
1Hierarhial GTM: onstruting loalizednon-linear projetion manifolds in aprinipled wayPeter Ti�no Ian NabneyAbstratIt has been argued that a single two-dimensional visualization plot may not be suÆient to aptureall of the interesting aspets of omplex data sets, and therefore a hierarhial visualization system isdesirable. In this paper we extend an existing loally linear hierarhial visualization system PhiVis[1℄ in several diretions: (1) We allow for non-linear projetion manifolds. The basi building blok isthe Generative Topographi Mapping (GTM). (2) We introdue a general formulation of hierarhialprobabilisti models onsisting of loal probabilisti models organized in a hierarhial tree. Generaltraining equations are derived, regardless of the position of the model in the tree. (3) Using tools fromdi�erential geometry we derive expressions for loal diretional urvatures of the projetion manifold.Like PhiVis, our system is statistially prinipled and is built interatively in a top-down fashion usingthe EM algorithm. It enables the user to interatively highlight those data in the anestor visualizationplots whih are aptured by a hild model. We also inorporate into our system a hierarhial, loallyseletive representation of magni�ation fators and diretional urvatures of the projetion manifolds.Suh information is important for further re�nement of the hierarhial visualization plot, as well as forontrolling the amount of regularization imposed on the loal models. We demonstrate the priniple ofthe approah on a toy data set and apply our system to two more omplex 12- and 18-dimensional datasets. KeywordsHierarhial probabilisti model, Generative Topographi Mapping, data visualization, EM algorithm,density estimation, diretional urvature.I. IntrodutionMOST data visualization algorithms projet the data onto a two-dimensional vi-sualization spae. However, a single two-dimensional projetion, even if it isThis work was supported by the BBSRC grant BIO/12093 and P�zer Researh. The authors are with the NeuralComputation Researh Group, Aston University, Aston Triangle, Birmingham. B4 7ET, UK. Correspondingauthor: PT, p.tino�aston.a.uk.



2non-linear, may not be suÆient to apture all of the interesting aspets of the data. Thismotivated Bishop and Tipping [1℄ to develop a hierarhial model involving multiple lineartwo-dimensional visualization spaes. The intuition behind their approah is that the lakof exibility of individual models an be ompensated for by the overall exibility of theomplete hierarhy. However, there are situations where using a hierarhy of non-linearmodels an lead to more natural and parsimonious data representations. Consider, forexample, a set of points lose to the two-dimensional manifold shown in �gure 1. The setould be overed by a large number of linear two-dimensional sheets, but in this ase, aolletion of four simple non-linear \humps" is a more natural alternative. Of ourse, asdisussed in this paper, one we allow for non-linear loal projetions, we need an e�etivemehanism to ontrol the \amount of non-linearity" in the projetion manifolds. To thisend, we visualize in a hierarhial and interative way the loal magni�ation fators anddiretional urvatures of the projetion manifolds.
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Fig. 1. A two-dimensional manifold in three-dimensional Eulidean spae.When investigating a data set through low-dimensional projetions in a hierarhialway, one usually �rst onstruts a top-level plot and then onentrates on loal regionsof interest by reursively building the orresponding sub-projetions. The sub-models areorganized in a hierarhial tree and should ideally form a onsistent probabilisti model ofthe data, as with the hierarhial loally linear model of Bishop and Tipping [1℄. Here, wepresent a onsistent probabilisti model of the data that performs non-linear loal dataprojetions.The basi building blok of our hierarhial model is the Generative Topographi Map-



3ping (GTM) introdued by Bishop, Svens�en and Williams [2℄. It is a probabilisti re-formulation of the self-organizing map (SOM) [3℄ and o�ers many advantages omparedwith the standard SOM [4℄, prinipally that it de�nes an expliit probability density modelof the data. This enables us to apply the onsistent and statistially prinipled frameworkused in [1℄ to formulate hierarhial non-linear visualization trees. Also, unlike SOMs,loal GTMs form smooth two-dimensional manifolds on whih quantities useful for moni-toring the \amount of non-linearity", like magni�ation fators [5℄, or urvatures, an beomputed analytially. Approahes to hierarhial data visualization that inorporatedSOM [6℄ [7℄ [8℄ partitioned data in a \hard" fashion, while our approah permits \soft"partitioning in whih, at any level of hierarhy, data points an e�etively belong to morethan one loal model.In a losely related �eld of data lustering Williams proposed a probabilisti mixturemodel that generates data in a hierarhial tree-strutured manner [9℄. The tree strutureis inferened from data using Markov Chain Monte Carlo (MCMC) methods. MCMC isused to sample from the posterior distribution over trees of variable size, given the datapoints and a prior over trees expressed as a Markovian model for numbers of nodes atdi�erent levels of the tree.The paper has the following organization: In setion II we give a general formulation ofprobabilisti models organized in hierarhial trees. Setion III briey introdues the basibuilding blok of our visualization system { the Generative Topographi Mapping [2℄. Insetion IV we derive equations for an EM algorithm that �ts GTMs in the hierarhy tothe data. Using tools of di�erential geometry, we show in setion V how to ompute loaldiretional urvatures of the GTM projetion manifold and briey mention previous workon magni�ation fators. Setion VI desribes details of the implemented hierarhialvisualization system and setion VII presents the experiments on a toy three-dimensionaldata set and two more omplex 12- and 18-dimensional data olletions. The disussionin setion VIII highlights the experimental �ndings and ompares our system with thelinear hierarhial visualization tool of Bishop and Tipping [1℄. Setion IX onludes thepaper by summarizing the key ontributions of this study.



