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ABSTRACT2

Early diagnosis of dementia is critical for assessing disease progression and potential treatment.3
State-or-the-art machine learning techniques have been increasingly employed to take on this4
diagnostic task. In this study, we employed Generalised Matrix Learning Vector Quantization5
(GMLVQ) classifiers to discriminate patients with Mild Cognitive Impairment (MCI) from healthy6
controls based on their cognitive skills. Further, we adopted a “Learning with privileged information”7
approach to combine cognitive and fMRI data for the classification task. The resulting classifier8
operates solely on the cognitive data while it incorporates the fMRI data as privileged information9
(PI) during training. This novel classifier is of practical use as the collection of brain imaging data10
is not always possible with patients and older participants.11

MCI patients and healthy age-matched controls were trained to extract structure from temporal12
sequences. We ask whether machine learning classifiers can be used to discriminate patients13
from controls based on the learning performance and whether differences between these groups14
relate to individual cognitive profiles. To this end, we tested participants in four cognitive tasks:15
working memory, cognitive inhibition, divided attention, and selective attention. We also collected16
fMRI data before and after training on the learning task and extracted fMRI responses and17
connectivity as features for machine learning classifiers.18

Our results show that the PI guided GMLVQ classifiers outperform the baseline classifier that19
only used the cognitive data. In addition, we found that for the baseline classifier, divided attention20
is the only relevant cognitive feature. When PI was incorporated, divided attention remained the21

1

Provisional



Al-Alahmadi et al. Learning with Privileged Information

most relevant feature while cognitive inhibition became also relevant for the task. Interestingly, this22
analysis for the fMRI GMLVQ classifier suggests that (1) when overall fMRI signal for structured23
stimuli is used as inputs to the classifier, the post-training session is most relevant; and (2) when24
the graph feature reflecting underlying spatiotemporal fMRI pattern is used, the pre-training25
session is most relevant. Further analysis reveals that for MCI patients, training may alter brain26
activation level as well as local brain connectivity pattern. Taken together these results suggest27
that brain connectivity before training and overall fMRI signal after training are both diagnostic of28
cognitive skills in MCI.29

Keywords: discriminative feature extraction, supervised metric learning, learning with privileged information, learning vector30
quantization, linear discriminant analysis, fMRI graph feature31

1 INTRODUCTION

Alzheimer’s Disease (AD) is the most common neurodegenerative disease in ageing. It is characterised by32
the progressive impairment of neurons and their connections. Mild Cognitive Impairment (MCI) is the33
prodromal stage of AD. Thus, accurate diagnosis of MCI (i.e. the early stage of AD) is very important for34
timely treatment and delay of disease progression. As MCI results in detectable loss of cognitive function,35
cognitive test scores have been used diagnostically (Albert et al., 2010). Further, MCI is known to cause36
changes in brain activation patterns as well as in brain connectivity. Therefore, fMRI has been increasingly37
used as a diagnostic tool of MCI patients (Challis et al., 2015; Chen et al., 2015). In machine learning38
terms, diagnosis of MCI patients can be formulated as a classification task to discriminate MCI patients39
from healthy controls. In this paper, we present a novel classifier using cognitive test scores as inputs to the40
classifier and using fMRI data as privileged information.41

In the recent literature on the classification tasks related to AD, we observe a clear trend: state-of-the-art42
machine learning techniques have been increasingly employed to take on new tasks. For example, a43
classification task should also provide insights into the relevance of the input features used for the task.44
In Challis et al. (2015), Gaussian process classifiers have been employed for the discrimination between45
healthy controls and MCI patients as well as the the discrimination between MCI and AD patients. More46
importantly, Gaussian process classifiers have been used to automatically determine the relevant input47
features when training the classifier. In Chen et al. (2015), a challenging classification task was tested, that48
is, discrimination of two subgroups of MCI patients. Patients in one subgroup will likely progress to AD49
but those in another group will not convert to AD. In the literature, this classification task is referred to as50
MCI-AD conversion prediction. This work incorporates data from both healthy subjects and AD patients for51
classification of MCI patients using the transfer learning framework. Transfer learning is a (relatively) new52
development in machine learning that aims to boost the performance of a classifier operating in one domain53
(e.g. MCI patients) by incorporating data from other domains (e.g. healthy subjects and AD patients).54

Here we ask whether MCI patients differ in their cognitive skills from controls. Our task is to classify55
cognitive profiles in patients vs. controls based on cognitive scores and fMRI data. Furthermore, we address56
the case when fMRI data are not available for classifying a new subject. To utilise the fMRI data for the57
task, we train our classifier on participants for whom both cognitive and fMRI data are available. After58
that, the trained classifier will classify a new subject solely based on his/er cognitive test scores. This case59
is of relevance in practice because (1) When compared to cognitive data, the collection of neuroimaging60
data is much more time-consuming and expensive; (2) Many older individuals (e.g. those with a cardiac61
pacemaker) may not be safe for imaging such as fMRI scanning. On the other hand, neuroimaging data62
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have more diagnostic power than cognitive data and thus should be used when available. In our work, the63
classifier is trained by adopting a “metric learning” based approach to Learning with Privileged Information64
(LPI) (Fouad, 2013). As transfer learning, LPI is also a new development in machine learning. In our65
context, cognitive data are the inputs to the classifier. In contrast, fMRI data act as privileged information66
that is used only for training the classifier (along with the cognitive data). As most classifiers operate67
based on a distance/similarity measure between pairs of input vectors, the metric tensor used to compute68
such distance is therefore crucial for the classification task. In the model of Fouad (2013), the privileged69
information (in our case fMRI data) is used to modify the metric tensor (and hence the metric) in the70
original space (in our case cognitive test scores) to improve the classification accuracy in the original71
space. Intuitively, if cognitive test scores of two participants appear “similar”, but their fMRI data shows72
different characteristics, the distance between the two cognitive test score vectors should be increased (and73
vice-versa). As the scale parameter in Challis et al. (2015), the diagonal elements of the discriminative74
metric tensor can be used to automatically determine the relevant cognitive features.75

2 MATERIALS

The cognitive and fMRI data used in this study were collected in the context of two behavioral & fMRI76
studies (Baker et al., 2015; Luft et al., 2015, 2016) in which the participants were asked to predict the77
orientation of a test stimulus following exposure to structured sequence of leftwards and rightwards oriented78
gratings, and no feedback were given. Both studies aimed to (1) test whether training on structured temporal79
sequences improves the ability to predict upcoming sensory events and (2) identify brain regions that80
support the ability of using implicit knowledge about the past for predicting future. In particular, Baker81
et al. (2015) and Luft et al. (2015) investigated how MCI patients differ from healthy controls in terms82
of (1) their ability to learn predictive structures as well as (2) their learning-dependent brain activation83
patterns. The diagnosis of MCI patients was made by an experienced consultant psychiatrist (PB) using the84
National Institute of Ageing and Alzheimer’s association working group criteria (Albert et al., 2010).85

In both studies, participants took part in two fMRI scans before and after behavioural training (i.e. pre-86
and post-training session) during which they completed 5–8 independent runs of the prediction task in each87
scanning session. Each run comprised 5 blocks of structured and 5 blocks of random sequences (3 trials88
per block) presented in a random counterbalanced order. In each trial, the participant was presented with89
a sequence of eight left and rightward oriented gratings (in rapid succession, 250ms + fixation 200ms)90
followed by a repeat of the same sequence. The participant was instructed to pay attention to the sequence91
and respond whether the test grating (randomly chosen grating during the second repeat) was correct or92
incorrect given that presented sequence. Even though the participants could not tell what exactly was the93
sequence structure, they learn how to correctly predict whether the grating has the correct orientation given94
the presented sequence. In random sequence trials, the grating’s orientations were randomly generated so95
the participant could not correctly predict them.96

The fMRI data used in this study were acquired in a 3T Achieva Philips scanner at the Birmingham97
University Imaging Centre using a thirty two-channel head coil. Anatomical images were obtained using98
a sagittal three dimensional T1-weighted sequence with 175 slices (voxel size = 1 × 1 × 1 mm3) for99
localisation and visualisation of functional data. Functional data were acquired using a T2-weighted EPI100
sequence with 32 slices (whole-brain coverage; TR = 2 s; TE = 35 ms; flip angle = 73; voxel size = 2.5 ×101
2.5 × 4 mm3).102
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In Luft et al. (2016), regions-of-interest (ROIs) were identified by applying whole-brain general linear103
model analysis with a voxel-wise mixed-design three-way ANOVA, that is,104

session (pre- vs. post-training)× sequence (structured vs. random)× group (MCI vs. controls).

