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Abstract

Co-evolutionary learning involves a training process where training samples are instances of solutions that
interact strategically to guide the evolutionary (learning) process. One main research issue is with the
generalization performance, i.e., the search for solutions (e.g., input-output mappings) that best predict
the required output for any new input that has not been seen during the evolutionary process. However,
there is currently no such framework for determining the generalization performance in co-evolutionary
learning even though the notion of generalization is well-understood in machine learning. In this paper,
we introduce a theoretical framework to address this research issue. We present the framework in terms
of game-playing although our results are more general. Here, a strategy’s generalization performance is
its average performance against all test strategies. Given that the true value may not be determined by
solving analytically a closed-form formula and is computationally prohibitive, we propose an estimation
procedure that computes the average performance against a small sample of random test strategies
instead. We perform a mathematical analysis to provide a statistical claim on the accuracy of our
estimation procedure, which can be further improved by performing a second estimation on the variance of
the random variable. For game-playing, it is well-known that one is more interested in the generalization
performance against a biased and diverse sample of “good” test strategies. We introduce a simple
approach to obtain such a test sample through the multiple partial enumerative search of the strategy
space that does not require human expertise and is generally applicable to a wide range of domains. We
illustrate the generalization framework on the co-evolutionary learning of the iterated prisoner’s dilemma
(IPD) games. We investigate two definitions of generalization performance for the IPD game based on
different performance criteria, e.g., in terms of the number of wins based on individual outcomes and
in terms of average payoff. We show that a small sample of test strategies can be used to estimate
the generalization performance. We also show that the generalization performance using a biased and
diverse set of “good” test strategies is lower compared to the unbiased case for the IPD game. This
is the first time that generalization is defined and analyzed rigorously in co-evolutionary learning. The
framework allows the evaluation of the generalization performance of any co-evolutionary learning system
quantitatively.

Keywords: Evolutionary computation, co-evolutionary learning, generalization, Cheby-
shev’s inequality, iterated prisoner’s dilemma.

1 Introduction

Co-evolutionary learning refers to a broad class of population-based, stochastic search algorithms that
involve the simultaneous evolution of competing solutions with coupled fitness [1]. A co-evolutionary
learning system can be implemented using co-evolutionary algorithms [2, 3], which can be derived from
evolutionary algorithms (EAs) [4, 5]. That is, both co-evolutionary learning and EAs can be described
in terms of the framework whereby an adaptation process is carried out on the solutions in some form
of representation through a repeated process of variation and selection. The framework distinguishes
co-evolutionary learning and EAs in general from classical approaches (e.g., steepest-descent-based algo-
rithms) from two specific features, i.e., they are population-based and incorporate information exchange
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mechanisms between populations in successive generations (iterative steps) to guide the search process
[6].

Despite their similarity in framework, co-evolutionary learning and EAs are fundamentally different
in how the fitness of a solution is assigned, leading to significantly different outcomes when applied
to similar problems (e.g., different search behaviors on the space of solutions [7, 8]). EAs are often
viewed and constructed in terms of an optimization context [4, 5], whereby an absolute fitness function
is required to assign the fitness value to a solution that is objective (fitness value for a solution is
always the same regardless of the context). For co-evolutionary learning, the fitness of a solution is
obtained through its interactions with other competing solutions in the current population, and as such,
is subjective (fitness value for a solution depends on the context, e.g., population, and as such is relative
and dynamic). Here, co-evolutionary learning operates to find solutions guided by strategic interactions
among the competing solutions from one generation to the next that results (hopefully) in an arms race
of increasingly innovative solutions [9, 10, 11].

One of the early motivations for using co-evolutionary learning is its potential application for solving
problems that cannot be framed in the context of optimization (e.g., using EAs) because it is not possible
or very difficult to formulate an absolute fitness function that reflects the underlying properties of the
problem. For such problems, continued use of an inappropriate fitness function will often bias the search
to solutions that do not reflect the underlying properties of the problem, leading to suboptimal solutions
[12]. Even if a fitness function can be formulated, it may not be able to evaluate and differentiate
between individual solutions to provide some gradient to direct the search when using EAs [8, 13]. One
such problem that is difficult to solve using EAs, but can be naturally framed in co-evolutionary learning,
is the problem of game-playing [2, 3, 14, 15, 16, 17].

However, despite the success of co-evolutionary learning in solving the problem of games [2, 3, 14, 15, 16,
17] (and other problems in the context of optimization [18] and classification [19, 20]), the approach is
not trouble-free for all problems. In particular, co-evolutionary learning is now recognized to suffer from
problems (collectively called co-evolutionary pathologies) that affect the performance of a co-evolutionary
learning system [11, 12, 13, 21, 22, 23]. For example, overspecialization to a single solution can occur
in the population [21], which can be a result of earlier population disengagement, e.g., some solutions
are favored over others due to large gaps in competence level [13]. When intransitivity exists in the
relationship between solutions, cyclic dynamics may occur during co-evolution, whereby at some point
in the process, the population overspecializes to a solution that is vulnerable to another solution that
exploits it [11, 12]. Furthermore, when a solution is driven to extinction but at a later point is adaptively
found again, the co-evolution is said to exhibit forgetting [22, 23].

Co-evolutionary pathologies are usually attributed to the use of relative fitness in the selection process
of a co-evolutionary learning system [8, 24]. There are also broader implications in the design of the co-
evolutionary learning system to its performance that is dependent on the co-evolutionary search dynamics
(i.e., representation [25], variation [21, 25, 26], and selection [27]). This necessitates a more in-depth
study of co-evolutionary learning search dynamics. In particular, one approach that has been given much
attention in the past is the monitoring of the progress of the co-evolution for search of more innovative
and sophisticated solutions, e.g., arms race dynamics [28, 29, 30, 31].

Another approach is to consider a global view of increasing performance in co-evolutionary learning.
However, for this particular investigation, previous studies are restricted to simple problems or problems
where the global view is known in advance [8, 11]. Tools introduced for monitoring progress of arms race
dynamics are inappropriate or may not be suitably adapted for the global view analysis because they
only provide relative performance information of solutions between different generations. This is because
solutions in the current generation that are better than those in previous generations do not necessarily
imply that they perform better globally when compared with new or all possible solutions.

In machine learning, there exists a powerful framework, generalization, that provides a global view of
performance for learning systems. Generalization refers to the ability of the learning system to find the
solution, which can be viewed in the context of input-output mappings, that best predicts the required
output for any new input that has not been seen during the training process. With the context of
generalization, one is interested in how the learning system can realize the underlying properties of the
problem from a small sample of training data (e.g., the input-output set) to produce the solution. For
example, in the case of neural network training, one is not interested in learning the “exact representation
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of the training data itself, but rather to build a statistical model of the process which generates the data”
(page 332 of [32]). Furthermore, it should be noted that learning is not necessarily the same as optimizing
because the solution with optimal fitness does not necessarily imply it has the best generalization (unless
an accurate metric to measure generalization is used in the fitness function) [33].

Co-evolutionary learning, like other learning systems, also uses a small training sample during the evo-
lutionary (training) process to produce a solution to the problem. However, co-evolutionary learning is
different from other learning systems in that the training samples are not fixed, but instead, are instances
of solutions that are changing (evolving) and are interacting with each other strategically to guide the
evolutionary process (i.e., learning). Despite this difference, the generalization framework can be applied
to co-evolutionary learning systems to provide a global view in performance. Although the notion of
generalization is well-understood in machine learning, there is a lack of theoretical framework to justify
how the generalization performance of a co-evolutionary learning system is determined with respect to
the problem. For example, past studies such as [33, 34] have used a large sample of randomly obtained
test cases to estimate the generalization performance. It is not known how accurate such an estimation
is, i.e., how close the estimated generalization performance (using test samples randomly obtained from
the search space) to the true generalization performance (using the entire search space).

In this paper, we introduce a theoretical framework that addresses the problem of determining the
generalization performance of co-evolutionary learning in general. We present the framework in terms
of game-playing, i.e., learning game strategies that generalize well to the game (e.g., defeat a large
number of strategies that exist). However, our theoretical framework is general, i.e., the problem can
be put in the context of test-based evaluations (e.g., comparisons between solutions) where some tests
can reflect the underlying properties (objectives) of the problem that are unknown (game-playing is one
such problem) [12]. We first define generalization performance of a strategy as its average performance
against all test strategies. With this definition, it follows that the best generalization performance for a
co-evolutionary learning system is the one that produces evolved strategies with the maximum average
performance against all strategies.

Although this definition is simple, the generalization performance can be difficult to determine due
to two reasons. First, the analytical function for game outcomes can be unknown, and as such, we
cannot determine the generalization performance by solving analytically a closed-form formula. Second,
the strategy space can be very large (although finite), thus making it computationally prohibitive. To
address this problem, we propose the alternative of estimating the generalization performance by taking
the average performance of the evolved strategy against a sample of test strategies that are randomly
drawn from the strategy space.

We show through a mathematical analysis using Chebyshev’s Theorem that the probability that the
absolute difference between the estimated and true values exceeding a given error (precision value) is
bounded by a value that reciprocally depends only on the square of the error and the size of the random
test sample. However, this probability bound assumes the worst-case of having maximum variance for the
distribution of the random variable over a bounded interval. In general, the true variance is smaller than
the maximum value. As such, we perform a mathematical analysis and show how a second estimation
of the variance can be used to obtain a tighter bound. In addition, we also show that for some games,
the true variance of a strategy performance with respect to the strategy space is smaller, and as such,
requires a smaller sample size to make the same statistical claim.

With this framework, it is now shown that a sample of randomly obtained test strategies that is much
smaller in size compared with the total number of strategies in the space is sufficient to estimate the
generalization performance of co-evolutionary learning, and that this estimation is close enough to the
true value. We apply the framework to the co-evolutionary learning of the IPD games to illustrate
both the advantage of the framework and how it can be used in general. In particular, we investigate
two different definitions of generalization performance for the IPD game based on different performance
criteria, e.g., in terms of the number of wins based on individual outcomes and in terms of average payoff.

It is well-known that rather than considering the average performance for all cases, one may be more
interested in the average performance for specific cases that are more common or that arise naturally.
In the context of game-playing, one is more interested in the generalization performance of the co-
evolutionary learning system against “good” strategies, and not the average performance against all
strategies since it is possible that a large proportion of strategies in the space are poor or mediocre. To
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determine generalization performance against this biased sample of good test strategies, we introduce
a simple approach to obtain such a test sample through the multiple partial enumerative search of the
strategy space. Each partial enumerative search uses a population size that is much larger than the total
number of possible unique strategies that can be searched during co-evolution to produce a best strategy.
This approach does not require human expertise (as in generating some arbitrarily designed strategies)
and is more comprehensive than the previous single partial enumerative search that we introduced
earlier in [35, 36, 37]. We show that for the co-evolutionary learning of IPD games, the generalization
performance for the case of a biased and diverse sample is lower compared to the case of an unbiased
sample.

