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The recently proposed Kr ̆ein space Support Vector Machine (KSVM) is an efficient classifier for indefinite 

learning problems, but with quadratic to cubic complexity and a non-sparse decision function. In this 

paper a Kr ̆ein space Core Vector Machine (iCVM) solver is derived. A sparse model with linear runtime 

complexity can be obtained under a low rank assumption. The obtained iCVM models can be applied to 

indefinite kernels without additional preprocessing. Using iCVM one can solve CVM with usually trouble- 

some kernels having large negative eigenvalues or large numbers of negative eigenvalues. Experiments 

show that our algorithm is similar efficient as the Kr ̆ein space Support Vector Machine but with substan- 

tially lower costs, such that also large scale problems can be processed. 
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. Introduction 

Learning of classification models for indefinite kernels received

ubstantial interest with the advent of domain specific similarity

easures. Indefinite kernels are a severe problem for most ker-

el based learning algorithms because classical mathematical as-

umptions such as positive definiteness, used in the underlying

ptimization frameworks are violated. As a consequence e.g. the

lassical Support Vector Machine (SVM) [1] has no longer a con-

ex solution - in fact, most standard solvers will not even con-

erge for this problem [2] . Researchers in the field of e.g. psy-

hology [3] , vision [4–6] and machine learning [7,8] have criti-

ized the typical restriction to metric similarity measures. In fact

n [8] for multiple examples from real problems it is shown that

any real life problems are better addressed by e.g. kernel func-

ions which are not restricted to be based on a metric. Non-metric

easures (leading to kernels which are not positive semi-definite

non-psd)) are common in many disciplines. The use of divergence

easures [9–11] is very popular for spectral data analysis in chem-

stry, geo- and medical sciences [12,13] , and are in general not

etric. Also the popular Dynamic Time Warping (DTW) [14] algo-

ithm provides a non-metric alignment score which is often used
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s a proximity measure between two one-dimensional functions

f different length. In image processing and shape retrieval indefi-

ite proximities are often obtained by means of the inner distance

15] - another non-metric measure. Further examples can be found

n physics, where problems of the special relativity theory natu-

ally lead to indefinite spaces. Further prominent examples for gen-

ine non-metric proximity measures can be found in the field of

ioinformatics where classical sequence alignment algorithms (e.g.

mith-waterman score [16] ) produce non-metric proximity values.

ultiple authors argue that the non-metric part of the data con-

ains valuable information and should not be removed [6,7] . 

Furthermore, it has been shown [2,7,17] that work-arounds such

s eigenspectrum modifications are often inappropriate or undesir-

ble, due to a loss of information and problems with the out-of

ample extension. 

Due to its strong theoretical foundations, Support Vector Ma-

hine (SVM) has been extended for indefinite kernels in a number

f ways [18–20] . Initial work focused on preprocessing the kernel

atrix through heuristics to address the indefiniteness [21] . A re-

ent survey on indefinite learning is given in [17] . In [2] a stabi-

ization approach was proposed to calculate a valid SVM model in

he Kr ̆ein space which can be directly applied on indefinite ker-

el matrices. This approach has shown great promise in a num-

er of learning problems but has intrinsically quadratic to cubic

omplexity and provides a dense decision model. This paper ex-

ends the work of [2] by deriving an equivalent optimization prob-

em but within the Core Vector Machine (CVM) framework [22] .

o ensure linear runtime complexity we combine the proposed
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indefinite CVM with a low rank kernel approximation using the

Nyström approach [23] . The latter one will also serve as a key ele-

ment to sparsify the final solution such that an easy out of sample

extension becomes possible. We empirically demonstrate the effec-

tiveness of the proposed approach in comparison to the KSVM. 

1.1. Indefinite kernels and existing approaches 

Domain specific proximity measures, such as alignment scores

in bioinformatics [24] , the edit-distance for structural pattern

recognition [25] , shape retrieval measures (e.g. the inner distance

[15] ) and many other ones, generate non-metric or indefinite simi-

larities or dissimilarities. Classical learning algorithms such as ker-

nel machines assume metric properties in the underlying data

space and may not be applicable for this type of data. 

Only few machine learning methods have been proposed for

non-metric proximity data, e.g. the indefinite kernel fisher discrim-

inant (iKFD) [26,27] or the probabilistic classification vector ma-

chine (PCVM) [28] . The iKFD is a classical fisher discriminant ap-

proach, maximizing the between class variance of the classes, but

formulated in the Kr ̆ein space, by using an equivalence relation

to the classical kernel Fisher Discriminant Analysis. 1 In its original

formulation, iKFD provides models which are naturally non-sparse

and has cubic runtime complexity. The PCVM, on the other hand,

constitutes a probabilistic model, operating with basis functions in

the input space without the need for the existence of feature space

(through Mercer kernel). While the iKFD is a batch optimization

algorithm the PCVM is formulated by a gradient descent strategy

with potentially slow convergence for a number of problems. The

PCVM algorithms has cubic complexity in the first iterations with

a substantial speed-up during further iterations due to an inherent

sparsification strategy. 