4II. Hierarhial probabilisti modelsIn this setion, we give a general outline of hierarhial probabilisti models that onsistof loal probabilisti models M organized in hierarhial trees. Eah model M de�nes adistribution P (tj M) on a data spae D, t 2 D. First, we introdue notation that reetsthe fat that hierarhial trees are speial ases of graphs.A. Hierarhial TreesFor the sake of simpliity, we illustrate the onepts on an example, generalization isstraightforward.
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Fig. 2. An example of a hierarhial tree.Consider a hierarhial tree T shown in �gure 2. We introdue the following funtionsoperating on nodes (probabilisti models on the data spae D) M of T :� Parent(M) | the �rst-generation anestor of MParent([a; 2℄) = Root, Parent([b; 3℄) = [a; 2℄.� Children(M) | the set of �rst-generation desendants of MChildren(Root) = f[1; 2℄; [2; 2℄; :::; [N(2); 2℄g, Children([a; 2℄) = f[1; 3℄; [2; 3℄; :::; [N(3); 3℄g.� Level(M) | level of M in TLevel(Root) = 1, Level([a; 2℄) = 2, Level([b; 3℄) = 3.� Nodes(`) | the set of nodes at level `,Nodes(`) = fMj Level(M) = `g = SM2Nodes(`�1) Children(M)Nodes(1) = fRootg, Nodes(2) = f[1; 2℄; [2; 2℄; :::; [N(2); 2℄g.� Path(M) |N -tuple of nodes de�ning the path fromRoot toM, where N = Level(M)Path(Root) = (Root), Path([a; 2℄) = (Root; [a; 2℄), Path([b; 3℄) = (Root; [a; 2℄; [b; 3℄),



5writing element-wise: Path([b; 3℄)1 = Root, Path([b; 3℄)2 = [a; 2℄, Path([b; 3℄)3 = [b; 3℄.Leaves(T ) is the set of leaves of the tree T , i.e. the set of nodes without hildren.B. Model formulationThe hierarhial probabilisti model is obtained by interpreting the nodes of the hier-arhial tree T as probabilisti models on the data spae.Eah model M in the hierarhy, exept for Root, has an assoiated parent-onditionalmixture oeÆient, or prior �(Mj Parent(M)): (1)The priors are non-negative and satisfy the onsisteny ondition:� for any model N having hildren,XM2Children(N )�(Mj N ) = 1: (2)Unonditional priors for the models are reursively alulated as follows:� prior for Root is unity �(Root) = 1; (3)� and for all other models�(M) = Level(M)Yi=2 �(Path(M)ij Path(M)i�1): (4)Now, we are ready to write the distribution P (tj T ) given by the hierarhial model; itis a mixture of models at the leaves of the tree T ,P (tj T ) = XM2Leaves(T ) �(M) P (tj M): (5)Models orresponding to internal (i.e. non-leaf) nodes of T play their role only in theproess of reating the hierarhial model. One the hierarhy is trained and mixtureoeÆients (4) are established, we need the internal models only if we wish to extend orretrain the hierarhial model struture in the future.



6III. Generative Topographi MappingThe Generative Topographi Mapping belongs to a family of latent spae models thatmodel a probability distribution in the (observable) data spae by means of latent, orhidden variables. The latent spae is used to visualize the data, and is usually a boundedsubset of the two-dimensional Eulidean spae, suh as the unit square, or the (two-dimensional) interval [�1; 1℄� [�1; 1℄.Consider an L-dimensional latent spae H � <L of a GTM M and represent points inH as olumn vetors x = (x1; x2; :::; xL)T . We disretize the latent spae by introduinga regular array of latent spae entres xMi 2 H, labelled by the index i = 1; 2; :::; KM.Latent spae entres are analogous to the nodes of SOM.Let the data spae be the D-dimensional Eulidean spae <D. We de�ne a non-lineartransformation fM : H ! <D from the latent spae to the data spae using a radial basisfuntion network (see e.g. [10℄). To this end, we over the latent spae with a set ofMM � 1 �xed non-linear basis funtions �j : H ! <, j = 1; 2; :::;MM � 1, whih forma non-orthogonal basis set. In this paper, as usual in the GTM literature, we hoose towork with spherial Gaussian funtions of the same width �, although other hoies arepossible and require simple modi�ations. The entres of the Gaussian basis funtions �jare positioned in the latent spae on a regular grid. This is beause the basis funtionsshould model the latent spae density (see [10℄) whih is de�ned to be uniform. To aountfor the bias term, we introdue an additional onstant basis funtion �MM(x) = 1, for allx 2 H. Given a point x 2 H, the values given by the basis funtions at x are summarizedby a olumn vetor �M(x) = (�1(x); �2(x); :::; �MM(x))T ; (6)and the image of x under the map fM is omputed asfM(x) =WM �M(x); (7)where WM is a D �MM matrix of weights.GTM reates a generative probabilisti model in the data spae by plaing a radially-symmetri Gaussian with zero mean and inverse variane �M around images, under fM,



7of the latent spae entres xMi 2 H, i = 1; 2; :::; KM:P (tj xMi ;WM; �M) =  �M2� !D=2 exp(��M2 kf(xMi )� tk2) : (8)De�ning a uniform prior over xMi , the density model in the data spae provided by theGTM M is then P (tj M) = 1KM KMXi=1 P (tj xMi ;WM; �M): (9)Given a data set � = ft1; t2; :::; tNg of i.i.d. points in the data spae, the adjustableparametersWM and �M of the modelM an be �tted to the data by maximum likelihood.The log likelihood funtion is given byL(WM; �M) = NXn=1 lnP (tnj M): (10)The log likelihood an be maximized using a gradient-based proedure, or the expetation-maximization (EM) algorithm [11℄. A derivation of the EM algorithm for GTM an befound in [2℄.For the purpose of data visualization, we use Bayes' theorem to invert the transfor-mation fM from the latent spae H to the data spae D. Sine we hoose to work witha prior distribution on H that e�etively disretizes the latent spae into the grid xMi ,i = 1; 2; :::; KM, the posterior distribution on H, given a data point tn 2 D, is a sum ofdelta funtions entered at xMi , with oeÆients given by the responsibilitiesRMi;n = P (tnj xMi ;WM; �M)PKMj=1 P (tnj xMj ;WM; �M) : (11)The responsibilityRMi;n is the posterior probability that the Gaussian P (tnj xMi ;WM; �M)generated the point tn in the data spae. When used for data visualization, GTM Mprojets points tn from the data spae into the low-dimensional latent spae H. Thelatent spae representation of the point tn is taken to be the meanKMXi�1 RMi;n xMi ; (12)or the mode xi�; i� = argmaxfig RMi;n (13)of the posterior distribution on H.



