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Abstract. We present a novel approach to estimate the time delay between light curves of multiple images in a gravitationally
lensed system, based on Kernel methods in the context of machine learning. We perform various experiments with artificially
generated irregularly-sampled data sets to study fiieeteof the various levels of noise and the presence of gaps of various

size in the monitoring data. We compare the performance of our method with various other popular methods of estimating the
time delay and conclude, from experiments with artificial data, that our method is least vulnerable to missing data and irregular
sampling, within reasonable bounds of Gaussian noise. Thereafter, we use our method to determine the time delays between
the two images of quasar Q098561 from radio monitoring data at 4 cm and 6 cm, and conclude that if only the observations

at epochs common to both wavelengths are used, the time delay gives consistent estimates, which can be combined to yield
408+ 12 days. The full 6 cm dataset, which covers a longer monitoring period, yields a value which is 10% larger, but this can
be attributed to dferences in sampling and missing data.
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1. Introduction lay of 424.9-1.2 422.6:0.6, 4239 and 4140.07 days respec-

. oL tively (more estimates are in Table 1). Given the error bars,
Long before the first gravitationally lensed quasar was d@—

covered in 1979 (Walsh et al. 1979), Refsdal suggested t Q?Sy of these measures are inconsistent with the definitive
) ' e quoted above, and often with each other, if taken at face

time delays of source fluctuations between the multiple images . d

could be used to measure the Universe (Refsdal 1964, 1966). ] ) o

This first lensed quasar, Q095361 is also the most studied ~ 10 Measure the time delay between signals arriving from

so far (Fig. 1), and many attempts have been made to estinfie Same source but viaftiirent paths, typically ranging from

the time delay between its two principal images. a few days to a few years in the data available so far, one needs

The measurement of the delay between the images A E{chrequently observe the same set of sources over long periods

B of Q0957561 has been the subject of sensitive controver&) ime. Due to the usual methods of allocation of telescope

ever since the first claim of measurement in the early 19g§&1¢ and the natural time scale of projects, the data obtained

Haarsma et al. (1997) reviews the various measurements, sh%ai-_ca”y are not.regularly sampled, "’T”d could be thained by
ing how various delays in the range of 300 to 1000 days haddide range of instruments and affdrent frequencies, often
been claimed, from various data sets usingedént methods with Iarge_ggps in the time series. Since the use of time delays
(Kochanek & Schechter 2004). In the early nineties, the quotdconstraining cosmological parameters (e.g., Saha 2004) re-
time delay values were either around 420 days (e.g., Falco eQ4ires these delays to be measured to a precision and reliability

1991) or 540 days (e.g., Press et al. 1992), culminating ir{@t is better thanféorded by current practice, it is important
“definitive” measure of a time delay of 413 days (Kundic to look for better and more robust methods, where the depen-

et al. 1997). dence of the results on the incompleteness of the data is well

More recently, &orts have concentrated on characteriy-ndersmocj'
ing the errors on such measurements (e.g., Pindor 2005). TheRigorous error estimates based on a functional form for ran-
case of Q095¥561 also illustrates this. Variously, from opti-dom errors often well represent the inherent limitations of a
cal monitoring data, Ovaldsen et al. (2003), Oscoz et al. (200@@rticular method, but do not address systemafieces due

Burud et al. (2001) and Colley et al. (2003) estimate a time d@sampling strategies, to the heterogeneity of monitoring pro-
grammes and those due to data missing for various practical

Send gfprint requests tosomak@star.sr.bham.ac.uk reasons, like observing schedules. With the bank of data for
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light curves of lens systems growing rapidly, tiéeet of such is a time-delayed (by\) version ofha(tj) underpinning im-

systematics on the measured values of time delay need tcalge B.

well understood. This is particularly important in view of fu-  The functionsh, and hg are formulated within the gen-

ture missions like the Large Synoptic Survey Telescope (LSSdrhlised linear regression framework (e.g. Shawe-Taylor &

and Supernovyacceleration Probe (SNAP), which will makeCristianini 2004,§2). Each function is a linear superposition

large monitoring data sets available for hundreds of multiplgf N kernelsK (-, -) centred at eitheg;, j = 1,2,..., N (function

imaged distant sources, (e.g.0Msell et al. 2005; Fassnachtf,), or cj +A, j=12,..,N (function fg). The model (1)-(4)

et al. 2004), thus rendering them major statistical tools for cdsasN free parameters;, j = 1,2, ..., N, that need to be deter-

mological purposes. mined by (learned from) the data. We use Gaussian kernels of
We present a novel approach to the problem of determinidth w?: forc,t € R,

ing the delay between noisy time-dependent signals that have

been measured at irregular intervals over several years, ofteg"n

with large gaps in the monitoring programme. Ours is an autd{C-1) = exp

matic method that allows us to analyse large-scale experiments

more accurately than typical methods. We study tfiecé of The kernel widthu, > 0 determines the ‘degree of smoothness’

gaps of various length, regularly or irregularly sampled, in thef the underlying curvelB, andhg. We describe setting oj; =

monitoring data, in addition to the flierent levels of noise. w, and regression weights; in the next subsections. In this

This study should provide some insight for astronomers desigtudy, we position kernels on all observations, Ne= n.

ing future observational campaigns for monitoring multiple-  Finally, our aim is to estimate the time delaybetween the

images quasars. temporal light curves corresponding to images A and B. Given
As an illustration of the application of our method, we apthe observed data, the likelihood of our model reads

ply it here to radio observations, at 4 cm and 6 cm, of the well

—It - CI2

(5)

known gravitational lens Q095661 (Haarsma et al. 1999), n
and compare the results to other studies using the same or fRatal Model) = l_[ p(xa(ti), Xa(ti) | A, {aj}), (6)
ilar datasets. =1

