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ABSTRACT
Strongly lensed variable quasars can serve as precise cosmological probes, pro-
vided that time delays between the image fluxes can be accurately measured.
A number of methods have been proposed to address this problem. In this
paper, we explore in detail a new approach based on kernel regression esti-
mates, which is able to estimate a single time delay given several datasets for
the same quasar. We develop realistic artificial data sets in order to carry out
controlled experiments to test of performance of this new approach. We also
test our method on real data from strongly lensed quasar Q0957+561 and
compare our estimates against existing results.

Key words: Gravitational lensing, quasars, Q0957+561A,B, Time series,
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1 INTRODUCTION

Time delays between images of strongly-lensed distant
variable sources can serve as a valuable tool for cos-
mography, providing an alternative to other tools, such
as CMB measurements and distance measures based on
standard candles (e.g., Refsdal 1964; Linder 2011; Suyu
et al. 2013; Greene et al. 2013; Treu et al. 2013). Actively
studied strong quasars with time-delay measurements
include RXJ1131-1231 (e.g., Suyu et al. 2013; Tewes
et al. 2013) and B1608+656 (e.g., Fassnacht et al. 2002;
Suyu et al. 2010; Greene et al. 2013); Q0957+561 (e.g.,
Oguri 2007; Fadely et al. 2010; Hainline et al. 2012);
SDSS J1650+4251 and HE 0435-1223 (e.g., Kochanek
et al. 2006; Vuissoz et al. 2007; Courbin et al. 2011);
SDSS J1029+2623 (e.g., Fohlmeister et al. 2013); and
SDSS J1001+5027 (e.g., Rathna Kumar et al. 2013).
These have been used to infer Hubble constant mea-
surements with competitive accuracies.

However, time delays are difficult to measure be-
cause of the unknown intrinsic source variability, the
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limited observational cadence, and the measurement
noise. A number of methods have been developed to
accurately estimate time delays. These include the dis-
persion spectra method (Pelt et al. 1998; Vuissoz et al.
2007; Courbin et al. 2011); the polynomial and curve-
fitting methods (Vuissoz et al. 2008; Eulaers et al. 2013);
the free-knot spline, variability of regression differences
(based on Gaussian process regression), and dispersion
minimisation (Tewes, Courbin & Meylan 2013); Gaus-
sian process modelling (e.g., Hojjati, Kim & Linder
2013); and the combined method based on the PRH
approach (Hirv, Olspert & Pelt 2011). However, this re-
mains an active area of research, especially in view of
the upcoming surveys such as LSST which will provide
unprecedented data sets with strongly lensed distant
quasars (e.g., Treu et al. 2013) (and the recent mock
data challenge Dobler et al. 2015; Liao et al. 2015).

Some of the authors of the present work previously
proposed a kernel-based method with variable width (K-
V) for time delay estimation (Cuevas-Tello, Tiňo & Ray-
chaudhury 2006). This was combined with an evolution-
ary algorithm (EA) for parameter optimisation (Cuevas-
Tello et al. 2009). However, the computational time
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complexity of EA method is O(n6) (Cuevas-Tello 2007).
This restriction makes it inadequate for handling long
time series, e.g. Schild & Thomson (1997) data1. This
complexity is due to matrix inversion in kernel-based
methods for weights estimation. Automatic methods for
time delay estimation have been proposed to speed up
algorithms in order to deal with long time series, based
on Artificial Neural Networks (Gonzalez-Grimaldo &
Cuevas-Tello 2008); these can be parallelized (Cuevas-
Tello et al. 2012). Alternatively, a simple hill-climbing
optimisation has been proposed (Cuevas-Tello & Perez-
Gonzalez 2011).

The main contribution of the present paper is a new
probabilistic method that is efficient, robust to observa-
tional gaps, capable of directly incorporating measured
noise levels reported for individual flux measurement,
and able to estimate a single time delay given several
datasets for the same quasar. We also carefully construct
synthetic data sets within the framework of multiobjec-
tive optimization to reproduce realistic flux variability,
observational gaps, and noise levels. This allows us to
test our proposed kernel regression estimate method on
synthetic as well as real data, in order to measure the
bias and variance of the method.

The paper is organised as follows. Section §2
presents the Nadaraya-Watson estimator with known
noise levels (henceforth NWE ) and in §3 we extend
it to a linear noise model with unknown noise (hence-
forth NWE++). In section §4, we discuss two previously
proposed delay methods, cross correlation and disper-
sion spectra, to compare to the new approach. Section
§5 shows the real datasets studied in this paper, and
presents our procedure for generating synthetic data.
The results are given in §6, and we conclude with a
summary in §7.

2 THE MODEL

We consider a distant point source (e.g., a quasar)
with two strongly lensed images2, referred to as A
and B, and one or more time series of flux measure-
ments, possibly taken by different instruments and/or
at different frequencies. The entire data collection D =
{D1, D2, ..., DL} consists of L data sets Dℓ, ℓ ∈ [1, L],
each corresponding to a sequence of measurements
taken with a given instrument and at a given frequency.
Data sets Dℓ consist of flux measurements of both im-
ages, yℓ

A and yℓ
B, taken at a non-uniform sequence of Nℓ

observational times times tℓ1, t
ℓ
2, ..., t

ℓ
Nℓ .

Formally, each set Dℓ contains Nℓ 3-tuples
(tℓk, y

ℓ
A,k, y

ℓ
B,k), k = 1, 2, ..., Nℓ,

Dℓ = {(tℓ1, yℓA,1, y
ℓ
B,1), (t

ℓ
2, y

ℓ
A,2, y

ℓ
B,2), ..., (t

ℓ
Nℓ , y

ℓ
A,Nℓ , y

ℓ
B,Nℓ )},

where yℓ
A,k and yℓ

B,k denote the observed fluxes of image

A and B, respectively, in Dℓ at time tℓk. We also assume

1 http://cfa-www.harvard.edu/∼rschild/fulldata2.txt
2 generalisation to four images is straightforward

that the standard errors σℓ
A,k and σℓ

B,k are known for

each observation yℓ
A,k and yℓ

B,k, respectively.
The fluxes corresponding to the two images A and

B are collected in sets

Dℓ
A = {(tℓ1, y

ℓ
A,1), (t

ℓ
2, y

ℓ
A,2), ..., (t

ℓ
Nℓ , y

ℓ
A,Nℓ)}

and

Dℓ
B = {(tℓ1, y

ℓ
B,1), (t

ℓ
2, y

ℓ
B,2), ..., (t

ℓ
Nℓ , y

ℓ
B,Nℓ )}.