Statistical maps were cluster threshold corrected (p < 0.05). Table 1 in Luft et al. (2016) listed all brain105
regions showing significant interaction between session, sequence, and group. For the study presented106
in this paper, we combined two ROIs in the frontal region (Superior Frontal Gyrus, SFG, on the right107
hemisphere and Medial Frontal Gyrus, MFG, on the left hemisphere) and two ROIs in the cerebellar region108
(Cerebellar Lingual and Cullmen ROIs in both hemispheres). This resulted in a frontal ROI of size 126 and109
a cerebellar ROI of size 82. Also, a subcortical ROI (that is, the parahippocampal gyrus ROI of size 32)110
was selected for the study.111

All 60 participants involved in this study had undergone cognitive skill tests (including working memory,112
cognitive inhibition and attentional skills). These tests provide four quantitative measures of different113
cognitive skills for each participant:114

1. In the working memory task, a number of coloured dots are on display for half second. Then, they115
disappear for 1 second and reappear with some dots having changed their colour. A participant is116
asked to judge whether a given dot has changed its colour or not. The participant’s working memory117
skill can be measured by the maximal number of coloured dots on display for achieving a 70.7% test118
performance (denoted by ndots);119

2. To quantify a participant’s attention skill, the following cognitive task was performed: two objects120
are on display, one located at the display centre, another located on the periphery of the display. The121
peripheral object can only take one of eight equally distributed radial directions (with respect to the122
display center). The central object could be either car or truck silhouette, whereas the peripheral object123
must always be the truck silhouette. The participant was asked to identify the type of the central object124
(car vs. truck) and the location of the peripheral stimulus before the display was masked by white125
visual noise. This skill is measured by the minimal display time required for the participant to achieve126
70% task performance. Depending on whether or not there are distractors on the display, the skill of127
divided or selective attention is measured (denoted by tddisp and tsdisp, respectively);128

3. The skill of inhibition is measured in a stop-signal test. A participant is first cued to perform a motor129
task. This is followed by a tone with some time delay, which signals task abortion. The quantity130
measuring the inhibition skill, tdelay, is given by the minimum delay time for achieving a 70.7% test131
performance.132

Sixty participants are involved in this study. Thirty-four of them have both cognitive and fMRI data.133
Among these participants, nine MCI patients and nine healthy controls come from the cohort reported134
in Luft et al. (2015). The remaining sixteen healthy controls come from the cohort reported in Luft et al.135
(2016). The size of that cohort is twenty. Four of them are not included in this study because their cognitive136
data were missing. Note that for these thirty-four subjects having both cognitive and neuroimaging data for137
training of classifiers, MCI patients and healthy controls were age matched: mean age of MCI patients was138
68.9 , and mean age of controls was 68.3. The remaining twenty-six participants have cognitive data only.139
Among them, four MCI patients and five healthy controls come from Baker et al. (2015) and Luft et al.140
(2015). The remaining seventeen participants are from unpublished studies but they participated exactly the141
same experiments as other participants. Note that all neuroimaging data used in this study are reported142
either in Luft et al. (2015) or in Luft et al. (2016).143
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3 METHODS

3.1 Generation of fMRI features144

3.1.1 fMRI signal features145

For each ROI and each (pre- and post training) session, we calculated percent signal change (PSC) by146
subtracting fMRI responses to random sequences from fMRI response to structured sequences and dividing147
by averaged fMRI response to both stimulus sequences. Let nr and ns denote the number of volumes148
scanned during the trials with random and structured sequences, respectively. For a ROI of size V , its PSC149
value is computed as follows:150

PSC =
1

V

V∑
v=1

1
ns

∑
i∈Is

yvi − 1
nr

∑
j∈Ir

yvj

1
ns

∑
i∈Is

yvi + 1
nr

∑
j∈Ir

yvj
(1)

where i and j denote volume index, v voxel index, Is = {i1, ..., ins} the collection of “structured” volumes151
and Ir = {j1, ..., jns} the collection of “random” volumes. The above definition implies that PSC measures152
scaled fMRI-response to temporally structured stimuli and it is an overall measure averaged over both153
volumes and voxels.154

3.1.2 fMRI graph features155

3.1.2.1 Graph matrix156

Graph structure characterises the connectivity between nodes of a graph. In this study, the graph structure157
of a single ROI is represented by so-called graph matrix G of size V × V where V denotes the ROI size.158
The value of Gij measures the functional connectivity between voxel i and voxel j, and is computed159
as (linear) cross-correlation between two fMRI time series of length n on the voxel pair (denoted by160
yi = (yi1, ..., yin)ᵀ and yj = (yj1, ..., yjn)ᵀ, respectively), that is,161

Gij =
1

n
·

n∑
k=1

(yik − µi) · (yjk − µj)

σi · σj
(2)

where µ and σ stand for the mean and standard deviation of individual fMRI time series. In the case of i =162
j, we obtain Gij = 1. Note that Gij is a connectivity measure independent of the activation intensity on163
each of two voxels.164

3.1.2.2 Discriminative feature extraction165

Often, a classifier’s inputs are not those raw data to be classified but the features extracted from the166
raw data. This can significantly reduce the input dimension, which tackles both “curse of dimensionality”167
and the small sample-size problem. Therefore, a good choice of feature vector plays an important role in168
classification. This is the motivation for extraction of discriminative features. The discriminative features169
are suitable because they are extracted in a task-driven & supervised manner. Linear Discriminant Analysis170
(LDA) is a machine learning technique for discriminative feature extraction. The assumption of LDA is171
that the feature vectors of each class are Gaussian-distributed. In LDA, high-dimensional feature vectors172
are projected into a lower-dimensional space and the projection matrix is optimized so that the classes173
are maximally separated in the projection space. To this end, the empirical covariance matrices need to174
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be estimated using the feature vectors from individual classes. If the number of feature vectors is small175
and their dimension is high, the empirical estimates of covariance matrices are not accurate. Thus, LDA176
suffers from the same problem as classifiers do. So-called 2D-LDA has been proposed by Sato et al. (2008)177
for the cases where data items are matrices (e.g. graph matrices in this study) and a direct application of178
standard LDA with vectorised matrices could fail due to the above-mentioned problem. In the following,179
we summarise both standard LDA and 2D-LDA with the dimension of the projection space fixed to one.180

For standard LDA, assume that we have N d-dimensional feature vectors, {xn : n = 1, ..., N}, for181
training in which N1 feature vectors are from Class 1 and N2 = N −N1 from Class 2. Denote these two182
subsets by C1 and C2, respectively. The mean vectors of Class 1 and Class 2 are given by m1 = 1

N1

∑
xn∈C1

xn183

and m2 = 1
N2

∑
xn∈C2

xn, respectively. Define the between-class covariance matrix SB and the total184

within-class covariance matrix SW as185

SB = (m2 −m1)(m2 −m1)ᵀ (3)

and186
SW =

∑
xn∈C1

(xn −m1)(xn −m1)ᵀ +
∑

xn∈C2

(xn −m2)(xn −m2)ᵀ. (4)

The projection matrix w of size d× 1 is optimized by maximizing the Fisher criterion defined by187

J(w) =
wᵀSBw

wᵀSWw
=

DB

DW
. (5)

DB and DW are referred to as the between-class distance and the total within-class distance. Denote the188
optimized w by wopt and the extracted features are given as {fn = wᵀ

optxn : n = 1, ..., N}.189

For 2D-LDA, assume that we have N graph matrices of size d× d, {Xn : n = 1, ..., N}, for training in190
which N1 feature vectors are from Class 1 and N2 = N −N1 from Class 2. Denote these two subsets by191
C1 and C2, respectively. For Class 1 and Class 2, their mean matrices are given by M1 = 1

