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Sultanah Al Otaibi1,2, Peter Tiňo1(B), and Somak Raychaudhury3,4,5

1 School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK
P.Tino@cs.bham.ac.uk

2 College of Computer and Information Sciences, King Saud University,
Riyadh 12371, Saudi Arabia

3 School of Physics and Astronomy, University of Birmingham,
Birmingham B15 2TT, UK

4 Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India
5 Department of Physics, Presidency University, Kolkata 700073, India

Abstract. We test whether a more principled treatment of delay esti-
mation in lensed photon streams, compared with the standard kernel
estimation method, can have benefits of more accurate (less biased)
and/or more stable (less variance) estimation. To that end, we propose
a delay estimation method in which a single latent inhomogeneous Pois-
son process underlying the lensed photon streams is imposed. The rate
function model is formulated as a linear combination of nonlinear basis
functions. Such unifying rate function is then used in delay estimation
based on the corresponding Innovation Process. This method is compared
with a more straightforward and less principled baseline method based on
kernel estimation of the rate function. Somewhat surprisingly, the overall
emerging picture is that the theoretically more principled method does
not bring much practical benefit in terms of the bias/variance of the
delay estimation. This is in contrast to our previous findings on daily
flux data.

Keywords: Gravitational lensing · Non-homogeneous Poisson process ·
Kernel estimation methods

1 Introduction

Time delays between images of strongly-lensed distant variable sources can serve
as a valuable tool for cosmography, provided that time delays between the image
fluxes can be accurately measured (e.g. [8,16]). A number of methods have
been developed to accurately estimate time delays. These include the disper-
sion spectra method [3] and kernel-based method with variable width (K-V)
[4,5]. Actively studied strong quasars with time-delay measurements include
RXJ1131−1231 [21] and B1608+656 [6,8]; Q0957+561 (e.g. [9]). Available data
are usually in the form of daily measurements which can be used to predict
longer (days and months) delays. Current methods in astrophysics are solely
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rooted in this scenario. However, when countering the problem of shorter delays
(e.g. hours), daily measurements are insufficient and one needs to investigate the
individual arrival times of photons.

Poisson process can applied as a model for photon streams [15]. To resolve the
delay in gravitationally lensed photon streams one can use the standard kernel
based estimation of the inhomogeneous Poisson process rate function on individ-
ual photon streams and then try to time-shift the rate function estimates so as
the overlap is maximized. Another, more principled alternative is to impose that
the source of the delayed photon streams is the same and we simply observe dif-
ferent realizations from the same inhomogeneous Poisson process, gravitationally
delayed in time. We study whether, comparing with the standard kernel based
baseline, such a principled approach can bring benefits in terms of more stable
(less variance) estimation.

Normally, delay estimation would be done over streams of photons from a
given energy band and then unified over a multitude of energy bands. The base-
line and principled delay estimation methods are then compared in a controlled
experimental setting using synthetic photon fluxes with known imposed delay
from a variety of inhomogeneous processes assumed to come from a single energy
band. To our best knowledge this is the first systematic study that addresses
the problem of delay estimation on lensed photon streams. We do not perform
experiments on real data, since no large real photon streams from known delayed
systems with short time delay are available. Nevertheless, this study serves as
a proof of concept and be readily used once appropriate lensed photon streams
become available.

2 Kernel Based Delay Estimation in Lensed Photon
Streams

For the sake of simplicity we will deal with the case of two lensed photon streams
A and B from the same source. All techniques presented in this paper can be eas-
ily generalized to multiple streams. We assume that the observed photon streams
can be accounted for by a Poisson process (e.g. [18]). In the non-homogeneous
Poisson process (NHPP) the mean rate function λ(s) varies over time s. Given
a series of arrival times s1, s2, ..., sS over an interval [0, T ], the rate function is
commonly estimated by imposing a (Gaussian) kernel of width r on top of each
arrival time si,