This paper is organized as follows. Section 2 presents our theoretical framework of generalization per-
formance of co-evolutionary learning. Section 3 illustrates how the framework can be applied to the
IPD game. Section 4 investigates the application of the framework to estimate the generalization per-
formance of co-evolutionary learning of simple IPD games where the true generalization performance
can be determined. Section 5 presents an empirical study on estimating generalization performance of
co-evolutionary learning of slightly more complex games where the true generalization performance can-
not be determined. The section also compares the results of estimates based on using an unbiased test
sample and that of using a biased and diverse sample of “good” test strategies. Section 6 discusses the
implications of the framework and concludes the paper.

2 Generalization Framework for Co-evolutionary Leaning

2.1 A Need for a Consistent and General Approach to Estimate the Gener-

alization Performance of Co-evolutionary Learning

Darwen and Yao [33, 34, 35] were among the first to explicitly investigate co-evolutionary learning through
the framework of generalization from machine learning (others include [38]). However, they [33, 34, 35]
studied the issue through an empirical approach only. In particular, they investigated the utility of
using some random sample of test cases to estimate the generalization performance of a co-evolutionary
learning system.

There are other studies that can be related to generalization in the context of co-evolutionary learning.
Wiegand and Potter [39] studied the notion of robustness (of individual components) in a cooperative
co-evolution setting. Ficici and Pollack [23] studied the notion of solution concepts, e.g., a partitioning
of search space into solutions (that are wanted) and non-solutions for a problem from measuring some
properties and establishing some criteria that the searched point is a solution. Bowling [40] studied the
notion of regret, i.e., measures performance difference between a learning algorithm with the best static
strategy during training. Powers and Shoham [41] studied the estimation of best-response through the
use of random samples. Studies in [42, 43, 44] investigated formalisms of monotonic improvement in
co-evolutionary learning and developed algorithmic frameworks that guarantee monotonic improvements
of co-evolving solutions based on archive of test cases.

Here, our main motivation is to develop a framework for a rigorous quantitative analysis of performance
in co-evolutionary learning using the notion of generalization from machine learning. We are motivated to
address the need for a principled approach to estimate the generalization performance of co-evolutionary
learning. The framework aims to allow one to estimate the generalization performance in general for
problems co-evolutionary learning is used to solve and at any point in the evolutionary process where
generalization performance is measured.

There are two reasons why measuring generalization performance of co-evolutionary learning is necessary
and important. First, it is used to provide an absolute quality measure on how well a co-evolutionary
learning system is performing with respect to the problem, i.e., how well the co-evolutionary learning
generalizes. Second, it can be used as a means to compare the generalization performance of different
co-evolutionary learning systems with respect to the problem.

We first introduce a theoretical framework that defines explicitly the generalization performance for co-
evolutionary learning, and how it can be determined, i.e., measured. However, it is noted that obtaining
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the true generalization performance for a co-evolutionary learning system is very difficult. As such,
through the theoretical framework, we provide an alternative of a consistent and general procedure to
estimate the generalization performance. We show a mathematical analysis of how the generalization
performance can be estimated using a random sample of test cases. We demonstrate the utility of the
estimation procedure by determining the statistical claim that one can make of how confident one is with
the accuracy of the estimate compared to the true generalization for a random test sample of a given
size.

2.2 Estimating Generalization Performance

In co-evolutionary learning, the quality of a solution is determined relative to other solutions. This is
achieved through comparisons, i.e., interactions between solutions. These interactions can be framed in
terms of game-playing, i.e., an interaction is a game played between two strategies (solutions). The game
outcome of a strategy i against the opponent strategy j is Gi(j), and conversely, the game outcome of
strategy j against strategy i is denoted Gj(i). Strategy i is said to solve the test provided by strategy j
if Gi(j) ≥ Gj(i)

1.

Here, the absolute quality (generalization performance) of a strategy i is measured with respect to its
expected performance in solving tests provided by strategies j. The goal of co-evolutionary learning
for the problem of game-playing is to learn a strategy i with the best generalization performance. In
the following, we present a theoretical framework for estimating the generalization performance of co-
evolutionary learning. It should be noted that the framework is presented in the context of the complete
solution. As such, the framework is directly applicable for the estimation of generalization performance
of a complete solution obtained either by a competitive or a cooperative co-evolutionary learning system.

2.2.1 True Generalization Performance

The generalization performance of co-evolutionary learning is determined with respect to the evolved
strategy that is produced. The true generalization performance of co-evolutionary learning is defined as
the expected performance of strategy i that is produced after a learning process (co-evolution) against
all strategies j in the strategy space S. The true generalization performance of strategy i, Gi, can be
written as follows:

Gi = EP1(j)[Gi(j)] =

∫

S

Gi(j)P1(j)dj, (1)

where Gi is the expectation of strategy’s i performance against j, Gi(j), with respect to the distribution
P1(j) over strategy space S (i.e., the distribution with which opponent strategies j are drawn). Note that
this definition of generalization does not imply having to compare with all strategies that exist. Instead,
P1(j), which can be specified by the strategy representation (e.g., neural networks), can be induced to
the strategy space S. As such, some strategies j that exist may not be included to determine Gi because
P1(j) = 0.

There are two difficulties to apply Equation 1 directly. First, the analytical form for Gi(j) is not known
or difficult to obtain (even for simple games). Second, the distribution P1(j) over S may be unknown
(at best we can only sample from S from a strategy representation that is used).

However, it is possible for these games to have a finite number of possible unique strategies, e.g., S is
discrete and finite, or that we can consider a subset of S that is discrete and finite by inducing some
strategy distribution P1(j) to S. For the purpose of presentation and simplicity, we assume a uniform
strategy distribution in S.

With this, one can compute the true generalization performance of co-evolutionary learning through a
strategy i, which is simply its average performance against all strategies j, and can be written in the

1For example, in a zero-sum game such as chess, one can say that strategy i solves the test provided by strategy j if i

defeats j, i.e., Gi(j) > Gj(i).
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form:

Gi =
1

M

M∑

j

Gi(j), (2)

where M is the total number of unique strategies j that strategy i plays against. For example, consider
the two-choice IPD game with deterministic and reactive memory-one strategies, where each strategy
consider its previous moves and opponent’s previous move. For such a game, there is only a total of
222+1 = 25 = 32 unique strategies in the strategy space.

However, the true generalization performance may not be computed by applying Equation 2 as the game
increases in complexity. For example, considering the IPD game above, if strategies can play from n
choices (e.g., n-choice IPD game), the total number of unique strategies increases to nn2+1. As such, even
a moderate increase in the number of choices result in a large increase in the total number of strategies.
With three choices, there are 332+1 = 310 = 59049 strategies. As the number of choices increase to four,
the total number of strategies increases to 442+1 = 417 = 17179869184, and so forth. Thus, computing
the true generalization performance using Equation 2 quickly becomes computationally infeasible even
for a small increase in the number of choices.

2.2.2 Estimated Generalization Performance

Given that the true generalization performance cannot be obtained (e.g., it cannot be determined by
solving analytically a closed-form formula and is computationally prohibitive), the next alternative is to
estimate the generalization performance. Here, we propose estimating the generalization performance by
considering the average performance against a smaller sample of N test strategies that can be computed
(i.e., N ≪ M). The estimated generalization performance of strategy i is given by:

Ĝi(SN ) =
1

N

∑

j∈SN

Gi(j), (3)

where SN is the sample of N test strategies randomly drawn from S. For the rest of this paper, we use
the notation Ĝi to represent Ĝi(SN ).

2.2.3 Chebyshev’s Bound for Determining the Accuracy of the Estimation of Generaliza-
tion Performance

We want to know how close Ĝi, obtained using a set of N test strategies randomly drawn from S of
size N , when compared to Gi, which is obtained using all possible strategies from S of size M (where
M ≫ N). That is, we want to know if the absolute difference between Ĝi and Gi, i.e., |Ĝi − Gi|, is
sufficiently small, i.e., does not exceed a small positive number ǫ (where ǫ > 0). If this is true, then we
say Ĝi is approximately Gi, i.e., Ĝi ≈ Gi.

However, we do not know what |Ĝi − Gi| is, because Gi is not known. One can try to find how likely
that Ĝi is close enough to Gi. That is, what is the probability that |Ĝi −Gi| ≥ ǫ if one uses N randomly
obtained test strategies to obtain Ĝi. We answer this question using Chebyshev’s Theorem [45].

Our mathematical analysis does not assume a particular strategy distribution P1(j), which can be induced
on S by a particular strategy representation. All that is required is that SN is a set of independent
identically distributed (i.i.d) strategies drawn from S according to P1(j), e.g., using the same strategy
representation.

We want to estimate the difference, DN = Ĝi − Gi, which is a random variable because the set of
strategies SN used to obtain Ĝi is sampled randomly from S. From the definition of DN , we apply
Chebyshev’s Theorem [45] and obtain2:

2The analysis can be extended to games with probabilistic strategies as well since DN is a random variable.
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P (|Ĝi − Gi| ≥ ǫ) ≤ σ2
i

N · ǫ2 (4)

for a strategy i (for full details, please refer to the Appendix section). For the rest of this paper, we use
the notation σ2 to represent σ2

i . Furthermore,

σ2 = EP1(j)[g
2
j ]

= EP1(j)

[(

Gi(j) − Gi

)2]

= EP1(j)

[(

Gi(j) − EP1(j)[Gi(j)]
)2]

= VarP1(j)[Gi(j)].

We can bound σ2. In general, for the random variable Gi(j) distributed over the interval [GMIN, GMAX]
(where GMAX and GMIN is the maximum and minimum of Gi(j), respectively), the maximum variance
σ2

MAX is when half of the mass is at GMIN and the other half is at GMAX, which results in a mean of
(GMIN + GMAX)/2 and standard deviation of σMAX = (GMAX + GMIN)/2 (see [46]).

Let R = GMAX − GMIN be the range of the random variable Gi(j). We can thus restate Chebyshev’s
bound as Lemma 1 [45].

Lemma 1 For a strategy i, let Ĝi be the estimated generalization performance with respect to N random
test strategies and Gi be the true generalization performance. Consider the absolute difference |Ĝi −Gi|,
which is a random variable with distribution PN taken on a compact interval [GMIN, GMAX] of length
R = GMAX − GMIN. Then, for any positive number ǫ > 0:

PN (|Ĝi − Gi| ≥ ǫ) ≤ R2

4N · ǫ2 . (5)

We note the generality of this framework by observing the following three points:

1. The framework is independent of the complexity of the game, since it is independent of the size of
the strategy space, and independent of the strategy distribution in the strategy space.

2. Both GMAX and GMIN are often known a priori as they are specified by the game, which means
that we can always obtain an upper bound on (5).

3. The framework is independent of learning algorithms since the bound holds for any strategy in the
strategy space.

2.2.4 Application of Chebyshev’s Bound in the Generalization Framework

To see how Chebyshev’s bound can be used in the framework for estimating generalization performance,
we first need to identify the relationship given by Equation 5 between the probability P (|Ĝi − Gi| ≥ ǫ),
the sample size N , and the precision value ǫ. For simplicity, let ǫ′ = ǫ/R. This lets us simplify Equation 5
to:

P (|DN |′ ≥ ǫ′) ≤ 1

4N · ǫ′2 ,

which is the same as

P (|DN |′ ≤ ǫ′) ≥ 1 − 1

4N · ǫ′2 ,
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where |DN |′ = |DN |/R = |Ĝi −Gi|/R is the normalized absolute difference of estimated and true values
of the generalization performance.