Recently the Kr ̆ein space Support Vector Machine (KSVM) was

proposed in [2] leading to an SVM equivalent formulation, but fully

formalized in the Kr ̆ein space by replacing the SVM minimization

problem with a stabilization problem. As shown in [2] it turns

out that solving the stabilization problem (detailed in [2] ,sec 2)

can be achieved by flipping the negative eigenvalues of the ker-

nel spectrum. It is shown in [2] that this strategy has a theoretical

foundation and by solving the stabilization problem one can ob-

tain the solution in the original Kr ̆ein space. This allows us to clas-

sify any new point without having to transform it.iKFD and PCVM

have been found to be very effective but unlike KSVM, they are

not based on the sound theoretical framework of the SVM struc-

tural risk minimization principle (SRM) [1] . Furthermore, there are

a number of other advantages of KSVM as outlined in [2] . Hence,

it is very attractive to obtain a low cost SVM formulation in the

Kr ̆ein space, which is the focus of this paper. 

1.2. Contributions 

We consider the problem of training a Core Vector Machine

with an indefinite kernel. The present paper is based on [2] in

which the stabilization idea is proposed and on effective Nyström

approximation concepts given in [34] , both applicable to indefinite

kernels. To ensure linear runtime complexity in contrast to at least

quadratic costs of the KSVM we derive an indefinite Core Vector

Machine using a low rank kernel approximation which solves the

original indefinite SVM problem at low costs. We also suggest a

sparsification procedure to simplify the out of sample extension.

The Nystöm approximation is not necessary to obtain an indefi-

nite Core Vector Machine, but to keep linear runtime and memory

complexity which is lost otherwise. 
1 We do not detail the approach here because the paper will focus on an exten- 

sion of KSVM. 

t  

b  

u  

i  
. Kr ĕin space SVM 

The Kr ̆ein Space SVM (KSVM) [2] , replaced the classical SVM

inimization problem by a stabilization problem in the Kr ̆ein

pace. The respective equivalence between the stabilization prob-

em and a standard convex optimization problem was shown in

2] . Let x i ∈ X, i ∈ { 1 , . . . , N} be training points in the input space X

 with labels y i ∈ {−1 , 1 } , representing the class of each point. The

nput space X is often considered to be R 

d , but can be any suitable

pace due to the kernel trick. For a given positive C , SVM is the

inimum of the following regularized empirical risk functional 

J C ( f, b) = min 

f∈H,b∈ R 
1 

2 

‖ f‖ 

2 
H 

+ CH( f, b) (1)

( f, b) = 

N ∑ 

i =1 

max (0 , 1 − y i ( f (x i ) + b)) 

sing the solution of Eq. (1) as ( f ∗C , b 
∗
c ) := arg min J C ( f, b) one can

ntroduce τ = H( f ∗
C 
, b ∗

C 
) and the respective convex quadratic pro-

ram (QP) 

min 

f∈H,b∈ R 
1 

2 

‖ f‖ 

2 
H 

s.t. 

N ∑ 

i =1 

max (0 , 1 − y i ( f (x i ) + b)) ≤ τ (2)

here we detail the notation in the following. This QP can be also

een as the problem of retrieving the orthogonal projection of the

ull function in a Hilbert space H onto the convex feasible set. The

iew as a projection will help to link the original SVM formulation

n the Hilbert space to a KSVM formulation in the Krein space. First

e need to repeat a few definitions, widely following [2] . A Kr ̆ein

pace is an indefinite inner product space endowed with a Hilber-

ian topology. 

efinition 1 (Inner products and inner product space) . Let K be a

eal vector space. An inner product space with an indefinite inner

roduct 〈·, ·〉 K on K is a bi-linear form where all f, g, h ∈ K and

∈ R obey the following conditions: 

Symmetry: 〈 f, g〉 K = 〈 g, f 〉 K , linearity: 〈 α f + g, h 〉 K = α〈 f, h 〉 K +
 g, h 〉 K and 〈 f, g〉 K = 0 ∀ g ∈ K implies f = 0 . 

An inner product is positive definite if ∀ f ∈ K, 〈 f, f 〉 K ≥ 0 , neg-

tive definite if ∀ f ∈ K, 〈 f, f 〉 K ≤ 0 , otherwise it is indefinite. A

ector space K with inner product 〈·, ·〉 K is called inner product

pace. 

efinition 2 (Kr ̆ein space and pseudo Euclidean space) . An inner

roduct space (K, 〈·, ·〉 K ) is a Kr ̆ein space if there exist two Hilbert

paces H + and H − spanning K such that ∀ f ∈ K, f = f + + f − with

f + ∈ H + , f − ∈ H − and ∀ f , g ∈ K, 〈 f , g〉 K = 〈 f + , g + 〉 H + − 〈 f −, g −〉 H − .

 finite-dimensional Kr ̆ein-space is a so called pseudo Euclidean

pace (pE). 

If H + and H − are reproducing kernel hilbert spaces (RKHS), K
s a reproducing kernel Kr ̆ein space (RKKS). For details on RKHS

nd RKKS see e.g. [35] . In this case the uniqueness of the func-

ional decomposition (the nature of the RKHSs H + and H −) is

ot guaranteed. In [36] the reproducing property is shown for a

KKS K. There is a unique symmetric kernel k ( x, x ) with k (x, ·) ∈ K
uch that the reproducing property holds (for all f ∈ K, f (x ) =
 f, k (x, ·) 〉 K ) and k = k + − k − where k + and k − are the reproduc-

ng kernels of the RKHSs H + and H −. 