8The fM{image of the latent spae H,
 = fM(H) = ffM(x) 2 <Dj x 2 Hg; (14)forms an L-dimensional manifold in the data spae. We refer to the manifold 
 as theprojetion manifold of GTM M.IV. Training the hierarhy of GTMsTraining of a hierarhy of GTMs proeeds in a reursive fashion. First, a root GTMis trained and used to visualize the data. Then the user identi�es interesting regions onthe visualization plot that they would like to model in a greater detail. These \regionsof interest" are then transformed into the data spae and form the basis for building aolletion of new, hild GTMs. After seeing the lower level visualization plots, the usermay deide to proeed further and model in a greater detail some portions of the lowerlevel plots, et.In the following, we assume that we have already trained a hierarhy of GTMs up to level` of a hierarhial tree T . The purpose of this setion is to formulate the EM algorithmthat �ts hild GTMsM, of models N at level `, to the data set � = ft1; t2; :::; tNg. ChildGTMs of models at level ` are GTMs at level `+ 1. The urrent stage of the hierarhialGTM onstrution is shown in �gure 3.
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Fig. 3. A stage in the hierarhial GTM onstrution. All GTMs up to level ` have been built. Now,hild GTMsM at level `+ 1 of the parent GTMs N at level ` are being onstruted.



9A. The EM algorithmGiven the training data � = ft1; t2; :::; tNg, the likelihood funtion of the hierarhy Tof GTMs is L = NXn=1 lnP (tnj T ); (15)where P (tj T ) is given by (5).We �t hildren of the parent GTMs N at level ` to the training set by maximizing thelikelihood funtion L. At the urrent stage, the hildren of the models N are leaves ofthe hierarhial tree T , and so the distribution P (tj T ) given by the hierarhial modelan be rewritten asP (tj T ) = XM2Leaves(T ) �(M) P (tj M) = QT nNodes(`+1)(t) + QNodes(`+1)(t); (16)where QT nNodes(`+1)(t) = XM2Leaves(T )nNodes(`+1) �(M) P (tj M) (17)and QNodes(`+1)(t) = XM2Nodes(`+1) �(M) P (tj M): (18)Sine all GTMs in the hierarhy, exept for the reently added models in Nodes(`+1),are �xed, the likelihood funtion L is maximized by maximizing the restrited likelihoodfuntion on�ned only to the GTMs at level `+ 1,L(`+1) = NXn=1 lnQNodes(`+1)(tn): (19)From (4), the mixture oeÆients �(M) of a GTM M at level `+ 1 are given by,�(M) = �(Mj Parent(M)) �(Parent(M)); (20)and so (18) beomesQNodes(`+1)(t) = XM2Nodes(`+1) �(Mj Parent(M)) �(Parent(M)) P (tj M); (21)giving the restrited likelihood funtionL(`+1) = NXn=1 ln8<: XM2Nodes(`+1) �(Mj Parent(M)) �(Parent(M)) P (tnj M)9=; : (22)



10If we knew, before adding hildren to GTMs at level `, whih GTM at level ` generatedwhih point in the data set � = ft1; t2; :::; tNg, we would be able to rewrite (22) asL(`+1) = NXn=1 XN2Nodes(`) �n;N ln8<: XM2Children(N ) �(Mj N ) �(N ) P (tnj M)9=; ; (23)where the assignment variables �n;N are 1, if GTM N was responsible for generating thepoint tn, and 0 otherwise.In reality, we do not know the values of the assignments �n;N , but we do know theposterior probabilities P (Nj tn) that GTM N generated tn. We also refer to theseposteriors as the responsibilities of N for generating tn. These were alulated in theprevious stage of the training and are now �xed. We will later show how to alulate theposteriors P (Mj tn) for models M at level `+ 1.Taking the expetation of (23), we arrive at expeted restrited likelihood funtion formodels at level `+ 1,DL(`+1)E = NXn=1 XN2Nodes(`)P (Nj tn) ln8<:�(N ) XM2Children(N ) �(Mj N ) P (tnj M)9=; : (24)Now, imagine that given information that a parent model N was indeed responsiblefor generating a point tn, we knew whih of its hildren M generated tn. We representthis (hypothetial) situation by assignment variables �n;MjN . In reality, we are only ableto ompute (parent-onditional) responsibilities P (Mj N ; tn).Our probabilisti models are GTMs that model probability distribution in the dataspae in terms of hidden variables (see setion III). Suppose for a moment that we knewwhih latent spae entre xMi 2 H, i = 1; 2; :::; KM, of the GTM M orresponded to theGaussian that generated tn (eq. (8)). Again, we represent this hypothetial situation byassignment variables zMn;i. Sine the latent variables xMi are hidden, we only have theresponsibilities RMi;n given by eq. (11).To reapitulate, we have two types of hidden variables:� the assignment variables �n;MjN that group hildren M of the GTM N in a mixturemodel� the assignment variables zMn;i formulating GTM M as a onstrained1 mixture of Gaus-1GTM is onsidered a onstrained mixture of Gaussians, beause the means of the Gaussians (8) are onstrainedto lie on the fM{image of the latent spae (i.e. on the projetion manifold of the GTM M), whih is a low-dimensional manifold in the data spae.



11sians.If we knew the values of the assignment variables, the expeted restrited likelihoodfuntion (24) ould be written as the omplete-data likelihood restrited to models atlevel `+ 1, L(`+1)C = NXn=1 XN2Nodes(`) P (Nj tn) XM2Children(N ) �n;MjNKMXi=1 zMn;i lnn�(N ) �(Mj N ) P (tn;xMi )o : (25)Taking expetation over both types of hidden variables we arrive at the expeted re-strited omplete-data likelihoodDL(`+1)C E = NXn=1 XN2Nodes(`) P (Nj tn) XM2Children(N )P (Mj N ; tn)KMXi=1 RMi;n lnn�(N ) �(Mj N ) P (tn;xMi )o : (26)Sine P (tn;xMi ) = P (tj xMi ;WM; �M) P (xMi );where P (tj xMi ;WM; �M) is given by (8), and P (xMi ) is a uniform priorP (xMi ) = 1KM ;to maximize DL(`+1)C E, we need to onsider only two terms:NXn=1 XN2Nodes(`) P (Nj tn) XM2Children(N )P (Mj N ; tn) ln�(Mj N ) (27)andNXn=1 XN2Nodes(`) P (Nj tn) XM2Children(N )P (Mj N ; tn) KMXi=1 RMi;n lnP (tnj xMi ;WM; �M):(28)The remaining term NXn=1 XN2Nodes(`) P (Nj tn) ln�(N )is onstant with respet to the adjustable parameters of GTMs at level `+ 1.The M-step of the EM algorithm involves maximizing (27) with respet to the parent-onditional mixture oeÆients �(Mj N ) and maximizing (28) with respet to the GTMs'parameters WM and �M.