For observations at frequencies above a few tens of
MHz, dispersion yields sub-hour arrival time differences,
and is not significant relative to typical time-delay mea-
surement accuracy. We therefore assume that the time
delay between gravitationally lensed fluxes does not de-
pend on the wavelength at which the observations are
taken. We also assume stationarity of the lensing ob-
ject (e.g., a galaxy) in the sense that the delay does not
change in time; in particular, we ignore micro-lensing
contributions.

2.1 Nadaraya-Watson Estimator with Known
Noise Levels (NWE)

Given a delay ∆, we seek to find a probabilistic model
p(D|∆) that explains3 D. Assuming independence of the
observation sets Dℓ, we obtain

p(D|∆) =
L
∏

ℓ=1

p(Dℓ|∆).

Assuming independent observations at distinct mea-
surement times, we get

p(Dℓ|∆) =
Nℓ
∏

k=1

p(yℓ
A,k, y

ℓ
B,k|t

ℓ
k,∆)

and further assumption of independence of measure-
ment noise in images A and B leads to

p(yℓ
A,k, y

ℓ
B,k|t

ℓ
k,∆) = pA(y

ℓ
A,k|t

ℓ
k,∆) pB(y

ℓ
B,k|t

ℓ
k,∆).

2.1.1 Modelling the source using image A

It is typically assumed that the measurement uncertain-
ties on fluxes Dℓ

A and Dℓ
B are normally distributed, with

zero mean Gaussian noise of known standard deviation
σℓ
A,k and σℓ

B,k associated with noisy observations yℓ
A,k

and yℓ
B,k, respectively. We model the mean of image

A using Nadaraya-Watson kernel regression (Nadaraya
1964), (Watson 1964),

f ℓ
A(t) =

Nℓ
∑

k=1

yℓ
A,k

K(t, tℓk;h
ℓ)

∑Nℓ

j=1 K(t, tℓj ;h
ℓ)
, (1)

3 We slightly abuse mathematical notation as we are ac-
tually building conditional models of flux values, given the
observation times.
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where f ℓ(t) is the predicted flux at time t and
K(t, tℓj ;h

ℓ) is a kernel positioned at tℓj with bandwidth
parameter hℓ. We use the Gaussian kernel

K(t, tk;h) = exp

{

−
(t− tk)

2

κ2(tk)

}

,

where the kernel scale κ(tk) at position tk is defined
as the distance spanned by the h neighbours (to the
left and to the right) of tk, i.e. κ(tk) = tk+h − tk−h.
This approach to modelling the noise should work when
the autocorrelation length of the observed flux is much
longer than any gaps in the data during which the flux
is modelled via the Nadaraya-Watson kernel regression
estimator. If the autocorrelation length of the observed
flux, which can be estimated from a time interval when
the observations are relatively closely spaced, is compa-
rable to or larger than a data gap, this approach (or any
other approach that does not incorporate a physically
accurate flux model) cannot be trusted.

To respect the nature of gravitationally lensed data,
we impose that the mean model for image B follows
exactly that for image A, up to scaling by a constant4

M > 0 and time shift by ∆:

f ℓ
B(t;∆) = M f ℓ

A(t−∆).

Since the shift ∆ plays no role in modelling image
A, we write

p(yℓA,k, y
ℓ
B,k |tℓk,∆) = pA(yℓA,k |tℓk) pB(yℓB,k |tℓk,∆), (2)

where

pA(yℓA,k|tℓk) =
1√

2π σℓ
A,k

exp

{

−1

2

(yℓ
A,k

− fℓ
A(tℓ

k
))2

(σℓ
A,k

)2

}

(3)

and

pB(yℓB,k |tℓk,∆) =
1√

2π σℓ
B,k

· exp
{

−1

2

(yℓ
B,k

−Mfℓ
A
(tℓ

k
−∆))2

(σℓ
B,k

)2

}

.

(4)

Note that given ∆, the only free parameter of
p(yℓ

A,k, y
ℓ
B,k|t

ℓ
k,∆) is the kernel width parameter hℓ in

the formulation of the mean model (1).
Ignoring constant terms and scaling, the negative

log likelihood, − log p(Dℓ|∆), forms the approximation
error for the set Dℓ,

Eℓ
A(hℓ;∆) =

Nℓ
∑

k=1

{

(yℓ
A,k

− fℓ
A(tℓ

k
))2

(σℓ
A,k

)2

+
(yℓ

B,k
−Mfℓ

A
(tℓ

k
−∆))2

(σℓ
B,k

)2

}

.

(5)

Writing down the negative log likelihood for the
whole data, − log p(D|∆), and ignoring scaling and con-
stant terms leads to the total approximation error

EA(h;∆) =
L
∑

ℓ=1

Eℓ
A(hℓ;∆),

4 assumed known, or easily estimated in a preprocessing
stage using the means of the fluxes in Dℓ

A
and Dℓ

B

where h = (h1, h2, ..., hL) is a vector that collects kernel
width parameters for all datasets D1, D2, ..., DL in D.

2.1.2 Modelling the source using image B

One can, of course, start by building a mean flux model
f ℓ
B(t) for image B via Nadaraya-Watson kernel regres-

sion,

fℓ
B(t) =

Nℓ
∑

k=1

yℓB,k

K(t, tℓ
k
;hℓ)

∑Nℓ

j=1 K(t, tℓj ;h
ℓ)

, (6)

imposing that the mean model of image A is

fℓ
A(t; ∆) =

1

M
fℓ
B(t +∆).