N1

∑
Xn∈C1

Xn192

and M2 = 1
N2

∑
Xn∈C2

Xn. In contrast to standard LDA, we need two (left and right) projection matrices193

(or vectors), denoted by a and b of size d × 1 projecting the matrices into real numbers. Similarly, the194
between-class distance and the total within-class distance are defined as195

DB = aᵀ(M2 −M1)bbᵀ(M2 −M1)a (6)

= bᵀ(M2 −M1)aaᵀ(M2 −M1)b (7)

and196

DW =
∑

Xn∈C1

aᵀ(Xn −M1)bbᵀ(Xn −M1)a +
∑

Xn∈C2

aᵀ(Xn −M2)bbᵀ(Xn −M2)a (8)

=
∑

Xn∈C1

bᵀ(Xn −M1)aaᵀ(Xn −M1)b +
∑

Xn∈C2

b(Xn −M2)aaᵀ(Xn −M2)b. (9)

Note that M1, M2, and Xn, n = 1, 2, ..., N , are all symmetric matrix. The projection vectors a and b197
are optimized by maximizing J(a,b) = DB/DW iteratively. At each iteration, we optimize a or b while198
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keeping b or a fixed. This procedure is repeated until J has converged. Denote the optimized a and b by199
aopt and bopt. The extracted features are given as {fn = aᵀoptXnbopt : n = 1, ..., N}.200

Note that the number of free parameters to be optimised is d2 for standard LDA operating on vectorised201
graph matrices and 2d for 2D-LDA operating on graph matrices directly.202

3.1.2.3 Small sample-size problem203

The main idea of this study is using costly but informative fMRI measurements as valuable privileged204
information in a classification task operating on cognitive features only. To do so the complex spatial-205
temporal structure in fMRI signals will need to be transformed into a set of indexes (scalars) that best206
discriminate between the classes.207

In our approach we first capture the spatial-temporal structure of fMRI signals within an ROI as a208
cross-correlation graph. An ROI of V voxels will be represented as a full undirected graph with n nodes209
(one for each voxel) and the edge between nodes i and j is weighted by the value of the correlation210
coefficient between fMRI signals in the two voxels. Each such graph will in turn be represented by an211
V × V symmetric matrix X collecting the edge weights.212

In this study we have two classes of N subjects - Np patients and Nc healthy controls (that is N =213
Np + Nc). The graph matrices of patients and controls are collected in matrix sets Cp and Cc. Given214
the two sets of matrices, we propose to extract the discriminating feature f through a quadratic form215
applied to graph matrix X: f = aᵀXb. Both a and b are a V -dimensional vectors determined via an216
optimization problem expressing the need to maximally separate the two classes, while keeping the217
within-class variability minimal. To find the projection vectors a and b we used 2D-LDA (Ye et al., 2004).218

For an ROI with V voxels, the discriminative features a and b are V -dimensional vectors, meaning that219
when determining a and b we have 2V free parameters. As the number of subjects N is smaller than 2V , in220
order to avoid overfitting, the size of the graph representing spatial-temporal structure of cortical activations221
in that ROI needs to be reduced. Note that in our original formulation, each element ai of a corresponds222
to a particular voxel i whose spatial position is ri. It is natural to expect that spatially close voxels will223
have similar activation patterns. We therefore introduce a set of K spatially smoothing Gaussian kernels224
N (r;µk,Σk), k = 1, 2, ..., K, in the voxel space, positioned at µk, shape determined by the covariance225
matrix Σk . This leads to a decomposition:226

ai =
K∑
k=1

ãkN (ri;µk,Σk) (10)

The values of the smoothing kernels k at each voxel i can be collected in the smoothing matrix.227

Pi,k = N (ri;µk,Σk) (11)

The feature vectors a and b can then be written as a = Pã and b = Pb̃, respectively. We have:228

f = aᵀXb = ãᵀPᵀXPb̃ (12)
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The V × V graph matrix X is thus reduced to the K ×K matrix229

X̃ = PXPᵀ (13)

and230
f = ãᵀX̃b̃ (14)

For a given number K of Gaussian kernels, their position is determined by k-means clustering in the231
voxel space and the covariance matrices of each cluster were estimated from the voxel positions within the232
corresponding clusters.233

The number of smoothing kernels K in the three ROIs with 32, 82 and 126 voxels was set to 3, 4234
and 8, respectively. The largest ROI is contained in both hemispheres. Hence, the sub-ROIs within each235
hemisphere were clustered independently into 4 clusters. Spatial smoothing with Gaussian kernels described236
above expresses the assumption that nearby voxels should have similar functionality. We refer to this237
approach as Spatial Grouping (SG) and to the resulting feature as SGF. An alternative approach would be238
to identify groups of voxels that are not only spatially close but also exhibit similarity in the activation239
time series (as quantified through cross-correlation) (Carpineto and Romano, 2012). We thus obtain N240
functional clusterings of the voxel space, one for each subject. These groupings at the subject level are241
then merged into a single population based functional clustering of voxels through Consensus Clustering242
(Carpineto and Romano, 2012). Given the resulting K voxel clusters, we calculated their means µk and243
covariance matrices Σk, thus obtaining a set of K ”functionally informed” smoothing Gaussian kernels244
N (ri;µk,Σk). The reduced graph matrix X̃ is then calculated as in eqs: (11) and (13). We refer to such245
functional voxel clustering as Functional grouping (FG)and to the resulting feature as FGF.246

3.1.3 Feature generation pipeline247

Figure 1 illustrates the flow of fMRI feature generation. We obtain three fMRI features (PSC, FGF, SGF)248
independently from fMRI data Y ∈ RV×T . Recall that V is number of voxels and T is the number of249
volumes. Feature PSC is computed directly from Y. To compute other two features, we first transform Y250
to a graph matrix X of size V × V and reduce X to X̃ of size K ×K with (K < V ) either through spatial251
projection or through functional clustering. Finally, we extract SGF from X̃ obtained by spatial projection252
and FGP from X̃ obtained by functional clustering.253

3.2 Classification Tools254

3.2.1 Generalized Matrix Learning Vector Quantization (GMLVQ)255

The classification algorithms of Learning Vector Quantization (LVQ) (Arbib, 2003) are supervised256
learning paradigms which work iteratively to modify the quantization prototypes to find the boundaries of257
the class. LVQ classifiers are represented by a set of vectors, so-called prototypes, embodying classes in the258
input space, and a distance metric on the input data. During training, prototypes are adapted in an iterative259
manner to define class borders. For each training point, the algorithm determines two closest prototypes,260
one with the same class as the training point, and another with a different class. The position of the two261
closet prototypes are then updated, where same class prototype is moved closer to the data point, while262
different class prototype is pushed away from the data point. During testing, an unknown point is assigned263
to the class represented by the closest prototype with respect to the given distance.264

The LVQ scheme, which is originally introduced by Kohonen in 1986, applies Hebbian online learning265
in order to adapt prototype with training data. Subsequent, researchers proposed a number of modifications266
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to the basic learning scheme. Such variations utilize an explicit cost functionality, whereas others allow for267
incorporating adaptive distance measures (Schneider, 2010; Schneider et al., 2009).268

Given training data (xi, yi) ∈ Rm × {1, · · · , K}, i = 1, 2, · · · , n, where m denotes the dimensionality269
of data and K signifies the number of different classes. Typically, a LVQ network will include L prototypes270
wq ∈ Rm, q = 1, 2, 3, ..., L, which is characterized according to their location available in the input space271
and their class c(wq) ∈ {1, ..., K}. At least one prototype in each class needs to be present. The overall272
number of prototypes is a model hyper-parameter that is to be optimized. The (squared) Euclidean distance273
d(x,w) = (x−w)ᵀ(x−w) within Rm quantifies the distance between the input vectors and prototypes.274
The classification performed using the winner-takes all scheme: the data point xi ∈ Rm belongs to the275
label c(wj) of the prototype wj if and only if with d(x,wj) < d(x,wq), ∀j 6= q. For every prototype wj276
with class c(wj) a receptive field is defined within the input space. According to the LVQ model, points277
located in the respective field 1 will be assigned to the class c(wj).278

The aim of learning is to adapt prototypes automatically in such a way that the gap between data points of279
class c ∈ {1, ..., K} and the corresponding prototypes with label c (the one that the data are belonging to)280
will be reduced to a minimum distance. During the stage of training for each data point xi with class label281
c(xi), the most proximal prototype with the same label is rewarded by pushing closer towards the training282
input; the most closest prototype with a different label will be disallowed by moving pattern xi away.283

The Generalized Matrix LVQ (GMLVQ ) is a recent extension of the LVQ that employs a full matrix284
tensor for a better measure of distance between two feature vectors. The new distance measure not only285
is capable of scaling individual features but also accounts for pairwise correlations between the features.286
Assuming Λ ∈ Rm×m is a positive definite matrix, Λ � 0, the generalized form of the squared Euclidean287
distance is defined as288

dΛ(xi, w) = (xi −w)ᵀΛ(xi −w) (15)

The positive definiteness of Λ is guaranteed by imposing Λ = ΩᵀΩ, where Ω ∈ Rm×m is a full-rank matrix.289
Furthermore, to prevent the degeneration of the algorithm, Λ is trace normalized after each learning step290
(i.e.