To illustrate the Chebyshev’s bound further, we plot the curve of PN (ǫ′) = 1/(4Nǫ′
2
) as points in the

P -ǫ′ space. Figure 1 shows the curves PN for Chebyshev’s bounds for different Ns over a range of ǫ′s
in [0.01, 0.1]. Each curve PN gives the upper bound for P (|DN |′ ≥ ǫ′) when a random sample of test
strategies of size N is used to estimate the generalization performance.
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Figure 1: Figure showing various graphs of the theoretical Chebyshev’s bounds in probability (given by
Equation 5) PN for different size N of the sample of random test strategies N in the range of precision
value ǫ′ in [0.01, 0.1]. Graphs are labelled as PN .

Note that PN (ǫ′) is inversely proportional to N and ǫ′. For any ǫ′, an increasingly larger number for
N is required to obtain lower Chebyshev’s bounds (Fig. 1). Assuming the worst-case, and when all the
three values N , ǫ′, and PN (ǫ′) are known, one can use a statistical argument to claim with confidence or
probability at least 1 − PN (ǫ′) that |DN |′ ≤ ǫ′ for a precision value ǫ′.

In practice, we only need to specify N to be as large as possible for which we can compute the estimated
generalization performance. After that, we have to make a “tradeoff” between the confidence level (i.e.,
being more confident that the estimation is likely to be close to the true result) and precision value (i.e.,
the value by which the estimation will not be bigger or smaller compared to the true result).

2.2.5 Obtaining A Tighter Chebyshev’s Bound By Estimating the Variance σ2

Consider a random variable X with the underlying distribution PX taken from a compact interval of
real numbers, i.e., X ∈ [a, b]. For N realizations x1, x2, ..., xN , the empirical mean is given by:

ÊPX
[X ] = µ̂N =

1

N

N∑

j=1

xj .

The true mean is given by:

EPX
[X ] = µ

while the true variance is given by:
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σ2 = EPX

[(
X − EPX

[X ]
)2
]

.

The maximum variance for a random variable over [a, b] is when half of the mass is at a and the other
half is at b, i.e., σ2

MAX = R2
X/4 where RX = b−a. Applying Chebyshev’s Theorem gives us the following:

P (|µ̂N − µ| ≥ ǫ) ≤ R2
X

4N · ǫ2 .

We want to find out if a tighter upper bound for Chebyshev’s bound (for any random variable distributed
over a compact interval) can be obtained. If we knew µ = EPX

[X ], we could obtain an unbiased estimate
of σ2:

σ̂2
N =

1

N

N∑

j=1

(xj − µ)2 =
1

N

N∑

j=1

yj ,

where yj = (xj − µ)2, j = 1, ..., N , are realizations of a new random variable Y = (X − EPX
[X ])2. σ̂2

N

is the empirical mean of Y based on a sample {yj}N
j=1.

The true mean of Y is:

EPY
[Y ] = EPX

[

(X − EPX
[X ])2

]

= σ2.

We can apply Chebyshev’s Theorem for Y and obtain the following inequality:

P (|σ̂2
N − σ2| ≥ δ) ≤ VarPY

[Y ]

N · δ2
,

where VarPY
[Y ] is the variance of Y .

For yj = (xj − µ)2, given that the minimal possible value is ymin = 0 (if xj = µ), and that the maximal
possible value is ymax = (b−a)2 (if xj = a and µ = b), the range for Y is RY = ymax−ymin = (b−a)2−0 =
(b − a)2. Again, trivially, VarPY

[Y ] can be bounded by:

VarMAX[Y ] ≤ R2
Y

4
=

(b − a)4

4
=

R4
X

4
.

So,

P (|σ̂2
N − σ2| ≥ δ) ≤ R4

X

4N · δ2
.

We can thus summarize the following two points. First, with probability of at least c1 = 1−R2
X/(4Nǫ2)

(with respect to generating many N -tuples of observations (x1, ..., xN )), we know that µ̂ is no further
away from µ than ǫ, i.e., |µ̂ − µ| ≤ ǫ). That is:

P (|µ̂N − µ| ≤ ǫ) ≥ 1 − R2
X

4N · ǫ2 .

Second, with probability of at least c2 = 1 − R4
X/(4Nδ2), we know that σ̂2

N is no further away from σ2

than δ, i.e., |σ̂2
N − σ2| ≤ δ). That is:
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P (|σ̂2
N − σ2| ≤ δ) ≥ 1 − R4

X

4N · δ2
.

We would like to use σ̂2
N + δ as an upper bound for σ2 (when σ2 is lower than the maximum possible

value R4
X/4). However, we have assumed that we know µ. In actual situations, we do not know µ.

We examine the correction required for the fact that µ̂ rather than µ is used to calculate the variance
σ̂2

N . That is:

ˆ̂σ
2

N =
1

N

N∑

j=1

(xj − µ̂N )2.

We know that with probability at least c1 = 1 − R2
X/(4Nǫ2), |µ̂ − µ| ≤ ǫ. So, the worst case is when

ˆ̂σ
2

N underestimates σ̂2
N (we are interested in the upper bound for σ2) because µ̂N is closer to xj than

µ. There are two situations where we get this: (a) when xj < µ̂N < µ (in which case we calculate
(µ̂N + ǫ − xj)

2), and (b) when µ < µ̂N < xj (in which case we calculate (xj − µ̂N − ǫ)2).

As such, with probability (with respect to generation of many N -tuples (x1, ..., xN ) from PN
X ) c1 =

1 − R2
X/(4Nǫ2), we have (xj − µ̂N − ǫ)2 ≥ (xj − µ)2. So, with probability c1, we can be sure that:

σ̂2
N,U =

1

N

N∑

j=1

(xj − µ̂N − ǫ)2 ≥ σ̂2
N .

With probability c2 = 1 − R4
X/(4Nδ2), we have the upper bound σ2 ≤ σ̂2

N + δ.

In order to combine the probabilities in a simple way, we must make the events independent. So,
we need two sets of N -tuples of observations. The first set of x1,1, x1,2, ..., x1,N is used to estimate

µ̂1,N = 1
N

∑N

j=1 x1,j . The second set x2,1, x2,2, ..., x2,N is used to estimate µ̂2,N = 1
N

∑N

j=1 x2,j and

σ̂2
N,U = 1

N

∑N

j=1(x2,j − µ̂2,N − ǫ)2.

Then, with probability:

c1 · c2 =
(

1 − R2
X

4N · ǫ2
)

·
(

1 − R4
X

4N · δ2

)

,

we have σ2 ≤ σ̂2
N,U + δ since we know that σ2 ≤ σ̂2

N + δ and σ̂2
N ≤ σ̂2

N,U .

As such, one can claim with probability at least c1c2 that the following inequality holds:

P (|µ̂1,N − µ| ≥ ǫ) ≤
σ̂2

N,U + δ

N · ǫ2 .

However, for this inequality to be of use, we require that σ2 ≤ σ̂2
N,U + δ < σ2

MAX = R2
X/4.

We apply this result to obtain a tighter upper bound for the generalization framework introduced earlier,
which we present as Lemma 2.

Lemma 2 For a strategy i, consider two independent non-overlapping sets of N test strategies: T1 and
T2, where T1∩T2 = ∅ and |T1| = |T2| = N . The first set is used to estimate the generalization performance
Ĝi(T1) = 1

N

∑

j∈T1
Gi(j). The second set is used to estimate the variance σ̂2

N,U = 1
N

∑

j∈T2

(
Gi(j) −

Ĝi(T2) − ǫ
)2

, for some positive number ǫ > 0, where Ĝi(T2) = 1
N

∑

j∈T2
Gi(j). Then, for δ > 0 with

probability at least c1c2 = (1 − R2/(4Nǫ2))(1 − R4/(4Nδ2)), the following inequality holds:
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PN (|Ĝi(T1) − Gi| ≥ ǫ) ≤
σ̂2

N,U + δ

N · ǫ2 . (6)

3 Examples of Chebyshev’s Bound for Estimating Generaliza-

tion Performance in IPD Games

We have addressed the difficulty for problems where the true generalization performance cannot be
determined by solving analytically a closed-form formula and is computationally prohibitive by estimating
the generalization performance using a random sample of test strategies. However, a large sample of N
random test strategies may be required to claim with a high probability for a small precision value that
the estimated value is close to the true value of the generalization performance. It is known that the
Chebyshev’s bound given earlier is a loose upper bound.

Here, we conduct an empirical study for some practical games-the IPD games-and show that one can
expect to obtain a better estimate of the generalization performance compared to the theoretical value
given by Chebyshev’s bound when considering the worst-case (i.e., actual P (|DN |′ ≥ ǫ′) is lower than
the Chebyshev’s bound). We also show how a strategy’s performance profile with respect to the strategy
space, the variance σ2, can be used through a second estimation to obtain a tighter Chebyshev’s bound.
Finally, we show that games can affect the accuracy of the estimation procedure because they affect the
strategy performance profile with respect to the strategy space.

3.1 The IPD Game

In the IPD game, two players engaged in repeated interactions are given two choices, cooperate and defect
[47, 48, 49]. The dilemma embodies the tension between rationality of individuals who are tempted
to defect and rationality of the group where every individual is rewarded by mutual cooperation [49]
since both players who are better off mutually cooperating than mutually defecting are vulnerable to
exploitation by one of the party who defects.

The classical IPD game can be formulated by considering a predefined payoff matrix that specifies
the payoff that a player receives for the choice it makes given the choice that the opponent makes.
Referring to the payoff matrix given by Figure 2, both players receive R (reward) units of payoff if both
cooperate. They both receive P (punishment) units of payoff if they both defect. However, when one
player cooperates while the other defects, the cooperator will receive S (sucker) units of payoff while the
defector receives T (temptation) units of payoff. With the classic IPD game, the values R, S, T , and P
must satisfy the constraints: T > R > P > S and R > (S + T )/2. Any set of values can be used as long
as they satisfy the IPD constraints (we use T = 5, R = 4, P = 1, and S = 0 in all our experiments unless
stated otherwise). The game is played when both players choose between the two alternative choices
over a series of moves (i.e., repeated interactions).

   Cooperate Defect

R T

Cooperate   

R  S

  S P

Defect

T  P

Figure 2: The payoff matrix framework of a two-player, two-choice game. The payoff given in the lower
left-hand corner is assigned to the player (row) choosing the move, while that of the upper right-hand
corner is assigned to the opponent (column).
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The classical IPD game has been extended to more complex versions of the game to better model real-
world interactions. One simple example that we will use in this paper is the IPD with multiple, discrete
levels of cooperation [21, 25, 26, 50, 51]. The n-choice IPD game is defined by the payoffs obtained
through the following linear interpolation:

pA = 2.5 − 0.5cA + 2cB, − 1 ≤ cA, cB ≤ 1, (7)

where pA is the payoff to player A, given that cA and cB are the cooperation levels of the choices that
players A and B make, respectively. For example, for the three-choice and four -choice IPD games, the
payoff matrix is given by Figures 3 and 4 [25], respectively.

PLAYER B 

+1 0 1

+1 4 2 0

PLAYER A 0 4
2

1

2
2

1

2

1

1 5 3 1

Figure 3: The payoff matrices for the two-player three-choice IPD game. Each element of the matrix
gives the payoff for Player A.

