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Abstract: Studies of learning algorithms typically concentrate otuaions where
potentially ever growing training sample is available. ,Ydtere can be situations (e.g.
detection of differentially expressed genes on unrepitaata or estimation of time delay
in non-stationary gravitationally lensed photon streamisre only extremely small samples
can be used in order to perform an inference. On unreplicdétd, the inference has
to be performed on the smallest sample possible - samplezeflsi We study whether
anything useful can be learnt in such extreme situationsdmcentrating on a Bayesian
approach that can account for possible prior informatiorexymected counts. We perform
a detailed information theoretic study of such Bayesiamegton and quantify the effect
of Bayesian averaging on its first two moments. Finally, toymeapotential benefits of the
Bayesian approach we also consider Maximum Likelihood (Mif)neation as a baseline
approach. We show both theoretically and empirically that Bayesian model averaging
can be potentially beneficial.

Keywords: Poisson distribution; unreplicated data; Bayesian legrniexpected K-L
divergence

1. Introduction

Studies in (computational) learning theory mostly tenddoaentrate on situations where potentially
ever increasing number of training examples is availableil&\#uch results can lead to deep insights
into the workings of learning algorithms, e.g. linking tdlger characteristics of the data generating
distributions, learning machines and sample sizes, thamnebe situations where, by very nature of the
problem, only extremely small samples are available. Irhsmwations it is of utmost importance to
theoretically analyze exactly what and under what circamsts can be learnt. One example of such a
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scenario in count data is detection of differentially exgzed genes, where even subtle changes in gene
expression levels can be indicators of biologically crupicessesl]. When replicas are costly to
obtain one can attempt to use the limited data at one’s di$posnake the relevant inferences, as for
example in the Audic and Claverie approah{]. Another situation where available count data can
be extremely sparse is estimation of time delay in nonestaty gravitationally lensed photon streams.
When the scale of variability of the source is of order, saynofe than tens of days and observation gaps
are not too long, one can resolve the time delay betweendansgges of the same source by working
directly with daily measurements of fluxes in the radio, cgitor X-ray range 7-10]. However, when
the variability scale is of the order of hours one must turphioton streams in the lensed images. One
possibility of time delay detection in such cases is throagmparing counts in relatively short and
time-shifted moving time windows in the lensed photon strea

In this paper we theoretically study what happens in thesexér situation of unreplicated data when
the inference has to be performed on the smallest sampléjmssample of size 1. We consider a
model-based Bayesian approach that averages over possisg®® models with weighting determined
by the posterior over the models, given the single obsemwatn fact, such a Bayesian approach has been
considered in the Bioinformatics literature under the aggion of flat improper prior over the Poisson
rate parameter26]. One can, of course, be excused for being highly sceptiwalittthe relevance of
such inferences, yet the methodology has apparently beshins number of successful studies. In an
attempt to build theoretical foundations behind such iriee schemes, we proved a rather surprising
result [L1]: The expected K-L divergence from the true unknown Poiglistribution to itsmodel learnt
from a single realizatiomever exceeds 1/2 bit.

Even though the field of Bioinformatics is moving fast and é&efprocedures for detection of
differentially expressed genes have been introduced (@t relying on the Poisson assumption,
specifically taking into account potential dependenciesragithe genes etc.), the primary focus of this
study is different: Irrespective of the application domaue theoretically investigate how reliably can a
model for count data be build from a single count observatioder the assumption of a Poisson source.
There are two issues that need careful consideration:

1. Equal a-priori weighting (flat prior) over possible (unkmwPoisson sources is unrealistic.
Typical values of observed counts are usually bounded byé#ébere of the problem (e.g. gene
magnification setting used in the experiments or time winadowthe photon streams). One
may have a good initial (a-priori) guess as to what rangeymtal observed counts might be
reasonably expected. In particular, we are interestedeimotlv count regimes. In such cases, it is
desirable to incorporate such prior knowledge into therariee mechanism. In this study do this
in the Bayesian framework through prior distribution over #xpected counts.

2. To understand potential benefits of the proposed learmfagénce method (in our case Bayesian
approach), it is important to compare it with a simple stnéfigrward baseline (here maximum
likelihood estimation). We contrast the expected K-L djerces from the true unknown Poisson
distribution to its Bayesian and maximum likelihood estiesatinferred from a single realization.

The paper has the following organization: In sectwe introduce the maximum likelihood and
Bayesian (with flat prior over mean rates) approaches torinfgpredictive distribution over counts
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based on a single count observation. We also briefly reviestwpark on information theoretic properties
of the two approaches. Secti@rcontains derivation of a more general Bayesian approachgaitihma
prior on the mean count parameter. In secbwe calculate the first two central moments of our
generalized model. This enables us to better understandfthence of the prior on the inferred model
and highlight the differences with the previous approadhgighe flat (improper) prior. In sectiob
we perform an information theoretic study of learning cali#ds of the generalized model. Empirical
investigations are presented in sectand the main findings are discussed and summarized in section
7.

