ {1, 0.1, 0.05}.
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If α is an integer, we have

PG(y|x, α, β) =

(

1 + β

2 + β

)x′+1(
1

2 + β

)y (
x′ + y

y

)

, (10)

wherex′ = x + α − 1 is the observed count including prior observations. This expression generalizes

PAC(y|x) (5),

PAC(y|x) =

(

1

2

)x+1(
1

2

)y (
x+ y

y

)

.

WhilePG(y|x, α, β) (9) can be used with any appropriate setting ofα, β (e.g. given a prior knowledge113

of the range of counts one may reasonably expect), in this contribution we concentrate on using the114

gamma prior to mitigate for the unrealistic equal weightingof all λ > 0 in the flat prior behindPAC(y|x).115

Indeed, the observed counts are typically bounded by the nature of the problem and one can represent116

this through settingα = 1 and varyingβ > 0 in the gamma priorP (λ|α, β) underlyingPG(y|x, α, β).117

Some examples of such priors are shown in figure2. Decreasingβ leads to weaker emphasis on lowλ,118

eventually recovering the flat (improper) prior forβ = 0.119

In section2.3 maximum likelihood estimation was regularized at zero count by imposing a non-120

zero ‘count’ ǫ instead of the observed zero one. The generalized form ofPAC(y|x), PR(y|x, β) =121

PG(y|x, α = 1, β), can be also viewed as an alternative ‘soft’ form of regularization of the maximum122

likelihood approach at zero counts.123

Parameterβ in the Gamma prior

P (λ|α = 1, β) = β e−βλ,

can be set in a data driven manner e.g. using the following strategy: Given the observed countx, we

require that the area up tox + 1 covered by the prior is equal toθ, for some thresholdθ ∈ (0, 1) (e.g.
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θ = 1/4). In other words,F (x + 1|β) = θ, whereF (λ|β) = 1 − e−βλ is the cumulative distribution

function ofP (λ|α = 1, β). This leads to

β(x) = −
ln(1− θ)

x+ 1
. (11)

For zero observed countx = 0, β(0) = − ln(1− θ) and the prior gets more concentrated on smaller124

values ofλ as likely candidates for the mean count of the underlying Poisson source. With increasing125

count valuesx > 0 the parameterβ(x) decreases to 0 and the prior gradually approaches the flat prior of126

PAC(y|x).127

Finally, we contrastPG(y|x, α, β) with the negative binomial distribution

PNB(y|r, q) =
1

y!

Γ(r + y)

Γ(r)
qr(1− q)y, (12)

with parametersr > 0 andq ∈ [0, 1]. One interpretation of the negative binomial distributionpNB(y|r, q)

is that it corresponds to a Gamma-Poisson mixture that one obtains by imposing a Gamma prior

P (λ|r, (1 − q)/q) on the mean count parameterλ of the Poisson distributionP (y|λ) and integrating

out λ. In our context it is natural to identifyr and (1 − q)/q with hyperparametersα andβ used in

PG(y|x, α, β). It follows thatq = (β + 1)−1. Hence, we rewrite (12) as

PNB(y|α, (β + 1)−1) =
1

y!

Γ(α + y)

Γ(α)

βy

(β + 1)α+y
. (13)

Direct comparison of (13) with (9) leads to an intuitive insight: Theβ prior measurements of total count

α introduced by the gamma priorP (λ|α, β) are in the case ofPG(y|x, α, β) extended with a single

observationx, resulting inβ + 1 observations of total countα + x. This can be represented by

PNB(y|α + x, (β + 2)−1) =
1

y!

Γ(x+ y + α)

Γ(x+ α)

(β + 1)y

(β + 2)x+y+α
. (14)

It follows that
PG(y|x, α, β)

PNB(y|α + x, (β + 2)−1)
= (β + 1)x+α−y.