The remainder of this article is organised as follows§2n where
we present our method3 is a survey of methods to estimate

the time delay presenting a detailed review of three of the mo ? B 1

popular methods§4 describes the artificial data generated B Xa(t), Xa(t) | A, o)) = 2n03 (1) 3 (t)
perform our simulationg5 shows the results on these artificial (Xa(t;) — ha(t))?
data. In§7 we present estimates for the time delay between the ex {%}
two principal images of Q095561 from radio data at 4 cm 2075 ()

and 6 cm, using our methods presented here, followed by a « (Xe(ti) — M - hg(t;)? 7
concluding summary. exp 203 (ti) %

2 The model The negative log-likelihood (without constant terms) sim-
plifies to

We model the observed flux at a given frequency (in the radio

or optical range) from two lensed images A and B of the same

distant source, as two time series Z [

i=1
Xa(t) = Pa(ti) + ea(t)  xa(t) = M-hg(t) +es(t), (1) : . .
To avoid extrapolation when we apply a time delay to our
where M is the ratio of the fluxes of the two images, andnderlying curve, we do not evaluate the goodness of fit over

(Xa(ti) - ha(t:))* + (Xg(ti) — M - hB(ti))z). @)

o (t) )

ti,i = 1,2,...,n are discrete observation times. The observall observations:
tion errorsea(t)) andeg(ti) are modelled as zero-mean Normal
distributions 0= ”zll (Xa(ty) — thA(tu))2 . znl (xa(ty) —th- hB(tV))Z’ ©
N(O, ra(t;)) and N(O, og(ti)), oat) e og(t)
respectively. Now, whereb; is the greatest index satisfyitgp, < th — Amax and

b, is the smallest index satisfyirtg, > t1 + Amax Here,Amax
ha(t) = K(cit is the maximum possible time delay we are willing to consider

a(t) = ) ajK(e.t) ®)  fned)

We determine the model parameters and evaluate Eq. (9)
is the “underlying” light curve that underpins image A, whereagr a series of trial values of. The time delay is then esti-
mated as the value df with minimal cost (9). Note that if the
he(t;) = Z“iK(CJ‘ + A1) (4) errors cannot be modelled as Gaussian, Eq. (9) would need to
- be rewritten using an appropriate noise term.
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2.1. Weights non- and semi-parametric regression. We use cross validation
(Hastie et al. 2001§7.10) to find the ‘optimal’ kernel widthy.
In particular, we invoke a variant of five-fold-cross-validation.

B ([ xalt)  ha(t) 2 xa(t) M - hg(t) 2 We start by dividing the data set uniformly into five blocks.
Q=) . (10)
i=1

We rewrite Eq. (8) as

oalt) oA oa®)  oa) In the first step, we construct a validation set as a collection
AL AU BUA B\ of the first elements of each block. The validation set has five

Since we expect each of the two terms in (10) to be individuafjements. The training set is formed by the remaining observa-

equal to zero, we impose t!ons, i.e.the observatiqn_s notincluded in th_e validation set. We
fit our models on the training set and determine the mean square
Ka = X, (11) error (MSE) over a range of delay valuason the validation
set. In the next step, we construct a new validation set as a col-
wheree = (a1, 2, ....an)", lection of the second elements of each block. The new training
) .  Xalty) T set is again formed by the remaining observations. As before
Ka(Ct1) -+ Ka(Cn,t1) aalt) we fit our models on the training set and determine MSE on the
: R : : validation set. We repeat this procedurémes, where is the
K= Ka(Cw,tn) -+ Ka(Cn, tn) « = (’T‘i\\# 12) number of observations in each plock. Finally, the_ mean of all
Ke(Ci, 1) -~ Kg(on,ta) |” ‘é%xs ONE such mean square errors (there &f them), MSky, is calcu-
. . oe(ta) lated. The kernel widthy selected using the cross-validation is
: : : the kernel width yielding the smallest Mg The scheme is
| Kg(C1,tn) -+ Kg(Cn,tn) | Xa(tn) summarised in Algorithm 1.

L op(th)
and the kernel&a(:, -), Kg(-, -) have the form:
K(c,1) M- K(c+ A,t)

Algorithm 1: Cross validation

Ka(c,t) = , Kg(c,t) = . (13) Fix M, LowerBoundandU pperBound
aa(t) os(t) Fix Blocks«— 5
Hence Fix PointsPerBlock— min({by, n — b,})/Blocks
' for omega«— LowerBoundo U pperBounddo
@ =K. (14) for i < 1to PointsPerBlocldo
Remove thé'" observation of each block and include
We regularise the inversion in (14) through singular value de- ift in the validation Se(tj
iti or A «— Apinto A 0
composition (SVD). Get weightse on the training set (using eq. (14))
Computeha(t,) andhg(t,)
2.2. Kernel parameters Get MSE on the validation set
S(A) «MSE
In general, in order to use Gaussian kernels (5) in generalised | R(i) « mearfS)
linear regression (1)-(4), the kernel positiogs as well as | Besfomegd « mear(R)

kernel widthswj, need to be determined (Shawe-Taylor &  « argmin,(Bes)
Cristianini 2004,§9). Several approaches have been takenin
the literature. For instance, those who use radial basis function
(RBF) networks employ e.&k-means clustering, or EM algo-

rithm and Gaussian mixture modelling (e.g. see Haykin 199,
Hastie et al. 2001) We have explored two approaches to kerné
positioning: (i) the centres; uniformly distributed across the Rather than considering a fixed kernel widshin this section
input range andi) the centres; positioned at input samplés we allow variable width Gaussian kernels of the form

j =1,2,...,n. The latter approach lead to superior performance T—— It — (cj + A)R

and the results reported in this paper were obtained using Kee;, i) = exp 5 L K(cj +A,t) = exp—Jz.
nels centred at observation timgsAs for the kernel widths, @ @
we propose two approachd: fixed widthw and(jj) variable \ve determine eachy; through a smoothing parameter €

.;2.2. Variable kernel width

widths wj, j = 1,2,..,n. Both are described in the following{l, 2, ..., kmax}. Parametek is the number of neighbouring ob-

subsections. servations; on both sides o€; (boundary conditions need to
be taken into account). In particular, since we centre a kernel