2. Single count data - Bayesian and maximum likelihood approehes

In this section we will briefly review the original Audic-Claxie [2] and maximum likelihood
approaches outside the Bioinformatics context.

2.1. Bayesian averaging in the Audic-Claverie approach

Letz be an observed count in an experiment. When repeating theiegre, possibly under different
conditions, we observe a (possibly different) coynt The quantity of interest is the probability of
observingy given that we already observegdnot knowing the identity of the generating Poisson source

N

P(X =z|\)=e R

(1)

where) > 0 is the (unknown) parameter representing the mean coung valu

Under the null hypothesis (not differentially expressedeg, both counts andy come from the
same underlying Poisson distributid?(-|\). The key instrument in the Audic-Claverie approach is
a distribution P4¢(y|z) over countsy informed by the observed coumt under the null hypothesis.
Pac(y|z) is obtained by Bayesian averaging (infinite mixture) of alsgible Poisson distributions
P(y|\') with mixing proportions equal to the posterigris\’|x) under the flat prior ovek. Formally, the
probability of county, given the observed countfrom the same (unknown) Poisson distribution is:

P(ylz) = / " by, A d

_ /OOO PlyIn2) p(A) dA

_ [ PlaA) p(N)
_ /0 PO =iy vy v )

Imposing the flat (improper) prigr(\) over the Poisson parameteresults in

L[ e A7t da
y! fooo e A Td\

Pac(ylz) =
Since Gamma distribution parameterizeddyy > 0 takes the form

1
Gamma(Ma,b) = T(a) b XL b
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wherel'(a) = [}~ u*~'e "du is the Gamma function, we have

1 T(4+y+1)
P = 3

which, sincer andy are integers (i.el'(z) = (z — 1)!), can be rewritten as

1 (z+y)!

1 T+y
- 2$+y+1< T > ()

Pac(-|x) can then be used e.g. for principled inferences, construcif confidence intervals or
statistical testing.

2.2. Information Theory oPsc(y|x)

Consider a ‘true’ underlying Poisson distributiét{y|\) (1) over possible countg > 0. We first
useP(-|\) to generate a count and then employ’.-(y|x) (5) as a model distribution ovey, given
the already observed count We ask: If we repeated the process above, how differengrimg of
Kullback-Leibler (K-L) divergence, are on average the twstributions overy? One would naturally
hope thatP,-(y|x) is sufficiently representative of the true unknown distiid P(y|)\).

In [11] we proved that, given an underlying Poisson distributitn:|\), if we repeatedly generated
a ‘representative’ count from P(z|)), the average divergenég\) of Psc(y|z) from the truthP(y|\)
would never exceed 1/2 bit.

Theorem 1 [11] Consider an underlying Poisson distributiafi(-|\) parameterized by somg > 0.
Then

1 1
E0) = Erow| DralPOINIPac(olo]] = 510s2 + 0 ().
whereDy 1 [P(y|\)||Pac(y|x)] is the K-L divergence fronP(y|\) to Pac(y|z),

- P(y|A)
Dy [P(y|N)|| Pac(ylz)] P(y|\) log =—F——.
; Pac(y|z)

The expected divergence (in bits) can be well-approximatpdo orderO(\~3)) by [11]:
1 1 1 1 1
5““5—@(1—5)—2@2(1—?)- ©

2.3. P4c(y|x) vs. maximum likelihood

In this section we will briefly recall information theorefioalysis of the maximum likelihood estimate
Py (ylz) in place of Pyo(y|z) [12). First note that Poisson distributioR(y|)\) is only defined for
positive \. In the case of observing zero count= 0, we cannot directly use the ‘maximum likelihood
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estimate’P(y|0). One option for dealing with zero observed counts is to afilemsome form of model
regularization, e.g. infer a Poisson modg(y|e), for some smalk > 0. In other words, if a count

x > 1 is observed, follow the standard maximum likelihood pragedand inferPy,; (y|z) = P(y|x)

as the Poisson model; if a zero count is observed; 0, infer Py (y|0) = P(yle) for some fixed

e € (0,1]. This is the route taken inlpP] and adopted in this paper. Only a minimum amount of
necessary regularization due to zero observed counts iBgatpin the otherwise straightforward ML
approach.

Theorem 2 [12] Consider an underlying Poisson distributidp(-|\) parameterized by some> 0 and
a regularization constant € (0, 1]. The expected divergence in bif$)\, ¢) between the true Poisson
source and its (regularized) maximum likelihood estimatedal on a single observation,

T (AN €) = Epany| Dro[Py|AN) || Pur(yle)] ],
is equal to

TN €)=\ (log2 A — i P(x|\) log, x) + e (e — Mog, ). (7)

r=1

Note that the expected divergente), ¢) can get prohibitively large when regularizing with small
e > 0. As an illustration, in figurel we show expected divergend@&\, ¢ = 1) of the ML estimation
(zero count regularized with = 1) for a range of mean parameter valuesf the underlying Poisson
source (solid line). Also shown is the expected divergef(ce of P, (y|z) (dashed line). Except for
very small Poisson source ratesPac(y|x) is clearly benefitting from the stabilizing effect of Bayesia
averaging, given the extremely small sample size.