∑
i Λii = 1) so that the summation of eigenvalues is kept fixed in the learning process. The model is291

trained in an online-learning fashion and the steepest descent method is employed to minimize the cost292
function given as:293

fGMLV Q =
n∑

i=1

φ(µΛ(xi)) (16)

with294

µΛ(xi) =
dΛ(xi,w

+)− dΛ(xi,w
−)

dΛ(xi,w+) + dΛ(xi,w−)
, (17)

where φ is a monotonic function (the identity function φ(l) = l is a common choice). The main advantage295
of the GMLVQ framework is that (unlike LVQ (Schneider, 2010; Schneider et al., 2009)), it allows us to296
naturally incorporate privileged information through metric learning.297

3.2.2 Privileged information (PI) guided GMLVQ298

This paper employs the Information Theoretic Metric Learning (ITML) approach (Davis et al., 2007) in299
order to incorporate privileged information into the learning phase of the GMLVQ.300

1 The set of points in the input space is defined by the receptive field of prototype w, where this prototype is picked as their winner.
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Given a training dataset, we have one space where the original training data live and another space where301
the privileged training data live. They are denoted by X and X ∗, respectively, and their corresponding302
global metric tensors are denoted by Λ and Λ∗. The distances between the privileged training points in X ∗303
are first computed using Λ∗ and then are sorted in ascending order. Based on the closeness information in304
X ∗, the original training points are tagged in a categorical manner (similar and dis-similar). After that, the305
ITML approach is adopted to impose similarity constraints in the original space. The main goal is to learn306
a new metric in the original space (denoted by Λnew) so that under the new metric, the distance between307
two original training points is small if their counterparts in the privileged space are similar (close), and vice308
versa. Implementation of the above concept is described in the following.309

The training dataset is given as {(xi,x
∗
i , yi) : xi ∈ X ,x∗i ∈ X ∗, i = 1, 2, ..., N}. Recall that y310

represents class label. For each pair of two training examples, 1 ≤ i < j ≤ N , we compute three different311
squared Mahalanobis distances as follows312

dΛ(xi,xj) = (xi − xj)
ᵀΛ(xi − xj),xi,xj ∈X (18)

dΛ∗(x∗i ,x
∗
j) = (x∗i − x∗j)

ᵀΛ∗(x∗i − x∗j),x
∗
i ,x
∗
j ∈X ∗ (19)

dΛnew(xi,xj) = (xi − xj)
ᵀΛnew(xi − xj),xi,xj ∈X (20)

Note that Λ and Λ∗ are both given whereas Λnew needs to be learned. The metric tensor Λnew should be313
optimized in a supervised manner so that dΛnew(xi,xj) will be shrunk if x∗i and x∗j are similar. Otherwise,314
dΛnew(xi,xj) will be enlarged. To this end, we form two sets of pairs of the training data points in the315
original space X : S+ is a set of similar pairs and S− a set of dissimilar pairs. These two sets are formed316
using the proximity information in the privileged space X ∗ as follows:317

1. If dΛ∗(x∗i ,x
∗
j) ≤ l∗and yi = yj(same class label), then (xi,xj) ∈ S+;318

2. If dΛ∗(x∗i ,x
∗
j) ≥ u∗and yi 6= yj(different class label), then (xi,xj) ∈ S−.319

Here, l∗ and u∗ represent the upper and lower bound for the distances of similar and dissimilar pairs,320
respectively, in the privileged space. The value of l∗ is chosen as the upper bound for the < a∗ percentile321
of all dΛ∗(x∗i ,x

∗
j) values, 1 ≤ i < j ≤ N . Similarly, the value of u∗ is chosen as the lower bound for the322

> 1− b∗ percentile of all dΛ∗(x∗i ,x
∗
j) values, 1 ≤ i < j ≤ N . At the same time, the choice of l∗ and u∗ is323

subject to the constraint u∗ > l∗. Also, a∗ and b∗ are pre-determined with 0 < a∗ < b∗ < 1.324

In the GMLVQ framework, the privileged information is incorporated by fusing the metric Λ∗ in the325
privileged space X ∗ with the metric Λ in the original space X (for more details, see Fouad et al. (2013)).326

3.2.3 Imbalanced class problem327

Class imbalance occurs when there is a mismatch between sample sizes representing different classes.328
Class imbalance is one of the most common issues in classification. Unless explicitly treated, the classifier329
can be biased towards the majority class. In general, model fitting algorithms of various forms of classifiers330
assume balanced class distribution. A variety of methods have been proposed to tackle the class imbalance331
problem [e.g. Garcia et al. (2007)]. For example, the imbalance problem can be addressed by either332
upsampling the minority class(es) (Perez-Ortiz et al., 2015), or downsampling the majority class(es)333
(Elrahman and Abraham, 2013), so that the training set becomes balanced.334

Since the data sets available for our study are relatively small, instead of upsampling small minority class,335
we decided to downsample the majority class, and repeat the downsampling Nd = 100 times. Training336
portion of the minority class remains fixed and each time the majority class is downsampled we construct337
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a classifier based on balanced classes. We thus obtain a collection of Nd classifiers trained on different338
versions of downsampled majority class. These classifiers are then combined in an ensemble to form a339
single classifier using majority voting over the ensemble members.340

3.2.4 Employing Different Types of PI341

We have two different kinds of features extracted from fMRI signals and used as privileged information,342
namely percent change (PSC) in overall ROI activation and graph based features described above.343

The PSC feature quantifies the relative activation difference in the whole ROI when subjects were shown344
structured vs. random stimuli. This is calculated both from both pre- and post-training fMRI data. We345
consider 3 ROIs, hence there are 6 PSC privileged information features. Analogously, for the graph-based346
spatial-temporal features, there is a single feature for each ROI, measured both pre- and post-training,347
yielding a totality of 6 graph-based privileged information features.348

An obvious combination of PSC and graph-based features would be to concatenate them into 12-349
dimensional vector. However, given the small sample size of participants, such an approach might lead to350
overfitting. Therefore we constructed an alternative way of combining privileged information features, as351
outlined below.352

We independently construct two classifiers operating in the original space, but trained with the two353
different kinds of privileged information. Given a test input, if both classifiers predict the same class label,354
that label is used as the model output. If, on the other hand, they disagree, we output the class label that355
is predicted with ”more confidence” - i.e. smaller distance between the test input and the closest class356
prototype.357

However, note that for the classification purposes, the metric tensor in a single classifier can be arbitrarily358
scaled, since only the relative relations between distances of test point to the class prototypes are relevant.359
Hence, in order to compare distances of the test point to the closest prototype in the two classifiers, we360
need to normalize the learnt metrics. We do this by eigen-decomposing the two metric tensors Λ1 and Λ2361
and normalizing their eigenvalues to sum to 1. In particular, the eigen-decomposition of Λi, i = 1, 2, reads362
Λi = Ui diag(λi1, λ

i
2, ...λ

i
d)Uᵀ

i . The normalized metric tensor is obtained as363

Λ̂i = Ui diag(λ̂i1, λ̂
i
2, ..., λ̂

i
d)Uᵀ

i , (21)

where the normalized eigenvalues are364

λ̂ij =
λij∑d
k=1 λ

i
k

. (22)