12The maximization of (27) with respet to �(Mj N ) must take aount of the onstraintXM2Children(N )�(Mj N ) = 1:This an be ahieved by introduing a Lagrange multiplier �N (see [1℄ [10℄) and maximizingNXn=1 P (Nj tn) XM2Children(N )P (Mj N ; tn) ln�(Mj N ) + �N 0� XM2Children(N )�(Mj N )1A :After a straightforward alulation, we obtain�(MjParent(M)) = PNn=1 P (Mj tn)PNn=1 P (Parent(M)j tn) ; (29)where P (Mj tn) = P (Mj Parent(M); tn) P (Parent(M)j tn): (30)Maximizing (28) with respet to WM, using (6), (7) and (8), we obtainNXn=1P (Mj tn) KMXi=1 RMi;n �WM �M(xMi )� tn� �TM(xMi ) = 0: (31)The responsibilities RMi;n are alulated with the urrent (\old") weight and inverse vari-ane parameters of the hild GTMs M.Written in matrix notation, we have to solve(�TM BM �M) WTM = �TM RM T (32)for WM.The above system of linear equations involves the following matries:� �M is a KM �MM matrix with elements (see eq. (6))(�M)ij = �j(xMi ); (33)� T is a N �D matrix storing the data points t1; t2; :::; tN as rows,� RM is a KM � N matrix ontaining, for eah latent spae entre xMi , and eah datapoint tn, saled responsibilities (RM)in = P (Mj tn) RMi;n (34)omputed using (30) and (11),



13� BM is a KM �KM diagonal matrix with diagonal elements orresponding to responsi-bilities of latent spae entres for the whole data sample � = ft1; t2; :::; tNg,(BM)ii = NXn=1P (Mj tn) RMi;n: (35)The GTM mapping fM an be regularized by adding a regularization term to thelikelihood (10). Bishop, Svens�en and Williams [4℄ suggest to use a quadrati regularizerof the form 12 �M kve(WTM)k2; (36)where ve(WTM) is a olumn vetor onsisting of the onatenation of the suessiveolumns of the weight matrixWM, and �M is the regularization oeÆient. Inlusion ofthe regularizer (36) modi�es eq. (32) to"�TM BM �M + �M�M I# WTM = �TM RM T (37)where I is the MM �MM identity matrix.Finally, maximizing (28) with respet to �M leads to the re-estimation formula (see(7), (11), and (30))1�M = PNn=1 P (Mj tn) PKMi=1 RMi;n kWM �(xMi )� tnk2D PNn=1 P (Mj tn) ; (38)where WM is the \new" weight matrix omputed by solving (32) in the last step.In the E-step of the EM algorithm we estimate the latent spae responsibilities RMi;nwithin individual GTMs (eq. (11)), model responsibilities P (Mj tn) (eq. (30)), andparent-onditional model responsibilitiesP (Mj Parent(M); tn) = �(Mj Parent(M)) P (tnj M)PN2[M℄ �(Nj Parent(M)) P (tnj N ) ; (39)where [M℄ = Children(Parent(M)): (40)B. Summary of the EM algorithmHierarhial GTM is trained using EM to maximize its likelihood with respet to thedata sample � = ft1; t2; :::; tNg. The hierarhy is trained in a top-down fashion, startingwith the root model, then ontinuing with its hildren, then with hildren of the hildren,



14et. At eah stage of hierarhial GTM onstrution, the EM algorithm alternates betweenthe E- and M-steps until onvergene is satisfatory (typially after 10{20 iterations). Toavoid numerial problems arising from multipliation of small probabilities and to speedup the training proess, the GTMs on lover levels are trained only on data points forwhih the parent model has responsibility greater than some pre-set threshold �. In ourexperiments � = 10�5.To make expressions for training individual models onsistent throughout the hierarhy,we introdue a virtual model Parent(Root) by postulating�(Rootj Parent(Root)) = 1;Children(Parent(Root)) = fRootg;P (Parent(Root)j tn) = 1: (41)We also set P (Rootj tn) = 1: (42)B.1 E-stepIn the E-step, we estimate posterior over all hidden variables, using the \old" values ofGTM parameters.� Given a data point tn 2 <D, (39) is used to ompute the model responsibilities orre-sponding to the ompetition among models belonging to the same parent.� The unonditional (on parents) model responsibilities are reursively determined by(30).� Responsibilities of the latent spae entres xMi , i = 1; 2; :::; KM, orresponding to theompetition among the latent spae entres in eah model M are alulated using (11).B.2 M-stepIn the M-step, we estimate the parameters using the posterior over hidden variablesomputed in the E-step.� Parent-onditional mixture oeÆients are determined by (29).� Weight matriesWM are alulated by solving (32) using standard inversion tehniquesbased on singular value deomposition [12℄ to allow for possible ill-onditioning.� The inverse varianes are re-estimated using (38).



15C. Parameter initializationHaving trained GTMs up to level ` of the hierarhial tree T , we pik a parent modelN at level ` and, based on its visualization plot, we selet regions of interest for hildGTMs M at level ` + 1. The regions of interest are seleted as follows: The user �rstselets points i 2 H, i = 1; 2; :::; A, in the latent spae that orrespond to \entres" ofthe subregions they are interested in. The points i are then transformed via the mapfN , de�ned by the parent GTM, to the data spae (eq. (7))fN (i) =WN �N (i):The regions of interest are given by the Voronoi ompartments [13℄ in the data spaeorresponding to the points fN (i), i = 1; 2; :::; A:Vi = �t 2 <Dj d (t; fN (i)) = minj d (t; fN (j))� ; (43)where d(�; �) is the Eulidean distane in <D. All points in Vi are alloated2 to the \entre"fN (i).We initialize the parametersWM of hild GTMsM, so that eah GTM initially approx-imates prinipal omponent analysis (PCA) of training data in the orresponding Voronoiompartment. For GTM M orresponding to a ompartment Vi, we �rst evaluate theovariane matrix of training points in Vi and obtain the �rst L prinipal eigenvetors.Next, we determine WM by minimizing the errorE = 12 KMXj=1 kWM �M(xMj ) � U xMj k2; (44)where the olumns ofU are the �rst L prinipal eigenvetors of the data ovariane matrix(see [2℄).Following [2℄, the parameter �M is initialized to be the larger of the L + 1 eigenvaluefrom PCA, that represents the variane of the data away from the PCA manifold3, andthe square of half of the grid spaing of the PCA-projeted latent spae entres xMj inthe data spae.2Ties, as events of measure zero (points that land exatly on the border between the ompartments), are brokenaording to index order.3Alternatively, one an ompute the sum of the D � L smallest eigenvalues of the data ovariane matrix,divided by D � L. This represents the average variane \lost" per disarded dimension and an be shown to bethe maximum likelihood estimator for the (isotropi) noise variane in the probabilisti PCA [14℄.