Crucially, since both images A and B come from the
same source, we require that the kernel width hℓ for the
mean models f ℓ

A(t) and f ℓ
B(t) (and hence for f ℓ

A(t;∆)
and f ℓ

B(t;∆) as well) be the same for the whole dataset
Dℓ.

Using the same reasoning as in section §2.1.1, we
obtain an approximation error for the set Dℓ:

Eℓ
B(hℓ;∆) =

Nℓ
∑

k=1

{

(yℓ
A,k

− 1
M

fℓ
B
(tℓ

k
+∆))2

(σℓ
A,k

)2
+

(yℓ
B,k

− fℓ
B
(tℓ

k
))2

(σℓ
B,k

)2

}

leading to the total approximation error

EB(h;∆) =
L
∑

ℓ=1

Eℓ
B(hℓ; ∆).

2.1.3 Estimating the Unique Time Delay across D

Since there is no a-priori reason to prefer one image
over the other, we aim to find the unique delay ∆ that
minimises both the errors EA(h;∆) and EB(h; ∆) with
the same ‘level of importance’. In other words, we are
looking for ∆ and the set of kernel width parameters
h = (h1, h2, ..., hL), one for each dataset Dℓ in D, that
minimise the error

E(h;∆) = EA(h;∆) + EB(h;∆).

Note that the imposition that there is a unique
delay ∆ for the whole data D and that the kernel
widths are the same throughout each set Dℓ for all the
corresponding mean models f ℓ

A(t), f
ℓ
B(t), f ℓ

A(t;∆) and
f ℓ
B(t;∆), not only makes sense from the point of view

of underlying physics, but is also a stabilising factor in
the analysis and modelling of D.

The structure of our problem enables us to use an
efficient and practical approach to finding the optimal
time delay ∆∗. The error E(h;∆) to be minimised can
be rewritten as

E(h;∆) =
L
∑

ℓ=1

Eℓ(hℓ;∆), (7)

where

Eℓ(hℓ; ∆) = Eℓ
A(hℓ;∆) + Eℓ

B(hℓ; ∆).

For every test value ∆ we can separately optimise
Eℓ(hℓ; ∆) for hℓ within each set Dℓ. Note that this boils
down into a set of L one-dimensional optimisations of
bandwidths h1, h2, ..., hL. In addition, because of the
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nature of the mean models, the errors Eℓ(hℓ;∆) will
behave ‘reasonably’ with changes in hℓ, i.e. the changes
will be smooth and we can expect a roughly unimodal
shape of cross-validated Eℓ(hℓ;∆). That enables us to
use further speed-up tricks (such as halving) in the 1-
dimensional optimisations. The estimated time delay is
the one with the minimal overall E(h;∆) for the (cross-
validation) optimised kernel width parameters h.

3 NADARAYA-WATSON ESTIMATOR
WITH LINEAR NOISE MODEL
(NWE++)

In section §2 only the mean fluxes were modelled, the
standard errors on observations were assumed known.
Our approach can be extended to full probabilistic mod-
elling by assuming a model for the relationship between
the noise level and the observed fluxes. Here, we con-
sider a simple model in which the standard error on
the measured flux depends linearly on the observed flux
value y, i.e., σ(y) = ν · y, where the proportionality
constant ν depends on the wavelength at which the
flux is measured (e.g., ν could be 1% and 0.1% for ra-
dio and optical data, respectively). Assuming that the
mean models for dataset Dℓ are fitted reasonably well,
so that yℓ

I,k ≈ f ℓ
I (t

ℓ
k), I ∈ {A,B}, then to lowest order

σ(yℓ
I,k) ≈ νℓ · f ℓ

I (t
ℓ
k).

Most of the material developed in sections 2 will
stay unchanged, modifications are required only in the
formulation of the noise models (3) and (4):

pA(yℓA,k|tℓk) =
1

νℓ
√
2π fℓ

A
(tℓ

k
)
exp







−1

2(νℓ)2

[

yℓ
A,k

fℓ
A
(tℓ

k
)
− 1

]2






(8)

and

pB(yℓB,k |tℓk,∆) =
1

Mνℓ
√
2π fℓ

A
(tℓ

k
−∆)

· exp







−1

2(νℓ)2

[

yℓ
B,k

Mfℓ
A
(tℓ

k
−∆)

− 1

]2






.

(9)

This time, however, we can write a full probabilis-
tic model for any time point t and evaluate the like-
lihood within our model given any observation pair
(yℓ

A(t), y
ℓ
B(t)) that could have been measured at time

t:

pA(yℓA(t)) =
1

νℓ
√
2π fℓ

A
(t)

exp







−1

(νℓ)2

[

yℓA(t)

fℓ
A
(t)

− 1

]2






(10)

and

pB(yℓB(t)|∆) =
1

Mνℓ
√
2π fℓ

A
(t −∆)

· exp







−1

(νℓ)2

[

yℓB(t)

Mfℓ
A
(t−∆)

− 1

]2






.

(11)

The approximation error Eℓ
A(h

ℓ;∆) to be min-
imised by the choice of kernel width hℓ now reads:

E
ℓ
A(h

ℓ
; ∆) =

1

(νℓ)2

Nℓ
∑

k=1











yℓ
A,k

fℓ
A
(tℓ

k
)
− 1





2

+





yℓ
B,k

Mfℓ
A
(tℓ

k
− ∆)

− 1





2






.

Following analogous arguments for the case of mod-
elling the source using image B, we have

pA(yℓA(t)|∆) =
M

νℓ
√
2π fℓ

B
(t +∆)

· exp







−1

(νℓ)2

[

M yℓ
A
(t)

fℓ
B
(t +∆)

− 1

]2






(12)

and

pB(yℓB(t)) =
1

νℓ
√
2π fℓ

B
(t)

exp







−1

(νℓ)2

[

yℓB(t)

fℓ
B
(t)

− 1

]2






,

which leads to the approximation error

Eℓ
B(hℓ;∆) =

1

(νℓ)2

Nℓ
∑

k=1







[

M yℓ
A,k

fℓ
B
(tℓ

k
+∆)

− 1

]2

+

[

yℓ
B,k

fℓ
B
(tℓ

k
)
− 1

]2






.