PLAYER B 

+1 +
3

1

3

1

1

+1 4 2
3

2

1
3

1

0

+
3

1

4
3

1

3 1
3

2

3

1

3

1

4
3

2

3
3

1

2
3

2
PLAYER A

1 5 3
3

2

2
3

1

1

Figure 4: The payoff matrices for the two-player four -choice IPD game [25]. Each element of the matrix
gives the payoff for Player A.

Note that in generating the payoff matrix for an n-choice IPD game, the following conditions must be
satisfied [25]:

1. For cA < c′A and constant cB: pA(cA, cB) > pA(c′A, cB),

2. For cA ≤ c′A and cB < c′B: pA(cA, cB) < pA(c′A, c′B), and

3. For cA < c′A and cB < c′B: pA(c′A, c′B) > (1/2)(pA(cA, c′B) + pA(c′A, cB)).

These conditions are analogous to those for the classical IPD’s. The first condition ensures that defection
always pays more. The second condition ensures that mutual cooperation has a higher payoff than mutual
defection. The third condition ensures that alternating between cooperation and defection does not pay
in comparison to just playing cooperation.
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In the IPD, defection is not necessarily the best choice of play. Many studies have shown cooperative play
to be a viable strategy [48, 49]. More importantly, cooperative play can be learned from an initial, ran-
dom population through co-evolutionary learning [2, 52, 53, 54, 55], which is different from the classical
evolutionary games approach that considers frequency dependent reproductions of predetermined strate-
gies (e.g., “ecological approach” [49, 56]) that do not involve an adaptation process on some strategy
representations.

With the learning of IPD strategies, one important question is whether the learned IPD strategy is
“robust”. Axelrod [2] considered robustness of a strategy in the context of its performance against some
expert-designed strategies. Darwen and Yao [33, 34, 35] defined robustness in the context of generaliza-
tion. These previous studies [2, 33, 34, 35] approached the issue of robustness (i.e., generalization) in an
empirical and ad hoc manner. Here, we investigate the issue by applying the generalization framework
introduced earlier.

3.2 Different Definitions of Generalization Performance

Before applying the generalization framework to the co-evolutionary learning of a game, we first need to
define specifically the generalization performance so that when we say that a strategy generalizes well,
it is according to some well-defined performance criteria (which is determined by the definition of game
outcomes). For zero-sum games like chess, the game outcome for a strategy can be easily defined, e.g.,
win, lose, or draw3. When we apply the generalization framework with this definition of game outcome
for chess, we refer to how well co-evolutionary learning can produce a strategy that can win against as
many strategies as possible.

However, for the nonzero-sum game such as IPD, there is no specific notion of “win” that one defines
for a game outcome. Instead, the “best” strategy is usually the one with the highest average payoffs of
some N games played (if one includes each strategy also playing against its own twin), i.e., round robin
tournament. In other words, the game outcome is either the average payoff per move, or the total payoff.
This is not the same as the case when one sums the number of individual “wins”, where a win is defined
as having higher average payoff per move in a game.

Here, we explore the generalization performance of co-evolutionary learning for the IPD games from two
perspectives, i.e., we consider two different definitions of generalization performance. This is to allow
a more in-depth investigation as to how co-evolutionary learning produces strategies in terms of their
generalization, i.e., whether the strategy generalizes to a specific performance criterion, or to more than
one performance criterion.

3.2.1 Generalization Performance in Terms of the Number of Wins Based on Individual
Outcomes

First, we define generalization performance in terms of the number of wins based on individual outcomes
of games (e.g., a game between a pair of strategies). This definition of generalization performance follows
the notion from zero-sum games where one is interested in the performance of winning against as many
known strategies as possible. If g(i, j) refers directly to the average payoff per move to strategy i when
it plays an IPD game with strategy j, then a game outcome, which can either be win or lose, is defined
as follows:

GW(i, j) =

{
CWIN for g(i, j) > g(j, i),
CLOSE for otherwise,

where CWIN and CLOSE are constants that can be arbitrarily specified as long as CWIN > CLOSE
4.

3This is the widely accepted convention, although for our purpose here of determining generalization performance, we
can just consider a case of win and lose, i.e., a draw is considered a lose.

4In this paper, we use CWIN = GMAX = 100 and CLOSE = GMIN = 0. We arbitrarily choose these values for
presentation of results.
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Using Equation 3, the estimated generalization performance based on a sample of N test strategies is
given by:

ĜW(i) =
1

N

∑

j∈SN

GW(i, j). (8)

We use G(i) = Gi to make the notations simpler. We denote GW(i) to represent the true generalization
performance for the definition introduced above.

3.2.2 Generalization Performance in Terms of Average Payoff

Second, we define generalization performance in terms of average payoff. This definition of generalization
performance follows the notion of average performance against a population of strategies (tournaments
for IPD games). Here, the game outcome is the average payoff per move, i.e., GA(i, j) = g(i, j), where
GMAX = T and GMIN = S can be determined from Equation 7. As such, the generalization performance
refers to the average payoff from a round robin tournament of games. However, for simplicity, and since
N is a large number and assuming there is always a j = i in SN :

ĜA(i) =
1

N

∑

j∈SN

GA(i, j), (9)

so that it is straightforward to use the Chebyshev’s Theorem to obtain the Chebyshev’s bound. We
denote GA(i) to represent the true generalization performance for the definition introduced above.

3.3 Chebyshev’s Bounds in IPD Games

For the two definitions of generalization performance, Chebyshev’s Theorem can be applied to obtain
their respective Chebyshev’s bounds. However, as mentioned earlier, the Chebyshev’s bound is an upper
bound in probability, and in most practical situations, σ2 is less than R2/4. That is, even though
we are limited by using a sample of random test strategies of size N in estimating the generalization
performance, we expect that for a particular precision value ǫ′, the probability P (|DN |′ ≥ ǫ′) is lower
than the Chebyshev’s bound. Here, we investigate this empirically.

For simplicity, we will restrict our investigation to the case of the IPD game with deterministic and
reactive memory-one strategies that consider their previous moves and opponent’s previous moves. We
consider the three-choice IPD game. We assume that strategies are uniformly distributed in the strategy
space S. For this case, it is possible to compute the true generalization performance since the strategy
space S of M = 59049 unique strategies is not too big. It is not possible for the four -choice IPD game,
while it is trivial for the two-choice IPD game with M = 32.

3.3.1 Chebyshev’s Bounds for Different Generalization Performance in IPD Games

Experiments were conducted for the two definitions of generalization performance introduced earlier.
For all the experiments, the estimated and true generalization performance were determined for 4000
strategies that were randomly sampled. The proportion of the 4000 strategies where |DN |′ > ǫ′ was
determined. This proportion can be considered as a rough estimate of the actual probability P (|DN |′ ≥
ǫ′). Experiments were repeated for 50 samples of random test strategies SN for different Ns (rough %
of M) at 10 (0.02%), 50 (0.1%), 100 (0.2%), 500 (1%), 1000 (2%), 5000 (10%), 10000 (20%) that are
drawn independently5.

Figure 5 shows the results of the experiments for the generalization performance defined by GW(i) and
estimated with ĜW(i). From the figure, it can be observed that the probability P (|DN |′ ≥ ǫ′) (roughly

5We have verified for each sample SN that no strategy is obtained more than once.
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Figure 5: Figures showing the probability that |DN |′ > ǫ′ for ǫ′ in [0.01, 0.1] where the sample of random
test strategies SN of size N is used to compute ĜW(i). Each graph is obtained by averaging from results
of using 50 independent samples SN with error bars representing 95% confidence interval. PN gives the
curves for the Chebyshev’s bounds with different Ns.
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Figure 6: Figures showing the probability that |DN |′ > ǫ′ for ǫ′ in [0.01, 0.1] where the sample of random
test strategies SN of size N is used to compute ĜA(i). Each graph is obtained by averaging from results
of using 50 independent samples SN with error bars representing 95% confidence interval. PN gives the
curves for the Chebyshev’s bounds with different Ns.
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estimated by the proportion of 4000 samples of |ĜW(i)−GW(i)|/R, i = 1, ..., 4000) reduces as N increases
from 10 to 10000 for ǫ′ in [0.01, 0.1]. The empirical probability curves are observed to be lower than
those given by Chebyshev’s bounds. Similar observation is also made for the generalization performance
defined by GA(i) and estimated with ĜA(i) in Figure 6.
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(c) Strategy # 3
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Figure 7: (a)-(d) shows for four different strategies i, the normalized absolute differemce, |DN |′, is
obtained for each definition of generalization performance (e.g., GW(i) and GA(i)). Each graph is
obtain by averaging from results of using 50 independent samples SN with error bars representing 95%
confidence interval. Each subfigure also contains the curves of precision value ǫ′ = 1/

√
4NPN obtained

from Chebyshev’s bounds that are labelled according the probability PN used.

Experiments show that normalized |ĜW(i)−GW(i)| is usually larger for all Ns compared to normalized
|ĜA(i) − GA(i)| (e.g., Fig. 7). This can be explained by analyzing the distribution (histogram) of
G(i, j) − G(i) for individual strategies (that we randomly picked) against a sample of test strategies
(that we also randomly picked from many samples). Figures 8 and 9 show for four strategies, the
distribution of GW(i, j) − GW(i) and GA(i, j) − GA(i), respectively, for a particular sample of SN for
N at 50, 5000, and 10000. On the one hand, the distribution of GW(i, j) − GW(i) is always bimodal,
i.e., having two separate peaks, which may lead to higher σ2. On the other hand, the distribution of
GA(i, j)−GA(i) spreads over an interval, leading to lower σ2. Considering the Chebyshev’s bound from
Equation 6, it is more likely |ĜW(i)−GW(i)| ≥ ǫ for higher values of ǫ when σ2 (which can be estimated
with respect to SN ) is higher.

In addition, another observation is that the distribution of G(i, j) − G(i) for the two definitions of
generalization performance is quite similar for different sizes of SN starting from a small N of 50 (Figs. 8
and 9). These results indicate two implications for the estimation of generalization performance for IPD
games investigated here. First, the estimation from using a smaller SN is as accurate as the estimation
from using larger SN s. Second, the estimations are stable in terms of varying sample sizes starting from
a small SN .
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Figure 8: (a) - (d) shows for four different strategies i, the distribution of GW(i, j)−GW(i) for N at 50,
5000 and 10000.
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Figure 9: (a) - (d) shows for four different strategies i, the distribution of GA(i, j) − GA(i) for N at 50,
5000 and 10000.

18



3.3.2 Can We Find A Tighter Chebyshev’s Bound?

The Chebyshev’s bound given by Equation 5 assumes the worst-case and takes σ2
MAX = R2/4 to upper-

bound the probability. We have earlier provided a mathematical analysis to find a tighter bound that
requires the estimation of σ2 so that rather than using σ2

MAX > σ2, σ̂2
N,U + δ is used instead (with some

probability c1c2 that can be determined), i.e., a tighter Chebyshev’s bound given by Equation 6.

Note that to have a high probability c1c2 where c1 = 1 − R2/(4Nǫ2) and c2 = 1 − R4/(4Nδ2), we want
c2 to be as high as possible by having a higher value for δ (which is where this tighter bound is useful
because we are hoping that σ2 is small and that σ̂2

N,U + δ < σ2
MAX even for a larger value of δ).