3. GeneralizedP4¢(y|x) with Gamma Prior

In this section we will generaliz€,(y|x) through the use of (conjugate) gamma prior

B yar1_—pa
P() =)\l f
on the Poisson mean paramekeiThe positive parametets 5 determine the overall shape of the prior.
Given a single observation the posterior

Px|)) P(Ma, §)

Jo  P(z|A) P(Aav, ) dA

Pz, o, 8) =

is the gamma distribution with parameters-  andjs + 1,

(ﬁ + 1)a+x B B

P\ _ Aot 1 (,3+1))\'

( ‘x7a7ﬁ) F(O["_x) €

The mean ofP(\|z, o, 5) is equal to(a + x)/(5 + 1). A loose intuitive interpretation of the prior
parametersy, 5 (assuming they are integers) is that prior to seeing thesntidtata (in our case only
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Figure 1. Expected divergence (in bit§)(\,e = 1) of the ML estimation (zero count
regularized withe = 1) (solid line). Also shown is the expected divergeé¢e) of P4 (y|x)
(dashed line).
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7 One observation (count)), we have seefi ‘observations’;zy, 7y, ..., 23, with the total cumulative count
ws = T} + 5 + ... + 25 Hence the mean parameter estimate would shift fro@ML estimation
we corresponding tey, 3 — 0) to (2} + x4 + ... + 2 +x) /(B + 1).
As in the case of’4(y|z), having observed a coumt we build a predictive distribution over future
countsy by integrating out the mean paramelewith respect to the posteridt(\|z, o, 5),

Poylra ) = | " PN Pz, . B) dn

0
_ ( + 1)a+x l /oo )\oz-‘ra:-‘ry—l 6—(6+2)/\ d)\. (8)
Cla+z) y' J

From normalization of the gamma distribution we get

/OO )\afl efb)\ d)\ — F((l)
0

ba
and so - r( )
a+z+y—1 —(B+2)A _ T+y+a
/0 A € d)\ _(ﬁ_|_2)x+y+a’
leading to
L Tet+yt+a) (B+1)"
P = — .
G(y‘x,a,ﬁ) y! F(x+04) (B+2)z+y+a (9)
110 It can be easily verified that the originBl(y|z) is obtained as a special casef®f(y|z, a, ) when

w « = 1lands — 0. If Jeffrey’s prior were used instead of the flat priorii¢(y|z), we would obtain
w2 Pg(ylz, o, B) with o = 1/2 andjs — 0 etc.
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Figure 2. Gamma priorP(\|a = 1, 3). Shown are the priors for three possible values of
parametep, § € {1,0.1,0.05}.
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If ais an integer, we have

z'+1 Yy /
o (G () o

wherez’ = z + a — 1 is the observed count including prior observations. Thigression generalizes

Pac(ylz) (5), - ,
- ()" (3 ()

While Pg(y|x, «, 5) (9) can be used with any appropriate settingrof (e.g. given a prior knowledge
of the range of counts one may reasonably expect), in thigribation we concentrate on using the
gamma prior to mitigate for the unrealistic equal weightifigll A > 0 in the flat prior behind?s¢ (y|x).
Indeed, the observed counts are typically bounded by theeaf the problem and one can represent
this through settinge = 1 and varyings > 0 in the gamma prio(\|«, 8) underlying P (y|z, «, 5).
Some examples of such priors are shown in figur®ecreasings leads to weaker emphasis on low
eventually recovering the flat (improper) prior fér= 0.

In section2.3 maximum likelihood estimation was regularized at zero ¢dynimposing a non-
zero ‘count’e instead of the observed zero one. The generalized forRefy|z), Pr(y|z, ) =
Po(y|z,a = 1, ), can be also viewed as an alternative ‘soft’ form of regakdtion of the maximum
likelihood approach at zero counts.

Parametep in the Gamma prior

P\a=1,8)=pe ™,

can be set in a data driven manner e.g. using the followiradegly: Given the observed countwe
require that the area up to+ 1 covered by the prior is equal t§ for some threshold € (0, 1) (e.g.
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6 = 1/4). In other wordsF'(z + 1|3) = 6, whereF(\|3) = 1 — e~?* is the cumulative distribution
function of P(A\|a = 1, 3). This leads to

In(1—0)
Sk Sl 11
Ble) = —— (12)
124 For zero observed count= 0, 5(0) = — In(1 — #) and the prior gets more concentrated on smaller

15 values of)\ as likely candidates for the mean count of the underlying$tm source. With increasing
s countvalues: > 0 the parametef(z) decreases to 0 and the prior gradually approaches the thatqbri