Again, the final cost to be minimised is

E(h;∆) =
L
∑

ℓ=1

Eℓ(hℓ;∆), (13)

where

Eℓ(hℓ; ∆) = Eℓ
A(hℓ;∆) + Eℓ

B(hℓ; ∆).

4 PREVIOUS WORK

4.1 Cross Correlation

There are two versions of the methods based on cross
correlation: the Discrete Correlation Function (DCF)
(Edelson & Krolik 1988) and its variant, the Locally
Normalised Discrete Correlation Function (LNDCF)
(Lehar et al. 1992). Both calculate correlations directly
on discrete pairs of light curves. These methods avoid
interpolation in the observational gaps. They are also
the simplest and quickest time delay estimation meth-
ods.

First, time differences (lags), ∆tij = tj−ti, between
all pairs of observations are binned into discrete bins.
Given a bin size ∆τ , the bin centred at lag τ is the time
interval Iτ = [τ − ∆τ/2, τ +∆τ/2]. The DCF at lag τ
is given by

DCF (τ) =
1

P (τ)

ti,tj∈Iτ
∑

i,j

(yA(ti)− ā)(yB(tj)− b̄)
√

(σ2
a − σ2

A
(ti))(σ2

b
− σ2

B
(tj))

,

(14)

where P (τ ) is the number of observational pairs in the
bin centred at τ , ā and b̄ are the means of the observed
data, yA(ti) and yB(tj), and their variances are σ2

a and
σ2
b , respectively.

© 2015 RAS, MNRAS 000, 1–16
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Likewise,

LNDCF (τ) =
1

P (τ)

·
ti,tj∈Iτ
∑

i,j

(yA(ti)− ā(τ))(yB(tj )− b̄(τ))
√

(σ2
a(τ)− σ2

A
(ti))(σ2

b
(τ) − σ2

B
(tj ))

,

(15)

where ā(τ ), b̄(τ ), σ2
a(τ ) and σ2

b (τ ) are the lag means and
variances in the bin centred at τ .

The time delay ∆ is found when DCF (τ ) and
LNDCF (τ ), given by equations (14) and (15), are
greatest; i.e., at the best correlation (Edelson & Kro-
lik 1988; Lehar et al. 1992).

4.2 Dispersion Spectra

The Dispersion Spectra method (Pelt et al. 1996, 1998)
measures the dispersion of time series of two light
curves yA(ti) and yB(tj) by combining them (given a
trial time delay ∆ and ratio M) into a single signal,
y(tk), k = 1, 2, ..., 2N . In other words, given the de-
lay ∆, the observed values of signal A, {yA(ti)}

N
i=1,

and (delayed and rescaled) signal B, {ỹB(ti)}
N
i=1, where

ỹB(t) = MyB(t−∆), are joined together and re-ordered
in time, forming a joint signal {y(tk)}

2N
k=1 of length 2N .

We employ two versions of this method (Pelt et al.
1998):

DS2
1(∆) =min

M

∑2N−1
a=1 wa (y(ta+1)− y(ta))

2

2
∑2n−1

a=1 wa

(16)

and

DS
2
2,4(∆) =min

M

∑2N−1

a=1

∑2N
c=a+1 Ha,cWa,cGa,c (y(ta) − y(tc))

2

2
∑2n−1

a=1

∑

2n
c=a+1

Ha,cWa,cGa,c

,

(17)

where

wa =
1

σ2(ta+1) + σ2(ta)
, Wa,c =

1

σ2(ta) + σ2(tc)
(18)

are the statistical weights taking in account the mea-
surement errors, where Ga,c = 1 only when y(ta) and
y(tc) are from different images, and Ga,c = 0 otherwise,
and

Ha,c =

{

1− |ta−tc|
δ

, if |ta − tc| 6 δ

0, otherwise.
(19)

Compared with DS2
1 , the DS2

2,4 method has an ad-
ditional parameter, the decorrelation length δ, which sig-
nifies the maximum distance between observations that
we are willing to consider when calculating the correla-
tions (Pelt et al. 1996).
The estimated time delay ∆ is found by minimising DS2

over a range of time delay trials ∆, as above.

5 DATA

We employ six different datasets from the same quasar
Q0957+561, L = 6. The details are in Table 1 and the
plots in Figure 1. The column labelled Nℓ in Table 1

corresponds to the number of observations per dataset.
The Data column shows whether the data are optical
or radio and the Type column shows the filter and the
frequency used to obtain the data. The Q0957+561 is a
two-image quasar, so there is either an optical magni-
tude offset or a flux ratio between images A and B. D1

was provided by R. Schild (Schild & Thomson 1997),
private communication.

In order to consistently compare the performance of
different time delay estimation methods in a controlled
experimental setting, we also construct synthetic data
on the basis of known gravitationally lensed fluxes in the
optical and radio ranges, with the given observational
noise and gaps structure. The “ground truth” - the delay
- is imposed by us so that the statistics of different delay
estimators can be consistently evaluated and compared.

5.1 Synthetic Data - Realistic Experimental
Setting

In this section we construct synthetic signals on which
we will test the proposed and some of the existing ap-
proaches to gravitational delay estimation in the pres-
ence of observational noise and gaps. We constructed
synthetic fluxes in the optical range on the basis of D1

(real r-band optical data of (Schild & Thomson 1997))
spanning roughly 10 and half years). In particular, we
used D1 to fit a distribution of possible fluxes ‘compat-
ible’ with the data (formulated as a Gaussian process)
and then sampled from this distribution synthetic fluxes
of 3,500 observations.