Given a test input, when combining two ensemble classifiers C1 and C2, if they agree on the predicted365
label, we output that label as the overall label estimate. If, however, C1 and C2 disagree on the label, we366
prefer the label produced with ”more certainty” - in our context - small average distance to the closest367
prototype. In particular, if C1 is claiming class +1, we calculate the mean distance of the test input to368
the closest prototype of class +1 across those ensemble members that output class +1 (e.g. their closest369
prototype to the test input has label +1). Analogously, for C2 claiming class -1, we record the mean distance370
of the test input to the closest prototype of class -1 across ensemble members outputting class -1. The371
overall class label of the combined classifier for the test input is the label with the minimal average distance372
to the closest prototype.373
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3.3 Experimental Design374

The value of using brain imaging data as privileged information in our setting can be evaluated through375
two extreme cases:376

• No privileged information is available - the models (classifiers) are constructed purely based on the377
cognitive data. We will refer to this case as M -CD;378

• Privileged brain imaging data is always available and is used directly as input data in the classifier379
construction and testing, without the need to resort to learning with privileged information. We will380
refer to this case as M -PD. The classifiers obtained in this regime with the PSC, FGF and SGF381
representations of brain imaging data are referred to as M -PSC, M -FGF and M -SGF, respectively.382

When the classifiers are constructed in the framework of learning with privileged information, with383
cognitive data serving as classifier inputs and brain imaging data used as privileged information, depending384
on what representation of brain imaging data is used, we denote the resulting classifiers by M+-CD-PSC,385
M+-CD-FGF and M+-CD-SGF.386

As explained above, PSC representation of spatial-temporal structure of cortical activations within an387
ROI is the simplest one, integrating out both the spatial and temporal structures. In contrast, a more subtle388
representation is obtained in the graph based features FGF and SGF, integrating over time, but preserving389
aspects spatial structure. The PSC and graph based features may contain complementary information for390
the classification task and hence we further combine the classifiers obtained using brain imaging data391
into composite ones, in particular M+-CD-PSC and M+-CD-FGF are combined into a single classifier392
M+-CD-PSC+FGF and the combination of M+-CD-PSC and M+-CD-SGF is referred to as M+-CD-393
PSC+SGF. Analogously, M -PD-PSC and M -FGF are combined to form M -PSC+FGF and combination of394
M -PSC with M -SGF results in M -PSC+SGF. The overall model structure setup is illustrated in Figure 2.395

4 EXPERIMENTS

This section assesses the classification performance of the proposed methodology that incorporates fMRI396
as privileged information (PD) in the training phase, against baseline algorithms trained without PD,397
or trained solely with PD. Since we expect that the brain imaging fMRI data carry lot of information398
regarding possible MCI, the classier trained directly on fMRI (M-PD) will provide a lower bound on the399
classification error that a classifier trained solely on cognitive data (M-CD) (carrying less information400
on possible MCI) cannot achieve. We expect that the power of learning with privileged information will401
boost the classification performance, so that the classifier trained with CD as inputs, but able to incorporate402
fMRI indirectly in the training process (M+-CD-PD), will have classification performance between the403
two extremes M-PD and M-CD, even though in the test phase, both M-CD and M+-CD-PD classify solely404
based on CD. The methodology is formulated in the framework of prototype-based classification (GMLVQ)405
with metric learning (Fouad et al., 2013; Schneider, 2010; Schneider et al., 2009). In this experiment, the406
original and privileged features correspond to cognitive profiles and brain imaging data, respectively. The407
overall experimental design is explained in section 3.3.408

4.1 Experimental Setup409

In the M -PD case, we have in total a set of 34 subjects having both cognitive and brain imaging data,410
consisting of 9 patients and 25 controls. We create 50 training-test set splits by randomly sampling 6 and411
17 patients and controls, respectively, to form the training set (the rest is in the test set). In the M -CD412
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case we have 60 subjects having cognitive data, consisting 13 patients and 47 controls. Again, we created413
50 training-test set splits by randomly sampling 9 and 33 patients and controls, respectively, to form the414
training set. We made sure that in each resampled training and test set there is an equal balance between415
subjects with and without PD.416

As explained in section Section 3.2.3, to deal with class imbalance in the M-PD case, we construct417
ensemble classifiers by using the same set of 6 patients and repeatedly sampled 6 controls from the 17418
training ones. Analogous setting was used in the M-CD case, this time with 9 patients and 33 controls.419

In all experiments, the (hyper-)parameters of the ensemble classifiers were tuned via cross-validation420
on the training set of the first sub-split only. The found values were then fixed across the remaining 99421
classifiers. In the GMLVQ classifier, data classes are represented by one prototype per class. The class422
prototypes are initialized as means of random subsets of training samples selected from the corresponding423
class. In the IT metric learning settings given in Fouad et al. (2013), lower (a, a∗) and upper (b, b∗)424
percentile bounds for the privileged and original spaces were tuned over the values of 5, 10, 15 and of425
85, 90, 95, respectively.426

Throughout the experiments we had one data set in the original space of CD. However, experiments were427
repeated for three different fMRI PD: PSC, SGF and FGF. PD of each subject is represented by 6 features,428
3 pre-training and 3 post-training, corresponding to 3 ROIs. Due to the imbalanced nature of our classes429
we utilized the following below evaluation measures:430

1. Confusion Matrix: it is a popular performance indicator for machine learning algorithms. It is organized431
along the the actual classes (rows) and the predicted ones columns) (Elrahman and Abraham, 2013). In this432
study positive and negative examples represent patients and controls, respectively. In the confusion matrix,433
True Positive (TP) denotes the number of positive examples correctly classified, True Negatives (TN) is the434
number of negative examples correctly classified , False Positives (FP) is the number of negative examples435
incorrectly classified, False Negatives (FN) is the number of positive examples incorrectly classified as436
negative. The true positive rate (TPR = TP

TP+FN ) measures the percentage of patients who are correctly437

classified, whereas the true negative rate (TNR = TN
TN+FP ) measures the proportion of the correctly438

identified controls. False positive rate (FPR = FP
FP+TN ), refers to the probability of falsely classifying the439

patients, whereas the false negative rate (FNR = FN
FN+TP ) refers to the probability of falsely classifying440

the controls.441
2. Macroaveraged Mean Absolute Error (MMAE): it is a macroaveraged version of Mean Absolute Error442
and it is a weighted sum of the classification errors across classes (Fouad, 2013). It measures the per-class443
accuracy of class predictions ŷ with respect to true class y on a test set:444

MMAE =
1

N

N∑
n=1

∑
yi=N |yi − ŷi|

Tn
(23)

Where N is the number of classes and Tn is the number of test points whose true class is n.445

4.2 Classification Results446

We are primarily interested in classification performance of M+-CD-PD classifiers, that is, classifiers447
using cognitive data as their inputs and incorporating brain imaging data as privileged information. this448
classification performance will be put in the context of performances when no brain imaging information449
is available (M -CD) and when the full brain imaging is available as input (M -PD). This will allow us450
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to quantitatively investigate how much performance improvement over M -CD could be obtained by451
incorporating privileged information through metric learning. Following our experimental setup, we452
obtained 50 MMAE estimates for each classifier summarised by the mean, standard deviation, median and453
the (25%, 75%) percentiles. The results are summarised in Tables 1 and 2.454

Table 1 shows that for all five types of PD, M -PD outperforms M -CD. Recall that we have extracted455
three different features from the brain imaging data, namely PSC, SGF, and FGF, and all of them can456
be used as PD. For PSC, which is related to brain activation level, the corresponding median MMAE is457
reduced by relatively 39.6% when compared to that of M -CD. The other two types of PD, SGF and FGF,458
are related to brain connectivity pattern. When compared to the baseline classifier, the relative reduction459
of their median MMAE is about 24% and 40%, respectively. The above results indicate that PSC is at460
least as useful as the graph feature (FGF), or even more useful (SGF). Im principle, the activation level461
and connectivity pattern are two independent fMRI features. Therefore, PSC could be used as PD along462
with SGF or FGF. Row 6–7 in Table 1 show that the resulting classifier can either attain the classification463
performance of M -PSC in the case of SGF, or improve on it in the case of FGF. In summary, brain imaging464
data contain more information that are relevant to the task than cognitive data.465