127 PAC(yyﬂj).
Finally, we contrast;(y|z, «, §) with the negative binomial distribution

Pualrd) = - W 71— q), (12)

with parameters > 0 andq € [0, 1]. One interpretation of the negative binomial distributian; (y|r, q)

is that it corresponds to a Gamma-Poisson mixture that onarnsbby imposing a Gamma prior
P(Alr, (1 — q)/q) on the mean count parameterof the Poisson distributio®(y|\) and integrating
out \. In our context it is natural to identify and (1 — ¢)/q with hyperparameters and 5 used in
Po(ylz, a, B). It follows thatg = (8 + 1)~!. Hence, we rewritel2) as

Pup(yla, (6 +1)7) = 5 F(ﬁ(;y) 7 - i)w- (13)

Direct comparison ofX3) with (9) leads to an intuitive insight: The prior measurements of total count
« introduced by the gamma prid?(\|«, ) are in the case of;(y|x, «, B) extended with a single
observatione, resulting ing + 1 observations of total coumt + =. This can be represented by

T Y
Pualyla o ( +2)7) = o HE V) R (14

It follows that
PG(y|‘Z.7 v, 6)

Pyp(yla+x, (B +2)71)
s Bayesian averaging if; (y|x, «, 5) with respect to the posterior ovér given a countz, differs from
120 the corresponding negative binomial distributiBrz (y|a + z, (8 + 2) ') by the factor( + 1)*+*v
10 that depends on the difference between the prior+obseaata + = andy.

= (B+1)7

4. First and second moments of the generalizef,(y|x)
131
122 In [11] we showed thatPs(y|x) and the underlying Poisson distribution are quite simitathieir

13 nature: for any (integer) mean rate> 1, the Poisson distributio®(-|\) has two neighboring modes
14 located at\ and\ — 1, with P(A|A) = P(A —1|\). Analogously, given a count > 1, P4¢(-|x) has two

15 neighboring modes, one locatedwathe other at: — 1, with Py (z|x) = Pac(z — 1|z). As in Poisson
1 distribution, the values oP,¢(y|z) decrease as one moves away from the modes in both directions.
w  this section we derive the first two moments of the generdli2e-(y|z), Po(y|z, o, §). As a special
18 case, we will show that as a result of Bayesian averaging,atiance ofP,¢(y|z) is double that of the
130 underlying (unobserved) Poisson distribution.
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Theorem 3 Consider a non-negative integer and the associated generalized mod®l(y|z, o, 3).

Then, B
T+« + 2

Epsr.aply] =

Proof: Let us evaluate

lz+y+a) (B+D)"* 1
Pz +a)  (B42)7tvte gyl

EPG(y‘xvanB) [y] =

WE

y=0

MNz+y+a) (B+1)7 1
P@+a) (B+2)7vre (y—1)

K

y=1

B i Ple+y+1+a) (B+D" 1
- I'(z+ ) (B 4 2)zty'+lta o]

y'=

_ if(w+y’+a)-(w+y’+a) Bry=™e 1
B [(z +a) (B+2) - (8+2)s++ y!

(15)

y'=0

In the third equality we have used substitutign= y — 1 and the last equality follows froi(z + 1) =

['(z). By (19),

rTta+ty

Ep(ylzaply] = Z Po(ylz, a, B) iz (16)
x —|— « 1
= B D) + B 9 EPg(y\m,a,,B) [y] (17)
Solving (L7) we obtain
T+
E T,00 - . 18
PG(yl ) 7:8)[y] /8_'_ 1 ( )
For the variance of;(y|z, «, ) we have
Varesgapll = Erswioasy’] — (Ersyleasny))’ (19)
Now,
~ Dz+y+a) (B+1)7 1
Brgieanly’] = D —~y’

D+a) (B+2pve gl

)i
o

lz+y+a) (B+1)" 1 ,
D(z+a) (B+2)v yl

M8

<
Il
-

Nex4+y+a) (B+1)" 1
Dx+a) (B+2)7tvte (y—1)!

Y

M8

1

<
Il

Tle+y +1+a) (B+1)F Ly
[eta)  (B+2eviira g1

WE

E\
I
o
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v @Y +a) T +y +a) (B + 1) 1,
"z O + ) CEPICE T
= B—Z o(y'e, . 8) [(x + ' +a) (v +1)]

y:

Fo(y'|z, o, 8) [v+y + o

I
“\

+ B+QZPG?J|$04»5)[ Y (z+0a) + ¢ (20)

Using (16), (18) and @0), we obtain

T+ « 1
Epoyzap)V’] = Ersylzaply] + B+2 Epgyleasly] + B+2 Epg(yla.as) Y]

T+ T+ 1
RS <1+5+2> + 5z Erotieanl’] (21)

which can be solved as
(c+a)(@tatfr2)

Epq(ylz,0,8) [92] = (B+1)? (22)
Plugging @2) into (19) we obtain
(r+a)(B+2) B+2
Varpgyleaply] = Gr1? Gt Epq(ylz0.0y)-
]