Gaussian process (GP) represents a distribution
over functions

f(t) ∼ GP (µgp(t),Kgp(t, t
′)), (20)

with mean and covariance functions µgp(t) and
Kgp(t, t

′), respectively. Any sample from the GP
corresponding to a finite set of observational times
t1, t2, · · · tN is Gaussian distributed with mean
µgp(t1), µgp(t2), · · ·µgp(tN) and covariance matrix

Kgp =











Kgp(t1, t1) Kgp(t1, t2) · · · Kgp(t1, tN )
Kgp(t2, t1) Kgp(t2, t2) · · · Kgp(t2, tN )

...
...

. . .
...

Kgp(tN , t1) Kgp(tN , t2) · · · Kgp(tN , tN )











.

(21)

For our purposes, we imposed zero mean (the mean of
observations in D1 was shifted to zero) and used the
’squared exponential’ kernel function

Kgp(t, t
′) = exp

{

−
(t− t′)2

h2
gp

}

, (22)

with scale parameter hgp set using cross validation on
D1.

A vector (y,y∗)
T of observations sampled at ob-

servation times t and t∗ from the Gaussian process is
distributed as
(

y

y∗

)

∼ N

((

0

0

)

,

(

Kgp Kgp∗

KT
gp∗ Kgp∗∗

))

, (23)

© 2015 RAS, MNRAS 000, 1–16



6 S AL Otaibi, P Tiňo, JC Cuevas-Tello, I Mandel and S Raychaudhury

Julian day - 2.4x106 ×104
4.5 4.6 4.7 4.8 4.9 5 5.1

m
ag

16.2

16.4

16.6

16.8

17

17.2

17.4

Q0957+561 at r-band (Schild) n=1232
Image A
Image B

(a) D1

Julian day ×106
2.4486 2.4488 2.449 2.4492 2.4494 2.4496 2.4498 2.45 2.4502 2.4504 2.4506

m
ag

16.3

16.4

16.5

16.6

16.7

16.8

16.9

17

17.1

Q0957+561 at r-band (Ovaldsen) n=422
Image A
Image B

(b) D2

Julian day - 2.449x106
700 750 800 850 900 950 1000 1050 1100 1150 1200

R
(m

ag
)

16.85

16.9

16.95

17

17.05

17.1

17.15

17.2

17.25

17.3

Q0957+561 at r-band (Kundic) n=100
Image A
Image B

(c) D3

Julian day - 2.449x106
700 750 800 850 900 950 1000 1050 1100 1150 1200

G
(m

ag
)

16.7

16.75

16.8

16.85

16.9

16.95

17

17.05

17.1

17.15

17.2

Q0957+561 at g-band (Kundic) n=97
Image A
Image B

(d) D4

Julian day - 2.44×106
4000 5000 6000 7000 8000 9000 10000 11000

F
lu

x(
m

jy
)

20

25

30

35

40

45

Q0957+561 at 6cm n=143
Image A
Image B

(e) D5

Julian day - 2.44×106
8000 8500 9000 9500 10000 10500 11000

F
lu

x(
m

jy
)

14

16

18

20

22

24

26

28

30

32

34

Q0957+561 at 4cm n=58
Image A
Image B

(f) D6

Figure 1. Data set Q0957+561. Image A from D1 is shifted up by 0.6 magnitudes for clarity; image A from D2 is shifted up
by 0.25 magnitudes; image A from D4 is shifted up by 0.05 magnitudes. For more details on these datasets see Table 1.
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Table 1. Datasets: Q0957+561

Id Nℓ Data Type Ratio/Offset Monitoring Range Ref

D1 1232 optical r-band 0.05 16/11/1979 – 4/7/1998 (Schild & Thomson 1997)
D2 422 optical r-band 0.076 2/6/1992 – 8/4/1997 (Ovaldsen et al. 2003a)
D3 100 optical r-band 0.21 3/12/1994 – 6/7/1996 (Kundic et al. 1997)
D4 97 optical g-band 0.117 3/12/1994 – 6/7/1996 (Kundic et al. 1997)
D5 143 radio 6cm 1/1.43 23/6/1979 – 6-Oct-1997 (Haarsma et al. 1999)
D6 58 radio 4cm 1/1.44 4/10/1990 – 22/9/1997 (Haarsma et al. 1999)

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 2. Three Gaussian process posterior samples (dot-
ted) based on D1 (solid). Dashed curves signify ± 2 standard
deviations.

where Kgp, Kgp∗ and Kgp∗∗ are kernel matrices corre-
sponding to time instances t × t, t × t∗ and t∗ × t∗,
respectively. However, given observations y at times t,
the conditional distribution of y∗ at times t∗ is given
by

p(y∗|t∗,y, t) = N(y∗|µ∗,Σ∗) (24)

with

µ∗ = KT
gp∗K

−1
gp y (25)

and

Σ∗ = Kgp∗∗ −KT
gp∗K

−1
gp Kgp∗. (26)

We sampled signals y∗ from the Gaussian process
based on D1 on a regular grid of 3,500 time stamps
covering the temporal range of D1. As an example, we
show three such signals in Figure 2. Dashed curves sig-
nify ± 2 standard deviations. To create a pair of time
shifted signals A and B, the smooth long signal (signal
A) yA = y∗ was shifted in time by a delay ∆ = 200 days
to obtain signal B,

yB(t) = yA(t−∆). (27)

Finally, (as explained in greater detail in the following
sections), we added observational noise independently
to both signals A and B, and imposed observational
gaps.

5.1.1 Observational Noise

Based on D1 data, we first calculated the empirical dis-
tribution p(ρ) of the ratio ρ of the reported flux levels
yk and their associated standard errors σk: ρk = σk/yk.
For each observation y(t) in the synthetic stream we
generated an additive observational noise from a zero
mean Gaussian distribution with standard deviation
σ(t), where σ(t) = ρ(t)y(t), with ρ(t) generated ran-
domly i.i.d. from the empirical distribution p(ρ).

5.1.2 Observational Gaps

Real data are irregularly sampled due to practical con-
siderations such as weather conditions, equipment avail-
ability, object visibility, etc. (Eigenbrod et al. 2005;
Cuevas-Tello 2007). Gaps in real data are characterised
by two important quantities: gap size and gap position.
The histogram in Figure 3(a) shows the empirical gap
size distribution in D1. Shorter gaps of 1–5 days are
more frequent than longer ones (more than 6 days).