2.2 1. Fixed kernel width on each observation time, i.€;. = tj, we have the cumulative
kernel width

The width of the kernels determines the degree of smoothing K

for :[he underlying qu>.< curves (3) anq (4). Finding approprl(-u'j _ Z(tj —ti_a) + (tja — 1)) = Z(tj+d ~tj_q). (15)

ate’ values of smoothing parameters is one of the challenges in 4= )

1 Some approaches attempt to simultaneously optimise the numb&e optimal value ofk can be estimated using a cross-
of kernels. validation procedure analogous to that of secgiar?.1.
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Radio data: 0957+561 at 4cm Radio data: 0957+561 at 6cm
T
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Fig. 1. The variation of flux density with time of the two gravitationally lensed images of Quasar @8837a) Radio data at 4 cnmh) radio
data at 6 cm (Haarsma et al. 199€)pptical data at g-band (Kundic et al. 1997), af)dptical data at r-band (Ovaldsen et al. 2003).

3. Methods for estimating the Time delay In this section, we review the principal time delay estima-
tion methods that have been used on gravitational lens data.

Table 1 contains a review, in chronological order, of the mordeCross correlationmethod (Kundic et al. 1997; Oscoz et al.
recent time delay estimates of the quasar Qa®61 and the 1997),PRH method (Press et al. 1992) abtpersionspectra,
methods employed. This gravitational lens is the most extdfelt et al. 1996), described 8.1,§3.2 and 3.3, respectively,
sively monitored so far, being the first one to be discoveredpve been widely used in the literature. We employ the§bin
Fig. 1 presents examples of the observed light curves acrd§dase-line models when reporting performance of our meth-
various frequency bands, from radio to optical. As is evideRfls (described i§2).

in Table 1, whole range of time delay estimates (with varying Of the methods mentioned in Table 1, theear method
uncertainty bounds) for the gravitational lens are available. THees chi-squaredf) fitting (Press et al. 19814). Since the
problem is thatve do not know the actual time dela9ne of data are irregularly sampled, linear interpolation in the obser-
the aims of this paper is to study the reliability of several timeational gaps is performed (Kundic et al. 1997).

delay estimation methods in a large set of controlled experi- The method of Subtractive Optimally Localised Averages
ments on artificially generated data with realistically modellg@OLA) has been proposed as a method for solving inverse
observational noise and mechanisms of missing measurememtsblems. The method was adopted by Pijpers (1997) who
We feel that only after learning lessons from such a study ddesmulated time delay estimation as an inverse problem. It is
it make sense to come up with yet another batch of time delagprth nothing that SOLA employs kernels, called averaging
estimation claims. kernels. However, SOLA fliers from our approach in several
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Table 1. Review of time delay estimates between the two images pf — At/2, 7 + At/2]. P(7) is the number of observational pairs

Q0957561 from 1997 to 2004. The methods are revieweglEin in the bin centred at. The DCF at lag is given by
Eefer_ence Method(s) Time delay DCF(r) = 1 (Xa(ti) — @) (xs(tj) - b) ’ (16)
undic et al. 1997 - Linear 4173 P(r) & > 2y > 20

- Cross correlation & \/(‘Ta — oa(t)) (o, — og(ty))

-PRH o

- Dispersion wherea andb are means of the observed data fluxe&;) and
Oscoz et al. 1997 - Cross correlation 437 Xg(t;), respectivelyr3 ando? are their variancesra(t) and

- Dispersion o4(t;) are the observational errors (2).
Pijpers 1997 - SOLA 42517 Likewise,
Pelt et al. 1998b - Dispersion 4168.7 _
Haarsmaetal. 1999 - PRH 4680 Xa(ti) — a(r))(xs(t;) — b(r

N DGR - o 5, O Ea0) B _
Oscozetal 2001 - Linear 42266 T (030 - AR - o3()

- Cross correlation _

- Dispersion wherea(r), b(r), o3(r) ando?(z) are the lag means and vari-
Burud et al. 2001 x* algorithm 4239 ances in the bin centred at The time delay is found when
Colley et al. 2003 - PRH 417.69.07 DCF(7r) andLNDCF(r) (16)-(17) are maximum, i.e. at the best
Ovaldsen et al. 2003 - Dispersion 424192 correlation.

- x? algorithm

3.2. The PRH method

This method is widely used for time delay estimation. Its fun-
respects(i) SOLA does a symmetric treatment of the two estamentals are based on the theory of stochastic processes and
timated fluxes (flux A is fixed and flux B is varied to match ANiener filtering (Press et al. 1992; Rybicki & Press 1992).
and vice versa)i) the reported time delay is the mean of th&iven two light curvesxa and xg (1), the PRH method com-
estimated time delays in the two symmetric cagé}, a free bines them into a single serigsby assuming a time delag
parameter is used to adjust the relative weighting of the err@isd a constant rativM betweenx, and xg. Thus, for each of
in the variance-covariance matrix. We also note that parametes two fluxes, we end up having a new data setrobBser-
estimation in SOLA is problematic (Larsen & Hansen 199%ations; half is interpolated using the other flux. The flux ratio
Rabello-Soares et al. 1999) and this method has been rafdlys estimated as a filerence between weighted means of the
used. fluxes; the weights are derived from the quoted observational

They? algorithm (Burud et al. 2001; Ovaldsen et al. 2003gITors. The time delay, is estimated by minimising
is ay?-based method similar in spirit to our model in that it also AEETA
uses a notion of an underlying model curve when fitting the tw@ = y* (A - T—) Y, (18)
observed fluxes. However, the underlying model is assumed to E'AE

be regularly sampled. It is regularised using a smoothing t{phich is a measure of goodness of fit on measurements from a

(Burud et al. 2001, Eq. 3). Confidence intervals on the delgy, ssian process (Press et al. 1992). Hgis the combined
are estimated by performing Monte Carlo simulations (Buryfl,x2 E is a column vector of ones. and

et al. 2001).