We apply Chebyshev’s Theorem for the random variable |σ̂2
N − σ2| to investigate empirically how good

is the estimation of σ2 when using a sample of test strategies for the three-choice IPD game (we can
actually compute the exact value of σ2 for this game):

P (|σ̂2
N − σ2| ≥ δ) ≤ R4

4N · δ2
.

We can simplify the above by letting |D(σ̂2
N )|′ = |σ̂2

N − σ2|/R2 and δ′ = δ/R2 so that we now obtain:

P (|D(σ̂2
N )|′ ≥ δ′) ≤ 1

4N · δ′2
.

 1

 0.8

 0.6

 0.4

 0.2

 0.05

 0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

P
r
o
b
a
b
i
l
i
t
y
,
 
p

Precision Value, δ’

N=10
N=50

N=100
N=500

(a) N = {10, 50, 100, 500}

 1

 0.8

 0.6

 0.4

 0.2

 0.05

 0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

P
r
o
b
a
b
i
l
i
t
y
,
 
p

Precision Value, δ’

pN=10000

pN=5000

pN=2000

N=500
N=1000
N=5000

N=10000

(b) N = {500, 1000, 5000, 10000}

Figure 10: Figures showing the probability that |D(σ̂2
N )|′ > δ′ for δ′ in [0.0001, 0.04] where the sample

of random test strategies SN of size N is used to compute σ̂2
N for GW(i). Each graph is obtained by

averaging from results of using 50 independent samples SN with error bars representing 95% confidence
interval. PN gives the curves for the Chebyshev’s bounds with different Ns.

Experiments were conducted for the two definitions of generalization performance to determine the
probability (proportion) of 4000 random strategies where |D(σ̂2

N )|′ > δ′ for 50 samples of SN from 10
to 10000 that are drawn uniformly and independently6. Figures 10 and 11 summarize the results, which
show that generally the empirical probability curves are lower for estimation of σ2 for GA(i) compared
to the case of GW(i). More importantly, the results show that a high probability can be claim that
|D(σ̂2

N )|′ ≤ δ′ if we consider a large precision value of δ′.

We also present results for the estimation of σ2 for individual strategies. Table 1 shows the σ̂2
N for various

N and also the true value σ2 for some random strategies for GW(i). Table 2 shows the results of |σ̂2
N −σ2|

for GW(i). If we consider a large precision value of δ′ = 0.04 (δ = 400), we know from Chebyshev’s bound
for example that for N = 10000, the probability that |σ̂2

N − σ2| ≤ δ is 1 − 1/(4 × 10000× 0.042) > 0.98.

6Note that we actually compute ˆ̂σ
2

N rather than σ̂2

N
. Regardless however, the following results will show that most of

the time, ˆ̂σ
2

N overestimates σ2. Furthermore, at the end of the section, we will show results of corrected estimates σ̂2

N,U

and how it can be used to obtain a tighter Chebyshev’s bound.
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Figure 11: Figures showing the probability that |D(σ̂2
N )|′ > δ′ for δ′ in [0.0001, 0.04] where the sample

of random test strategies SN of size N is used to compute σ̂2
N for GA(i). Each graph is obtained by

averaging from results of using 50 independent samples SN with error bars representing 95% confidence
interval. PN gives the curves for the Chebyshev’s bounds with different Ns.

However, as indicated earlier in Figure 10(b), the actual estimation of σ2 is better than the theoretical
value given by Chebyshev’s bound. For example, |σ̂2

N − σ2| for N = 10000 is much smaller than 400 for
a probability greater than 0.98 (Table 2). Similar observations can be made for GA(i) (Tables 3 and 4)7.

Table 1: Comparison of σ̂2
N for various N with the true value σ2 for 10 strategies for GW(i) where

σ2 ∈ [0, 2500].
N # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10
10 2500 2400 2500 2400 2400 2100 0 2400 2500 1600
50 2464 2496 2244 1476 2496 1924 1204 2356 2464 2484
100 2304 2484 2059 1344 2464 1924 1275 2436 2496 2379
500 2436 2500 2224 1539 2491 1895 1317 2477 2497 2375
1000 2419 2498 2131 1470 2484 1875 1218 2482 2500 2278
5000 2432 2492 2108 1481 2490 1849 1341 2476 2499 2220
10000 2434 2497 2118 1515 2493 1816 1321 2473 2500 2231

TRUE 2436 2496 2126 1475 2491 1816 1293 2477 2499 2228

Table 2: Comparison of |σ̂2
N − σ2| for various N for 10 strategies for GW(i) where σ2 ∈ [0, 2500].

N # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10
10 64 96 374 925 91 284 1293 77 1 628
50 28 0 118 1 5 108 89 121 35 256
100 132 12 67 131 27 108 18 41 3 151
500 0 4 98 64 0 79 24 0 2 147
1000 17 2 5 5 7 59 75 5 1 50
5000 4 4 18 6 1 33 48 1 0 8
10000 2 1 8 40 2 0 28 4 1 3

A tighter Chebyshev’s bound can be found if σ̂2
N + δ < σ2

MAX. For example, for a particular strategy (#
7 in Table 1 for GW(i)), σ2 = 1293 while σ̂2

N = 1321. The corrected estimate is found to be σ̂2
N,U = 1337

(where the probability that σ̂2
N,U ≥ σ̂2

N is c1 = 1 − 1/(4 × 10000 × 0.042) > 0.98). In this case, we

7Note that results presented in the tables refer to the estimated generalization performance of a strategy i when a
sample SN of random test strategies is used. As such, σ̂2

N
in Table 1 for a strategy can fluctuate (higher or lower) around

the true value σ2. For very small sample size such as N = 10 that is out of Chebyshev’s bound, erratic results such as
σ̂2

N
= 0 can be obtained. As for results in Tables 2 and 4, increasing N does not necessarily result with decreasing |DN |.

However, all the results are within theoretical results from Chebyshev’s bounds (e.g., with a probability greater than 0.98
and using N = 10000 random test strategies, δ is no greater than 400 for the case of GW(i)).
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Table 3: Comparison of σ̂2
N for various N with the true value σ2 for 10 strategies for GA(i) where

σ2 ∈ [0, 6.25].
N # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10
10 2.06 1.63 1.77 1.80 2.48 1.22 1.72 2.27 0.99 1.11
50 1.54 1.39 1.35 1.28 2.21 0.90 1.52 2.10 1.21 0.92
100 1.43 1.32 1.24 1.31 2.23 0.95 1.53 2.04 1.40 0.88
500 1.56 1.33 1.44 1.03 2.11 0.91 1.38 2.06 1.43 0.89
1000 1.55 1.34 1.40 1.00 2.12 0.92 1.40 2.03 1.46 0.90
5000 1.55 1.32 1.34 0.96 2.11 0.88 1.43 1.93 1.47 0.86
10000 1.59 1.34 1.35 0.97 2.15 0.87 1.46 1.95 1.49 0.87

TRUE 1.59 1.35 1.37 0.96 2.15 0.88 1.44 1.96 1.48 0.86

Table 4: Comparison of |σ̂2
N − σ2| for various N for 10 strategies for GA(i) where σ2 ∈ [0, 6.25].

N # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10
10 0.47 0.28 0.4 0.84 0.33 0.34 0.28 0.31 0.49 0.25
50 0.05 0.04 0.02 0.32 0.06 0.02 0.08 0.14 0.27 0.06
100 0.16 0.03 0.13 0.35 0.08 0.07 0.09 0.08 0.08 0.02
500 0.03 0.02 0.07 0.07 0.04 0.03 0.06 0.1 0.05 0.03
1000 0.04 0.01 0.03 0.04 0.03 0.04 0.04 0.07 0.02 0.04
5000 0.04 0.03 0.03 0 0.04 0 0.01 0.03 0.01 0
10000 0 0.01 0.02 0.01 0 0.01 0.02 0.01 0.01 0.01

know that σ̂2
N overestimates σ2. Regardless, with probability c1c2 = (1 − 1/(4 × 10000× 0.042)) × (1 −

1/(4 × 10000 × 0.042) > (0.98) × (0.98) > 0.95), we know that σ2 ≤ σ̂2
N,U + δ with δ = 400. Here, we

obtain σ̂2
N,U + δ = 1337 + 400 < σ2

MAX = 2500 (Fig, 12). Figure 13 illustrates another example of a

tighter Chebyshev’s bound for GA(i) where σ2 = 0.88 (strategy # 6 in Table 3) and σ̂2
N,U = 0.92 where

N = 10000.
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Figure 12: Example of obtaining a tighter Chebyshev’s bound for GW(i) (# 7 in Table 1). The curve
“Theoretical” gives the original Chebyshev’s bound if σ2

MAX is used. The curve “True” gives the actual
bound if σ2 is used. The curve “Corrected Estimate” gives the tighter Chebyshev’s bound if σ̂2

N,U + δ is
used. All curves are determined for N = 10000.
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Figure 13: Example of obtaining a tighter Chebyshev’s bound for GA(i) (strategy # 6 in Table 3). The
curve “Theoretical” gives the original Chebyshev’s bound if σ2

MAX is used. The curve “True” gives the
actual bound if σ2 is used. The curve “Corrected Estimate” gives the tighter Chebyshev’s bound if
σ̂2

N,U + δ is used. All curves are determined for N = 10000.

3.3.3 What is the Impact of Different Games on the Estimation of Generalization Perfor-
mance

We know that the estimation of generalization performance of a particular strategy depends on its
performance with all strategies in the strategy space (as in σ2 following Equation 4). Furthermore, we
have shown that the accuracy of the estimated of generalization performance that depends on the profile
of a strategy’s performance (i.e., game outcomes) against all strategies in the strategy space (e.g., σ2

depends on the distribution of Gi(j) − Gi).

We note that the distribution of Gi(j) − Gi for any strategy i depends on the game. As such, we
investigate this issue with a series of experiments of IPD games with different payoff matrices: (a) IPD1
(the original game considered), (b) IPD2 (using the interpolation pA = 2.5 − 0.5cA + 1.5cB), and (c)
IPD3 (using the interpolation pA = 2.5 − 0.5cA + cB).

By penalizing strategies that alternate with different choices (IPD1 penalizes the most while IPD3
penalizes the least), the games can affect the profile of a strategy’s performance with respect to all
strategies in the strategy space S given that a large proportion of strategies in S alternate between
different choices. We repeat the earlier experiment to find the probability that |DN |′ > ǫ′ for these IPD
games and compare the results.

In general, the same results for GW(i) are obtained for all the IPD games. This is because for GW(i), we
count the number of wins for each pair-wise interaction. Although the average payoff received from the
pair-wise interaction changes, GW(i, j) is the same because the relationship between g(i, j) and g(j, i) is
still the same8.

However, for GA(i), results show for all Ns, the empirical probability curves for IPD3 is lower than IPD2,
which in turn, is lower than IPD1 (Fig. 14). Note that different IPD games award payoffs for plays with
alternating choices (strategies that constitute a large proportion in S) differently. For example, the payoff
differences between neighboring choices (e.g., +1 compared to 0, or 0 compared to −1) are reduced for
IPD3 compared to IPD1. As such, it is not surprising that |ĜA(i) − GA(i)| is smaller for the same
strategy i for IPD3 compared to IPD1 due to reduced payoff differences of neighboring choices. It is also
observed that the distribution of GA(i, j) − GA(i) for individual strategies tends to be more peaky and
centers around GA(i, j)−GA(i) = 0 for IPD3 compared to IPD1 and IPD2 (Fig. 15). The smaller values
of σ2 for the case of IPD3 imply a more accurate estimation from Equation 4.