Bayesian averaging inPG(y|x, α, β) with respect to the posterior overλ, given a countx, differs from128

the corresponding negative binomial distributionPNB(y|α + x, (β + 2)−1) by the factor(β + 1)x+α−y
129

that depends on the difference between the prior+observed countα + x andy.130

4. First and second moments of the generalizedPAC(y|x)
131

In [11] we showed thatPAC(y|x) and the underlying Poisson distribution are quite similar in their132

nature: for any (integer) mean rateλ ≥ 1, the Poisson distributionP (·|λ) has two neighboring modes133

located atλ andλ− 1, with P (λ|λ) = P (λ− 1|λ). Analogously, given a countx ≥ 1, PAC(·|x) has two134

neighboring modes, one located atx, the other atx− 1, with PAC(x|x) = PAC(x− 1|x). As in Poisson135

distribution, the values ofPAC(y|x) decrease as one moves away from the modes in both directions.In136

this section we derive the first two moments of the generalized PAC(y|x), PG(y|x, α, β). As a special137

case, we will show that as a result of Bayesian averaging, the variance ofPAC(y|x) is double that of the138

underlying (unobserved) Poisson distribution.139
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Theorem 3 Consider a non-negative integerx and the associated generalized modelPG(y|x, α, β).

Then,

EPG(y|x,α,β)[y] =
x+ α

β + 1
, V ar[y] =

β + 2

β + 1
EPG(y|x,α,β)[y].

Proof: Let us evaluate

EPG(y|x,α,β)[y] =
∞
∑

y=0

Γ(x+ y + α)

Γ(x+ α)

(β + 1)x+α

(β + 2)x+y+α

1

y!
y

=
∞
∑

y=1

Γ(x+ y + α)

Γ(x+ α)

(β + 1)x+α

(β + 2)x+y+α

1

(y − 1)!

=
∞
∑

y′=0

Γ(x+ y′ + 1 + α)

Γ(x+ α)

(β + 1)x+α

(β + 2)x+y′+1+α

1

y′!

=
∞
∑

y′=0

Γ(x+ y′ + α) · (x+ y′ + α)

Γ(x+ α)

(β + 1)x+α

(β + 2) · (β + 2)x+y′+α

1

y′!
(15)

In the third equality we have used substitutiony′ = y − 1 and the last equality follows fromΓ(z + 1) =

z · Γ(z). By (15),

EPG(y|x,α,β)[y] =
∞
∑

y=0

PG(y|x, α, β)
x+ α + y

β + 2
(16)

=
x+ α

β + 2
+

1

β + 2
EPG(y|x,α,β)[y] (17)

Solving (17) we obtain

EPG(y|x,α,β)[y] =
x+ α

β + 1
. (18)

For the variance ofPG(y|x, α, β) we have

V arPG(y|x,α,β)[y] = EPG(y|x,α,β)[y
2]− (EPG(y|x,α,β)[y])

2. (19)

Now,

EPG(y|x,α,β)[y
2] =

∞
∑

y=0

Γ(x+ y + α)

Γ(x+ α)

(β + 1)x+α

(β + 2)x+y+α

1

y!
y2

=
∞
∑

y=1

Γ(x+ y + α)

Γ(x+ α)

(β + 1)x+α

(β + 2)x+y+α

1

y!
y2

=
∞
∑

y=1

Γ(x+ y + α)

Γ(x+ α)

(β + 1)x+α

(β + 2)x+y+α

1

(y − 1)!
y

=
∞
∑

y′=0

Γ(x+ y′ + 1 + α)

Γ(x+ α)

(β + 1)x+α

(β + 2)x+y′+1+α

1

y′!
(y′ + 1)
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=
∞
∑

y′=0

(x+ y′ + α) Γ(x+ y′ + α)

Γ(x+ α)

(β + 1)x+α

(β + 2) (β + 2)x+y′+α

1

y′!
(y′ + 1)

=
1

β + 2

∞
∑

y′=0

PG(y
′|x, α, β) [(x+ y′ + α) (y′ + 1)]