In general, when Monte Carlo simulations are not pea = B! = {Cab+ <ag>53b}‘1 (19)
formed, bootstrap techniques are used to calculate uncertainty
in time delay estimates. where

Cab = (Y(ta)Y(th)) = C(ta — tp) = C(7) (20)

is a covariance model estimated from the datg ty,, a,b =
Basically, there are two versions of methods based on crdss., 2n, are sample times of the combined light curve. Press
correlation: the Discrete Correlation Function (DCF) and i&f al. (1992) suggest findir@(r) through a first-order structure
variant, the Locally Normalised Discrete Correlation FunctiditinctionV(r) = (s*) — C(r), wheresis the clean data frong.
(LNDCF). Both calculate correlations directly on discrete pairghen, the structure functio¥(r) is computed from the data,
of light curves (Edelson & Krolik 1988; Lehar et al. 1992)single image, by determining lags
These methods avoid interpolation in the observational gaps.
Also, they are the simplest and fastest time delay estimatitn
methods.

3.1. Cross correlation

= [t - tj] (21)

2 Note that Press et al. (1992) refentas a component rather than
First, time diterences (lags)Atj = [tj — ti|, between combined components, image A and image B. The same occurs with

all pairs of observations are binned into discrete bins. Givete matricesA,B andC in Eq. (19) and (20).

a bin sizeAr, the bin centred at lag is the time interval 3 Angle brackets denote the expectation operator.
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and values The estimated time delay, is found by minimisingD? over a

o NE W22 N2 g range of time delay trials.
Vij = (XA () = XAz () — 7iag () = Tiag (4) (22) Compared withD?, the D, method has an additional pa-
where{A, B} denotes that it comes from either image A or imrameterdecorrelation Iengtl6 thatS|gn|f|es the maximum dis-
age B (1)-(2). tance between observations we are willing to consider when

All pairs (zij, vij) are sorted with respeet and binned into calculating the correlations (Pelt et al. 1996).
100 bins (Press et al. 1992, pg. 407). The values;aindv;;
in each bin are averaged and finally a power-law model is built

to fit the binned list, 4. Constructing Artificial data sets
V(1) = ci7. (23) We use artificial data sets to perform a setofitrolled large-

. o . scale experiments in order to measure the accuracy of time
Note that this model is linear in log scale, delay estimation techniques on gravitational lens systems. We
V(In() = In(cy) + ¢ In(7) (24) 9enerate simulated data sets witlfetient levels of noise and

varying sizeflocations of observational gaps.
Parameterg; andc; of the structure function can be deter- The basic signal is constructed by superimposing 20
mined using a simple line fitting algoritfmSo, V(r) is es- Gaussian functions with centres and widths generated ran-
timated on a single flow and one would naturally expect thabmly. The width is allowed to vary from zero up to a quar-
estimates ok/(r) on flux A would be similar to those on flux ter of the duration of the entire monitoring campaign. Then,
B. However, this is often not the case. Press et al. (1992) claiwo artificial fluxes are created by scaling and shifting the ba-
that it does not matter which image is chosen for\i(e) esti- sic signal in the flux density and time domains, respectively.
mation as the time delay calculations aréisiently robust to The amplitude and flux densities are similar to radio data, 4 cm
variations in thev(r) estimates. Our experience suggests th@aarsma et al. 1999). The flux ratio was seMo= 1/1.44
this may be an overoptimistic expectation. Moreover, the mand the temporal shift was equal ~0= 500 days. The time
trix B (19) is often ill conditioned and we regularise the inveigoes from 0 tdl - A days withs; samples peA days T = 10
sion operation through SVD. ands; = 5), i.e. if the samples were regularly sampled, we
would have a separation af= A/s; days between samples.
To irregularly sample, we disturb the regular observation times
with a random variable uniformly distributed irlP -z +P - 7,
Dispersion is a weighted sum of squareffetiences between P = 0.49. Moreover, we simulated continuous gaps in observa-
Xa(ti) andxg(t;) (Pelt et al. 1996, 1998b,a, 2002). The methogbns by imposing) = 5 blocks of missing data. The blocks are
is similar to those based on DCF (s§1). However, it mod- located randomly with at least one sample between them. We
els the time series of two light curves in atdrent way by worked with block lengths, = 1,2, ..., 5 (see Table 2).
combing them (given a time delayand ratioM) into a single Three levels of noise were used to contaminate the flux sig-
flux flow, y, as in the PRH method8.2). We worked with two nal: 1%, 2% and 3% of the flux; these represent our measure-
versions of this method (see Pelt et al. 1998b): ment errorsra(t;) andog(t;), which are standard deviations of
anl Wa ((tass) — V(t))? the flux distribution at each observation time (see Egs. (1) and

3.3. Dispersion spectra

D2(A) =min (25) (2)). Fig. 2 shows an example of a couple of scaled and shifted
1 M 2n-1 ape -
2351 Wa artificial fluxes.
and We used 20 dferent underlying functions (basic signals).
For each underlying function, we generated 100 realisations for
D2,(A) =min ggll Dol SggwacGac (y(ta) — Y(to))? (26) each'noise Igvel by gdding a Gaussian noise to the underlying
42 M ZZZn 1 SOW. G ’ function as in equations (1) and (2). For each such data set,
a1 SacWecCac we performed 10 realisations of missing observational blocks.
where Overall, we employed 307 020ftkrent data sets, 15351 data
1 1 sets per underlying function (see Table 2).
Wy ——— Woe= ———— 27)
2T 5 2(tarr) + 02(ta) T 02(ta) + o (L)

are the statistical weights taking in account the measurem@nExperiments with artificial data
errors (2) Gac = 1 only wheny(t,) andy(tc) are from diferent

. . In this section, we test our methods §#.2.1 and§2.2.2 on
images, an@, = 0 otherwise. ¥ S

artificial data sets described §4 and compare them to the ex-

) 1- et jf t—t] <o isting methods described §8.1, §3.2 and$3.3. Figures 3—-10
s@ = { o A (28) show two kinds of curves. The top panel shows curves repre-

senting the mean estimated time delgyversus the gap size

4 We have noticed that in some cases a negative sigjsefound. for different noise levels, while lower curves represent means
Also be aware that a negative, y-intercept, in Eq. (24), and = 0
leads to numerical overflow. In such cases we apply a shift up in Eq® More plots can be found at
(22), and we set to a very small positive number. httpy/www.cs.bham.ac.ykjcc/artificial/

0, otherwise
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DS500-5-GAP-0-0-N-2 through SVD, discarding singular values less than the threshold
‘ ‘ ‘ TS (Press et al. 19862).