Models Mean Std-Dev Median (25%, 75%) Percentile p-value
M -CD 0.3992 0.0949 0.3942 (0.3173, 0.4423) –
M -PSC 0.2357 0.1655 0.2381 (0.1429, 0.3333) 0.00
M -SGF 0.2666 0.1151 0.2995 (0.2143, 0.4048) 0.00
M -FGF 0.2376 0.1231 0.2381 (0.1429, 0.3333) 0.00

M -PSC+SGF 0.2438 0.1067 0.2381 (0.2143, 0.3095) 0.00
M -PSC+FGF 0.2200 0.1245 0.2143 (0.1429, 0.3095) 0.00

Table 1. Classification performance measured by Macroaveraged Mean Absolute Error (MMAE) for the
baseline classifier, M -CD, and five different M -PD classifiers (see Column 1). For each classifier, we
report both mean MMAE, its standard deviation, median MMAE and its (25%, 75%) percentile in Column
2 – 5, respectively. They were computed using the MMAE estimates obtained from 50 randomly created
training-test splits. Each p-value displayed in Column 6 was obtained from one-sided sign-rank test against
the null hypothesis that the corresponding M -PD classifier is inferior to the baseline classifier.

Table 2 shows that for all five types of PD, M+-CD-PD outperforms M -CD. In particular, PSC and466
SGF are the best two among the five PD types that are used as the privileged information along with CD467
as GMLVQ’s inputs. Compared to M -CD, both M+-CD-PSC + M+-CD-SGF show a reduction of their468
median MMAE by relatively 20%. This relative improvement is shrunk to 13.4%, 9.7%, and 3.4% for469
M+-PSC+FGF, for M+-PSC+SGF, and for M+-FGF (respectively).470

Models Mean Std-Dev Median (25%, 75%) Percentile p-value
M+-CD-PSC 0.3448 0.0988 0.3173 (0.2788, 0.4038) 0.00
M+-CD-SGF 0.3128 0.0804 0.3153 (0.2308, 0.3942) 0.56
M+-CD-FGF 0.3925 0.1211 0.3810 (0.2885, 0.4135) 0.12

M+-CD-PSC+SGF 0.3426 0.1116 0.3558 (0.2788, 0.4038) 0.00
M+-CD-PSC+FGF 0.3553 0.1157 0.3413 (0.2788, 0.4808) 0.04

Table 2. The same as in Table 1 but for evaluation of the classification performance of five different
M+-CD-PD classifiers, that is, the classifiers using CD as their inputs and PD as privileged information.
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Table 3 presents the results of average TPR and TNR of the models. The best two TPR results (0.83471
and 0.80) were achieved by M -SGF and M -PSC-SGF (respectively), whereas the best two TNR result472
(0.88 and 0.87) were attained by M -PSC and M+-CD-FGF (respectively). Overall, M -FGF emerges as473
the classifier with most balance performance.474

Model TPR TNR
M -CD 0.60 0.60
M -PSC 0.64 0.88

M+-CD-PSC 0.69 0.63
M -SGF 0.83 0.51

M+-CD-SGF 0.53 0.67
M -PSC+SGF 0.80 0.68

M+-CD-PSC+SGF 0.56 0.70
M -FGF 0.74 0.76

M+-CD-FGF 0.38 0.87
M -PSC+FGF 0.56 0.70

M+-CD-PSC+FGF 0.61 0.70

Table 3. Overall true positive rates (TPR) and true negative rates (TNR) on hold-out sets

4.3 Further Analysis475

GMLVQ is a fully adaptive algorithm to learn global metric tensor which accounts for different importance476
weighting of individual features and pairwise interplay between the features, with respect to the given477
classification task. Hence, it allows us to study the task-dependent relevance of the input features by478
using the diagonal elements of the GMLVQ metric tensor matrix. Moreover, the global metric can be479
further optimized adaptively by incorporating privileged information into the GMLVQ model via the480
distance relations revealed in the privileged space (Fouad, 2013). In the following we analyse the learned481
classification models in terms of the learned metric tensor and discuss possible implications regarding the482
cognitive and brain imaging fMRI features used in this study.483

4.3.1 Cognitive features only484

We first present a procedure to study the relevance of four cognitive features (working memory, cognitive485
inhibition, divided attention, and selective attention) using the GMLVQ metric (tensor) matrices obtained486
from the experiments whose classification results are discussed in Section 4.2. Each of these experiments487
resulted in 50× 100 GMLVQ classifiers with the associated metric (tensor) matrices Λ obtained by training488
GMLVQ classifiers on 50 × 100 (small) data sets independently. Recall that these data sets were generated489
by first randomly splitting the whole training set into 50 smaller sets of equal size and then randomly490
downsampling the majority class to the size of the minority class in each split 100 times. However, many491
of the 50 × 100 classifiers performed poorly and they should not be included in the analysis of the relevant492
cognitive features. We therefore discard the data split producing the ensemble classfier whose Nb-th best493
ensemble member (classifier) produced error larger than a threshold value denoted by Emax, and pool all494
ensemble members from each of the remaining splits for further analysis. This procedure is applied to495
three experiments as follows: M -CD, M+-CD-PSC and M+-CD-FGF. We found out that Nb = 15 and496
Emax = 25% worked universally across these data sets.497

Each of the four cognitive features is associated with one of the four diagonal element in the metric498
(tensor) matrix. For each cognitive feature, its importance is measured by the frequency of its associated499
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diagonal elements in > 90% percentile of the set of all diagonal elements from the metric (tensor) matrices500
selected by the above procedure. The left panel in Figure 3 shows that the divided attention (i.e. tddisp) is501

the most discriminative feature for the classification task (MCI patients vs. healthy controls).502

Next, we studied the off-diagonal elements of those metric (tensor) matrices. Each off-diagonal element503
controls the interplay between two associated cognitive features. To illustrate how this interplay works, we504
provide a toy example as follows: Denote a two-dimensional feature vector by (x, y) and a 2 × 2 metric505

tensor by
(

α γ

γ β

)
. The distance between two feature vectors indexed by i and j is given by506

dij = α2 · (xi − xj)2 + β2 · (yi − yj)2︸ ︷︷ ︸
dMij

+ 2γ · (xi − xj)(yi − yj)︸ ︷︷ ︸
d2ij

. (24)

The first two terms of dij is actually so-called Mahalanobis distance between the i-th and j-th feature507
vectors (denoted by dMij ). In the case of γ = 0, the diagonal term α and β are optimized by maximizing508
between-class Mahalanobis distances while minimizing within-class ones. When the metric matrix has509
non-zero off-diagonal elements, the distance measure has additional contribution d2

ij which can either510
enhance or collapse the total distance measure depending on (i) the sign of γ and (ii) the sign of between-511
class correlation (i.e. correlation between class-conditional means of x and y). For example, in the case of512
negative between-class correlation, negative γ can further enhance the class separation and vice versa.513

To test whether the interplay between two cognitive features, indexed by i and j, is positive or negative,514
we performed two one-sided sign-rank tests for the hypotheses Λij > 0 and Λij < 0 (respectively) using515
the corresponding off-diagonal element from the selected GMLVQ metric (tensor) matrices. The upper-516
left panel of Figure 4 shows that there exists statistically significant, negative interplay between divided517
attention and two following cognitive features: (1) working memory (ndots) and (2) cognitive inhibition518
(tdelay). From the lower-left panel, we found statistically significant, positive interplay between three519
cognitive features as follows: (1) working memory, (2) cognitive inhibition, and (3) selective attention520
(tsdisp). Finally, note that there is no significant interplay between divided attention and selective attention.521