=
1

β + 2

∞
∑

y′=0

PG(y
′|x, α, β) [x+ y′ + α]

+
1

β + 2

∞
∑

y′=0

PG(y
′|x, α, β) [y′ (x+ α) + y′2] (20)

Using (16), (18) and (20), we obtain

EPG(y|x,α,β)[y
2] = EPG(y|x,α,β)[y] +

x+ α

β + 2
EPG(y|x,α,β)[y] +

1

β + 2
EPG(y|x,α,β)[y

2]

=
x+ α

β + 1

(

1 +
x+ α

β + 2

)

+
1

β + 2
EPG(y|x,α,β)[y

2], (21)

which can be solved as

EPG(y|x,α,β)[y
2] =

(x+ α) (x+ α + β + 2)

(β + 1)2
. (22)

Plugging (22) into (19) we obtain

V arPG(y|x,α,β)[y] =
(x+ α) (β + 2)

(β + 1)2
=
β + 2

β + 1
EPG(y|x,α,β)[y].

�140

Given an observationx, the maximum likelihood estimate of the underlying Poissondistribution is

the Poisson distribution with meanx,

P (y|x) = e−xx
y

y!
.

After observingx, the mean of the maximum likelihood andPAC(·|x) estimates isx and x + 1,141

respectively. Hence, Bayesian averaging inPAC(·|x) induced by the flat improper prior over the mean142

rateλ results in increased expected valuex+1 of the next count from the same underlying source, given143

that the current countx. However, a much more marked consequence of using the flat prior can be seen144

in the variance ofPAC(·|x): while variance of the maximum likelihood isx, it is 2(x+ 1) in PAC(·|x).145

Theorem3 illustrates the role of more concentrated prior overλ on the generalized model. The146

mean expected count, after seeingx, is equal to the mean of the posteriorP (λ|x, α, β) overλ, namely147

(α + x)/(β + 1). As explained earlier, observed single countx with prior β counts of cumulative148

valueα results inβ + 1 counts of cumulative valueα + x. Hence the mean count per observation is149

(α + x)/(β + 1). As with Poisson distribution, the variance of the generalized model is closely related150

to its mean and approaches the mean with increasing number ofprior countsβ.151

As for the soft regularizationPR(y|x, β) = PG(y|x, α = 1, β), its mean is, as expected, biased152

towards values smaller than the observed countx, providedβ > 1/x. Increased values ofβ result in153

smaller variance ofPR(y|x, β). But how do such prior parameter modifications manifest themselves154
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in terms of accuracy of estimation of the underlying source?This question is investigated in the next155

section.156

5. Expected divergence of the generalizedPAC(y|x) from the true underlying Poisson distribution
157

158

Consider an underlying Poisson sourceP (x|λ) generating countsx. In this section we would like to

quantify the average divergence

EG(λ; β) = EP (x|λ)[ DKL[P (y|λ)‖PR(y|x, β)] ] (23)

of the corresponding generalizedPAC(y|x), PR(y|x, β) = PG(y|x, α = 1, β) (‘softly’ regularized ML),159

from the truthP (y|λ), if we repeatedly generated a ‘representative’ countx from P (x|λ). The same160

question was considered in the context of maximum likelihood estimation in section2.3. In particular, we161

are interested in specifying under what circumstances is the generalized form ofPAC(y|x), PR(y|x, β) =162

PG(y|x, α = 1, β), preferable to the originalPAC(y|x) = PG(y|x, α = 1, β → 0) and how it fares with163

the maximum likelihood estimationPML(y|x) of section2.3.164

Theorem 4 Consider an underlying Poisson distributionP (·|λ) parameterized by someλ > 0. Then

for β ≥ 0,

EG(λ; β) = log2

(

β + 2

β + 1

)

−
1

2
+ λ

[

2 log2

(

β + 2

2

)

− log2(β + 1)

]