As shown in [36] for any symmetric non-positive kernel k that

an be decomposed as the difference of two positive kernels k + 
nd k −, a RKKS can be associated to it. In [2] it was shown how

he classical SVM problem can be reformulated by means of a sta-

ilization problem. This is necessary because a classical norm as

sed in Eq. (2) does not exist in the RKKS but instead the norm

s reinterpreted as a projection which still holds in RKKS and is
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3 Our code is matlab based with well tested numerical routines and we make 

use of a classical quadratic problem solver, instead of the sequential minimal opti- 

mization (SMO) approach. The SMO approach contains some selection and stopping 
sed as a regularization technique [2] . This allows to define SVM

n RKKS (viewed as Hilbert space) as the orthogonal projection of

he null element onto the set [2] : 

 = { f ∈ K, b ∈ R | H( f, b) ≤ τ } and 0 ∈ ∂ b H( f, b) 

here ∂ b denotes the sub differential with respect to b . The set S

eads to a unique solution for SVM in a Kr ̆ein space [2] . As detailed

n [2] one finally obtains a stabilization problem which allows one

o formulate an SVM in a Kr ̆ein space. 

tab f∈K,b∈ R 
1 

2 

〈 f, f 〉 K s.t. 

l ∑ 

i =1 

max (0 , 1 − y i ( f (x i ) + b)) ≤ τ (3)

here stab means stabilize as detailed in the following: In a clas-

ical SVM in RKHS the solution is regularized by minimizing the

orm of the function f . In Kr ̆ein spaces however minimizing such

 norm is meaningless since the dot-product contains both the

ositive and negative components. Thats why the regularization in

he original SVM through minimizing the norm f has to be trans-

ormed in the case of Kr ̆ein spaces into a min-max formulation,

here we jointly minimize the positive part and maximize the

egative part of the norm. The authors of [36] termed this oper-

tion the stabilization projection, or stabilization. Further mathe-

atical details can also be found in [37,38] . An example illustrat-

ng the relations between minimum, maximum and the projec-

ion/stabilization problem in the Kr ̆ein space is illustrated in [2] . 

In [2] it is further shown that the stabilization problem Eq.

3) can be written as a minimization problem using a semi-definite

ernel matrix. By defining a projection operator with transition

atrices it is also shown how the dual RKKS problem for the SVM

an be related to the dual in the RKHS. We refer the interested

eader to [2] . One - finally - ends up with a flipping operator ap-

lied to the eigenvalues of the indefinite kernel matrix 2 K as well

s to the α parameters obtained from the stabilization problem in

he Kr ̆ein space, which can be solved using classical optimization

ools on the flipped kernel matrix. This permits to apply the ob-

ained model from the Kr ̆ein space directly on the non-positive

nput kernel without any further modifications. The algorithm is

hown in Algorithm 1 . There are four major steps: (1) an eigen-

lgorithm 1 Kr ̆ein Space SVM (KSVM) - adapted from [2] . 

Kr ĕin SVM: 

[ U, D ] = EigenDecomposition( K) 
ˆ K = U SDU 


 with S = sign (D ) ˆ K is not generated as a full matrix

for iCVM - see text 

[ α, b] = SVMSolver( ̂  K , Y, C) 

˜ α = U SU 


 α
return ˜ α, b;

ecomposition of the full kernel matrix, with cubic costs (which

an be potentially restricted to a few dominating eigenvalues - re-

erred to as KSVM-L); (2) a flipping operation; (3) the solution of

n SVM solver on the modified input matrix; (4) the application of

he projection operator obtained from the eigen-decomposition on

he α vector of the SVM model. 

U in Algorithm. 1 contains the eigenvectors, D is a diagonal ma-

rix of the eigenvalues and S is a matrix containing only { 1 , −1 } on

he diagonal as obtained from the respective function sign. 

As pointed out in [2] , this solver produces an exact solution for

he stabilization problem. The main weakness of this Algorithm is,

hat it requires the user to pre-compute the whole kernel matrix

nd to decompose it into eigenvectors/eigenvalues. Further today’s

VM solvers have a theoretical, worst case complexity of ≈ O(N 

2 ) .
2 Obtained by evaluating k ( x, y ) for training points x, y . 

h

s

he other point to mention is that the final solution ˜ α is not

parse. We will address these points in the following. 

. Core Vector Machine 

The Core Vector Machine (CVM) was initially proposed in

22] and it was shown that the SVM can be formulated as a mini-

um enclosing ball (MEB) problem leading to the CVM algorithm.

his can be also done for arbitrary positive semi-definite (psd) in-

ut kernels as shown in [39] . The CVM is a very efficient algo-

ithm providing accurate classification models for large scale data

t very low costs [39] , having a theoretical, worst case complexity

f ≈ O(N) . 

In [40] the CVM approach was criticized to be less stable then

xpected under some conditions, but this was partially caused by

n error in the implementation and also due to the use of addi-

ional optimization tricks 3 . To use the given (potentially approxi-

ated) non-psd input kernel for CVM we have to modify the ker-

el matrix. Let K be the (approximated) indefinite kernel matrix.

he kernel is adapted to a two class classification problem as done

n [22] 4 : 

 

′ = Y � K + Y + 

δ

C 
(4)

here Y is the label matrix with entries Y i, j = y i y j , � is the

lement-wise multiplication and 

δ
C is an all zero indicator matrix

ith non-vanishing entries 1 
C only on the diagonal. C is the user

efined SVM penalty parameter. In the second step we modify the

ernel K 

′ with respect to the approach suggested in KSVM to link

he original CVM minimization problem to the stabilization prob-

em (see [2] ) as shown in Algorithm 1 . This leads to a psd kernel

ˆ 
 for a two-class classification problem as necessary for the CVM

olver. Once more it should be noted that the eigenvalue correc-

ion used in Algorithm 1 is a natural consequence of the under-

ying stabilization procedure as detailed in [2] and not a heuristic

hoice. The final model can be applied on an unmodified indefinite

ernel. 