16V. Geometri properties of GTM projetion manifoldsWe have mentioned in the introdution that allowing for non-linear loal projetions inthe hierarhial visualization system should be aompanied by a set of tools for moni-toring the \amount of non-linearity" in the projetion manifolds.Bishop, Svens�en and Williams [5℄ [15℄ omputed loal magni�ation fators of GTMmodels. The magni�ation fators desribe how small regions of the (low-dimensional)latent spae are strethed or ompressed when mapped to the (possibly high-dimensional)data spae. Similar issues were investigated in the ontext of SOM e.g. in [16℄ [17℄ [18℄,but suh studies are inevitably hampered by the disretized nature of the SOM projetionmanifold. On the other hand, GTM projetion manifold is a smooth funtion of the latentspae oordinates, and so tehniques from di�erential geometry an be used to alulateits geometri properties in a prinipled way.Magni�ation fators represent the extent to whih the areas are magni�ed on proje-tion to the data spae. However, when injeting a low dimensional latent spae into ahigh dimensional data spae, the projetion manifold may form ompliated folds thatannot be deteted by using magni�ation fators alone. To provide the user with a toolfor monitoring the amount of folding in the projetion manifold, we need seond-orderquantities, suh as loal urvatures. This in turn, as we shall see in setion VII, may beuseful for hoosing regions of interest when onstruting hild GTMs, or for updating theregularization parameter of the GTM mapping (see eq. (37)).In this setion, we show how to ompute loal diretional urvatures of the GTMprojetion manifold and then briey explain the onept of magni�ation fators for GTM,as developed in [5℄ [15℄.A. Loal diretional urvaturesThe idea of diretional urvature is explained in �gure 4. The visualization surfae
 of a GTM M (see eq. (14)) is the fM{image of the latent spae H and forms anL-dimensional manifold in the data spae.Consider a point x0 2 H. Let x(b), b 2 <, be a straight line passing through x0 alonga unit diretional vetor h = (h1; h2; :::; hL)T . The parametri form of x(b) is given byx(b) = x0 + bh; b 2 <: (45)
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Fig. 4. An explanation of loal diretional derivative of the projetion manifold. A straight line x(b)passing through the point x0 in the latent spae H is mapped via fM to the urve �(b) = fM(x(b))in the data spae. Curvature of � at fM(x0) = �(0) is related to the diretional urvature of theprojetion manifold fM(H) with respet to the diretion h. The tangent vetor _�(0) to � at �(0)lies in Tx0 (dashed retangle), the tangent plane of the manifold fM(H) at �(0).As the parameter b varies, the image of the line x(b) generates the urve�(b) = fM(x(b)) (46)in the projetion manifold 
, alled a lifted line. The tangent to this urve at fM(x0) =�(0) is _�(0) = "d �(b)d b #b=0= " LXr=1 �fM(x)�xr d xr(b)d b #x=x0;b=0= LXr=1�(1)r hr (47)= �(1) h; (48)where �(1)r is a (olumn) vetor of partial derivatives of the funtionfM = (f 1M; f 2M; :::; fDM)T ; (49)with respet to the r-th latent spae variable at x0 2 H, and �(1) is the D � L matrix�(1) = [�(1)1 ;�(1)2 ; :::;�(1)L ℄: (50)



18The vetors �(1)r , r = 1; 2; :::; L, are alulated as follows:�(1)r =WM 	(1)r (x0) =WM  ��1(x0)�xr ; ��2(x0)�xr ; :::; ��MM(x0)�xr !T : (51)The tangent vetor _�(0) to the lifted line �(b) is a linear ombination of the olumnsof �(1), and so the range of the matrix �(1) is the tangent plane Tx0 of the projetionmanifold 
 at fM(x0) = �(0). Orthogonal projetion onto Tx0 is a linear operatordesribed by the projetion matrix� = �(1) ��(1)�+ ; (52)where ��(1)�+ = ���(1)�T �(1)��1 ��(1)�T (53)is the Moore-Penrose generalized inverse of �(1) (see e.g. [19℄).The seond diretional derivative [20℄ of �(b) at �(0) is��(0) = " LXs=1 ��xs ( LXr=1 �fM(x)�xr hr) d xs(b)d b #x=x0;b=0= " LXr=1 LXs=1 �2fM(x)�xr�xs hrhs#x=x0= LXr=1 LXs=1�(2)r;s hr hs: (54)where �(2)r;s is a olumn vetor of seond-order partial derivatives of fM with respet tothe r-th and s-th latent spae variables,�(2)r;s =WM 	(2)r;s =WM  �2�1(x0)�xr�xs ; �2�2(x0)�xr�xs ; :::; �2�MM(x0)�xr�xs !T : (55)The derivatives are omputed at x0 2 H.We deompose the seond diretional derivative ��(0) of fM into two orthogonal ompo-nents, one lying in the tangent spae Tx0, the other lying in its orthogonal omplementT?x0 , ��(0) = ��k(0) + ��?(0); ��k(0) 2 Tx0 ; ��?(0) 2 T?x0: (56)The omponent ��k(0) desribes hanges in the �rst-order derivatives due to \varyingspeed of parameterization". Changes in the �rst-order derivatives that are responsible forurving of the projetion manifold 
 are desribed by the omponent ��?(0).