+O(λ−1). (24)

A higher order approximation (up to orderλ3) reads:

EG(λ; β) = log2

(

β + 2

β + 1

)

−
1

2
+ λ

[

2 log2

(

β + 2

2

)

− log2(β + 1)

]

−
1

12λ

(

1−
1

2

)

−
1

24λ2

(

1−
1

22

)

−
19

360λ3

(

1−
1

23

)

+O(λ−4). (25)

Proof: Let us first express the divergenceDβ(λ, x) = DKL[P (y|λ)‖PR(y|x, β)]. We have

Dβ(λ, x) = −H[P (y|λ)]− EP (y|λ)[logPR(y|x, β)],

whereH[P (y|λ)] = −EP (y|λ)[logP (y|λ)] is the entropy of the sourceP (y|λ) and

EP (y|λ)[logPR(y|x, β)] = − log x!

−EP (y|λ)[y] log(β + 2)− (x+ 1) log

(

β + 2

β + 1

)

−EP (y|λ)[log y!] + EP (y|λ)[log(x+ y)!].

Denoting (for integerd ≥ 0) EP (y|λ)[log(y + d)!] by F (λ, d), we write

Dβ(λ, x) = −H[P (y|λ)] + log x!

+λ log(β + 2) + (x+ 1) log

(

β + 2

β + 1

)

+F (λ, 0)− F (λ, x).
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We are now ready to calculate the expectationEG(λ; β) = EP (x|λ)[Dβ(λ, x)].

EG(λ; β) = −H[P (y|λ)] + F (λ, 0)

+λ log(β + 2) + (λ+ 1) log

(

β + 2

β + 1

)

+F (λ, 0)− EP (x|λ)[F (λ, x)].

We have proved in [11] thatEP (x|λ)[F (λ, x)] = F (2λ, 0), and so

EG(λ; β) = −H[P (y|λ)] + log

(

β + 2

β + 1

)

+λ log

(

(β + 2)2

β + 1

)

+2F (λ, 0)− F (2λ, 0).

Since

−H[P (y|λ)] = EP (y|λ)[logP (y|λ)]

= −λ log e+ EP (y|λ)[y] log λ− EP (y|λ)[log y!]

= −λ log e+ λ log λ− F (λ, 0) (26)

we have

EG(λ; β) = log

(

β + 2

β + 1

)

+λ

[

log λ+ log

(

(β + 2)2

β + 1

)

− log e

]

+F (λ, 0)− F (2λ, 0). (27)

Using entropy approximation (see [11]), one obtains

F (λ, 0) = λ(log λ− log e) +
1

2
log(2πeλ) +O(λ−1),

leading to (in log base 2)

F (λ, 0)− F (2λ, 0) = −
1

2
+ λ(log2 e− log2 λ− 2) +O(λ−1).

Finally,

EG(λ; β) = log2

(

β + 2

β + 1

)

−
1

2

+λ

[

log2

(

(β + 2)2

β + 1

)

− 2

]

+O(λ−1),

which is equivalent to (24).165

The higher order expression (25) is simply obtained by using higher order approximation toF (λ, 0)−166

F (2λ, 0). �167
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Note that forβ → 0 we recover our original result [11] that the expected divergenceE(λ) of the168

originalPAC(y|x) from the ‘truth’P (y|λ) is (up to terms of orderλ−1) never greater than 1/2 bit. The169

soft regularization inPR(y|x, β) (using priorP (λ|α = 1, β) with β > 0) can result in larger expected170

divergence from the underlying source than is the case forPAC(y|x) (using improper flat prior overλ).171

Moreover, (unlike inPAC(y|x)) such a regularization causes linear divergence ofEG(λ; β) for largeλ.172

The next theorem specifies for which underlying Poisson sources the soft regularization approach of173

PR(y|x, β) is preferable to the originalPAC(y|x).174

Theorem 5 For Poisson sources with mean rates

λ < κ(β) =
log
(

1 + β

β+2

)

log
(

1 + β2

4 (β+1)