If ˆ K has constant values on the diagonal, it was shown in

39] that this directly leads to a MEB optimization problem. If ˆ K i,i is

on-constant, the generalized CVM can be used [39] . To avoid high

omputational costs the kernel matrix K 

′ in (4) or the respective

odification 

ˆ K (by using the KSVM methodology) can be approxi-

ated by the Nyström approximation as detailed in Section 4 , in-

luding an eigen-decomposition with linear costs. Subsequently we

ive a few elementary details for the CVM algorithm to link it with

ur problem. 

It has been shown e.g. in [41] that the minimum enclosing

all (MEB) can be approximated with quality ε in (worst case)

inear time using an algorithm which requires only a constant

ubset of the training set R j (a region), refereed to as the core

et. Given fixed quality ε, the following algorithm converges in

(1 /ε2 ) steps: 

Here we assume that ˆ K i, j = 〈 �(x i ) , �(x k ) 〉 , such that the in-

olved distance calculation can be expressed solely through inner

roducts. Accordingly no explicit feature space is needed. In each

tep, the MEB problem is solved for a small subset of constant size

nly. This is possible by referring to the dual problem which has
euristics which can be problematic sometimes. 
4 In case of multiclass problems we rely on a one vs rest approach using the 

ame procedure. 
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the form 

min αi ≥0 

∑ 

i j αi α j k i j −
∑ 

i αi k 
2 
ii 

where 
∑ 

i αi = 1 

with data points occurring only as dot products, i.e. kernelization

is possible. The same holds for all distance computations of the

approximate MEB problem. Note that the dual MEB problem pro-

vides a solution in terms of the dual variables αi . By construction,

each class is represented by at least two core points. The bias term

of the SVM / CVM solution is obtained by b = 

∑ 

αi y i . The set S

obtained in Algorithm 2 can be potentially shrinked during the it-

Algorithm 2 MEB - Solver. 

MEB: 

S := { x i , x k } for a pair of largest distance ‖ �(x i ) − �(x k ) ‖ 2 in R j 
and x i chosen randomly 

repeat 

solve MEB (S) → ˜ w j , R 

if exists x l ∈ R j where ‖ �(x l ) − ˜ w j ‖ 2 > R 2 (1 + ε) 2 then 

S := S ∪ { x l } 
end if 

until all x l are covered by the R (1 + ε) ball in the feature space 

return ˜ w j , radius R 

eration by removing those x i which have an αi close to zero (e.g.

1 e −10 ) 5 

4. Linear time eigen-decomposition for low rank matrices 

The strategy described above is still based on the calculation

of an eigen-decomposition of the kernel matrix K or K 

′ , with cu-

bic costs for the full eigen-decomposition. Assuming that the orig-

inal input kernel has low rank, the Nyström approximation can be

used, which can also be applied to indefinite kernels [34] . The Nys-

tröm approximation for kernel methods (details in [23] ) gives: 

˜ K = K (N,m ) K 

−1 
(m,m ) 

K (m,N) . (5)

Thereby m (columns/rows) of the original kernel matrix have been

selected as so called landmarks. The matrix K ( N, m ) consists of

the m columns of the original kernel matrix with indices taken

from the selected landmarks. K 

−1 
(m,m ) 

denotes the Moore-Penrose

pseudo-inverse of the respective landmark matrix K ( m, m ) . Strate-

gies for landmark selection have been widely analyzed in recent

times with most promising results by using leverage scores [42] or

by adding pseudo landmarks [43] . To simplify the analysis we se-

lect the landmarks randomly and i.i.d. More complicated selection

schemes, with potentially additional costs, will likely improve the

results but are not in the main focus of this work. The approxima-

tion is exact, if K ( m, m ) has the same rank as K . Besides using the

standard Nyström approximation to approximate a kernel matrix

as in Eq. (5) , a linear time eigenvalue correction for (potentially

indefinite) low rank matrices was proposed in [34] . 

This low rank eigenvalue decomposition is used in the indefi-

nite Core Vector Machine approach to approximate the respective

kernel matrix. This is necessary to apply the flipping eigenspec-

trum correction with linear costs instead of cubic costs (or slightly

less if the number of eigenvalues is restricted) in the KSVM-L ap-

proach. 

For a matrix approximated by Eq. (5) it is possible to compute

its exact eigenvalue decomposition in linear time 6 . Subsequently
5 In very rare cases - e.g. if multiple columns and rows in the kernel matrix ˆ K 

are identical it could happen that the core set optimization problem gets ill-posed. 

In this case the last valid (or initial) sub-optimal solution can be used. Similar nu- 

merical problems may also happen for a classical SVM. 
6 It is exact, if our low rank assumption holds. In each case the costs are linear. 

d  

o

e review the concepts from [34] , in particular an approach to ob-

ain an eigendecomposition of a Nyström based indefinite matrix. 