To make the synthetic data more realistic, we would
like to respect constraints given by the gap size and
inter-gap distance distributions for dominant gap sizes
(up to 10 days). Gaps were imposed on the synthetic
data by generating their sizes and positions through a
multiobjective optimisation algorithm. The algorithm
incorporated three constraints: (1) closeness of the gen-
erated and empirical gap size distributions; (2) close-
ness of the generated and empirical inter-gap interval
distributions for gaps of 1-5 days; (3) closeness of the
generated and empirical inter-gap interval distributions
for gaps of 6-10 days.

The particular algorithm we used was the compu-
tationally efficient Random Weighted Genetic Algorithm
(RWGA) (Ghosh & Dehuri 2004; Konak, Coit & Smith
2006; Murata & Ishibuchi 1995; Murata, Ishibuchi &
Tanaka 1996; Zitzler, Deb & Thiele 2000). It uses a
weighted average of normalised objectives for fitness as-
signment (for diversity imposition the weights are ran-
domized). The procedure is outlined in Algorithm 1.

The genome of each individual contains a sugges-
tion for start positions and sizes of observational gaps.
The design of individuals allows for a variable num-
ber of gaps and ensures that the gaps are not overlap-
ping. Figure 3 shows the results of applying the multi-
objective genetic algorithm RWGA based on D1. Each
objective corresponds to a row of two plots in Figure 3,
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Algorithm 1 RWGA

S = external archive to store non-dominated solutions
found during the search so far;
nS = number of elitist solutions immigrating from S to
the population of potential solutions Xι in each gener-
ation ι.
Step 1: Generate a initial random population X1, set
ι = 1.
Step 2: Assign a fitness value to each individual solution
χ ∈ Xι by performing the following steps:

Step 2.1: Calculate the fitness zo(χ) for each objec-
tive o = 1, . . . O.

Step 2.2: Generate a random number uo in [0, 1] for
each objective o = 1, . . . O

Step 2.3: Calculate the random weight of each ob-
jective o as wo = 1

uo

∑o

i=1 ui.
Step 2.4: Update the overall fitness of the solution

χ as ̥(χ) =
∑O

o=1wozo(χ).
Step 3: Calculate the selection probability ps(χ) of each
solution χ ∈ Xι as follows:

ps(χ) =

∑

ΥǫPι
(̥(Υ)−̥

min)

̥(χ)−̥min
,

where Fmin = min {̥(χ) | χ ∈ Xι}.
Step 4: Select parents using the selection probabilities
calculated in Step 3. Mutate offspring with a predefined
mutation rate. Copy all offspring to Xι+1.
Step 5: Randomly remove nS solutions from Xι+1 and
add the same number of solutions from S to Xι+1.
Step 6: If the stopping condition is not satisfied, set
ι = ι+ 1 and go to Step 2. Otherwise, return to S.

left and right plots showing empirical normalized his-
tograms from the real and synthetic data, respectively.

Generation of synthetic ’radio’ data proceeded in
the same way as described in the previous section for
optical data, this time based on data D5.

5.2 Synthetic Data - Controlled Experimental
Setting

Generation of synthetic fluxes described above was mo-
tivated by the desire to preserve realistic gap and noise
distributions. We will refer to this approach as the ‘re-
alistic’ experimental setting (RS). For comparing delay
estimation algorithms in a large-scale controlled setting,
we also considered an alternative specification of gap
and noise distributions. The synthetic fluxes were first
generated from the Gaussian Process model fitted to
D1, as described in the previous section. The fluxes
were then corrupted with observational gaps and noise.
The gap sizes g were generated as realisations from a
mixture distribution PM (g) = α · PB(g;µg) + (1 − α) ·
PU (g;Lg, Ug), where PB(g;µg) is the Binomial distri-
bution with mean µg and PU (g;Lg , Ug) is the uniform
distribution over [Lg, Ug]. We used the following set-
tings: α = 0.95, µg = 4, 6, 8 days, Lg = 20 and Ug = 80.
The gap positions were randomised, subject to the con-

straint of minimum inter-gap distance of 2 days. The
allowed range for gap size was 1 to 80 days. For the ad-
ditive Gaussian zero mean ‘observational’ noise we con-
sidered three settings for the standard deviation: 0.1%,
0.2% and 0.3% of the flux level. We will refer to this
approach as the ‘controlled’ experimental setting (CS).

6 EXPERIMENTAL RESULTS

We performed experiments on synthetic datasets de-
scribed in section §5, as well as on real gravitation-
ally lensed fluxes in the radio and optical ranges. In
the experiments we compared our methods NWE and
NWE++, introduced in sections 2 and 3, respectively,
with two dispersion spectra approaches, namely DS2

1

and DS2
2,4 and two cross correlation approaches DCF

and LNDCF.

6.1 Experiments on Synthetic Data

As mentioned above, we set the ‘true’ time delay in the
synthetic data to 200 days. The results of all approaches
are based on testing time delay values in the range of
175 to 225 days (1 day increment).

It was found that the best setting for decorrelation
length δ in the DS2

2,4 method was 3 days. For NWE and
NWE++ the kernel width h was estimated as variable
kernel width with h = 2 neighbours5. For DCF and
LNDCF, the bin size is set to 5 days. (see (Cuevas-Tello,
Tiňo & Raychaudhury 2006)).

For each method we show the mean (bias) µ and
standard deviation σ of the maximum-likelihood delay
estimates across experiments. In all plots, the true delay
is represented by the horizontal line at µ = 200.

6.1.1 Realistic Experimental Setting (RS)

For synthetic experiments in the realistic setting we gen-
erated 500 base signals from the Gaussian process fit-
ted to the optical data set D1, as described in section
§5.1. We then ran the RWGA algorithm to generate
500 pareto front solutions for observational gap posi-
tions and sizes (see 5.1.2). Each base signal thus had a
corresponding observational gap structure imposed on
it. Finally, the signals were corrupted by observational
noise (see 5.1.1). The same procedure was applied for
generating 500 datasets in the radio range.