) , (28)

it holdsE(λ) > EG(λ; β) and hencePR(y|x, β) is on average guaranteed to approximate (in the K-L175

divergence sense) the underlying source better than the original PAC(y|x).176

Proof: It was shown in [11] that for the originalPAC(y|x),

E(λ) = λ(log λ− log e+ 2 log 2) + log 2

+F (λ, 0)− F (2λ, 0). (29)

From (27) and (29) we have that the difference between the expected divergences of the original and

generalized forms ofPAC(y|x) is

E(λ)− EG(λ; β) = log 2− log

(

β + 2

β + 1

)

+λ

[

2 log 2− log

(

(β + 2)2

β + 1

)]

= log
2 (β + 1)

β + 2

+λ log
4 (β + 1)

(β + 2)2
(30)

The result follows from solving forE(λ) > EG(λ; β). �177

The graph (in log-log scale) ofκ(β) is shown in figure3. An alternative way of data-driven setting178

of parameterβ is suggested by the fact thatκ(β) is lower bounded byβ−1. If the experimental setting179

is such that most counts are expected not to exceed somexmax, β can be set toβ = 1/xmax, so that180

PR(y|x, β) is preferable toPAC(y|x).181

In figure 4 we present the expected divergencesEG(λ; β) (solid line) andE(λ) (dashed line) for182

β = 0.2 (left) andβ = 0.01 (right). As expected, for underlying sources with small mean countsλ183

the advantage of using the regularized formPR(y|x, β) (as opposed to the originalPAC(y|x)) is more184
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Figure 3. Graph ofκ(β). For Poisson sources with mean ratesλ < κ(β), E(λ) > EG(λ; β)

and hencePR(y|x, β) is on average guaranteed to approximate the underlying source better

than the originalPAC(y|x).
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Figure 4. Expected divergencesEG(λ; β) (solid line) andE(λ) (dashed line) forβ = 0.2

(left) andβ = 0.01 (right).
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pronounced. However, for largerλ there is a heavy price to be paid in terms of inaccurate modelling by185

PR(y|x, β).186

6. Empirical investigations
187

To investigate potential value of the more sophisticated Bayesian approach in the original and188

the generalized A-C frameworks (sections2.1 and 3, respectively) against the baseline of simple189

(regularized) maximum likelihood estimation (section2.3), we conducted a series of simple illustrative190

experiments. In the generalized A-C framework developed inthis study we used the two schemes191

for setting the regularization parameterβ suggested in sections3 and5. In the regularized maximum192

likelihood approachPML(y|x) we setǫ = 1. From figure1 it appears that the biggest difference between193

the expected divergences from the true underlying Poisson sourceP (x|λ) to the originalPAC(·|x) and194

the maximum likelihood estimate occurs for small mean ratesλ roughly aroundλ = 5. We therefore run195

the experiments withλ = 5.196

For illustration purposes, we follow the data generation mechanism used in [13] to compare methods197

for distinguishing between differential expression of genes associated with two treatment regimes. We198

stress that in no way we suggest that our experiments have strong relevance for Bioinformatics, nor199

do we claim that the framework of [13] is the best test bed for assessing differential gene expression200

detection algorithms. We use the framework of [13] merely to illustrate whether the sophistication of201

the Bayesian approach (as opposed to simple (regularized) maximum likelihood) can bring benefits in a202

practical situation with low-count data.203

Gene counts are simulated across the two treatment groupsT1 andT2. The tests are assessed by204

comparing false positive and true positive rates. In each experiment 10,000 gene pair counts(x1,j, x2,j),205

j = 1, 2, ..., 10000, were produced, countsx1,j andx2,j associated with regimesT1 andT2, respectively.206