Kg(s; si, r) = exp
{

− (s − si)2

2r2

}
. (1)

The rate function estimate (up to scaling) is then [12–14]

λ̂(s) =
S∑

i=1

Kg(s; si, r). (2)

We will refer to this method as Kernel Rate Estimation (KRE).
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Suppose that we observe two lensed photon streams {sA
i }SA

i=1 and {sB
i }SB

i=1

from the same source. On each stream we produce a kernel based estimate of
the rate function λ̂A(s), λ̂B(s). Given a suggested time delay Δ, the closeness of
the rate estimates (under the delay Δ) can be evaluated e.g. through the mean
square difference eventuated on a regular grid of time stamps {zj}Z

j=1 in the
relevant time interval,

d2(λ̂A, λ̂B ;Δ) =
1
Z

Z∑
j=1

(λ̂A(zj) − λ̂B(zj))
2
. (3)

The delay is then estimated through minimization of d2(λ̂A, λ̂B ;Δ) with respect
to Δ (e.g. via gradient descent). In the following sections we will introduce two
variants of delay estimation based on innovation process corresponding to the
underlying Poisson process.

3 Innovation Process Based Estimation (IPE)

Recall that if event counts can be modeled by Poisson distribution with mean
rate λ, then the inter-arrival times are distributed with exponential distribution
with mean λ−1. We denote the differences between two consecutive arrival times
by dA = {dA

i }DA

i=1 and dB = {dB
i }DB

i=1, where dA
i = sA

i+1 − sA
i and dB

i = sB
i+1 −

sB
i , respectively. Our goal is to find a probabilistic model that maximizes the

probability P (dA, dB |λ(s)),

P (dA, dB |λA(s), λB(s)) =
DA∏
i=1

P (dA
i |λA(si;w))

DB∏
i=1

P (dB
i |λB(si;w,Δ)), (4)

where P (d|λ) = λe−λd. We impose a kernel based model on the common rate
function underlying both streams (expressed for stream A):

λA(s) =
J∑

j=1

wjKg(s; cj , ro) = wᵀKg(s; c, ro), (5)

with kernels of width ro, centered at cj , j = 1, 2 . . . J and the J free parameters
wj collected in vector w. Kg(s; c, ro) is a vector of kernel evaluations Kg(s; cj , ro)
at all centers of c = (c1, c2, ..., cJ ). The rate function of stream B is a time-delayed
(by Δ) version of the one for stream A:

λB(s) =
J∑

j=1

wjKg(s; cj − Δ, ro) = wᵀKg(s; c − Δ, ro), (6)

We thus obtain

P (dA, dB |λA(s), λB(s)) =
DA∏
i=1

λA(si)e−λA(si)d
A
i

DB∏
i=1

λB(si)e−λB(si)d
B
i , (7)
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leading to the error functional (negative log likelihood),

E = −
DA∑
i=1

(log λA(si) − λA(si)dA
i ) −

DB∑
i=1

(log λB(si) − λB(si)dB
i ). (8)

We minimize E w.r.t two parameters (w,Δ) via gradient descent. To that
end we plug (5) and (6) into (8),

E = −
DA∑
i=1

(
log

J∑
j=1

wjKg(sA
i ; cj , ro) − dA

i

J∑
j=1

wjKg(sA
i ; cj , ro)

)

−
DB∑
i=1

(
log

J∑
j=1

wjKg(sB
i ; cj − Δ, ro) − dB

i

J∑
j=1

wjKg(sB
i ; cj − Δ, ro)

)
,

(9)

leading to,

∂E

∂w
= −

DA∑
i=1

(
Kg(sA

i ; c, ro)
wᵀKg(sA

i ; c, ro)
− dA

i Kg(sA
i ; c, ro)

)

−
DB∑
i=1

(
Kg(sB

i ; c − Δ · 1, ro)
wᵀKg(sB

i ; c − Δ · 1, ro)
− dB

i Kg(sB
i ; c − Δ · 1, ro)