Summary results for the RS experiments on the 500
optical and radio data sets are presented in Tables 2 and
3, respectively. We report the mean (µ) and standard
deviation (σ) of the delay estimates ∆̂i, i = 1, 2, ..., 500,
the mean absolute error (MAE) of the delay estimates
(MAE=

∑500
i=1 |∆̂i − 200|/500), and the 95% Credibility

5 2 neighbours came consistently as the favourite option
when cross-validating the number of neighbours on several
initial datasets.
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Kernel regression time delay estimates 9

Gap size (in days)
0 5 10 15 20 25 30 35 40 45 50

C
ou

nt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Real data objective 1

(a) Objective 1

Gap size (in days)
0 5 10 15 20 25 30 35 40 45 50

C
ou

nt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Synthetic data objective 1

(b) Objective 1

Distance between Gap blocks <=5
50 100 150 200 250 300 350 400 450

C
ou

nt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Real data objective 2

(c) Objective 2

Distance between Gap blocks <=5
50 100 150 200 250 300 350 400 450

C
ou

nt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Synthetic data objective 2

(d) Objective 2

Distance between Gap blocks >5
200 400 600 800 1000 1200 1400

C
ou

nt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Real data objective 3

(e) Objective 3

Distance between Gap blocks >5
200 400 600 800 1000 1200 1400

C
ou

nt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Synthetic data objective 3

(f) Objective 3

Figure 3. Empirical distributions of gap size (a),(b), inter-gap interval for gaps of 1–5 days (c),(d) and inter-gap interval for
gaps of 6-10 days (e),(f). Each objective of RWGA corresponds to a row of two plots, left and right plots showing empirical
normalized histograms from the real (D1) and synthetic data, respectively.

Interval (CI). The overall performance of the methods
is also shown in Figure 4. On smaller and noisier radio
data the NWE is the best performing method, followed
closely by NWE++. On optical data, the best perform-
ing method is D2

2,4. It is important, however, to note
that,in contrast to NWE methods, the dispersion spec-
tra methods (DS) have parameters that are difficult to
set objectively based on the given data only. In the ex-
periments, we found the best DS parameter settings by
imposing the true delay ∆ = 200, which obviously bi-
ases the DS results towards over-optimistic better per-
formance levels.

6.1.2 Controlled Experimental Setting (CS)

For each setting of the Binomial gap distribution µg =
4, 6, 8 days and for every noise level ratio from 0.1%,
0.2%, 0.3% we generated 100 base signals from the un-
derlying Gaussian process fitted on D1. We thus ob-
tained 900 datasets. The length of the time series (after
applying observational gaps) varied from 800 to 3000
observations.

An analogous procedure was used to generate 900
datasets in the radio range. For each setting of the Bi-
nomial gap distribution µg = 4, 6, 8 days and for every

© 2015 RAS, MNRAS 000, 1–16
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Figure 4. RS results for optical and radio data

Table 2. RS Results for optical range

Method µ±σ MAE CI range 95% CI

NWE 199.60±2.97 2.19 0.26 [199.34,199.86]
NWE++ 199.83±3.23 2.37 0.28 [199.55,200.11]
DS2

1 200.67±2.51 1.05 0.22 [200.45,200.89]
DS2

2,4 200.02±0.40 0.16 0.04 [199.98,200.06]

DCF 199.14±13.77 11.61 1.21 [197.93,200.35]
LNDCF 200.30±6.34 4.47 0.56 [199.74,200.86]

noise level ratio from 1%, 2%, 3% we generated 100
base signals from the underlying Gaussian process fit-
ted on D5. The overall results across all CS optical and
radio datasets are summarized in Tables 4 and 5, re-
spectively. Figures 5 and 6 present the results in greater
detail, grouped by noise level and gap size.

The kernel-based methods lead to more stable time
delay estimates. NWE is the best performing method
with respect to all performance measures, followed by
NWE++. It is interesting to note that while in general
larger noise level ratio corresponds to larger standard
deviation of the delay estimates, the DCF method seems
to be more robust to increased noise levels. For low noise
levels and with correlations between time-shifted data
streams close to unity, the DCF method is, by construc-
tion, relatively insensitive to the level of the noise. How-
ever, it is still clearly outperformed by other techniques
for the range of noise levels explored in this paper (see
Figs. 4 and 5).

6.2 Experiments on Real Data

In this section, we present results of methods studied in
this paper on real data - see Table 1 and Figure 1. Since
for real data the noise levels related to observations are
available, the NWE++ method was not used.

We have L = 6 datasets D1 — D6 and for all
methods, we test values for time delay on the range of
∆ = [400, 450] (increments of 1 day). The NWE cost to

be minimised is E(h;∆) (eq. (7)), with cross-validated
kernel scale parameters h = (3, 2, 2, 2, 2, 2).

For DCF and LNDCF, the bin size ∆τ was set to
5, 5, 5, 5, 45, and 30 for D1, D2, D3, D4, D5, and D6,
respectively. As mentioned before, unlike in NWE, there
is no objective way of setting such parameters based on
the data only and we used the setting giving most robust
results in the test range of delays 400-450 days. For a
fixed delay ∆, the (LN)DCF function values at lag ∆
are averaged across the 6 datasets D1 − D6 and the
combined delay estimate is obtained at the maximum
of the averaged (LN)DCF curve.

For the Dispersion spectra method DS2
2,4, as argued

above, the value of the decorrelation length parameter
cannot be resolved in a principled manner based on the
data and hence it was set to δ = 3, since at this value
DS2

1 and DS2
2,4 have more agreement. Again, for a fixed

delay ∆, the DS2
1(∆) and DS2

2,4(∆) values are averaged
across the 6 datasets and the combined delay estimate
is obtained at the minimum of such averaged curves.
The results (unique time delay across Q0957+561) are
presented in Table 6.