As specified above, the sampling rate forT1 was fixed atλ1 = 5 throughout the experiment. We varied207

the meanlog2 fold change (LFC) betweenT1 andT2 from -2 to 2. Each gene pair count(x1,j, x2,j),208

j = 1, 2, ..., 10000, was obtained through a generative process specified in [13] and described in detail209

in appendix A.210

Having generated the gene pair counts, we used methods considered in this study to make a decision211

for eachj = 1, 2, ..., 10000, whether the countsx1,j, x2,j originated from the same underlying source,212

i.e. whether when generatingy1,j andy2,j, the mean rates in the two regimesT1 andT2 were identical213

(LFCj = 0). Given the ‘test distribution’Q(y|x) and a confidence levelϑ ∈ [0, 1], we guess that214

x1,j , x2,j originated from the same source if the(1− ϑ)-quantile around the mean ofQ(y|x1,j) contains215

x2,j and vice-versa, i.e. if the(1 − ϑ)-quantile around the mean ofQ(y|x2,j) containsx1,j. In place216

of Q(y|x) we usedPAC(y|x), its regularized formPR(y|x, β) and the regularized maximum likelihood217

estimatePML(y|x) with ǫ = 1.218

For a given confidence levelϑ ∈ [0, 1] and test statisticQ(y|x) we calculate thefalse positive219

rate (type I error rate) as the proportion of times a gene count pair (x1,j , x2,j) was declared to have220

originated from two different underlying sources (differentially expressed gene) when in factLFCj221

was zero. Thetrue positive rate(statistical power) was determined as the proportion of times a gene222
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Figure 5. ROC curves for test distributionsPAC(y|x) = PR(y|x, β → 0) (solid black line),

PR(y|x, β = 1/100) (solid blue line),PR(y|x, β = 1/50) (solid green line) andPML(y|x)

with ǫ = 1 (dashed red line). Mean rate of the underlying Poisson source was fixed atλ = 5.
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was correctly declared differentially expressed -(x1,j , x2,j) declared to have originated come from two223

different underlying sources andLFCj 6= 0.224

Plot of false positive rate vs. true positive rate obtained for different values ofϑ constitutes areceiver225

operating characteristic(ROC) curve. If the ROC curve for one test distribution is always above another,226

this suggests its superiority in classifying genes as differentially expressed. Trivial classification of227

genes as differentially expressed using a completely random guess would yield the identity (diagonal)228

ROC curve. ROC curves for the maximum likelihood method (ǫ = 1, red dashed line) and the soft229

regularization modelPR(y|x, β), β1/50, 1/100 (solid lines) are plotted in figure5. Not surprisingly,230

the Bayesian approach (solid lines) outperforms the penalized maximum likelihood one (red dashed231

line). However, the originalPAC(y|x) (β = 0, black line) and the soft regularization model (color232

solid lines) achieve almost identical performances. In this challenging setting (single observations at233

low mean rate with additional noise), the scheme for settingthe regularization parameterβ suggested in234

section5 has little effect on the resulting classification performance. We also ran experiments to test the235

‘dynamic’ scheme for settingβ introduced in section3, but no significant performance improvements236

were achieved.237

Finally, we devised yet another scheme for determining the hyper-parametersα andβ of the prior

P (λ|α, β) from the data. In the spirit of type II maximum likelihood, wefind the most likely values of

α.β, given the observed countsC = {x1, x2, ..., xn}, usingP (C|α, β) =
∏n

i=1 P (xi|α, β), where

P (xi|α, β) =

∫ ∞

0

P (xi|λ) p(λ|α, β) dλ. (31)

Using this method, we first optimize the prior hyperparameters on the observed data. The ‘optimized’238

prior P (xi|α∗, β∗) now reflects the possible ranges of mean countsλ one can expect given the data. We239
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Figure 6. ROC curves for test distributionsPAC(y|x) = PR(y|x, β → 0) (solid black line)

andPG(y|x, α∗, β∗) (dashed red line). Mean rate of the underlying Poisson source was fixed

atλ = 5.
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then repeated the experiments using the generalized modelPG(y|x, α∗, β∗) derived from the optimized240

prior. In this way we can assess to what degree the relativelyminor performance differences between241

the generalized and maximum likelihood models in figure5 are due to constrainingβ to β = 1 (in242