)
, (10)

where 1 is a vector of 1’s and

∂E

∂Δ
= −

DB∑

i=1

(
1

J∑
j=1

wj exp{−(sB
i

−(cj−Δ))2

2r2o
}

J∑

j=1

wj exp{ −(sB
i − (cj − Δ))2

2r2
o

} −2(sB
i − (cj − Δ))

2r2
o

− d
B
i

J∑

j=1

wj exp{ −(sB
i − (cj − Δ))2

2r2
o

} −2(sB
i − (cj − Δ))

2r2
o

)
.

(11)

4 Parameters Initialization

Gaussian kernels have two parameters need to be determined, in particular kernel
centers {cj}J

j=1 and the kernel width r. As explained above, in KRE, kernels
are centered at each photon’s arrival time, whereas in IPE, the centers cj are
uniformly distributed across the time period [0, T ].

The kernel width determines the degree of smoothing for the underlying rate
function. For KRE, we apply a method for selecting the width based on the
principle of minimizing the mean integrated square error (MISE) proposed by
[19]. For IPE, the kernel width ro is optimized using cross-validation method
proposed in [4,10]. The algorithm partitions the data into 10 blocks of equal
length L. The i-th validation set Vi, i = 1, 2 . . . L, is obtained by collecting the
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i-th element of each block. The rest of the data is the “training set”. We then fit
our models on the training set and use the validation set V i to calculate the cost
function E over a range of suggested width values ro ∈ (Lro

, Uro
). This procedure

is repeated L times for each validation set Vi, i = 1, 2 . . . L. The chosen ro is the
one yielding the smallest average cost E across the folds i = 1, 2 . . . L.

The IPE weight vector w is initialized using the rate function estimates
readily provided by the KRE model. However, the rate functions obtained by
KRE on streams A and B need to be scaled to represent the underlying rate of
the non-homogeneous Poisson process1. Given the KRE-estimated rate functions
on streams A and B, λ̂A(s), λ̂B(s), respectively, the overall KRE rate function
is their average

λ̂(s) =
λ̂A(s) + λ̂B(s)

2
. (12)

The scaling factor ϑ is obtained by imposing the rate function λ(s) = ϑλ̂(s) and
minimizing (9) with respect to ϑ. Denoting λ̂(sA

i )dA
i and λ̂(sB

i )dB
i by qA

i and
qB
i , respectively, it can be shown that the minimum is obtained at

ϑ =
DA + DB

DA∑
i=1

qA
i +

DB∑
i=1

qB
i

. (13)

Setting of IPE weights to match the rate function λ(s) can then be done by
imposing a regular (s1, s2, ..., sN ) grid on [0, T ], evaluating the rate values on
the grid, x = (λ̂(s1), λ̂(s2) . . . λ̂(sN ))ᵀ, and solving

w = Kᵀ+x, (14)

where K is an N × N matrix

K = [Kg(s1; c, ro),Kg(s2; c, ro), . . . Kg(sN ; c, ro)] . (15)

5 Experiments

To test and compare the methodologies suggested above, we performed con-
trolled experiments on synthetic data generated from non-homogeneous Poisson
processes. From each given non-homogeneous Poisson processes we generated
two series A and B of arrival times, the series B was then time-shifted by a
known delay Δ.

The rate functions defining non-homogeneous Poisson processes were
obtained by superimposing G Gaussian functions of fixed width rg positioned
on a regular grid {cg}G

g=1 in [0, T ],

λ(s) =
G∑

g=1

wg · Kg(s; cg, rg), (16)

1 Note that for the delay detection task for which the KRE method is used, no such
scaling was needed - the delay is invariant to scaling the estimated rate functions by
the same factor.
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Fig. 1. An example of a test rate function and the corresponding photon stream.

where wg ∈ R are the mixing weights generated randomly from uniform distribu-
tion on [Lw, Uw]. The kernel widths were set to a multiple of the kernel separation
(distance between the two consecutive kernel centers) dg, rg = αg · dg. We used
T = 400, G = 80, αg = 3, Lw = −1 and Uw = 1. The synthetic rate functions
were then rescaled to the interval [0.2]. Given a rate function λ(s), the arrival
times were generated using the Thinning technique [2,7,11,17,20]. An example
of a test rate function and the corresponding photon stream is shown in Fig. 1.