To examine the relation between the interplay and between-class correlation revealed by Eq. 24, we need522
to determine whether or not there exists statistically significant between-class correlation between two523
of the four cognitive features. To this end, we first used one-sided sign-rank test to determine, for each524
of the four features, whether its values for MCI patients are significantly larger or significantly smaller525
than those for healthy controls. For each pair of the cognitive features, if the outcomes of their tests are526
both statistically significant and are consistent with (or in opposite to) each other, then their between-class527
correlation is considered as positive (or negative). Otherwise, the between-class correlation is insignificant.528
From this analysis we observe (1) the class-conditional mean of working memory is positively correlated529
with that of cognitive inhibition; and (2) the class-conditional mean of divided attention is negatively530
correlated with that of working memory as well as that of cognitive inhibition. These observations agree531
with the observation of the interplay between the corresponding cognitive features, which can enhance the532
class separation. For the remaining pairs of the cognitive features, their between-class correlation is not533
significant. In Figure 5, we graphically illustrate the presence or absence of these correlations.534

In summary, though the divided attention is the most relevant feature among the four cognitive features,535
all four features are indispensable for maximising the classification performance. This is because these536
exists between-class correlation between the features.537
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4.3.2 fMRI features538

We carried out the same relevance analysis for M -PSC, M -SGF, and M -FGF as for M -CD in539
Section 4.3.1. Recall that in these three experiments, the inputs to GMLVQ classifiers are comprised540
of six fMRI features as follows: (i) PSC-Cerebellar-Pre, PSC-Cerebellar-Post, PSC-Frontal-Pre, PSC-541
Frontal-Post, PSC-Subcortical-Pre, PSC-Subcortical-Post; (ii) SGF-Cerebellar-Pre, SGF-Cerebellar-Post,542
SGF-Frontal-Pre, SGF-Frontal-Post, SGF-Subcortical-Pre, SGF-Subcortical-Post; and (iii) FGF-Cerebellar-543
Pre, FGF-Cerebellar-Post, FGF-Frontal-Pre, FGF-Frontal-Post, FGF-Subcortical-Pre, FGF-Subcortical-544
Post (respectively). The fMRI feature “PSC-Cerebellar-Pre” denotes PSC feature that is derived from fMRI545
data measured in the cerebellar ROI and during the pre-training session. and the remaining fMRI features546
are abbreviated in the same way. Recall that PSC is referred to as Percent Signal Change, SGF as Spatially547
grouped Graph Feature and FGF as Functionally grouped Graph Feature.548

Figure 6 shows that PSC-Frontal-Post and FGF-Frontal-Pre are the most discriminative fMRI feature in549
Experiment M -PSC and M -FGF (respectively). We first note that the most relevant feature in both cases is550
derived from the frontal ROI (that is, the largest ROI among the three ROIs used in this study). It is more551
interesting to address two following questions: (1) why is the post-training session is more relevant than552
the pre-training one, when PSC is used for the task; and (2) why is the opposite true when the graph feature553
is used for the task.554

The left panel in Figure 7 shows that before training, the PSC level for MCI patients and healthy controls555
are on average comparable. However, training caused a remarkable increase of the PSC level for MCI556
patients but not for healthy controls. As a result, these two participant groups differ in their PSC level after557
the training. This is why PSC-Frontal-Post is identified as the most relevant feature for Experiment M -PSC.558
The right panel in Figure 7 shows that the graph feature FGF differs between MCI patients and healthy559
controls before training. This could be related to the suggestions that MCI may have caused changes560
in brain connectivity. We further observe that for both participant groups, training increased their FGF561
values but to different extents. After training, the difference between MCI patients and healthy controls562
became much less significant. This is why FGF-Frontal-Pre is identified as the most relevant feature for563
Experiment M -FGF. This observation allows us to speculate that training could “mitigate” the changes in564
brain connectivity caused by MCI.565

The above analysis suggests that brain connectivity may have changed after training and this is significant566
particularly for MCI patients. In the following, we address the question whether a sub-network rather than567
the entire (local) network within the frontal ROI has changed. Recall that all 128 voxels in the frontal568
ROI are grouped into 7 spatially contiguous clusters. This results in a local brain network consisting of 7569
nodes and 21 edges. Each off-diagonal element of the graph matrix G quantifies the connectivity between570
two nodes and measures the strength of the corresponding edge. Recall that the graph features FGF were571
extracted by applying 2D-LDA. To this end, 2D-LDA provides two feature-generating vectors a and b572
from which we can derive a task-dependent importance matrix denoted by I as follows:573

I =
1

2
(abᵀ + baᵀ). (25)

Each off-diagonal element of I measures the importance of the corresponding edge in terms of574
discriminating MCI patients from healthy controls. To identify possible sub-networks that have significantly575
changed after training, we are first to identify the edges whose importance measure has significantly576
changed after training. To this end, we generated an ensemble of the selected importance matrices using577
the procedure that was used to generate an ensemble of the selected GMLVQ metric (tensor) matrices578
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for the relevance feature analysis. Subsequently, we conducted two one-sided sign rank tests for each of579
the 21 edges to find those edges whose importance values have significantly increased or reduced after580
training. Denote the edge connecting node i and j by Eij . This analysis revealed that the importance581
measure of three following edges has significantly increased: E17, E16 and E64. A significant reduction of582
its importance measure was observed for E65. Figure 9 highlighted a subtle difference between the sub583
network (i.e. E17, E16 and E64) and the single edge E65. For the three-node sub-network, the connectivity584
strength is highest for MCI patients before training. For the single edge E65, the connectivity strength is585
lowest for healthy controls before training. This suggests that FGF-Frontal-Pre, the most relevant feature in586
M -FGF, could be related to these three-node and single-node sub-networks.587

4.3.3 Privileged information588

In addition to M -CD, M -PSC and M -FGF, M+-CD-PSC and M+-CD-FGF were conducted to589
investigate GMLVQ classification of MCI patients and controls when fMRI features were incorporated as590
privileged information. The relevance of the four cognitive features in M+-CD-PSC and M+-CD-FGF591
was estimated from the diagonal elements of the metric tensors and displayed in the middle and right592
panel of Figure 3 (respectively). Though PSC and FGF are two different kinds of fMRI features, we still593
consistently observed that cognitive inhibition and divided attention are the two most relevant cognitive594
features. Moreover, the relevance of divided attention is more profound than that of cognitive inhibition.595
When compared to M -CD, cognitive inhibition did emerge as a relevant feature only when the privileged596
information was incorporated. Also, Figure 4 shows that when compared to M -CD, the interplay between597
divided attention and selective attention became significantly positive in M+-CD-PSC and M+-CD-FGF,598
that is, the experiments in which the privileged information was incorporated.599

5 CONCLUSION

In this study, we employed GMLVQ classifiers to discriminate cognitive skills in MCI patients vs. healthy600
controls using cognitive and/or fMRI data. Specially, we have adopted a “Learning with privileged601
information (PI)” approach to combine cognitive and fMRI data. In this setting, fMRI data as an addition602
to cognitive data are only used to train GMLVQ classifier and classification of a new participant is solely603
based on cognitive data. As the inputs to GMLVQ classifier, the cognitive features include working memory,604
cognitive inhibition, divided attention and selective attention scores. Also, we extracted three different types605
of fMRI features from fMRI data as follows: PSC (percent signal change), and SGF (spatially grouped606
graph feature) and (functionally grouped graph feature).607

We first tested our baseline GMLVQ classifier with four cognitive features as inputs. Its classification608
performance is measured by (25%, 75%) percentile of Macro-averaged Mean Absolute Error (MMAE),609
that is, (0.32, 0.44). The best of the five fMRI GMLVQ classifiers (i.e. the ones using the fMRI features as610
their inputs) yields a lower bound of classification error, which is (0.14, 0.31). Interestingly, the best of the611
PI-guided GMLVQ classifiers (i.e. the ones using the four cognitive features as their inputs and using the612
fMRI features as privileged information) have achieved (0.23. 0.39). This implies that incorporating fMRI613
features as privileged information can significantly improve the classification performance of a baseline614
GMLVQ classifier for classification of cognitive skills in MCI patients vs. controls.615