19By (53) and (54), ��?(0) = (I��) ��(0)= �I � �(1) ��(1)�+� " LXr=1 LXs=1�(2)r;s hr hs# ; (57)where I is the D �D identity matrix.The vetor ��?(0) measures the degree to whih the visualization manifold 
 (loally)\urves" in the data spae manifold D [21℄, or speaking in terms of di�erential geometry(see e.g. [22℄), ��?(0) expresses the degree to whih 
 is not (loally) autoparallel in D.��?(0) is the embedding urvature of 
 � D at fM(x0), evaluated with respet to thelatent spae diretion h.B. Loal magni�ation fatorsFor a GTMM, the loal magni�ation fator orresponding to a point x0 in the latentspae H is the Jaobian JM(x) of the GTM map fM (eq. (7)),JM(x) = qdet(GM(x0)); (58)where GM(x0) is the (loal) metri tensorGM(x0) = ��(1)�T �(1); (59)with �(1) de�ned by (50) and (51). For more details, see [5℄, [15℄.VI. The hierarhial GTM visualization implementationWe organize the plots orresponding to the hierarhy T of GTMs in a hierarhial treewith the same topology as T . In non-leaf plots, we show the latent spae points i thatwere hosen to be the \entres" of the regions of interest for the hild GTMs (see setionIV); these are shown as irles labeled by numbers. The numbers determine the order ofthe orresponding hild GTM sub-plots (left-to-right).We adopt the strategy, suggested in [1℄, of plotting all the data points on every plot,but modifying the intensity in proportion to the responsibility P (Mj tn) (see equations(30), (39) and (40)) whih eah plot (sub-model M) has for the data point tn. Pointsthat are not well aptured by a partiular plot will appear with low intensity.



20The user an visualize the regions aptured by a partiular hild GTM M, by mod-ifying the plot of its parent, Parent(M), so that instead of the parent responsibilities,P (Parent(M)j tn), the responsibilities of the model M, P (Mj tn), are used. In oursoftware, this is done by simply liking with a mouse on a hosen hild GTM plot. Alter-natively, the user an modulate with responsibilities P (Parent(M)j tn) all the anestorplots up to Root, i.e. all plots appearing in Path(Parent(M)) (see setion II)4. Thehosen hild plot is highlighted by a bold red frame. The anestor plots appear in boldgreen frames. The rest of the plots show data projetions as low-intensity gray points.As will be shown in setion VII, suh a modulation of anestor plots is an important toolto help the user relate hild plots to their parents.The hierarhial struture used for plotting the GTMs' projetions is also used to showthe magni�ation fators of GTMs in the hierarhy. For every GTM M, we evaluate theloal magni�ation fator JM(x) (eq. (58)) in eah latent spae entre xMi , i = 1; 2; :::; KM(see setion III). The intensities with whih the magni�ation fators are shown are saledwith respet to the minimal and maximal magni�ation fators in the whole hierarhy.The sale is shown as a olor bar near the top visualization plot orresponding to theroot GTM. The user an get a loally saled plot of magni�ation fators by liking ona hosen plot orresponding to a loal GTM M. Magni�ation fators of the GTM Mare then shown saled with respet to the minimal and maximal magni�ation fators ofM. A loal saled olor bar is also provided.Finally, the philosophy for showing the loal diretional urvatures is the same as thatfor showing the magni�ation fators. First, the number Nh of di�erent latent spae dire-tions h, with respet to whih the urvatures will be omputed is determined (see setionV-A). In the ase of two-dimensional latent spae, the diretions hj, j = 1; 2; :::; Nh,orrespond to the Nh equidistant points on the unit irle, subjet to the onstraint thatthe �rst diretion is (1; 0). For every GTM M, we evaluate the (Eulidean) norm of thediretional urvature ��?(0) (eq. (57)) at eah latent spae entre xMi , with respet toall diretions hj, j = 1; 2; :::; Nh. In the �nal plot, we show, for eah latent spae en-tre xMi , the maximal norm of the urvature aross the di�erent \probing" diretions hj,j = 1; 2; :::; Nh. The diretion of the maximal urvature orresponding to a latent spae4Thanks to one of the reviewers for this suggestion.



21entre xMi is shown as a blak line of length proportional to the urvature's norm. As inthe ase of magni�ation fators, the intensity of urvatures in the hierarhy of GTMs issaled by the minimal and maximal urvatures found in the whole hierarhy. A loallysaled plot of urvatures an be obtained by liking on a hosen plot orresponding to aloal GTM.The software has been written in Matlab and is available fromhttp://www.nrg.aston.a.uk/netlab/.VII. ExperimentsIn this setion we illustrate the hierarhial GTM visualization algorithm on a toy dataset and two more omplex data olletions.Although the algorithm is derived in a general setting in whih individual GTMs Min the hierarhy an have di�erent sets of latent spae entres xMi , i = 1; 2; :::; KM, andbasis funtions �j, j = 1; 2; :::;MM, in the experiments reported here, we used a ommonGTM on�guration for all models in the hierarhy. In partiular, the latent spae H wastaken to be the two-dimensional interval H = [�1; 1℄ � [�1; 1℄, the latent spae entresxMi 2 H were positioned on a regular 15�15 square grid and there were 16 basis funtions�j entered on a regular 4 � 4 square grid. The basis funtions were spherial Gaussianfuntions of the same width � = 1:0. We aount for a bias term by using an additionalonstant basis funtion �17(x) = 1, for all x 2 H. The regularization oeÆient �M wasset to 0:1.For eah model M in the hierarhy, the diretional urvatures (57) were evaluated inall latent spae entres xMi along Nh = 16 \probing" diretions hj (see setion VI).A. Toy dataThe �rst experiment was onduted with a toy data set of 3000 points t = (t1; t2; t3)Tlying on a two-dimensional manifold in the three-dimensional spae. The manifold isshown in �gure 1 and is desribed byt3 = 2 X1;22f�2;2g exp n�(t1 � 1)2 � (t2 � 2)2o ; (t1; t2) 2 [�4; 4℄2: (60)To demonstrate the hierarhial GTM algorithm, we assoiated the points in the four\humps" with four di�erent lasses, Ci, i = 1; 2; 3; 4. After training a top level GTM, we