Results for the fixed kernel width technique (Algorithm
1) are shown in Fig. 3. Herel.owerBound = 900 and
UpperBound= 1200 with increments of 10. Fig. 4 shows re-
sults of the variable kernel width technique. We fixed the num-
ber of neighbours t&k = 3, which was estimated through
cross-validation (see Algorithm 1) withowerBound= 1 and
UpperBound= 15 with increments of 1.

Figures 5 and 6 contain results for the DCF and LNDCF

32}
30}
28

26¢

Flux

241

221

20¢ 1 methods respectively. For both methods, bin size of 100 days
Al | (which is close to the lag average) was used and a search was
performed for the maximum correlation on bins in the range of
wA ] 0 to 2A days A = 500 for artificial data). We tested DCF and
0 500 10001500 2000 2509 3000 3500 4000 4500 5000 LNDCF on regularly sampled data sets ag4n(each bin con-

tains those pairs with the same lag). We found that LNDCF
: never fails, but DCF fails for some shapes of the underly-
ing function (e.g. flat shapes). So, we recommend the use of
LNDCEF, in preference to DCF.

Figure 7 displays the results of the PRH method using im-
age A to estimate the structure function (23), while Fig. 8
shows results obtained using structure function estimated on
image B. When estimating the structure function for each data
setin Table 2, we use bins in the range 2000 days (Haarsma
etal. 1999). Linear regression was used to estimate parameters
¢ andc; in (24). As pointed out ir§3.2, some artificial data
sets yield a negative slope due to gaps, high noise and flat fea-
tures on some underlying functions (when > 3 and noise
> 2%). Therefore, in such cases, we omit them to get more re-
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 liable results. Also, we regularise as above to inB(19), be-

Days cause zero noise and duplicate times may occyr(it8) lead-
) o _ ing to singularity. Consequently, we do not use the fast methods
Fig. 2. Artificial flux data generated to simulate a couple of scaled aI'F]g getA in (19) (see Rybicki & Press 1995).

hifted fl ing f th h itational lens. T . . A
Snitied fluxes coming from a quasar through & gravitational 1ens. I1Ne o oq 1ts of the Dispersion spectra method are in Figs. 9

top plot shows the underlying function without observational gaps. 5 5 .
Also shown are the error bars of 2% of the flux value. Below are tf#d 10 forD7 andDj , respectively. We set = 100 as decor-

same noise-free fluxes with imposed observational gaps of length 5elation lengtf? for D ,.
We point out that the results in Figs. 3 to 10 were obtained

DS-500-5-GAP-5-5-N-0
T T T T

34

Flux

14
0

Table 2. Artificial data sets under analysis on the same collection of artificial data sets and are plotted with
the same scale on theaxis. Compared to the existing meth-

Gap sizes ods (DCF, LNDCF, PRH, Dispersion spectra), our methods are

Noise | O 1 2 3 4 5 more accurate and robust with respect to the increasing gap

0% 1 10 10 10 10 10 size and noise level. In general, for all methods, there is an

1% 100 1000 1000 1000 1000 1000 obvious tendency of increased uncertainty as the gap size in-
2% 100 1000 1000 1000 1000 1000 creases. Increasing noise levels in the data result in increased

3% 100 1000 1000 1000 1000 1000  ynpcertainty of the time delay estimates.
Sub-Total| 301 3010 3010 3010 3010 3010 We also tested our method on (annual) periodic §egsg-

Total = 15 351 data sets per underlying function.

20 underlying functions yield 307 020 data sets. ing from 1 to 8 months, corresponding to observing seasons

from 4 to 11 months. The results are in Fig. 11 f). The perfor-
mance of DCF, LNDCF, Dispersion spectra and PRH method
(structure function from image A only) on periodic gaps is also

of standard deviations, of the estimated time delay per un_dep|cted in Fig. 11. The parameters of methods were estimated

derlying function. The quantities of data sets involved in thi&® above, except for DCF and LNDCF where now we look for

analysis are shpwn in Table 2. . . ) .8 This value of decorrelation length gives the best resolution on ar-
In all experiments reported in this section, the followingficial data. Pelt et al. (1996) and Haarsma et al. (1999) dsed0

parameter settings were used: = 1/1.44, Anin = 400 and for radio data.

Amax = 600 with increments of 1 day. We used a threshold” we are thankful to the anonymous reviewer for making this sug-

of 0.001 (found empirically) to regularise inversion in Eq. 14estion.
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a maximum correlation between 400 and 600 days (showina
less variancé\,); sometimes the time delay is below 400 da DS780071 1020 BCF

because we adopt a lower bin if there is no bin of 400 days. i
see again that our method outperforms others. sool ,
-
DS-500-1to 20 fixed kernel width 450 7
550 T T
4008 Il Il Il Il ]
50 G 4 X 250 T T T T m|
o ?
< 200 —
450 - -
150 —
-
100 —
400~ -
I I I I —— 0% Noise
=or 0% Noise || 0L —%— 1% Noise ||
—*— 1% Noise 1 —— 2% No!se
200 —— 2% Noise | ) ) ) ‘ —&— 3% Noise
—6— 3% Noise 00 1 2 3 4 5
Gap size
150~ -
) 1000 Fig. 5. Results of the application of the DCF method §i®.1) on all
artificial data sets (segt). Details are ir§5.
K MM%
ol T I H DS-500-110 20 LNDCF
0 1 2 3 4 5 550 T T T T

Gap size
Fig. 3. Results of the application of our Kernel method with fixe sooém

width (in §2.2.1) on all artificial data sets (s€4). Details in§5.