Given an observatiom, the maximum likelihood estimate of the underlying Poisd@tribution is
the Poisson distribution with mean
Y
P(y|z) = e"”a.
After observingz, the mean of the maximum likelihood and(-|z) estimates ist and = + 1,
respectively. Hence, Bayesian averaging’in:(-|z) induced by the flat improper prior over the mean
rate ) results in increased expected value 1 of the next count from the same underlying source, given
that the current count. However, a much more marked consequence of using the ftatqan be seen
in the variance oPs¢(-|z): while variance of the maximum likelihood is it is 2(x + 1) in Pac(-|x).
Theorema3 illustrates the role of more concentrated prior oxeon the generalized model. The
mean expected count, after seeings equal to the mean of the posteriBf\|z, a, ) over A\, namely
(a+x)/(B + 1). As explained earlier, observed single countith prior 5 counts of cumulative
value« results ing + 1 counts of cumulative value + z. Hence the mean count per observation is
(a+x)/(B + 1). As with Poisson distribution, the variance of the geneealimodel is closely related
to its mean and approaches the mean with increasing numbpeioottountss.
As for the soft regularizatiorPr(y|x, 5) = Pg(ylx,a = 1,03), its mean is, as expected, biased
towards values smaller than the observed cayrgrovideds > 1/z. Increased values of result in
smaller variance oz (y|x, 3). But how do such prior parameter modifications manifest tiedwes
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in terms of accuracy of estimation of the underlying sourddfs question is investigated in the next
section.

5. Expected divergence of the generalize®,(y|z) from the true underlying Poisson distribution

Consider an underlying Poisson souiegr|\) generating counts. In this section we would like to
quantify the average divergence

Ea(A; B) = Ep@n| Dri[P(y|N)|| Prylz, 5)] ] (23)

of the corresponding generalizé«(y|z), Pr(y|x, 8) = Ps(ylz,a = 1, 8) (‘softly’ regularized ML),
from the truthP(y|)\), if we repeatedly generated a ‘representative’ caufitom P(z|\). The same
guestion was considered in the context of maximum likelthestimation in sectio.3. In particular, we
are interested in specifying under what circumstance®igémeralized form aPac (y|x), Pr(y|z, 5) =
Pa(ylz, o = 1, B), preferable to the originaPac(y|z) = Po(y|lz,a = 1,5 — 0) and how it fares with
the maximum likelihood estimatioR,,;, (y|x) of section2.3.

Theorem 4 Consider an underlying Poisson distributid?(-|\) parameterized by some > 0. Then
for g8 > 0,

£\ B) = log, (ﬂ 2

B+1
A higher order approximation (up to orde¥®) reads:

foi ) = togy (52 ) = 5 [2tom (152 < tow(s + 1)

> - % + A {2 log, (%) — logy (8 + 1)} +O0(\). (24)

3+1) 2

1 1 1 1 19 1 .
C12) (1 a 5) 24N2 (1 a ?) 36003 (1 a ?) +ORT): (25)

Proof: Let us first express the divergenBg(\, z) = D [P(y|\)|| Pr(y|z, 5)]. We have
whereH [P(y|\)] = —Epg v [log P(y|))] is the entropy of the sourdg(y|\) and

Epgnllog Pr(ylz, B)] = —loga!
B +2
—Ep(yny] log(B8+2) — (z+1) log <m)

—Epgyn [logy!] + Epgn[log(z + )!].
Denoting (for integet! > 0) Ep, ) [log(y + d)!] by F(A, d), we write
Dg(A,x) = —H[P(y|\)] + log !
4+ A log(B+2) + (z + 1) log (&)

B+1
FF(M0) — F(\, ).



Version March 20, 2013 submitted Emtropy 12 of 20

We are now ready to calculate the expectatigi); 5) = Epn[Ds(A, 2)].

Ec(NB) = —H[P(ylN)]+ F(A0)
+A log(8+2) + (A +1) log (gil)
—|—F(>\, 0) — Ep(x‘)\) [F()\, :E)]

We have proved inl[1] that Epq,\ [F'(A, )] = F(2),0), and so

Ea(\B) = —HIP <y|A>J+1og(

2
+A log ((%121) )

+2F(X,0) — F(2),0).

5+2>
B+1

Since

— H[P(y|]N)] = Epg[log P(y|A)]
= —Aloge+ Epgn[y]log A — Epyn[log y!]
= —Aloge+ AlogA — F(),0) (26)

we have

+A [log/\ + log <(%121)2> — log e}

+F () 0) — F(2),0). (27)
Using entropy approximation (se&l])), one obtains
F(X0) = A(log A —loge) + %10g(27re/\) + O\,
leading to (in log base 2)
F(\0) — F(2),0) = —% + A(log, e — logy A — 2) + O(A 7).

Finally,

(8+2)° 1
o [10 (G228 o) o
165 Which is equivalent toZ4).