8Note also that the number of rounds at 150 is sufficiently long.
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(b) N = 50
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(c) N = 100
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Figure 14: Comparison of the probability that |DN |′ > ǫ′ for ǫ′ in [0.01, 0.1] where SN of size N ((a) -
(d)) is used to compute ĜA(i) for different IPD games. Each graph is obtained by averaging from results
of using 50 independent samples SN with error bars representing 95% confidence interval. PN gives the
curves for the Chebyshev’s bounds with different Ns. For each subfigure where a particular value of N
is used, the Chebyshev’s bound for N is also plotted.
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(a) Strategy # 1
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(b) Strategy # 2
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(c) Strategy # 3
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Figure 15: (a) - (d) shows for four different strategies i, the distribution of GA(i, j)−GA(i) for N = 500
for IPD1, IPD2, and IPD3 games. Actual calculations for the variance show that the values decrease
from IPD1 to IPD2 to IPD3. For example, for strategy # 1, σ2

N (σ2) for IPD1, IPD2, and IPD3 are 1.56
(1.59), 0.92 (0.95), and 0.47 (0.48), respectively.
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4 Estimating Generalization Performance in Co-evolutionary

Learning

Here, we illustrate the application of the generalization framework to co-evolutionary learning of IPD
games. In particular, we focus on simple IPD games (e.g., IPD games with two and three choices) where
the true generalization performance can be computed. This allows us to investigate and show empirically
that a small sample of SN can be used to provide a good estimation of the generalization performance of
co-evolutionary learning of IPD games in comparison with the prediction given by Chebyshev’s bound.

4.1 Co-evolutionary Learning Model

Figure 16 illustrates the general co-evolutionary learning framework, which involves an iterative process
of variations (mutation and crossover) and selection (choosing solutions for the next generation) on com-
peting solutions that strategically interact with each other. A co-evolutionary learning system can be
implemented using co-evolutionary algorithms. There are a variety of different co-evolutionary algo-
rithms, and they can be roughly classified according to their population structure, i.e., single population
co-evolution [2, 21, 25] and multiple population co-evolution (which includes two populations structure
that separates solutions and tests used to evaluate fitness of solutions in their respective populations
that do not mix or breed [12, 13, 38]). For simplicity, we apply the generalization framework to co-
evolutionary learning with the single population structure. However, we note that the generalization
framework does not depend on the learning systems, and as such, can be applied to co-evolutionary
learning with the multiple population structure as well.

1. Initialize the population, X(t=1)

2. Evaluate the fitness of each individual through a comparison process with other individuals in X(t)

3. Select parents from X(t) based on their evaluated fitness

4. Generate offsprings from parents to produce X(t+1)

5. Repeat steps (2-4) until some termination criteria are met

Figure 16: The general framework of co-evolutionary learning.

4.1.1 Strategy Representation

Several strategy representations have been investigated in the past, e.g., a look-up table with bit-string
encoding [2], finite state machines [52, 53, 54], and neural networks [25, 51, 57, 58]. Here, we consider the
simple approach of direct look-up table strategy representation that we introduced and studied earlier in
[25] that directly represents IPD strategy behaviors, a one-to-one mapping between the genotype space
(strategy representation) and the phenotype space (behaviors). However, the main advantage of using
the direct look-up table representation is that the search space (given by the strategy representation) and
the strategy space is the same (assuming uniform strategy distribution in the strategy space S). This
simplifies and allows direct investigation on the generalization performance of co-evolutionary learning.

Figure 17 illustrates the direct look-up table representation for the strategies with two choices and
memory-one [25]. mij , i, j = 1, ..., n specifies the choice to be made, given the inputs i (player’s own
previous choice) and j (opponent’s previous choice). Rather than using pre-game inputs (two for memory-
one strategies), the first move is specified independently, mfm. For example, for the two-choice IPD
(Fig. 17), each table element can take any of the two choices, e.g., +1 and −1. For the three-choice IPD
(Fig. 18), each table element can take +1, 0, and −1. Note that values in the table elements are the
same as those used to produce the payoffs in the payoff matrix through a linear interpolation.
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Opponent’s Previous Move 

  +1 1

Player’s +1 m11 m12

Previous Move 1 m21 m22

Figure 17: The direct look-up table representation for the deterministic and reactive memory-one IPD
strategy that consider two choices (also includes mfm for the first move, which is not shown in the figure).

Opponent’s Previous Move 

   +1 0 1

Player’s +1 m11 m12 m13

Previous 0 m21 m22 m23

Move 1 m31 m32 m33

Figure 18: The direct look-up table representation for the deterministic and reactive memory-one IPD
strategy that consider three choices (also includes mfm for the first move, which is not shown in the
figure).

A simple mutation operator is used to generate offspring from parents [25]. For the n-choice IPD,
mutation replaces the original choice of a particular element in the direct look-up table (includes mfm

and mij) with one of the other remaining n − 1 possible choices with an equal probability of 1/(n − 1).
Each table element has a fixed probability, pm, of being replaced by one of the remaining n − 1 choices.
The value pm is not optimized.

Crossover is not used because with the direct look-up table for strategy representation, any variation
operator will introduce variations on behaviors directly. As investigated earlier in [25] (even for the more
complex IPD game with intermediate choices), a simple mutation operator is more than sufficient to
introduce the required variations of strategy behaviors. The use of crossover is not necessary.

4.1.2 Co-evolutionary Learning Procedure

We refer to the following co-evolutionary learning procedure [25] as the classical co-evolutionary learning
(CCL):

1. Generation step, t = 1:
Initialize POPSIZE/2 parent strategies, Pi, i = 1, 2, ..., POPSIZE/2, randomly.

2. Generate POPSIZE/2 offspring, Oi, i = 1, 2, ..., POPSIZE/2, from POPSIZE/2 parents using a
variation.

3. All pairs of strategies compete, including the pair where a strategy plays itself (i.e., round-robin
tournament). For POPSIZE strategies in a population, every strategy competes a total of POPSIZE
games.

4. Select the best POPSIZE/2 strategies based on total payoffs of all games played. Increment gen-
eration step, t = t + 1.

5. Step 2 to 4 are repeated until termination criterion (i.e., a fixed number of generation) is met.

All IPD games involve a fixed game length of 150 iterations. A fixed and sufficiently long duration for
the evolutionary process (e.g., t = 300) is used. Note that unlike studies such as [25] that consider
the population evolving persistently to a particular behavior (e.g., mutual cooperation), here we observe
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the generalization performance of co-evolutionary learning during the evolutionary process. Further note
that unlike in [25], we do not consider noisy IPD games. All experiments are repeated for 30 independent
runs.

4.2 Measuring Generalization Performance of Co-evolutionary Learning

The generalization framework was earlier presented in the context of a complete solution. However, co-
evolutionary learning can be broadly classified either as cooperative co-evolutionary learning [59], where
solutions represent different components that are combined to produce the complete solution, or com-
petitive co-evolutionary learning whereby a solution is complete [38]. Here, we investigate generalization
performance of competitive co-evolutionary learning systems such as CCL for simplicity since we can
use a strategy to represent the population in terms of generalization performance. However, there is no
prerequisite to choose the best evolved strategy of the population to be the representative. The best U
evolved strategies from the population, SPOPU = {spop1, ..., spopU} (ordered according to their internal
fitness values), can be considered, which allows the following measurements of generalization performance
of co-evolutionary learning:

• Best,
Best(GSPOPU

) = Ĝspop
1
. (10)

• Average,

Avg(GSPOPU
) =

1

U

(
U∑

l

Ĝspopl

)

. (11)

• Ensemble,

Ens(GSPOPU
) =

1

N




∑

j∈SN

min
( U∑

l

Gspopl
(j), GMAX

)



 . (12)

In particular, “ensemble” allows the measurement of the generalization performance of the co-evolved
population rather than the best strategy. That is, it can be used to determine whether the population
as a whole generalizes better (i.e., a higher level of competence for the game) compared to an individual
strategy. For simplicity, we assume an ensemble system with a perfect gating mechanism [36], i.e.,
it perfectly chooses the best evolved strategy in SPOPU that best performs against each of the test
strategies, for the “ensemble” measurement. For example, for five test strategies, if spop1 outperforms
the first two test strategies, and if spop2 outperforms the last three test strategies, the “ensemble” of
the two evolved strategies outperforms all test strategies, i.e., it will choose spop1 for the first two test
strategies, and spop2 for the others. Note that this measurement is only relevant for GW(i).

4.3 Generalization Performance of Co-evolutionary Learning for Problems

with Small Strategy Space

For problems with a small strategy space9, it is possible to determine the true generalization perfor-
mance of the co-evolutionary learning system using Equation 2. For example, the true generalization
performance of CCL for the two-choice IPD and three-choice IPD games can be computed for GW(i)
and GA(i).

For the following experiments, we used POPSIZE = 20 and 300 generations of evolutionary process for
the CCL when applied to the two-choice and three-choice IPD games (note that for both IPD games,
POPSIZE < M). Instead of taking the entire population, we considered only the top best strategies
of the population (i.e., U = 3) when taking the Avg(GSPOPU

) and Ens(GSPOPU
) measurements of

generalization performance.

9Again this should not be confused with the search space, which depends on the strategy representation. A strategy
space can be small and discrete, but the search space can be infinitely large and continuous, i.e., real-valued neural network
representation of a deterministic and reactive memory-one IPD strategy.
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4.3.1 True Generalization Performance in the Co-evolutionary Learning of the IPD with
Two and Three Choices

Figure 19 and Tables 5 and 6 summarize the generalization performance of CCL for GW(i). Figure 20
and Tables 7 and 8 summarize for GA(i). In general, the generalization performance of CCL during the
evolutionary process differs for the two-choice and three-choice IPD games. On the one hand, for CCL of
the two-choice IPD, generalization performance decreases as evolutionary process continues (Figs. 19(a)
and 20(a), and Tables 5 and 7). On the other hand, for CCL of the three-choice IPD, generalization
performance remains around similar levels as the evolutionary process continues (Figs. 19(b) and 20(b),
and Tables 6 and 8).

 10

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200  250  300

G
W
(
i
)

Generation

Best
Average

Ensemble

(a) two-choice IPD

 10

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200  250  300

G
W
(
i
)

Generation

Best
Average

Ensemble

(b) three-choice IPD

Figure 19: Generalization performance of CCL defined by GW(i). The graph “Best” plots the generaliza-
tion performance measurement given by Best(GSPOPU

). The graph “Average” plots the generalization
performance measurement given by Avg(GSPOPU

). The graph “Ensemble” plots the generalization per-
formance measurement given by Ens(GSPOPU

). All graphs are averaged from measurements over 30
independent runs.

Table 5: The following gives the mean and error (95% confidence interval) over 30 independent runs for
each measurement for generalization performance defined by GW(i) at the start and at the end of CCL
for the two-choice IPD.