450 -
——— 0% Noise
—*— 1% Noise
—&— 2% Noise
400 —6— 3% Noise |-{

DS-500-1 to 20 variable kernel width
550 T T

L 2

5008 & &

450 q

400 q

= T T T T | Gap size
250 ——— 0% Noise
—*— 1% Noise

200} o ZeNoise Fig. 6. Results of the application of the LNDCF method §8.1) on
all artificial data sets (segt). Details are ir§5.

150+ q

100 q

issue, we let the PRH method "play at its own game” by con-
* W structing a set of underlying functions using PRH methaith
o T+t ——— 1 aspecified structure function (SF). We refer to such data sets
Gap size °  as artificial PRH data. These are Monte Carlo time series, gen-
. L . ., erated exactly as described in Press et al. (1§92), with a
F|_g.4. Results of the app!l_ca}tlon of our Kernel methpd Wlth Va”ablﬁxed SF given by, = 1/5.36 x 10° andc, = 0.246 (Vanden
width (in §2.2.2) on all artificial data sets (sé4). Details are ir§5. Berk et al. 2004; Pindor 2005). We use a monitoring campaign
length of 8 months with dierent sampling rates)(Low, every
seven daysii() High, every three daysiii() Irregular, every two
6. Artifcial data sets through PRH method days wilh periodi gaps of ien days (Eigenbrod et al. 2005).
A possible criticism of our testing framework i may be We randomly choose seven time delays in the range of 30—
that we construct artificial underlying functions (fluxes) as lint00 days. For each combination of time delay and sampling
ear superpositions of Gaussian functions, while our propog@de, we generate 100 Monte Carlo data sets. To simulate obser-
model is a linear superposition of Gaussian kernels (see (¥ptional errors, we use fixed variances sflD~" and 10~ in
(5)). However, widths of the Gaussian functions used to coprder to get distinguishable shapes by eye, i.e. low noise. Then,
struct the underlying functions are much larger than widths of We are thankful to the anonymous reviewer for making this sug-
Gaussian kernels in our model formulation, and so this Crifagtion,
icism is less relevant. Still, in order to properly address this
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DS-500-1t0 20 PRH SF from A
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Fig. 7. Results of PRH method with structure function from image AFig- 9. Results of the application of the Dispersion spectra med
(in §3.2) on all artificial data sets (s&@) except those cases where(in $3.3) on all artificial data sets (s¢é). Details are irg5.
negative slope occur (355 cases). Detail§5n

DS-500-1to 20 Dispersion spectra D4
550 T T

DS-500-1to 20 PRH SF from B
550 T T

500% |

D
¥ g————Vv  — 3
500 2 = = <

400 - B
250

0% Noise | |

400 - ‘ ‘ ‘ ) — —*— 1% Noise
2501 } } f f — 200 —<— 2% Noise |
0% Noise —6— 3% Noise
—*— 1% Noise
2001 —<— 2% Noise | 150+ 7
—6— 3% Noise <
150 - 100 N

100 P 50‘:3;8;&@%%

gw
7 ]

L 0 :
50, M o 1 > 3 P 5

¥ ¥ * * Gap size
L
1

Gap size ° Fig. 10. Results of the application of the Dispersion spectra method

. L . Dz (in §3.3) on all artificial data sets (s€d). Details are ir§5.
Fig. 8. Results of the application of the PRH method with structure

function from image B (in§3.2) on all artificial data sets (se)
except those cases where negative slope occur (105 cases). Detaily afighe gravitational lens Q0957+561: radio

in §5. observations

In this section we apply the tools developed in this paper to es-

timate the time delay for the much studied quasar Q8961
we analyse all the artificial PRH data sets with our methods\i}e yse radio monitoring data at 4 cm and 6 cm wavelengths.
§2 and the PRH method as describe@®2. For the 6 cm data set, we use the light curve with four points

If we keep the SF (i.ec; andc;) fixed to its true value from Spring 1990 removed, as in (see Haarsma et al. 1999),
(as assigned to the simulations), then the performance of Tfteese radio data sets are plotted at the top in Fig. 1. Our results
PRH method is outstanding, with almost zero bias and zeae presented in Table 4.
variance for all data sets as a whole. However, the performanceTo estimate the time delay for this quasar, we use both the
is not always as good when applied to individual data sets (direed kernel width and variable kernel width approaches out-
realisation). Further, if we assume that we do not know the trlieed in§2. We employ flux ratiop! = 1/1.44 andM = 1/1.43
SF used to generate the data, and we estimate it through ftiiéhe 4 cm and 6 cm data, respectively (the most likely values
data itself (se€3.2), then our methods perform better than the; ]
Data from http://space.mit.edu/RADIO/papers.html.

PRH method, as shown in the case of the artificial datin Note that the 6 cm data set has a record not included in the published

(see Table 3). In fact, one is unable to recover the true SF fr% ers and the observation on 11th April 1994 is recorded a day
the Monte Carlo data sets. Table 3 shows results for the thigier in previous studies.

case of sampling only, since others give similar results.
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Table 3. Results on PRH data: irregular sampling and periodic gapable 4. The time delay between Q095361 A & B estimated from

only, observational errors with variance<110~7, see$6. radio “light” curves at 4 cm and 6 cm.

A PRH* PRH** Kernels*** Kernel method: fixed width  variable width

True delay meanstd meaastd meaastd 4cm 408.3:10 404.811
34 34.:2.3 23.221.9 33.210.3 6 cm 459.9:18 451.130
43 43.14.7 45.:16.2 43.42.4 6 cm* 405.3:29 412.6:35
49 50.6:7.0 47.217.5 48.86.9 Note The time delays are in days.
59 60.:5.5 58.%21.4 59.810.4 The construction of thé cm* sample, which contains
66 66.0:2.5 63.323.2 66.6:9.1 only the 6 cm observations that have a corresponding 4 cm
76 76.#3.8 71.122.2 75.%11.5 observation at the same epoch, is describeg¥in
99 100.97.2 97.221.1 103.212.5

*  PRH method with SF fixed to true values andc,.