To compute the eigenvectors and eigenvalues of an indefinite

atrix we first compute the squared form of the Nyström approx-

mated kernel matrix. Let K be a similarity matrix, for which we

an write its decomposition as 

˜ 
 = K (N,m ) K 

−1 
(m,m ) 

K (m,N) = K (N,m ) U �−1 U 


 K 


 
(N,m ) = BB 


 , 

here we defined B = K (N,m ) U�−1 / 2 with U and � being the

igenvectors and eigenvalues of K ( m, m ) , respectively. Further it fol-

ows for the squared ˜ K : ˜ K 

2 = BB 
 BB 
 = BVAV 
 B 
 , where V and A

re the eigenvectors and eigenvalues of B 
 B , respectively. Appar-

ntly the square operation does not change the eigenvectors of

 but only the eigenvalues. The corresponding eigenequation can

e written as B 
 B v = a v . Multiplying with B from left we get:

BB 
 ︷︷︸ 
˜ K 

(B v ) ︸︷︷︸ 
u 

= a (B v ) ︸︷︷︸ 
u 

. It is clear that A must be the matrix with the

igenvalues of ˜ K . The matrix Bv is the matrix of the correspond-

ng eigenvectors, which are orthogonal but not necessary orthonor-

al. The normalization can be computed from the decomposi-

ion: ˜ K = B V V 
 ︸︷︷︸ 
diag(1) 

B 
 = BVA 

−1 / 2 AA 

−1 / 2 V 
 B 
 = CAC 
 , where we de-

ned C = BVA 

−1 / 2 as the matrix of orthonormal eigenvectors of K

nd diag(1) refers to a zero matrix with 1 on all diagonal elements.

he eigenvalues of ˜ K can be obtained using A = C 
 ˜ K C. Using this

erivation we can obtain exact eigenvalues and eigenvectors of an

ndefinite low rank kernel matrix K , given rank (K) = m and the

andmarks points are independent. 7 

. Indefinite CVM 

The indefinite CVM can be obtained by carefully combining the

ormer mentioned concepts, namely the stabilization problem of

he KSVM, the reformulation of the kernel as a MEB optimization

roblem for CVM and the Nyström approximation to ensure low

omputational costs. 8 As the problem solver we use a CVM solver. 

The resulting algorithm, that computes the solution of the sta-

ilization problem by solving the equivalent SVM dual minimiza-

ion problem within the Core Vector Machine framework is given

y Algorithm 3 and named iCVM (for indefinite CVM). 

lgorithm 3 Indefinite Core Vector Machine (iCVM). 

Indefinite CVM: 

ζ - vector of landmarks (e.g. randomly selected) 

approximate K 

′ (the 2-class CVM kernel, Eq. (4)) using ζ as

shown in Eq (5) to obtain 

˜ K 

′ 
[ U, D ] = NyströmEigenDecomposition( ̃  K 

′ ) (see Sec 4) 
ˆ K = U SDU 


 with S = sign (D ) ˆ K is not generated as a full matrix

- see text 

[ α] = CoreVectorMachineSolver( ̂  K , Y, C) 

˜ α = U SU 


 α b = Y ˜ α
 

return ˜ α, b;

The kernel matrix is never constructed to a N × N matrix, but

e always use a Nyström approximated formulation. The values

f the flipped kernel, which serves as an input of the CVM can

ither again be approximated by another Nyström approximation

r provided more directly by using the matrices U, D of the eigen-

ecomposition. The later one is sufficient if the kernel matrix ˆ K is
7 An implementation of this approach is available at http://techfak.uni-bielefeld. 

de/ ∼bmokbel/published _ code/Nystroem _ toolbox.zip provided from [34] . 
8 With a full kernel the costs exceed O(N 2 ) and it is useless to apply CVM instead 

f KSVM. 

http://techfak.uni-bielefeld.de/~bmokbel/published_code/Nystroem_toolbox.zip
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Table 1 

Overview of the different datasets. We provide the dataset size (N) and the origin 

of the indefiniteness. For vectorial data the indefiniteness is caused artificial by 

using the tanh kernel. But most often it occurs due to a domain specific non- 

metric similarity measure. 

Dataset #samples proximity measure and data source 

CatCortex 65 cortical connexion strength [27] 

Aural 100 similarity based on human perception [29] 

balls_3 200 synthetic dissimilarity [30] 

Protein_ksvm 213 sequence-alignment similarity [27] 

Patrol 241 similarity based on human memory [29] 

CoilYork 228 Graph matching [30] 

Chicken15_45 446 weighted edit distance between images 

contours [27] 

Chicken29_45 446 weighted edit distance between images 

contours [27] 

Diabetes_tanh 768 tanh kernel [19] 

Sonatas 1068 normalized compression distance on midi 

files [31] 

Delft 1500 dynamic time warping [17] 

a1a 1605 tanh kernel [19] 

zongker 20 0 0 template matching on handwritten digits [27] 

prodom 2604 pairwise structural alignment on proteins [27] 

PolydistH57 40 0 0 Hausdorff distance [27] 

chromo 4200 edit distance on chromosomes [27] 

Mushrooms 8124 tanh kernel [32] 

swiss-10k ≈ 10 k smith waterman alignment on protein 

sequences [17] 

checker-100k 10 0.0 0 0 tanh kernel (indefinite) 

skin 245.057 tanh kernel (indefinite) [33] 

checker 1 Mill tanh kernel (indefinite) 
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ot evaluated to often which is the case for CVM. Note that the

ias parameter is calculated using ˜ α. 