Generation Best(GSPOPU
) Avg(GSPOPU

) Ens(GSPOPU
)

0 51.77 ± 6.32 50.28 ± 6.36 65.63± 6.41
300 18.54 ± 9.23 15.83 ± 7.86 20.10± 9.33

Table 6: The following gives the mean and error (95% confidence interval) over 30 independent runs for
each measurement for generalization performance defined by GW(i) at the start and at the end of CCL
for the three-choice IPD.

Generation Best(GSPOPU
) Avg(GSPOPU

) Ens(GSPOPU
)

0 59.54 ± 7.52 56.12 ± 4.99 77.73± 5.21
300 51.98 ± 9.14 50.66 ± 8.79 55.69± 8.24

Table 7: The following gives the mean and error (95% confidence interval) over 30 independent runs for
each measurement for generalization performance defined by GA(i) at the start and at the end of CCL
for the two-choice IPD.

Generation Best(GSPOPU
) Avg(GSPOPU

)
0 3.06 ± 0.05 3.02 ± 0.04

300 2.81 ± 0.14 2.81 ± 0.13

28



 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 0  50  100  150  200  250  300

G
A
(
i
)

Generation

Best
Average

(a) two-choice IPD

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 0  50  100  150  200  250  300

G
A
(
i
)

Generation

Best
Average

(b) three-choice IPD

Figure 20: Generalization performance of CCL defined by GA(i). The graph “Best” plots the generaliza-
tion performance measurement given by Best(GSPOPU

). The graph “Average” plots the generalization
performance measurement given by Avg(GSPOPU

). All graphs are averaged from measurements over 30
independent runs.

Table 8: The following gives the mean and error (95% confidence interval) over 30 independent runs for
each measurement for generalization performance defined by GA(i) at the start and at the end of CCL
for the three-choice IPD.

Generation Best(GSPOPU
) Avg(GSPOPU

)
0 2.87 ± 0.06 2.82 ± 0.05

300 2.85 ± 0.10 2.85 ± 0.10

The poor generalization performance for the simpler two-choice IPD case is due to the population of
CCL overspecializing to more naive cooperators, e.g., “all cooperate”. In particular, for GW(i), naive
cooperators do not generalize well against all strategies in the strategy space because they are easily
exploited. That is, for a naive cooperator, strategy i, playing against strategies j, its average payoff
per move is lower or the same as that of the opponents’, i.e., g(i, j) ≤ g(j, i) for all j in S. Since for
GW(i), the game outcome only register a “win” for strategy i if g(i, j) > g(j, i), a naive cooperator will
have poor generalization performance of GW(i). This explains why CCL generalizes poorly for GW(i)
(Fig. 19(a)) rather than GA(i) (Fig. 20(a)).

The higher tendency of CCL to overspecialize to naive cooperators for IPD games with less choices can
be explained by considering that in the search space, the proportion of naive cooperators is higher when
there are less choices to play. For example, for a strategy to play “all cooperate” in the two-choice IPD,
it must play full cooperation for the first move, i.e., mfm = +1, and play full cooperation regardless of
the choices for its previous move and opponent’s previous move, i.e., the following values in the direct
look-up table:

(
+1 +1
∗ ∗

)

where ∗ can be +1 or −1 in the two-choice IPD. If mfm = +1 and that the choices in the first row are all
+1, then regardless of the choices in the remaining element of the table, this strategy will always play
full cooperation since it will never access elements other than those in the first row. Given that there are
22 combinations of such tables, one can easily calculate the proportion of “all cooperate” in S as 22/25

(since the total number of unique combinations of the table is 222+1).

For the three-choice IPD case, strategies play “all cooperate” if mfm = +1 and that the table is given as
follows:
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



+1 +1 +1
∗ ∗ ∗
∗ ∗ ∗





where ∗ can be +1, 0, or −1 in the three-choice IPD. The proportion of “all cooperate” in S is 36/310

(since the total number of unique combinations of the table is 332+1). As such, one can easily obtain the

proportion of “all cooperate” for the n-choice IPD, which is given by n(n2
−n)/n(n2+1) = 1/n(n+1). It can

be observed that the proportion of “all cooperate” decreases exponentially with n. For the two-choice
IPD, the proportion is 12.5%. For the three-choice IPD, the proportion is approximately 1%.

It is known from our previous study of CCL for the n-choice IPD games using the same direct look-up
table representation [25], the population is more likely to evolve to play mutual cooperation. However,
for a population of mutual cooperators, CCL cannot distinguish between different strategies that are
mutually cooperating because they have similar fitness values calculated from average payoffs from
round-robin tournaments. For the two-choice IPD, naive cooperators constitute a large 12.5% of the
search space, and as such, it is more likely for the population to drift to naive cooperators when CCL
fails to distinguish between mutually cooperating strategies. This is reflected in our results that show
on average, around 12% of the population is “all cooperate” for the two-choice IPD case compared to
around 0.2% for the three-choice IPD case.

This result also highlights why a simple co-evolutionary learning system does not guarantee searching
for a solution that generalizes well even for simple problems. This is despite the possibility of having
searched for a total number of strategies during the entire evolutionary process that exceeds that of the
strategy space, e.g., CCL for the two-choice IPD with a strategy space of 32 unique strategies. What
is important to note is that in a simple co-evolutionary learning system, the selection process used is
not necessarily biased towards the generalization performance considered, e.g., requiring solutions to be
tested against all test cases to rank them properly at every generation.

4.3.2 Estimated Generalization Performance in the Co-evolutionary Learning of the IPD
with Three Choices

Here, we investigate the estimated generalization performance of co-evolutionary learning using a sample
of random test strategies drawn from the strategy space. We consider the three-choice IPD with a strategy
space with M = 59049 unique strategies (it is trivial to investigate for the two-choice IPD with only
M = 32 unique strategies). We use SN with varying N for different Ns (rough % of M) at 10 (0.02%),
50 (0.1%), 100 (0.2%), 500 (1%), 1000 (2%), 5000 (10%), 10000 (20%) that are drawn uniformly and
independently (e.g., we have verified that no strategy is included more than once).

Figures 21 and 22 give various statistics of the generalization performance of the CCL at the end of the
evolutionary process for GW(i) and GA(i), respectively, where different Ns were used, for the three-choice
IPD. There are two graphs in each figure. Graphs (a) and (b) plot σ̂N and actual |Ĝi −Gi|, respectively,
for different Ns, averaged over 30 independent runs with 95% confidence interval.

We first consider graphs (a) in Figures 21 and 22. It was mathematically shown earlier that the probability
P (|Ĝi − Gi| ≥ ǫ) is bounded by a value that is directly dependent on σ2 and reciprocally dependent on
N and ǫ2. Here, we observed that for evolved strategies, σ̂N remains similar (with some fluctuations) to
a value smaller than the maximum value of R/2 as N increases. Results from Figures 21(b) and 22(b)
show that actual |Ĝi − Gi| decreases as N increases. More importantly, the actual |Ĝi − Gi| obtained
from using a SN is lower than the precision value obtained from the Chebyshev’s bound for a larger
value of N . For example, the actual |Ĝi − Gi| obtained from using SN with N = 1000 is lower than the
ǫ given by Chebyshev’s bound for PN = 0.05 and N = 1000010.

Earlier, we showed empirically that the Chebyshev’s bound is a loose upper bound in probability for
P (|Ĝi−Gi| ≥ ǫ), and that in general, one would expect to do better, e.g., obtain a more accurate estimate

10Further note that for this particular empirical result, lower |Ĝi − Gi| can be obtained for smaller number of N (e.g,

Fig. 22(b) for N at 5000 and 10000). This is due to the particular SN sample used to compute Ĝi from 30 independent

runs (e.g., averaged over 30 Ĝis). For other SN s, results may differ.
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Figure 21: Statistics on generalization performance of CCL for GW(i). (a) plots σ̂N against N . (b) plots
actual |ĜW(i)−GW(i)| against N . All graphs are averaged from 30 independent runs for Best(GSPOPU

)
measurements with error bars representing 95% confidence interval.
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Figure 22: Statistics on generalization performance of CCL for GA(i). (a) plots σ̂N against N . (b) plots
actual |ĜA(i) − GA(i)| against N . All graphs are averaged from 30 independent runs for Best(GSPOPU
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Ĝi using a sample of SN . Here, results from actual implementation of the generalization framework to co-
evolutionary learning further suggest that the estimated value Ĝi is closer to the true value Gi that what
one can claim from Chebyshev’s bound when a sample of SN is used. In particular, for the IPD games,
a small sample of random test strategies is good enough to estimate the generalization performance.

5 Estimating Generalization Performance in the Case of a Bi-

ased Test Sample

5.1 Motivation

The generalization framework provides a means to estimate the generalization performance using a
random test sample. However, it is noted that the generalization performance of a solution is conditioned
on the underlying distribution from which the random test sample is drawn. For different underlying
distributions, the generalization performance of a solution may differ and the ranking between solutions
in terms of their generalization performances may change. This raises the issue of determining which of
the underlying distributions where generalization performances are measured are more important and
useful given a specific problem.

For game-playing, one is more interested to estimate the generalization performance with respect to a
biased test sample, e.g., biased towards test strategies that are more likely to be encountered in a real
scenario such as tournaments rather than an unbiased sample where every test strategy is equally likely
to be encountered. Here, one may assume that the biased test sample consists of “good” strategies based
on some performance criteria, e.g., strategies that have outperformed a large number of other strategies.

5.2 Generalization Performance of Co-evolutionary Learning Based on a Bi-

ased Sample of Test Strategies

5.2.1 Obtaining A Biased Sample of Test Strategies

Many past studies have introduced and used ad hoc methods to obtain a biased sample. One approach
is to use expert human knowledge to obtain biased test samples [2, 58]. However, there are practical lim-
itations for this approach. First, the expert human knowledge required to obtain the biased test sample
may not be readily available. Second, there is the problem of scalability in terms of competence levels
that limits the utility of the biased test sample as a means from which the generalization performance is
estimated, e.g., evolved strategies loosing to all test strategies.

Here, we investigate an alternative to using experts-designed test strategies with a procedure that samples
the strategy space to obtain the biased test sample. It is noted that sampling for a biased test sample
from the strategy space is very difficult in practice because there is no notion of a “goodness” metric
in the space from which one can sample “good” strategies. Furthermore, specific properties in games
such as intransitivity can present significant challenges to obtaining a useful biased test sample for the
estimation of generalization performance, e.g., a strategy may be observed to generalize well simply
because it exploits a specific vulnerability that all the test strategies happen to possess.

In this study, we consider a notion where a “goodness” metric can be induced on the strategy space if
one can enumeratively identify and order each point (strategy) with respect to the entire space based
on a performance criterion. We expect that a strategy obtained from this approach will be appropriate
in cases where the game allows for some structures in the space, e.g., transitivity, where a strategy
outperforms other strategies with lower performance values. A biased test sample can be obtained with
a procedure that samples points of higher performances with higher probability.

However, given that this is very difficult to perform in practice most of the time (e.g., the strategy space
is very large), one would have to rely on some heuristics to obtain the biased test sample. Here, we
introduce a simple procedure based on the multiple partial enumerative search that extends our earlier
approach in [35] to obtain a biased sample of test strategies. The procedure is described as follows:
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1. Partial enumerative search run, r = 1:
Sample PS strategies, Qi, i = 1, 2, ..., PS, randomly.