** PRH method with SF estimated from the data, image A.  Table 5. Results from experiments with artificial data sets.
**x* Kernels with variable widthk = 3.

Method Figure

Kernel method with fixed width Fig. 3

Kernel method with variable width Fig. 4
given our models). We tested time delays betwagp = 300 DCF and LNDCF Figs. 5and 6
andAmax = 500, with increments of 1 day. As in the previous  PRH method, Structure function from A Fig. 7
section, we use a threshold aD01 when regularising matrix PRH method, Structure function fromB  Fig. 8
inversion through SVD. The noise model is assumed to be zero Dispersion spectradf andD3 ) Figs. 9 and 10

mean i.i.d. Gaussian with standard deviation of 2% of the ob-
served flux value.

For the fixed kernel width technique§Z.2.1), we use increases, we have generated a new data set, 6 cm*, in order
Algorithm 1 with the following parameterd:owerBound = to avoid the €ect of the diferent gap sizes for fierent wave-
100 andU pperBound= 1200 with increments of 1 day, Thejengths. The 6 cm* data set contains 6 cm observations sampled
selected kernel widthsJ) were 481 and 488 days, and the essnly at observation times of the 4 cm dataset. In other words,
timated time delays were 409 days and 459 days for the 4 g8 keep a 6 cm observation at tirné there is a 4 cm obser-
and 6 cm bands, respectively. To calculate confidence interv@dsion at the same time The 4 cm and 6 cm* data sets both
on our time delay estimates, we performed 500 Monte Cagd@ntain 58 observations.
simulations by adding noise realisations to the observed data. Time delay estimates obtained by our methods on 500
Confidence intervals were determined as standard deviatigfgnte Carlo samples based on the 6 cm* data set are presented
of time delay estimates across the Monte Carlo samples. WeTable 4. The ‘optimal’ kernel parameters, = 528 and
found delays of 40810 days and 46618 days for 4 cm and k = 5, are obtained following the procedure described above.
6 cm respectively. Flux reconstructions with these time delayfe estimated time delays are 405 days and 412 days for the
are shown in in Figs. 12 a) and 12 b). fixed kernel width and variable kernel width methods, respec-
For the variable kernel width metho§Z.2.2), the number tively. The resulting flux reconstructions are shown in Figs. 12
of neighbours determining local kernel widths was estimated) and 12 f).
by Algorithm 1 ( is replaced b¥) with LowerBound= 1 and On comparing the 4 cm and 6 cm* samples, which are pairs
U pperBound= 15 (increments of 1). We obtainéd= 3 for of the observations at the same epoch and thus have identical
4 cm, and the estimated time delay was 405 days. Confidegegs in the time series, we find a consistent value for the esti-
interval computed on 500 Monte Carlo samples was 40418 mated time delay. This exercise indicates that the disagreement
Flux reconstructions with this time delay are shown in Fig)etween the 4 cm and 6 cm datasets is |arge|y due to samp”ng
12 c). For 6 cm data, we founkd = 3, and the delay of 450 and systematic errors.
days. The 500 Monte Carlo samples gave us a time delay of |t is evident that the large variation in the estimates in the
451.1:30 days. Flux reconstructions are presented in Fig. {Zlues of time delay, measured in several analyses of the same
d). observed data sets that we analyse in this paper, is due to the
Using the PRH method, Haarsma et al. (1999) report tinpgesence of the gaps in the monitoring at the two wavelengths.
delays of 39212 and 452;Z days for the 4 cm and 6 cmSuch gaps are unavoidable in realistic long-term observing pro-
data, respectively, and 4830 on the combined+6 cm data grammes, often leading to unacceptably deviant time delays (in
set. They also report results of the Dispersion spectra methgtis case, too large by more than 10%). Several recent analyses
383113 and 41623 days for the 4 cm and 6 cm data, respedrave come to this conclusion in various ways (e.g. Gil-Merino
tively, and 39577 days on the combined4 cm data set. et al. 2002; Pindor 2005; Eigenbrod et al. 2005).
There has been a great deal of concern about tfereince
in time delay estimates from the twofidirent wavelengths, 8. Conclusions
since gravitational lensing is achromatic. Inspired by the re-
sults from our experimentation with artificial data, where thé/e have introduced a new way of measuring the time delay
uncertainty of time delay estimates increases as the gap $ieéwveen light curves of two images of a gravitationally lensed
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system, based on generalised linear regression with fixed- &eferences

variable-width Gaussian basis functions (Kernels) §2&.1 . .

and§2.2.2). On a large set of controlled experiments using aBruégg ., Magain, P., Sohy, S., & Hjorth, J. 2001, A&A, 380,
ods wilh o ther methods ueed n e icraurefo i 1S Y. SChld, R, Abajas, C. et al. 2003, AgA, 567, 71
delson, R. & Krolik, J. 1988, ApJ, 333, 646

lay estimation, notably the DCF, LNDCF, PRH and Dispersion, .- 04 °A"Courbin, F., Vuissoz, C., et al. 2005, AGA, 436

spectra methods (see Table 5). o5

Running a controllgd set of exper_lments Is essential for -alco, E. E., Gorenstein, M. V., & Shapiro, I. 1. 1991, ApJ, 372,
well-grounded comparison of competing models. For the ar 264
ficial data, unlike in the case of observed fluxes, we have the oy ¢ b Marshall, P. J., Baltz, A. E., et al. 2004,
luxury of knowing exactly the magnification ratid and the : . : ;
. ) : . American Astronomical Society Meeting Abstracts, 205,
time delayA; the noise process is also known. Therefore, we