Crucially, we have also performed “relevant feature analysis” for all three GMLVQ classifiers: the616
baseline GMLVQ classifier, the best fMRI-guided GMLVQ classifier, and the fMRI GMLVQ classifier.617
For the baseline classifier, “divided attention” is the only relevant cognitive feature for the classification618
task. When the privileged information is incorporated, divided attention remains the most relevant feature619
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while cognitive inhibition becomes also relevant. The above results suggest that attention-rather than620
only memory-plays an important role for the classification task. More interestingly, this analysis for the621
fMRI GMLVQ classifier suggests that (1) among three ROIs used, the frontal ROI is most relevant for the622
classification task; (2) when the PSC feature as an overall measure of fMRI response to structured stimuli623
is used as the inputs to the classifier, the post-training session is most relevant; and (3) when the graph624
feature reflecting underlying spatiotemporal fMRI pattern is used, the pre-training session is most relevant.625
Further analysis has indicated that training may cause an overall increase of the brain activity only for MCI626
patients while it may have “mitigated” the difference in brain connectivity pattern between MCI patients627
and healthy controls. Moreover, these training-dependent changes are most significant for a three-node628
sub-network in the frontal ROI. Taken together these results suggest that brain connectivity before training629
and overall fMRI signal after training are both diagnostic of cognitive skills in MCI630

Our study employs machine learning algorithms to investigate the neurocognitive factors and their631
interactions that mediate learning ability in Mild Cognitive Impairment. Our work is not limited to632
developing and validating machine learning approaches; in contrast it advances our understanding of633
the neurocognitive mechanisms that mediate learning in health and disease. For example, the role of634
cognitive inhibition in cognitive profile classification seems to be significantly enhanced when brain635
imaging information (obtained in a sequence learning prediction task) is provided as privileged information.636
This opens questions about the possible interplay between circuits involved in cognitive inhibition and those637
involved in learning sequence prediction tasks. We also observed significant positive interplay between638
divided and selective attention when brain imaging data is used as privileged information. No such interplay639
was detected without the privileged information. Again, this raises interesting questions regarding circuitry640
involved in sequence prediction and the two attention types.641
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Figure 1. Illustration of fMRI feature generation pipeline: from BOLD signal data Y to three fMRI
features (PSC, FGF, and SGF). FG and SG are the reduced version of graph matrix G via functional
grouping and spatial grouping (respectively). Note that FGF and SGF are both discriminative features
extracted from FG and SG in a supervised manner using 2D-LDA (that is, Linear Discriminant Analysis
operating on matrices).
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Figure 2. Schematic illustration of the experimental design described in Section3.3. The items in diamond
shape denote data: CD for cognitive data, PD for privileged information data, PSC for Percent Signal
Change, FGF for functionally grouped graph feature, and SGF for spatially grouped graph feature. M -XXX
denotes a GMLVQ classifier that does not use privileged information while XXX denotes the inputs to
this classifier. For example, M -PSC means a GMLVQ classifier with PSC features as its inputs. M+-
XXX-YYY denotes a GMLVQ classifier using feature XXX as its inputs and feature YYY as privileged
information. For example, M+-CD-PSC means a GMLVQ classifier using cognitive features as its inputs
and PSC features as privileged information. M+-XXX-YYY-ZZZ denotes a hybrid classifier that combines
the classification output of classifier M+-XXX-YYY and classifier M+-XXX-ZZZ using a certain rule
(e.g. majority voting rule).
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Figure 3. The importance histogram of the four cognitive features as follows: working memory (ndots),
cognitive inhibition (tdelay), divided attention (tddisp), and selective attention (tsdisp) (numbered as 1, 2,
3, and 4 in the order). These features are used as the input to the following GMLVQ classifiers: M -CD,
M+-CD-PSC, and M+-CD-FGF (from left to right). Note that each cognitive feature is associated with a
diagonal element of the GMLVQ metric tensor matrix Λ and the importance histogram counts the number
of each diagonal element in the >90% percentile of all diagonal elements from an ensemble of Λs.
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Figure 4. The p values of the one-sided sign-rank tests for studying the interplay between two of the
following cognitive features: working memory (ndots), cognitive inhibition (tdelay), divided attention
(tddisp), and selective attention (tsdisp) (numbered as 1, 2, 3, and 4 in the order). From each panel in the
upper and lower row, one can read that if the p value is smaller than the threshold p = 0.05 (indicated by
red dashed line), the interplay of two corresponding cognitive features is statistically significant and it
takes a negative and positive value (respectively); These features are the inputs to three GMLVQ classifiers
as follows: M -CD, M+-CD-PSC, and M+-CD-FGF (from left to right). Note that the tests used the
off-diagonal elements of the GMLVQ metric tensor matrices.

This is a provisional file, not the final typeset article 24

Provisional



Al-Alahmadi et al. Learning with Privileged Information

−5 −4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

Feature 1

F
e

a
tu

re
 2

delayt

dotsn delayt

−5 −4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

Feature 1

F
e

a
tu

re
  
3

dispt
d

dispt
s

dispt
d

−5 −4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

Feature 1

F
e

a
tu

re
  
4

−6 −4 −2 0 2 4
−5

−4

−3

−2

−1

0

1

2

3

4

Feature 2

−6 −4 −2 0 2 4
−5

−4

−3

−2

−1

0

1

2

3

4

Feature 2

−5 −4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

Feature 3

Figure 5. Scatter plot for six possible feature pairs from the four cognitive features as follows: working
memory (ndots), cognitive inhibition (tdelay), divided attention (tddisp), and selective attention (tsdisp). For
individual MCI patients and healthy controls, their feature pairs (i.e. Feature 1 vs Feature 2) are displayed
as red and blue dots (respectively). The corresponding class-conditional means and standard deviations
are also displayed by coloured error bars. For each panel, the corresponding Feature 1 and Feature 2 are
indicated at the top of each column and on the utmost left of each row (respectively).
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Figure 6. Left panel: The importance histogram of the six fMRI features as follows: PSC-Cerebellar-Pre,
PSC-Cerebellar-Post, PSC-Frontal-Pre, PSC-Frontal-Post, PSC-Subcortical-Pre, and PSC-Subcortical-Post.
(numbered as 1, ..., and 6 in the order). PSC is referred to as Percent Signal Change, Pre as Pre-training
session, Post as Post-training session, Cerebellar (Frontal and Subcortical) as the cerebellar(frontal and
subcortical, respectively) ROI. For example, PSC-Cerebellar-Pre means that the fMRI data were acquired
before training and PSC feature was extracted from the cerebellar ROI). Right panel: The same as in the
left panel but for the following fMRI features: FGF-Cerebellar-Pre, FGF-Cerebellar-Post, FGF-Frontal-Pre,
FGF-Frontal-Post, FGF-Subcortical-Pre, and FGF-Subcortical-Post.
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Figure 7. Left: Boxplot of the following fMRI features: FGF-Frontal-Pre for MCI patients, FGF-Frontal-
Pre for healthy controls, FGF-Frontal-Post for MCI patients, and FGF-Frontal-Post for healthy controls
(numbered as 1, 2, 3 and 4 in the order). Note that the y-axis represents the values of the corresponding
fMRI features; Right: Boxplot of the following fMRI features: PSC-Frontal-Pre for MCI patients, PSC-
Frontal-Pre for healthy controls, PSC-Frontal-Post for MCI patients, and PSC-Frontal-Post for healthy
controls (numbered as 1, 2, 3 and 4 in the order).
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Figure 8. The node configuration for the frontal ROI which includes Superior Frontal Gyrus on the right
hemisphere and Medial Frontal Gyrus on the left hemisphere. The straight lines indicate the edges whose
importance for discriminating MCI patients from healthy controls has significantly changed. For the
three-node subnetwork (indicated by red lines), its importance has increased after training. In contrast, the
single-node subnetwork (indicated by blue line), training has reduced its importance.
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Figure 9. For the graph matrices generated in this study, we display four of their matrix elements which are
associated with the four edges highlighted in Figure 8. G1,6 in the upper-left panel, G1,7 in the upper-right
panel, and G4,5 in the lower-left panel measure the connectivity of edge E1.6, E1,7 and E4,5 (respectively)
that form the three-node sub-network. Recall that the task-related importance of this sub-network has
significantly increased after training. In contrast, G5,6 in the lower-right panel measures the connectivity
of edge E5.6 and its task-related importance has significantly reduced after training. The four boxplots in
each panel are associated with pre-training session & patient group, pre-training session & control group,
post-training session & patient group, and and post-training session & control group (from left to right,
numbered as 1, 2, 3, and 4 in the order).
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