22onstruted a mixture of GTMs on four regions of interest entered at the four humps.Eah GTM in the mixture was supposed to �t the distribution of the orresponding humplass. Figure 5 shows projetion manifolds orresponding to the mixture of four GTMs.
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a bFig. 5. Projetion manifolds in data spae of the seond-level GTMs trained on the toy data. Shown isa olletion of all seond-level projetion manifolds (b), as well as the projetion manifold of a singlemixture omponent modeling the \hump" entred at (t1; t2) = (2; 2) (a).Data projetions realized by the hierarhy are presented in �gure 6. By liking onthe third seond-level model M, point intensities in the visualization plot of its parent,Parent(M) = Root, are modulated by the seond-level model responsibilities P (Mj tn)(see setion VI).
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23Magni�ation fators and urvatures of the hierarhy of GTMs are shown in �gures 7(a)and 7(b), respetively. In this ase, the magni�ation fators and urvatures are almostomplementary. When mapped into the projetion manifold, the latent spae is mostlystrethed in the Root model, while the dominant urvatures were deteted at the seondlevel of the hierarhy. Note how the urvature near the edges and at the \peak" of theseond-level models (see �gure 5) is reeted in the urvature plot (�gure 7 (b)).
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a bFig. 7. Magni�ation fators (a) and urvatures (b) omputed on projetion manifolds of the hierarhialGTM trained on the toy data.B. Oil ow dataThe oil ow data set5 was used to demonstrate the loally linear hierarhial visualiza-tion algorithm of Bishop and Tipping [1℄, alled PhiVis6. This 12-dimensional data setarises from a physis-based simulation of non-invasive monitoring system, used to deter-mine the quantity of oil in a multi-phase pipeline ontaining a mixture of oil, water andgas. The data set onsists of 1000 points obtained synthetially by simulating the physialproess in the pipe. Points in the data set are lassi�ed into three di�erent multi-phaseow on�gurations, namely homogeneous, annular and laminar. Data is distributed innumerous distint lusters and is expeted to have (loally) an intrinsi dimensionality oftwo [1℄.A hierarhy of GTMs up to level 4 was trained on this data set and the �nal visualization5The oil ow data set an be obtained from http://www.nrg.aston.a.uk/GTM/3PhaseData.html.6A MATLAB ode for PhiVis is publily available at http://www.nrg.aston.a.uk/PhiVis/.
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Fig. 8. A omplete visualization plot for the oil ow data given by the hierarhy of GTMs. Theprojetions are olored aording to the lass of the orresponding data points: homogeneous { red,annular { blue, laminar { yellow.plot an be seen in �gure 8. The orresponding magni�ation fator and diretionalurvature plots are shown in �gures 10 and 12, respetively. The urvature plot of the rootGTM reveals that the two-dimensional projetion manifold folded three times in order to\apture" the distribution of points in the 12-dimensional spae. Interestingly, the threemulti-phase ow on�gurations seem to be roughly separated by the folds (ompare thetop level visualization plot in �gure 8 with the orresponding urvature plot in �gure 12).We on�rmed this hypothesis by onstruting three loal seond-level visualization plotsinitiated in the regions between the folds. Curvature and magni�ation fator plots of thelower level GTMs reveal that, ompared with the root GTM, the lower level projetionmanifolds do not signi�antly streth/ontrat and are almost at. Figure 11 was obtainedby liking on the �rst plot at level three of the hierarhy and shows a detailed portraitof loal magni�ation fators of the seleted model.By liking on the �rst level-four GTM M modeling laminar ow points, we an traethe position of points loally aptured by M in the visualization plots of all its anestors
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Fig. 9. A hierarhial visualization plot for the oil ow data, in whih the set of points aptured by the�rst GTM at level 4 of the hierarhy (red border) is highlighted in the visualization plots of all itsanestors (green borders).(see �gure 9). Cliking on sub-plots in the visualization hierarhy T and omparing thehild-modulated anestor plots (see setion VI) with the full visualizations in �gure 8is a valuable tool for understanding the relationship among the individual plots in thehierarhy T .For omparison, we show in �gure 13 a omplete four-level hierarhial visualizationplot for the loally linear system PhiVis. When the plot orresponds to a leaf model,PhiVis opies the plot to lower levels. In addition to data projetions, visualization plotsof models that have hildren show the orthogonal projetions of the hild visualizationplanes onto the parent visualization plane.In the hierarhial GTM visualization, we get an almost perfet separation of pointsinto the three lasses even in the top level plot. Indeed, looking at �gures 10 and 12 wesee that most strething and folding is deteted in the Root GTM. The lower level GTMsinjet their latent spae into the data spae without muh deformation, suggesting thatthe loal distribution of points is roughly two-dimensional and at. This on�rms theintuition that led Bishop and Tipping to use the oil ow data to demonstrate the PhiVis
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Fig. 10. A visualization plot of magni�ation fators in the hierarhy of GTMs �tted on the oil owdata.
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Fig. 11. A hierarhial visualization of magni�ation fators showing a detailed portrait of loal magni-�ation fators of the �rst GTM at level 3.
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Fig. 12. A hierarhial visualization of loal urvatures in the hierarhy of GTMs �tted on the oil owdata.
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Fig. 13. A hierarhial visualization of the oil ow data given by the loally linear system PhiVis.



28visualization system [1℄.C. Image segmentation dataIn the last experiment we visualize image segmentation data7 obtained by randomlysampling pathes of 3x3 pixels from a database of 7 outdoor images. The pathes areharaterized by 18 ontinuous attributes and are lassi�ed into 7 lasses: brikfae, sky,foliage, ement, window, path and grass. The data set ontains 2310 18-dimensionalpoints, 330 instanes per lass. We merged the original seven lasses into four ompositelasses: ement + path, brikfae + window, grass + foliage and sky.We trained a four-level hierarhy of GTMs on the image segmentation data and theresulting projetion, magni�ation fator and urvature plots are presented in �gures 14,16 and 17, respetively.
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Fig. 14. A hierarhial GTM visualization plot of image segmentation data.A hierarhial visualization of the image segmentation data given by PhiVis is shownin �gure 18.In ontrast to the the oil ow experiment, the image segmentation data is diÆult toapture using PhiVis. As seen in �gures 16 and 17, very strong loal strethings and highly7The image segmentation data set an be downloaded from the Delve repositoryhttp://www.s.utoronto.a/�delve/data/datasets.html.
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Fig. 15. A hierarhial GTM visualization plot of image segmentation data in whih the set of pointsaptured by the �rst level-four GTM (red border) is highlighted in the visualization plots of itsanestor GTMs (green borders).
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Fig. 16. Magni�ation fators in a hierarhy of GTMs �tted on image segmentation data.
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Fig. 17. Loal urvatures of projetion manifolds in a hierarhy of GTMs trained on image segmentationdata.
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Fig. 18. A hierarhial visualization of the image segmentation data given by PhiVis.