The Algorithm 3 solves 9 the complexity issue for KSVM by pro-

iding a linear cost strategy instead of quadratic to cubic complex-

ty of KSVM. 10 However, the obtained parameters ˜ α are still dense,

n issue which is addressed in the next section. 

.1. Sparsification of iCVM 

The parameters ˜ α are dense as already noticed in [2] . A naive

parsification by using only ˜ αi with large absolute magnitude is

ot possible as can be easily checked by counter examples. Also

lassical strategies such as orthogonal matching pursuit used in

44] do not work well in general. We suggest to restrict the pro-

ection operator and hence the transformation matrix of iCVM to

 subset of the original training data. To get a consistent solu-

ion we have to recalculate parts of the eigen-decomposition as

hown in Algorithm 4 . To obtain the respective subset of the train-

lgorithm 4 Sparsification of iCVM. 

Sparse iCVM: 

Apply iCVM from Alg. 3 

ζ - vector of projection points by using the core set points 

construct a reduced K 

′ using indices ζ as K̄ 

[U,D] = EigenDecomposition( ̄K ) 

ᾱ = U SU 


 α with S = sign (D ) and U restricted to the core set

indices 

˜ α = 0 ˜ αζ = ᾱ - map the transformed alphas to ˜ α
b = Y ˜ α
 

return ˜ α, b;

ng data we use the samples which are core vectors. 11 The num-

er of core vectors is guaranteed to be very small [39] and hence

ven for a larger number of classes the solution remains widely

parse. The suggested approach is given in Algorithm 4 . We as-

ume that the original projection function (line f ( ̃  α) = U SU 


 α of

lgorithm 4 , detailed in [2] ), is smooth and can be potentially re-

tricted to a small number of construction points with low error.

s shown in the experiments this sparsification works well very

ften, but we have also datasets where the smoothness assump-

ion does not hold. In these cases the error rate increases by a sig-

ificant amount see e.g. for the swissprot data. A more detailed

nalysis reveals that this is typically the case for datasets with a

igh intrinsic dimensionality or a large amount of non-vanishing

igenvalues, respectively. Apparently this is a property of the cor-

esponding data set and not a failure of the method. It should be

oted that if the input kernel K was already approximated by a

yström approximation an out of sample extension to potentially

ll training points can be easily done by using the Nyström kernel

xpansion [23] , hence sparsification of the KSVM or iCVM models

s not very severe in such cases, but helpful to further reduce the

omputational costs in the test phase. 12 
9 An implementation of the iCVM and the sparse iCVM is provided at - blind for 

eview - 
10 KSVM has sub-cubic complexity if only a few dominating eigenvalues are de- 

ermined. 
11 A similar strategy for KSVM may be possible but is much more complicated 

ecause typically quite many points are support vectors and special sparse SVM 

olvers would be necessary. 
12 Using the Nyström kernel expansion only the proximities to the landmarks have 

o be calculated, the proximities to all non-vanishing ˜ α can be obtained by a simple 

atrix operation. 
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. Experiments 

This part contains a series of experiments that show that our

pproach leads to a substantially lower complexity, while keeping

imilar prediction accuracy compared to KSVM. We follow the ex-

erimental design given in [2] . We also show the best published

esult so far summarizing additional comparisons to alternative

ethods. Methods that require to modify test data are excluded as

lso done in [2] . Finally we compare the experimental complexity

f the different solvers. The used data are explained in Table 1 . Ad-

itional larger data sets have been added to motivate our approach

n the line of learning with large scale indefinite kernels. Results,

eported for SVM on indefinite kernel matrices are obtained by us-

ng the SimpleSVM implementation of [2] . The iCVM implemen-

ation is matlab based using the code fragments mentioned before

nd by employing a plain quadratic problem solver. Accordingly we

o not have any heuristic stopping criteria for the solve MEB(S)

tep in Algorithm 2 . We use the probabilistic sampling strategy as

uggested in [22] for the outer loop. 

.1. Experimental setting 

For each dataset, we have run 20 times the following proce-

ure: a random split to produce a training and a testing set, a 5-

old cross validation to tune each parameter (the number of pa-

ameters depending on the method) on the training set, and the

valuation on the testing set. If N < 10 0 0 we use m = 200 ran-

omly chosen landmarks and N = m otherwise. If the input data

re vectorial data we used a tanh kernel with parameters [1, 1] to

btain an indefinite kernel. 

.2. Results 

Table 2 gives average error rates and standard deviation of

SVM-L and iCVM and for comparison the best published result

ound in the literature is reported. We also report the results

btained by a standard SVM. We observe severe convergence
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Table 2 

Prediction errors on the test set - small scale indefinite kernels. 