166 The higher order expressioRq) is simply obtained by using higher order approximatio#'to,, 0) —
w7 F(2),0). O
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Note that for3 — 0 we recover our original resultLl] that the expected divergen¢&\) of the
original P4c(y|z) from the ‘truth’ P(y|\) is (up to terms of ordek~!) never greater than 1/2 bit. The
soft regularization inPg(y|z, 5) (using priorP(A|a = 1, 8) with 5 > 0) can result in larger expected
divergence from the underlying source than is the cas@fei(y|x) (using improper flat prior ovex).
Moreover, (unlike inP4c(y|z)) such a regularization causes linear divergencégf\; 5) for large .
The next theorem specifies for which underlying Poissoncssuthe soft regularization approach of
Pr(y|z, ) is preferable to the origindPsc(y|z).

Theorem 5 For Poisson sources with mean rates

log (1 + %)
g2\’
10g (1 + m)

it holdsE(N\) > Eq(A; 5) and hencePg(y|z, F) is on average guaranteed to approximate (in the K-L
divergence sense) the underlying source better than tiygnadi Pac (y|z).

(28)

A< k(B) =

Proof: It was shown in 11] that for the originalPsc(y|z),

EN) = AlogA —loge +2log?2) + log 2
FF(X,0) — F(2),0). (29)

From @27) and 9) we have that the difference between the expected diveegeoicthe original and
generalized forms oP4c(y|z) is

EON) = Eo(Xif) = log2—log (%)

o [otma 1o (02

1Og2 (B+1)

5+ 2
4(B+1)

The result follows from solving fo€ (\) > Ex(A; B). O

The graph (in log-log scale) of(5) is shown in figure3. An alternative way of data-driven setting
of parametep3 is suggested by the fact that3) is lower bounded by —!. If the experimental setting
is such that most counts are expected not to exceed sQie 5 can be set t&@ = 1/2,,4., SO that
Pr(ylz, ) is preferable taPsc (y|x).

In figure 4 we present the expected divergenées\; 5) (solid line) and&(\) (dashed line) for
B = 0.2 (left)y and 5 = 0.01 (right). As expected, for underlying sources with small meauntsi
the advantage of using the regularized foRg(y|x, 5) (as opposed to the origindty«(y|x)) is more
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Figure 3. Graph ofx (). For Poisson sources with mean rates x(5), E(\) > Ea(A; 5)

14 of 20

and hencég(y|z, B) is on average guaranteed to approximate the underlyingsdatter

than the originalP¢(y|x).

kappa(beta)
=
o

Figure 4. Expected divergenceS;(\; 5) (solid line) and€(\) (dashed line) fors = 0.2

(left) and = 0.01 (right).
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pronounced. However, for largarthere is a heavy price to be paid in terms of inaccurate miodey
PR(y‘I7 B)

6. Empirical investigations

To investigate potential value of the more sophisticatedeBemn approach in the original and
the generalized A-C frameworks (sectioBsl and 3, respectively) against the baseline of simple
(regularized) maximum likelihood estimation (sect@), we conducted a series of simple illustrative
experiments. In the generalized A-C framework developethis study we used the two schemes
for setting the regularization parameieisuggested in sectior&and5. In the regularized maximum
likelihood approachP,, .. (y|z) we sete = 1. From figurel it appears that the biggest difference between
the expected divergences from the true underlying Poissorce P(z|\) to the original P4¢(-|x) and
the maximum likelihood estimate occurs for small mean ratesighly around\ = 5. We therefore run
the experiments with = 5.

For illustration purposes, we follow the data generatiocma@ism used inl[3] to compare methods
for distinguishing between differential expression of ggmssociated with two treatment regimes. We
stress that in no way we suggest that our experiments hawegstelevance for Bioinformatics, nor
do we claim that the framework ofLf] is the best test bed for assessing differential gene esiomes
detection algorithms. We use the framework b8|][merely to illustrate whether the sophistication of
the Bayesian approach (as opposed to simple (regularizedjmain likelihood) can bring benefits in a
practical situation with low-count data.

Gene counts are simulated across the two treatment grbuped7,. The tests are assessed by
comparing false positive and true positive rates. In eaglegment 10,000 gene pair courits ;, zs ;),

Jj =1,2,...,10000, were produced, counts ; andz, ; associated with regime§ and75;, respectively.
As specified above, the sampling rate Tgrwas fixed at\; = 5 throughout the experiment. We varied
the mearlog, fold change (LFC) betweef; and7; from -2 to 2. Each gene pair coufit; ;, z2 ),

j =1,2,...,10000, was obtained through a generative process specifietBjrahd described in detail
in appendix A.

Having generated the gene pair counts, we used methodsleoediin this study to make a decision
for eachj = 1,2,...,10000, whether the counts, ;, z, ; originated from the same underlying source,
i.e. whether when generating ; andy, ;, the mean rates in the two regimésand’’, were identical
(LFC; = 0). Given the ‘test distributionQ)(y|z) and a confidence level < [0, 1], we guess that
x1;, T2,; Originated from the same source if the— ¢)-quantile around the mean 6f(y|x; ;) contains
x5 ; and vice-versa, i.e. if thél — ¥)-quantile around the mean 6f(y|z, ;) containsz, ;. In place
of Q(y|x) we usedP4c(y|z), its regularized formPx(y|x, 5) and the regularized maximum likelihood
estimateP,,, (y|z) with e = 1.