To measure the uncertainty of time delay estima-
tions, following (Haarsma et al. 1999; Oscoz et al. 1997,
2001; Ovaldsen et al. 2003b), we also performed Monte
Carlo simulations by adding white noise generated ac-
cording to the reported errors to each observation6. For

6 Note that this effectively adds noise to already noisy ob-
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Table 3. RS Results for radio range

Method µ±σ MAE CI range 95% CI

NWE 199.47±3.71 2.95 0.32 [199.15,199.79]
NWE++ 200.37±4.31 3.38 0.38 [199.99,200.75]
DS2

1 201.02±5.42 4.42 0.47 [200.55,201.49]
DS2

2,4 204.20±9.98 8.73 0.87 [203.33,205.07]

DCF 201.50±15.23 13.10 1.33 [200.17,202.83]
LNDCF 199.94±5.83 4.73 0.51 [199.43,200.45]

Table 4. Overall CS Results across all observational gap and noise settings for optical range.

Method µ±σ MAE CI range 95% CI

NWE 199.69±4.91 3.76 0.32 [199.37,200.01]
NWE++ 199.69±5.78 4.41 0.38 [199.31,200.07]
DS2

1 200.61±9.86 7.62 0.64 [199.97,201.25]
DS2

2,4 199.97±14.10 11.98 0.92 [199.05,200.89]

DCF 202.71±16.26 14.22 1.06 [201.65,203.77]
LNDCF 200.63±10.56 8.37 0.69 [199.94,201.32]

each data set we generated 500 randomized Monte Carlo
realisations. The results (mean and std dev across the
500 delay estimates) are presented in Table 7.

Although we cannot compare these results against
a known true value, it is apparent that time delay es-
timates obtained with different methods are not mutu-
ally consistent, unlike estimates on synthetic data. For
example, DS2

1 and DCF estimates appear to lie more
than 50 σ apart. Moreover, we find that estimates using
different frequency estimates on Q0957+561 data ap-
pear to be inconsistent even when the same method is
used. This suggests that the claimed measurement er-
rors on the data are significantly under-estimated. Al-
ternatively, there may be unmodelled systematics (e.g.,
micro-lensing) that lead to varied biases for different
analysis techniques.

7 CONCLUSIONS

We have introduced a new probabilistic efficient model-
based methodology for estimating time delays between
two gravitationally-lensed images of the same variable
point source. The method enables one to use directly
the noise levels reported for individual flux measure-
ments. It is more robust to observational gaps than
purely "unmodelled” techniques, since the imposition of
an identical smooth model behind multiple lensed fluxes
effectively regularizes the overall model fit, and conse-
quently, the time delay estimate itself. Methods such as
these will be useful in the automated search for time-
delay systems as well as in the accurate measurement

servations, resulting in a different noise distribution. For ex-
ample, assuming the original noise is Gaussian, and adding
random Gaussian noise from the same distribution, the stan-
dard deviation of the noise distribution in this Monte Carlo
data will be

√
2 larger than the original one.

of delays in targeted systems in future very large time-
domain surveys such as those planned for the Large Syn-
optic Survey telescope (LSST) (e.g. (Hojjati & Linder
2015; Liao et al. 2015)).

The methods were tested and compared in two ex-
perimental settings. In the realistic setting the synthetic
data were generated so that multiple aspects of the real
data were preserved: noise-to-observed flux ratio, obser-
vational gap size distribution and the inter-gap interval
distributions. The core synthetic signals were generated
from a Gaussian process fitted to the real data. In the
larger controlled experimental setting the signals gen-
erated from the Gaussian process were subject to con-
trolled levels of observational noise and gap sizes. Our
method, while being computationally efficient, showed
robustness with respect to noise levels and observational
gap sizes.

We also applied our method to real observed opti-
cal and radio fluxes from quasar Q0957+561 as a com-
bined dataset. Of course, with real data one can es-
timate the variance of the estimator estimations, but
never the bias, since the true time delay for Q0957+561
is not known. Our NWE estimator on the combined op-
tical and radio data suggests a delay of approximately
420 days; however, we find that different estimators pro-
duce inconsistent results, indicating the presence of sta-
tistical or systematic measurement errors in the data
in excess of the claimed measurement uncertainty. In
particular, the impact of microlensing corrections was
not accounted for in the present work, and needs to be
quantified in the future.
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Figure 5. CS optical range results for NWE, NWE++, DS2
1 , DS22,4, DCF and LNDCF methods (plots (a), (b), (c), (d), (e)

and (f), respectively) shown as functions of µg = 4, 6, 8 days (mean of the binomial gap size distribution) and observational
noise level. In each case we present the mean and std dev of the delay estimates for the corresponding 100 data sets.
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Table 5. Overall CS Results across all observational gap and noise settings for radio range.

Method µ±σ MAE CI range 95% CI

NWE 199.70±4.23 3.24 0.28 [199.42,199.98]
NWE++ 199.89±5.07 3.90 0.33 [199.56,200.22]
D2

1 200.49±7.79 5.92 0.51 [199.98,201.00]
D2

4,2 201.31±11.70 9.36 0.76 [200.57,202.09]

DCF 201.13±15.70 13.45 1.03 [200.10,202.16]
LNDCF 200.90±7.92 5.96 0.52 [200.38,201.42]
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Figure 6. CS radio rang results for NWE, NWE++, DS2
1 , DS22,4, DCF and LNDCF methods (plots (a), (b), (c), (d), (e) and

(f), respectively) shown as functions of µg = 4, 6, 8 days (mean of the binomial gap size distribution) and observational noise
level. In each case we present the mean and std dev of the delay estimates for the corresponding 100 data sets.
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Table 6. The unique time delay across Q0957+561

Method µ (days)

NWE 420
DS2

1 435
DS2

2,4 435

DCF 408.78
LNDCF 426.31

Table 7. Results of 500 Monte Carlo simulations:
Q0957+561

Method µ (d) σ (d)

NWE 418.65 0.49
DS2

1 434.98 0.22
DS2

2,4 434.92 1.08

DCF 408.77 0.42
LNDCF 431.09 15.04
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