#samples iCVM KSVM-L SVM Others 

CatCortex 65 12.31 ± 6.88 
 5.4 ± 6.3 72.33 ± 22.82 7.0 ± 7.1 

CatCortex no convergence [27] 

Aural 100 12.00 ± 4.47 12.5 ± 6.17 13.00 ± 4.47 12 ± 6 

Aural [29] 

balls_3d a 200 0.50 ± 1.12 
 41.37 ± 6.67 50.00 ± 11.59 45.70 ± 1.7 

balls_3d no convergence [30] 

Protein_ksvm 213 0.48 ± 1.06 0.2 ± 0.7 54.45 ± 22.29 0.4 ± 1.7 

Protein_ksvm no convergence [27] 

Patrol 241 28.63 ± 6.81 
 12.29 ± 4.56 27.38 ± 5.15 11 . 56 ± 4 . 54 

Patrol [29] 

CoilYork 228 36.50 ± 8.23 33.10 ± 5.05 77.77 ± 2.37 33.6 ± 1.2 

CoilYork no convergence [30] 

Chicken15_45 446 6.73 ± 1.38 6.34 ± 2.45 65.90 ± 15.09 7 ± 2.8 

Chicken15_45 no convergence [27] 

Chicken29_45 446 7.63 ± 2.45 4.6 ± 2.5 74.00 ± 3.04 4.7 ± 2.7 

Chicken29_45 no convergence [27] 

Diabetes_tanh 768 23.30 ± 4.03 22.59 ± 2.30 22.92 ± 2.38 22.92 

Diabetes_tanh [19] 

a The worse results of the other methods are caused by a wrong dissimilarity to similarity transfor- 

mation. If it is done correctly the error rates are comparable. 

Table 3 

Prediction errors on the test set - large scale indefinite kernels. 

#samples iCVM KSVM-L Others 

Sonatas 1068 13.01 ± 3.82 15.92 ± 2.59 11.52 ± 0.20 [31] 

Sonatas (time) 1068 77.92 57.40 –

Delft 1500 3.20 ± 0.84 11.13 ± 3.38 1.80 ± 1.48 [17] 

Delft (time) 1500 9.44 475.31 –

a1a 1605 20.56 ± 1.34 17.24 ± 1.88 17.08 [19] 

a1a (time) 1605 6.87 72.63 –

zongker 20 0 0 6.40 ± 2.11 8.75 ± 0.68 4.4 ± 0.6 [27] 

zongker (time) 20 0 0 8.82 395.34 –

prodom 2604 0.87 ± 0.64 0.9 ± 0.3 1.3 ± 0.5 [27] 

prodom (time) 2604 25.63 2341.80 –

PolydistH57 40 0 0 0.70 ± 0.19 1.86 ± 0.50 5.4 ± 1.3 [27] 

PolydistH57 (time) 40 0 0 5.65 9990.30 –

chromo 4200 6.10 ± 0.63 5.3 ± 0.3 7.7 ± 0.4 [27] 

chromo (time) 4200 35.68 11563.30 –

Mushrooms 8124 2.54 ± 0.56 5.08 ± 0.73 1.09 [32] 

Mushrooms (time) 8124 45.19 65225.50 –

swiss-10k 10998 k 12.08 ± 3.47 
 n.a. 1.41 ± 0.35 [17] 

swiss-10k (time) 10998 73.72 n.a. n.a. 

checker-100k 10 0.0 0 0 9.66 ± 2.32 n.a. n.a. 

checker-100k (time) 10 0.0 0 0 112.62 n.a. n.a. 

skin 245.057 4.22 ± 1.11 n.a. n.a. 

skin (time) 245.057 258.62 n.a. n.a. 

checker 1 Mill 9.38 ± 2.73 n.a. n.a. 

checker (time) 1 Mill 1212.21 n.a. n.a. 
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problems for almost all datasets using a classical SVM. 13 Only for

Aural, Patrol and Diabetes_tanh the SVM training converged, with

acceptable error rates on the test data. In most cases the SVM

model has a very high error rate for the given data - clearly indi-

cating a need for an adapted training procedure or algorithm. We

observe that KSVM-L is always more accurate or close to the best

published result and that iCVM is very close to KSVM-L. While

we are not expecting any improvements of iCVM over KSVM-L

we sometimes see also better results. This maybe advocated to

the improved representation accuracy of the kernel matrix in

iCVM in contrast to KSVM-L. In [2] for KSVM-L only the top

dominating eigenvalues are used to keep the computational load

tractable, while in our approach we can be more flexible due to

the Nyström approximated eigen-decomposition. iCVM performs

in general better for larger datasets because the approximations
13 The same also happens for the larger data sets but due to the SVM convergence 

problems with long runtimes we skipped these experiments. 

t  

s

.g. the ε-ball approximation introduces additional errors for small

cale data sets. In Table 3 we summarize results for larger scale

ata which in parts could not be any longer processed by KSVM-L

and not at all by KSVM), due to the large number of samples.

ignificant differences of iCVM to the best result are indicated by

 
 (anova, p < 5%). Again, the iCVM is similar accurate compared

ith KSVM-L or alternative results. We also report runtime re-

ults. While for the smaller datasets the runtimes of iCVM and

SVM-L are similar the iCVM is substantially faster with linear

nstead of quadratic complexity for larger datasets. In Table 4 we

how the results for large scale data (having at least 10 0 0 points)

sing iCVM with sparsification. We observe much smaller models,

specially for larger datasets with often comparable prediction

ccuracy with respect to the non-sparse model. The runtimes are

imilar to the non-sparse case but in general slightly higher due

o the extra eigen-decompositions on a reduce set of the data as

hown in Algorithm 4 . 
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Table 4 

Prediction errors on the test set for large scale indefinite kernels with a sparse mapping. The per- 

centage of projection points is calculated using the unique set over core vectors over all classes 

in comparison to all training points. Datasets with substantially reduced prediction accuracy are 

marked by �. 