31urved visualization surfaes throughout the hierarhy of GTMs are needed to apture thedata haraterized by higher intrinsi dimensionality and the presene of \outliers". Notethe highly non-linear nature of the sequene of GTMs on the path from the �rst level-fourmodel to the Root. The Root GTM had to streth a long way in order to apture thegrass+foliage points appearing near the top left orner of the Root visualization plot in�gure 14. Atually, these points aused most of the linear data projetions in the toplevel PhiVis plot to luster near the bottom of the plot.Looking at �gures 16 and 17 we an see dominant strethings and foldings in the seondlevel-two GTM, fourth level-three GTM and the �rst GTM on level four. The areas of highmagni�ation and urvature in these plots orrespond to the areas ontaining projetionsof the \outlier" grass+foliage points deteted in the top level plot. This is on�rmedby the hild-modulated anestor plot tehnique, illustrated in �gure 15, highlighting theposition of points aptured by the �rst level-four GTM in its anestor plots.VIII. DisussionWe have extended the loally linear hierarhial visualization system PhiVis proposedin [1℄ to allow for non-linear projetion manifolds. Our system is statistially prinipledand is built using the EM algorithm in a top-down fashion. The authors of PhiVisemphasize that there is no objetive measure of quality in data visualization, but arguethat a hierarhial visualization model an be a very useful tool for the visualization andexploratory analysis of data in many appliations [1℄.Our experiments suggest that by allowing for non-linearity in the projetion manifolds,we an indeed reate more detailed and parsimonious visualization plots. While PrinipalComponent Analysis (PCA) an introdue in the visualization plot only \global" streth-ings along the prinipal axes, the non-linear projetion manifold of GTMs an loallystreth and fold in the data spae. This enables our system to make full use of the latentspae when desribing the loal distributions of points. As a result, the PhiVis plots areoften haraterized by dense isolated lusters. This phenomenon is not seen in our system.Of ourse, we an always \reasonably" over the low-dimensional non-linear data man-ifold by using enough loal linear pathes, but, as we saw in the last setion, this anoften lead a visualization hierarhy that is muh more omplex and diÆult to read. This



32in turn makes it diÆult for the user to grasp and understand the overall layout of datapoints in a high-dimensional spae. Non-linearity in the projetion manifolds allows usto onstrut more parsimonious visualization hierarhy, but there is a prie to pay. Itis no longer possible to relate hildren plots to the orresponding parent plots simplyby showing projetions of the image of the hildren latent spae in the parents' latentspae, as we have seen in the linear system PhiVis. One ould onsider projeting theimage of the latent grid of the hildren GTMs onto the latent spae of the parent, but,multi-modalities in the posterior distribution over the parent latent spae would makeinterpretation of suh plots problemati8.There are several tools implemented in our hierarhial non-linear visualization systemthat an help the user to understand the visualization plots and, if needed, further re�nethe visualization hierarhy:1. The user an highlight in the anestor plots the data points whih are under respon-sibility of a seleted hild plot. This illustrates the history of projetions in higher levelplots of points aptured by a lower level plot.2. Although not reported here, we have extended our system to identify points, e.g. bytheir index in the data set, by liking on their projetions in a hosen plot. This way theuser an relate lower level plots with their anestors in a more detailed manner.3. The smooth harater of the GTM mapping from the latent spae to the data spaemakes it possible to alulate loal strething and folding harateristis of the non-linearprojetion manifolds. The low dimensional projetion manifold an form ompliated foldsand/or signi�ant ontrations/strethings in the high-dimensional data spae. Consid-ering the projetion plot alone, it is diÆult to judge the atual \layout" of points inthe data spae. For example, regions of high ontration of the visualization manifoldoften orrespond to regions of dense lusters in the data spae, whereas highly strethedareas usually �ll the spae between the lusters [15℄. Without this additional information,the users may not realize that the almost homogeneous group of points they see on thevisualization plot atually omes from several well-separated lusters. Also, loal urva-ture patterns in the projetion manifold provide information about dominant folds. This,together with the ontration/expansion haraterization of the manifold, an be helpful8We are thankful to one of the reviewers for bringing up this point.



33in determining the \regions of interest" for onstruting loal sub-plots in the hierarhyof visualization plots.It should be mentioned that GTM requires the spei�ation of the hyperparameters� (width of the Gaussian basis funtions) and � (regularization oeÆient for weightsW). Both hyperparameters determine the \sti�ness" of the projetion manifold. Inthis study we follow reommendation of [2℄ to set � to � = 2s, where s is the distanebetween two neighboring entres of the basis funtions. Bayesian inferene of the GTMhyperparameters, introdued in [4℄, would enormously prolong training of loal modelsin our visualization hierarhy. However, sine we do not rely on a single \top-level"visualization plot, as long as the projetion manifolds are \reasonably" smooth, and wean monitor the amount of strething and folding by inspeting the loal magni�ationfator and diretional urvature plots, one expets to obtain good representations of theloal data distributions at lower levels of the visualization hierarhy.Our hierarhial GTM visualization system works in an interative way: based onlower level projetions, regions of interest for higher level models are determined by theuser. Algorithms for self-onsistent �tting of the hierarhial tree an be easily reatedby employing some form of hierarhial lustering, e.g. hierarhial lustering of data bydeterministi annealing [23℄. However, the user-driven onstrution of the hierarhialvisualization plot is a natural andidate for investigation of the data via low-dimensionalprojetions. IX. ConlusionThe main ontributions of the paper an be summarized as follows:1. We have extended the loally linear hierarhial visualization system PhiVis proposedby Bishop and Tipping [1℄ to allow for non-linear projetion manifolds. Like PhiVis, oursystem is statistially prinipled and is built interatively in a top-down fashion using theEM algorithm.2. We further extended the work presented in [1℄ by introduing a general formulation ofa hierarhial probabilisti model onsisting of loal probabilisti models organized in ahierarhial tree. General training equations are derived, regardless of the position of themodel in the tree.
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