PR(y|x, β)), or due to inherent difficulty of learning from single counts. The resulting ROC analysis243

is shown in figure6. The data driven setting of hyperparametersα, β leads to slight improvement over244

PAC(y|x) andPR(y|x, β).245

7. Discussion and conclusion
246

Studies of learning algorithms traditionally concentrateon situations where potentially ever increasing247

number of training examples is available. However, there are situations where only extremely small248

samples can be used in order to perform an inference. In this contribution we concentrated on extreme249

case of low count data governed by Poisson distribution, where only a single observation is available.250

We performed a rigorous theoretical investigation of the appropriateness of various model estimators,251

based on the single observation. We considered a Bayesian approach along the lines of [2], where the252

model built on the basis of a single observed count is no longer Poisson, even though we know that the253

generating source is Poisson (but do not know the mean rate).254

We showed that the Bayesian approach is more optimal than the regularized maximum likelihood,255

in the sense that the expected K-L divergence from the sourceto the model is smaller for the256

Bayesian approach. Furthermore, we generalized the original model of [2] to account for possible prior257

information on expected expression counts. Detailed information theoretic study of learning capabilities258



Version March 20, 2013 submitted toEntropy 18 of20

of such a generalized model was conducted for the case of low count data. We also quantified the effect259

of Bayesian averaging on its first two moments.260

We demonstrated both theoretically and empirically the Bayesian model averaging on the generalized

model can be potentially beneficial. For largeλ, the expected divergenceΥ(λ, ǫ) of the maximum

likelihood estimator from the true Poisson source is dominated by the term

λ

(

log λ−
∞
∑

x=1

P (x|λ) log x

)

,

sincelimλ→∞ e−λ (ǫ− λ log ǫ) = 0. We empirically determined that forλ ≥ 10, Υ(λ, ǫ = 1) expressed

in bits is bounded by0.7 < Υ(λ, ǫ = 1) < 0.8. Hence, for mean Poisson ratesλ ≥ 10, the difference

between the expected divergences of the A-C and ML estimatesfrom the true source is never less than

0.2 bits and never more than 0.3 bits. In other words,

0.2 < Υ(λ, ǫ = 1)− E(λ) < 0.3, λ ≥ 10.
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Appendix A297

In the generative process of [13], each gene pair count(x1,j , x2,j), j = 1, 2, ..., 10000, was obtained298

as follows:299

1. The sampling rateλ2,j for the treatment groupT2 is obtained as

λ2,j = 2(log2 λ1)−LFCj

LFCj ∼ Uniform{−2.0,−1.5,−1.0, ..., 1.5, 2.0}.

2. A pair of gene counts(y1,j , y2,j) is sampled with respect toPoisson(λ1) andPoisson(λ2,j),

y1,j ∼ Poisson(λ1), y2,j ∼ Poisson(λ2,j).

3. Zero mean Gaussian noise is then added to each gene count (rounding to the nearest integer using

the rounding operator[·]):

y′i,j = yi,j + [ηj], i = 1, 2

ηj ∼ N

(

0, σj =
vj
ψ

)

vj =
λ1 + λ2,j

2
,

whereψ = 10.300

4. The batch and line effects are simulated as follows: Batch effects are accounted for by adding

Gaussian noise to each noisy county′i,j,

y′′i,j = y′i,j + [η′i,j ]

η′i,j ∼ N

(

0,
y′i,j
10

)

.
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Lane effects are simulated by Poisson sampling fromy′′1,j andy′′2,j at different rates varying between

lanes,

xi,j ∼ Poisson(δj · y
′′
i,j)

δj ∼ Uniform{0.65, 0.8, 0.95}.
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