#samples iCVM (sparse) projection pts iCVM (non-sparse) 

Sonatas 1068 12.64 ± 1.71 76.84% 13.01 ± 3.82 

Sonatas (time) 1068 269.31 – 77.92 

Delft 1500 16.53 ± 2.79 � 52.48% 3.20 ± 0.84 

Delft (time) 1500 12.35 – 9.44 

a1a 1605 39.50 ± 2.88 � 1.25% 20.56 ± 1.34 

a1a (time) 1605 21.53 – 6.87 

zongker 20 0 0 29.20 ± 2.48 � 52.81% 6.40 ± 2.11 

zongker (time) 20 0 0 42.19 – 8.82 

prodom 2604 2.89 ± 1.17 26.31% 0.87 ± 0.64 

prodom (time) 2604 35.75 – 25.63 

PolydistH57 40 0 0 6.12 ± 1.38 12.92% 0.70 ± 0.19 

PolydistH57 (time) 40 0 0 31.72 – 5.65 

chromo 4200 11.50 ± 1.17 33.76% 6.10 ± 0.63 

chromo (time) 4200 37.05 – 35.68 

Mushrooms 8124 7.84 ± 2.21 6.46% 2.54 ± 0.56 

Mushrooms (time) 8124 59.89 – 45.19 

swiss-10k ≈ 10 k 35.90 ± 2.52 � 17.03% 12.08 ± 3.47 

swiss-10k (time) 10998 214.98 – 73.72 

checker-100k 10 0.0 0 0 8.54 ± 2.35 2.26% 9.66 ± 2.32 

checker-100k (time) 10 0.0 0 0 179.02 – 112.62 

skin 245.057 9.38 ± 3.30 0.06% 4.22 ± 1.11 

skin (time) 245.057 234.53 – 258.62 

checker 1 Mill 8.94 ± 0.84 0.24% 9.38 ± 2.73 

checker (time) 1 Mill 1736.21 – 1212.21 
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Fig. 1. Runtime of the checkerboard data (with an indefinite tanh kernel) with 

10 0 0 − 10 0 . 0 0 0 points (x-axis). The straight line indicates the iCVM and the dot- 

ted line the KSVM-L results. Runtime is plotted on the y-axis at log-scale. One can 

clearly sees a linear complexity of O(N) for iCVM and a roughly quadratic complex- 

ity for KSVM-L. 

s  

a  

e  

p  

a  

A  

c  

c  

n  

a  

v  

K  

f  

p

A

 

2  
.3. Complexity analysis 

The original KSVM has runtime costs (with full eigen-

ecomposition) of O(N 

3 ) and memory storage O(N 

2 ) , where N is

he number of points. The iCVM involves the extra Nyström ap-

roximation of the kernel matrix to obtain K ( N, m ) and K 

−1 
(m,m ) 

, if not

lready given. If we have m landmarks, m � N , this gives memory

osts of O(mN) for the first matrix and O(m 

3 ) for the second, due

o the matrix inversion. Further a Nyström approximated eigende-

omposition has to be done to apply the eigenspectrum flipping

perator. This leads to runtime costs of O(N × m 

2 ) . The runtime

osts for the sparse iCVM are O(N × m 

2 ) and the memory com-

lexity is the same as for iCVM. Due to the used Nyström approx-

mation the prior costs only hold if m � N , which is the case for

any datasets as shown in the experiments. 

The application of a new point to a KSVM or iCVM model re-

uires the calculation of kernel similarities to all N training points,

or the sparse iCVM this holds only in the worst case. In general

he sparse iCVM provides a simpler out of sample extension as

hown in Table 4 , but is data dependent. 

The (i)CVM model generation has not more than N iterations

r even a constant number of 59 points, if the probabilistic sam-

ling trick is used [45] . As show in [39] the classical CVM has run-

ime costs of O(1 /ε2 ) . The evaluation of a kernel function using

he Nyström approximated kernel can be done with cost of O ( m 

2 )

n contrast to constant costs if the full kernel is available. Accord-

ngly, If we assume m � N the overall runtime and memory com-

lexity of iCVM is linear in N , this is two magnitudes less as for

SVM for reasonable large N and for low rank input kernels. 

Fig. 1 shows in log scales the training and testing time together

epending on the training set size. The test set size is constant to

0 0 0. The experiment shows that iCVM is substantially faster than

 SVM-L (K SVM using partial eigen-decomposition). 

. Discussions and conclusions 

As discussed in [2] , there is no good reason to enforce positive-

efiniteness in kernel methods. A very detailed discussion on rea-
ons for using KSVM or now iCVM is given in [2] , explaining why

 number of alternatives or pre-processing techniques are in gen-

ral inappropriate. Our experimental results show that an appro-

riate Kr ̆ein space model is not only at least as effective as other

pproaches but it does consistently so, across a number of datasets.

lthough the original learning methods in Kr ̆ein spaces can be

ostly, the presented approach provides an algorithm with linear

omplexity if the input kernel is low rank. While not all input ker-

els may be of low rank, empirical experiments showed that this

ssumption holds often in practice or can be imposed without se-

ere negative impact on the prediction accuracy. As is the case for

SVM, the presented approach can be applied without the need

or transformation of test points, which is a desirable property for

ractical applications. 
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