; ) . . 108.27
can reliably measure t_he bias,( top of Flgs. 3-10) and varl- Gil-Merino, R., Wisotzki, L., & Wambsganss, J. 2002, A&A,
ance {\,, bottom of Figs. 3-10) of the time delay estimates 381 428
given by the studied methods. Obviously, one can never fully . oo n pewitt, 3., Lehar, J., & Burke, B. 1997, ApJ, 479,
measure the bias when estimating the time delay from real ob-102
servaﬂo_ns. Qn the artificial data, our kernel-based methods %F'&r\rsma, D., Hewitt, J., Lehar, J., & Burke, B. 1999, ApJ, 510,
sented in this paper came across as the most accurate and sta

methodologiesforestimatingthetimedelaysbetweenmultiql%stie T  Tibshirani R. & FEriedman J. 2001 The

Images Qfagrawtatlonally lensed qyasar_. . . Elements of Statistical Learning: Data Mining, Inference,
Previous attempts at generating similar artificial data . .
and Prediction (Springer)

have tried to simulate specific data sets (see Pijpers 19gla, kin. S 1999. Neural Networks: a Comprehensive
Burud et al. 2001). Our artificial data sets contain sim- Izoun’dati.on (Prer’1tice Hall) ' P

ulated light curves of widely varying (but stil realis:'Kochanek C. & Schechter, P. 2004, Carnegie Observatories
tic) shapes, observational gaps and noise levels (thes stroph;/sic;s Series. 2 T '

can be made available on request — see more plOtSK%tndic T Turner E bolley W, et al. 1997, ApJ, 482, 75
httpy//www.cs.bham.ac.ykjcc/artificial). At the bottom of Larsen, R.’&Hans’en”P 199’7 A&A 1'21 58'7 ’ ’
Figs. 3-10, we can observe a general trend of increased T J .Hewitt 3 l—ieo.berts D Py I'3urké B. 1992 ApJ. 384
certainty as the gap size increases. The uncertainty is also pro;., T U T P AR, '

. : 453
portional to the noise level. .
Our methods for estimating the time delay introduced portsell, £, Danle, H., & Hannestad, S. 2005, ApJ, 619, 733

sections§2.2.1 and§2.2.2, give similar results (see Figs. 3 &IBSCOZ’ A Alcalde, D., Serra-Ricart, M., etal. 2001, ApJ, 552,

4), although the variable kernel width method tends to requi&aSCOZ A Mediavilla. E.. Goicoechea. L.. Serra-Ricart M. &

less computational time. Buitrago, J. 1997, ApJ, 479, L89

Finally, we have estimated the time delay between of tv@valdsen 3 Teuber J.. Schild. R.. & Stabell. R. 2003. A&A
images of the quasar Q095561 from radio observations at 402 89,1 v T T T ' '

4 cm and 6 cm. The time delay estimates given by our meth ; .
are in the range of 405-412 days (see Table 4), which are Ioavgeérlt’ J Hjorth, J., Refsdal, S., Schild, R., & Stabell, R. 1998a,

. i . A&A, 337, 681
than, but consistent with, most of the other estimates from tB%It J., Kayser, R., Refsdal, S., & Schramm, T. 1996, AGA
same or similar radio data sets ($£8. However, the 6 cm* e Y T T ' '

) o . 305, 97
data set, which by construction includes only observations ﬂf@élt J. Refsdal. S.. & Stabell. R. 2002 A&A. 389. L57

are performed at the same epoch as those in the 4 cm datapsag, 3. Schild. R.. Refsdal. S. & Stabell. R. 1998b. AGA. 336
yields essentially the same value for the time delay at that ob-,. 5" R T T ' ' '

tained from the 4 cm data set (these can be combined to yiEJI ers. F. 1997 MNRAS. 289. 933
408+ 12 days, the errors being lower for just the 4 cm data), dor ' B' 2005' ApJ 626’ 649'

opposed to a value 6f450 days as obtained from the full 6 CMbress ,H. Flanr,1ery ,B. Téukolsky S., & Vetterling, W, 1986
data set, which covers a longer monitoring period. . i A, . '

- Numerical Recipes (Cambridge University Press)
We co.nclude that such ;ystemancffelrences between "€ bress, W., Rybicki, G., & Hewitt, J. 1992, ApJ, 385, 404
sults obtained from observations at various wavelengths are ello-Soares, M., Basu, S., & Christensen-Dalsgaard, J.
to the irregular sampling, and in particular, due to the presence; gqq MNRAé 30'9 35 T ’
of large gaps in the monitoring data. Experiments with sim 'efsdall S 1964, MNI,?AS 128. 307
lated data sets like ours help in the understanding of how gs‘éfsdalz S 1966: MNRASZ 134: 315

results depends on the sampling, and in assessing the reIiabltg%icki G. & Press, W. 1992, ApJ, 398, 169
of the time delays obtained by various methods. Rybicki, G. & Press, W. 1995, Phys. Rev. Lett., 74, 1060
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Fig. 11. Results on artificial data sets with periodic gaps, $#and§5. All plots have the samg-axis scale, and the results are on the same
data sets but with @ierent methoda) DCF with bin sizeAr = 100 (see§3.1),b) LNDCF with bin sizeAr = 100 (see§3.1), c) Dispersion
spectraD? (see§3.3).d) Dispersion spectr®3 , with 6 = 100 (se€3.3),e) PRH method with structure function from image A (§822), and

f) Kernels with variable width = 3 (see§2.2.2). The results are similar to those in Figs. 4 to 10, respectively§ Bt more details.
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0957+561 6¢cm*; Full reconstruction; w=528 M = 1/1.41 A=405.31
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Fig. 12. Radio observations of gravitationally lensed images A & B of QOZHL. We show reconstructions with fixed parametajst cm
with fixed width @ = 481,A = 4083), b) 4 cm with variable widthK = 3, A = 404.8), ¢) 6 cm with fixed width { = 488,A = 4599),d) 6 cm
with variable width k = 3, A = 451.1), e) 6 cm* with fixed width = 528,A = 4053), andf) 6 cm* with variable width k = 5, A = 4126).

Within each plot, at the top is the image A and at the bottom is image B. The continuous lines are our reconstructed underlying light curves,

ha(ty) andhg(t,) in Eq. 9.