For a given confidence level € [0, 1] and test statisti€)(y|z) we calculate thdalse positive
rate (type | error rate) as the proportion of times a gene count @ai;, z, ;) was declared to have
originated from two different underlying sources (diffetially expressed gene) when in fatt'C}
was zero. Thdrue positive rate(statistical power) was determined as the proportion oésira gene
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Figure 5. ROC curves for test distributionBs¢ (y|z) = Pr(y|z, 5 — 0) (solid black line),
Pr(ylz, 5 = 1/100) (solid blue line),Pr(y|z, 5 = 1/50) (solid green line) andy,(y|x)
with e = 1 (dashed red line). Mean rate of the underlying Poisson sowes fixed ai = 5.

1

0.8

true positive rate
o
(6]
T

e — beta=0
0.2 - — beta=1/100 B
e —— beta=1/50
- — - ML
0.1 e q
e
0 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

false positive rate

was correctly declared differentially expressedr;, x5 ;) declared to have originated come from two
different underlying sources adF'C'; # 0.

Plot of false positive rate vs. true positive rate obtair@diifferent values of) constitutes aeceiver
operating characteristiROC) curve. If the ROC curve for one test distribution is gle/above another,
this suggests its superiority in classifying genes as wiffeally expressed. Trivial classification of
genes as differentially expressed using a completely rangleess would yield the identity (diagonal)
ROC curve. ROC curves for the maximum likelihood methed< 1, red dashed line) and the soft
regularization modePx(y|x, 5), £1/50,1/100 (solid lines) are plotted in figur6. Not surprisingly,
the Bayesian approach (solid lines) outperforms the pesdlimaximum likelihood one (red dashed
line). However, the originaPc(y|z) (8 = 0, black line) and the soft regularization model (color
solid lines) achieve almost identical performances. I8 thhallenging setting (single observations at
low mean rate with additional noise), the scheme for settiegegularization parametgrsuggested in
section5 has little effect on the resulting classification performanWe also ran experiments to test the
‘dynamic’ scheme for setting introduced in sectio3, but no significant performance improvements
were achieved.

Finally, we devised yet another scheme for determining tfEehRparametera and s of the prior
P(\|a, 5) from the data. In the spirit of type [l maximum likelihood, \iiad the most likely values of
«.3, given the observed counfs= {z;, zs, ..., x, }, usingP(C|e, 8) = [ [, P(xila, B), where

Plafa,8) = [ Py pa,5) o (31)

Using this method, we first optimize the prior hyperparamseta the observed data. The ‘optimized’
prior P(z;|c., B.) now reflects the possible ranges of mean courdse can expect given the data. We
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Figure 6. ROC curves for test distributionB,-(y|x) = Pr(y|x, 5 — 0) (solid black line)
and P (y|z, ., B«) (dashed red line). Mean rate of the underlying Poisson souas fixed

at\ =b.
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then repeated the experiments using the generalized nide|z, o, §.) derived from the optimized
prior. In this way we can assess to what degree the relatmatpr performance differences between
the generalized and maximum likelihood models in figbrare due to constraining to 5 = 1 (in
Pr(y|z, 5)), or due to inherent difficulty of learning from single cosintThe resulting ROC analysis
is shown in figures. The data driven setting of hyperparameterg leads to slight improvement over

Pac(y|x) and Pg(y|x, 5).

7. Discussion and conclusion

Studies of learning algorithms traditionally concenti@atesituations where potentially ever increasing
number of training examples is available. However, thegesituations where only extremely small
samples can be used in order to perform an inference. Indnigibution we concentrated on extreme
case of low count data governed by Poisson distribution revbaly a single observation is available.
We performed a rigorous theoretical investigation of thprapriateness of various model estimators,
based on the single observation. We considered a Bayesiaoamppalong the lines oP], where the
model built on the basis of a single observed count is no IoRgésson, even though we know that the
generating source is Poisson (but do not know the mean rate).

We showed that the Bayesian approach is more optimal tharethgarized maximum likelihood,
in the sense that the expected K-L divergence from the sotacéne model is smaller for the
Bayesian approach. Furthermore, we generalized the origiodel of [2] to account for possible prior
information on expected expression counts. Detailed métion theoretic study of learning capabilities
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of such a generalized model was conducted for the case ofdawtdata. We also quantified the effect
of Bayesian averaging on its first two moments.

We demonstrated both theoretically and empirically the Beyemodel averaging on the generalized
model can be potentially beneficial. For largethe expected divergencg(\, ¢) of the maximum
likelihood estimator from the true Poisson source is doteithdy the term

A <log/\ - Z P(z|\) log:c) ,
r=1

sincelimy_,, ¢ * (e — Aloge) = 0. We empirically determined that for > 10, T(\, e = 1) expressed

in bits is bounded by.7 < T(\,e = 1) < 0.8. Hence, for mean Poisson rates> 10, the difference

between the expected divergences of the A-C and ML estinfiatesthe true source is never less than

0.2 bits and never more than 0.3 bits. In other words,

02 < T\ e=1)—E(N\) < 0.3, A>10.