Using this process, we generate two photon streams from the same rate func-
tion: {sA

i } and {sB
j }, i = 1, 2, · · · , SA and j = 1, 2, · · · , SB . To create a pair of

time shifted streams, sB is shifted in time by a delay Δ > 0

sB
i ← sB

i + Δ,∀i = 1, 2, · · · , SB (17)

To prepare the streams for experiments, we cut the two streams to ensure they
have the same start and end point in time.

Table 1. Statistical analysis of delay estimates. The results for each method and each
imposed delay Δ ∈ {20, 22, 25, 28} are averaged over 100 test rate functions. The time
delay trial values were taken from the interval [10, 40] with increment of 10.

Delay Method μ±σ MAE CI range 95 % CI

20 KRE 21.01±3.81 1.87 0.75 [20.26,21.76]

IPE 20.88±3.93 1.73 0.77 [20.11,21.65]

22 KRE 22.68±4.50 3.49 0.88 [21.80,23.56]

IPE 22.40±4.61 3.74 0.90 [21.50,23.30]

25 KRE 25.44±5.70 5.09 1.12 [24.32,26.56]

IPE 25.55±5.96 5.54 1.17 [24.38,26.72]

28 KRE 28.56±4.30 3.27 0.84 [27.72,29.40]

IPE 28.58±4.32 3.34 0.85 [27.73,29.43]
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We performed controlled experiments, where 100 test rate functions were
generated as described in Sect. 5. For each test rate function we imposed four
delay values Δ ∈ {20, 22, 25, 28}, resulting in 400 individual experiments. The
time delay trial values were taken from the interval [10, 40] with increment of
10. For each model and each imposed delay Δ ∈ {20, 22, 25, 28}, we report the
mean μ and standard deviation σ of the maximum-likelihood delay estimates
across the set of 100 test rate functions. We also report the mean absolute error
(MAE) of the delay estimates and the 95 % Credibility Interval (CI). Summary
results are presented in Table 1.

6 Conclusion

In this paper, we tested whether a more principled treatment of delay estimation
in lensed photon streams, compared with the standard kernel estimation method,
can have benefits of a more accurate (less biased) and/or more stable (less vari-
ance) estimation. In particular, we formulated a baseline method (KRE) based
on kernel estimation of the rate function of inhomogeneous Poisson process. The
delay estimate is refined using gradient descent in the delay parameter on the
error functional.

A more principled delay estimation relied on imposing a single latent inhomo-
geneous Poisson process underlying the lensed photon streams. The rate function
model was formulated as a linear combination of nonlinear basis functions, thus
making the non-linear model linear in the mixing parameters. We tested this
idea in the Innovation Process Based Estimation (IPE).

Somewhat surprisingly, the overall emerging picture is that the theoretically
more principled methods do not bring much practical benefit in terms of the
bias/variance of the delay estimation. This is in contrast to our previous find-
ings on daily flux data [1,4,5]. It appears that because the underlying latent
rate function is represented only implicitly through the streams of arrival times
weakens the stabilizing factor of the single unified intensity function that proved
so useful in the case of daily flux data [1,4,5]. Indeed, in that case, knowing
the amount of observational noise and observing noisy flux levels gave much
better clues as to what the common source variability could be, thus stabilizing
the delay estimation. Nevertheless, we propose that a study of the kind is use-
ful and necessary for future developments of alternative methods for the delay
estimation in lensed photon streams.
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