Acknowledgements This work was supported by a BBSRC grant (no. BB/H012508/1).
References

1. Varuzza, L.; Gruber, A.; de B. Pereira, C. Significance testsdmparing digital gene expression
profiles. Nature Preceding2008 npre.2008.2002.3

2. Audic, S.; Claverie, J. The significance of digital expressmwofiles. Genome Res1997,

7, 986-995.

3. Medina, C.; Rotter, B.; Horres, R.; Udupa, S.; Besser, B.; Bellaopiinn Baum, M.; Matsumura,
H.; Terauchi, R.; Kahl, G.; Winter, P. SuperSAGE: the drougfhtss-responsive transcriptome
of chickpea rootsBMC Genomic2008 9, 553.

4. Kim, H.; Baek, K.; Lee, S.; Kim, J.; Lee, B.; Cho, H.; Kim, W.; Chd@,; Hur, C. Pepper
EST database: comprehensive in silico tool for analyzimgdthli pepper (Capsicum annuum)
transcriptome BMC Plant Biology2008 8, 101-108.

5. Cervigni, G.; Paniego, N.; Pessino, S.; Selva, J.; Diaz, Margenberg, G.; Echenique, V. Gene
expression in diplosporous and sexual Eragrostis cunematypes with differing ploidy levels.
BMC Plant Biology2008 67, 11-23.

6. Miles, J.; Blomberg, A.; Krisher, R.; Everts, R.; Sonstegard, Tassell, C.V.; Zeulke, K.
Comparative Transcriptome Analysis of In Vivoand In VitreeBuced Porcine Blastocysts
by Small Amplified RNA-Serial Analysis of Gene Expression {&8AGE). Molecular
Reproduction and Developme2@08 75, 976-988.

7. Cuevas-Tello, J.C.; Tio, P.; Raychaudhury, S. How accurate are the time delay &st#nin
gravitational lensingAstronomy & Astrophysic8006 454, 695—706.

8. Cuevas-Tello, J.C.; Tio, P.; Raychaudhury, S.; Yao, X.; Harva, M. Uncovering dethyatterns
in noisy and irregularly sampled time series: An astronompliaation. Pattern Recognition
2010 43, 1165-1179.



285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

Version March 20, 2013 submitted Entropy 19 of 20

9. Pelt, J.; Hjorth, J.; Refsdal, S.; Schild, R.; Stabell, R. Eation of multiple time delays in

complex gravitational lens systemastronomy and Astrophysid998 337, 681-684.

10. Press, W.; Rybicki, G.; Hewitt, J. The time delay of gravitatl lens 0957+561, |. Methodology
and analysis of optical photometric Datastrophysical Journal992 385, 404—-415.

11. Tiho, P. Basic Properties and Information Theory of Audic-Qlevé&tatistic for Analyzing
cDNA Arrays. BMC Bioinformatic2009 10, 310-308.

12. Tinho, P. One-shot Learning of Poisson Distributions in cDNAa&rAnalysis. InAdvances in
Neural Networks - Proc. of the 8th International Symposium onrdléNetworks (ISNN 2011)
Liu, D.; Zhang, H.; Polycarpou, M.; Alippi, C.; He, H., Eds.etture Notes in Computer Science
(LNCS 6676), Springer-Verlag, 2011; pp. 37—46.

13. Auer, P.; Doerge, R. Statistical Design and Analysis of RNAU&eging Data.Genetic201Q
185 405-416.

Appendix A
In the generative process dfj], each gene pair countt; ;,z- ), j = 1,2,..., 10000, was obtained
as follows:

1. The sampling rate ; for the treatment groufps is obtained as

)‘2]' _ 2(log2)\1)—LFCj

LFC; ~ Uniform{—2.0,-1.5,—1.0,...,1.5,2.0}.

2. A pair of gene countsy; ;, y» ;) is sampled with respect tBoisson(A;) and Poisson(X, ),
y1,; ~ Poisson(\1), yaj ~ Poisson(Ay;).

3. Zero mean Gaussian noise is then added to each gene coumdifrguo the nearest integer using
the rounding operatdr]):

vii = Yyl i=1,2

U.
7’]j ~ N(0,0’j:j)

)\1—|—)\2,j
v; = T,

wherey = 10.

4. The batch and line effects are simulated as follows: Batobceffare accounted for by adding
Gaussian noise to each noisy coyft,

y;:j = yz,',j"‘ [77;]]

"
o~ NI(0,22).
i ( ’10)
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Lane effects are simulated by Poisson sampling fg¢iandy; ; at different rates varying between
lanes,

xi; ~ Poisson(d;-y;;)

d; ~ Uniform{0.65,0.8,0.95}.
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