2. Every strategy competes with all other strategies in the sample, including its twin (i.e., each
strategy competes a total of PS games).

3. Detect the strategy index s ∈ {1, 2, ..., PS} so that Qs is yielding the highest total payoff. Let
Q(r) := Qs. Increment run, r = r + 1.

4. Repeat steps one to three PE times to obtain PE-sized biased sample of test strategies, Q(r), r =
1, 2, ..., PE.

Note that the selection procedure to obtain the best test strategy is the same as the fitness evaluation
used in CCL for a more direct comparison. We also note that there is intransitivy in the IPD game.

We require the population size for each partial enumerative search, PS, to be larger than the maximum
number of unique strategies that can be obtained from an evolutionary run, i.e., PS > (generation ×
POPSIZE), for two reasons. First, the test strategy obtained from the partial enumerative search is
likely not to have been encountered (trained with) by evolved strategies. Second, the test strategy have
competed and outperformed a significantly larger number of opponents compared to evolved strategies,
and as such, is likely to be more challenging than the opponents encountered by evolved strategies.

The procedure of repeating the partial enumerative search PE independent times is aimed at obtaining
a more diverse sample of test strategies compared to the earlier approach in [35]. A sample of PE test
strategies obtained from a single partial enumerative search may be less diversed as these strategies can
be behaviorally similar (i.e., having the same weakness that can be exploited). Furthermore, repeating
the partial enumerative search may address the problem of obtaining lower performing test strategies
due to a particular poor sample of the population in a partial enumerative search.

5.2.2 Generalization Performance of Co-evolutionary Learning Based on Biased vs. Un-
biased Samples for Problems with Small Strategy Space

We first compare the generalization performance of biased and unbiased samples of test strategies in
the case of the three-choice IPD game. For the case of generalization performance with respect to
biased samples of test strategies, we obtain a sample of biased strategies from 20 partial enumerative
searches, which results in a sample of 20 test strategies. We investigate different samples of biased test
strategies obtained from multiple partial enumerative search of different population sizes, one, four, 10,
50, 100, and 10000. Note that only when a population size of 10000 is used that the procedure satisfies the
requirement of having searched more strategies compared to CCL (e.g., 10000 > generation×POPSIZE =
300 × 20 = 6000). Despite this, we can investigate the impact of population size used in the multiple
partial enumerative search procedure in producing a biased and diverse sample of “good” test strategies
that is challenging for evolved strategies.

For simplicity in notation, we refer to the estimated generalization performance using a biased sample
of test strategies (e.g., ĜB

i ) as ĜB
W(i) and ĜB

A(i) that correspond to definitions given by GW(i) and

GA(i), respectively. Results from experiments for comparisons between GW(i) and ĜB
W(i), and GA(i)

and ĜB
A(i) are summarized in Figures 23 and 24, respectively. In general, increasing the population

size for the multiple partial enumerative search leads to a sample of test strategies that are “harder to
defeat”, e.g., evolved strategies have lower generalization performance when they competed against the
sample of biased test strategies (i.e., ĜB

i ) compared to the case of generalization performance against

unbiased test strategies (i.e., Gi). The difference between the two generalization performances, ĜB
i and

Gi, is more pronounced especially when the biased sample of test strategies are produced using multiple
partial enumerative search with larger population sizes (e.g., Figs. 23(b) and 24(b)).

Note, however, for the generalization performance defined in terms of average payoff, i.e., ĜB
A(i) and

GA(i) (Fig. 24), generalization should be viewed in the context of maximizing average payoff of oneself
for any set of opponents. “Good” strategies that generalize well are those that maximize their average
payoff, which does not necessarily imply minimizing the opponent’s average payoff. That is, obtaining
good generalization performance can be a result of cooperating with opponents rather than attempting to
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Figure 23: Comparison between GW(i) and ĜB
W(i)s for CCL across the evolutionary process, averaged

over 30 independent runs (“Best” measurements only). (a) Multiple partial enumerative search with
population sizes of one, four, and ten. (b) Multiple partial enumerative search with population sizes of
50, 100, and 10000.
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Figure 24: Comparison between GA(i) and ĜB
A(i)s for CCL across the evolutionary process, averaged

over 30 independent runs (“Best” measurements only). (a) Multiple partial enumerative search with
population sizes of one, four, and ten. (b) Multiple partial enumerative search with population sizes of
50, 100, and 10000.
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exploit opponents that are not naive and may retaliate. For example, it is not unexpected that results are
obtained for evolved strategies where ĜB

A(i) is higher when biased samples of test strategies obtained from
the multiple partial enumerative search with increasingly higher population sizes are used. The value of
ĜB

A(i) is higher for the case of using a population size of 10000 for the multiple partial enumerative search
compared to the case of using a smaller population size of 50 or 100 (Fig. 24(b)). The biased sample
of test strategies obtained from the procedure with a population size of 10000 are “better” compared to
those obtained from using smaller population size in the sense that they reciprocate cooperation, which
results with all strategies having higher average payoffs, instead of attempting to exploit and risk other
strategies retaliating, which would result with strategies having lower average payoffs.

5.2.3 Generalization Performance of Co-evolutionary Learning Based on Biased vs. Un-
biased Samples for Problems with Large Strategy Space

Most practical real-world problems in game-playing often involve a very large strategy space (e.g., chess).
In this case, it is not possible to compute the true generalization performance. Instead, one will have
to rely on the estimated generalization performance. However, it is also possible or more likely, that for
problems with very large strategy space, a large proportion of the strategies are mediocre. As such, for
real-world games, one is more interested in the generalization performance of a strategy obtained from a
learning system against a biased sample of “good” test strategies because such a performance comparison
is more important and these strategies are more likely to be encountered in practical situations such as
game tournaments.

For simplicity, instead of using complex real-world games such as chess, we investigate the four -choice
IPD game for two reasons. First, even assuming a strategy space restricted to deterministic and reactive
memory-one strategies with uniform strategy distribution in the space, it is not possible with our current
computing resources to compute the true generalization performance. As such, we have to estimate
the generalization performance. Second, we can easily extend the previous investigation on estimating
generalization performance of co-evolutionary learning against a biased sample of test strategies obtained
from the multiple partial enumerative search.

We first consider a sample of N = 100000 random test strategies to estimate the generalization per-
formance against an unbiased sample. Considering ǫ′ = 0.01, Chebyshev’s bound gives P (|DN |′ ≥
ǫ′) ≤ (1/(4 × 100000 × 0.012) = 0.025. We note that for our purpose here, a probability of at least
1 − 0.025 = 0.975 > 0.95 that |DN |′ ≤ 0.01 is sufficient, given the high computation cost for using SN

with N = 100000. However, as we have shown earlier for the three-choice IPD, the actual estimation
may be closer to the true value compared to what one can claim with Chebyshev’s bound. We conduct
experiments with SN of different sizes, e.g., N at 500, 10000, and 50000. Assuming that the estimated
value obtained from using SN with N = 100000 strategies is the true value, we can compare the accuracy
of the estimation obtained from using smaller SN s. Note that for the following experiments, the CCL
uses POPSIZE = 30 and that the evolutionary process last 600 generations (a moderate increase of
CCL’s ability to learn strategies for the more complex four -choice IPD game).

Table 9 summarized the results of the comparison between |Ĝi − Gi| for different definitions of general-
ization performance taken at the end of the evolutionary run of CCL with ǫ given by Chebyshev’s bound
when considering the probability PN = 0.025 and the corresponding values of N . Note that ǫ is not
adjusted because we did not calculate the true value, but instead, use an estimated value obtained with
larger value of N = 100000. The adjusted ǫ can be higher than what is given in the table if we consider
the worst-case. Results from the table shows that the actual |Ĝi − Gi| is significantly lower than the
ǫ given by Chebyshev’s bound. As such, similar to the three-choice IPD case, empirical results suggest
that a smaller sample of SN can be used to estimate the generalization performance and still obtain a
sufficiently accurate estimation for the co-evolutionary learning of four -choice IPD.

Here, we compare the generalization performance of CCL between the case of using unbiased and biased
samples of test strategies for the more complex four -choice IPD game. The biased sample of test strategies
is obtained using a multiple partial enumerative search. Each partial enumerative search is applied on
a population of 106 strategies. This easily satisfies the requirement since CCL will search for at most,
600× 30 = 18000 unique strategies. The procedure is repeated 20 times to obtain a biased sample of 20
test strategies. This allows us to investigate whether the multiple partial enumerative search procedure
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Table 9: Comparison of |Ĝi − Gi| for different definitions of generalization performance with ǫ given by
Chebyshev’s bound for PN = 0.025. Values for |Ĝi −Gi| are averaged over 30 independent runs of CCL
with 95% confidence interval.

ĜW(i) ĜA(i)

N |ĜW(i) − GW(i)| ǫ |ĜA(i) − GA(i)| ǫ
500 1.51 ± 0.52 20 0.040± 0.011 1

10000 0.48 ± 0.12 4.5 0.009± 0.003 0.23
50000 0.13 ± 0.04 2 0.003± 0.001 0.1

can produce a biased and diverse sample of test strategies that are challenging for the evolved strategies.

Results are summarized in Figures 25 and 26 for ĜW(i) and ĜB
W(i), and ĜA(i) and ĜB

A(i), respectively.

The most important observation is that in general, comparison between ĜB
i and Ĝi for the CCL on the

more complex four -choice IPD is similar to that of the three-choice IPD case investigated earlier, i.e.,
evolved strategies do not perform well against a biased sample compared to an unbiased sample. For
example, evolved strategies that generalized well for the search space (Fig. 25(a)) in terms of winning
individual games performed poorly against the biased sample of test strategies (Fig. 25(b)). However,
for the case of ĜA(i), unlike the three-choice IPD case, evolved strategies were unable to maximize their
average payoff against the biased sample of test strategies (Figs. 26(a) and 26(b)). This result is due
in part to CCL producing strategies that are less cooperative when the number of choices for the IPD
game is increased since the proportion of naive cooperators in the strategy space is smaller.
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Figure 25: Comparison between ĜW(i) and ĜB
W(i) of CCL across the evolutionary process with “Best”,

“Average”, and “Ensemble” measurements, for the four -choice IPD. All graphs are averaged over 30
independent runs.

6 Conclusion

In this paper, we have presented a theoretical framework for measuring the generalization performance
of co-evolutionary learning. Although the generalization framework is presented in terms of game-
playing, our result is more general and not restricted to problems of game-playing. In particular, a
strategy’s generalization performance is its average performance against all strategies. As such, the best
generalization performance is the maximum average performance against all strategies. Although the
definition is simple, it can be difficult to determine by solving analytically a closed-form formula and is
computationally prohibitive.

To address this problem, we have presented a principled approach to estimate the generalization per-
formance by computing the average performance against a sample of random test strategies. We have
provided a mathematical analysis of the probability that the absolute difference between the estimated
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Figure 26: Comparison between ĜA(i) and ĜB
A(i) of CCL across the evolutionary process with “Best”

and “Average” measurements, for the four -choice IPD. All graphs are averaged over 30 independent
runs.

and true value exceeds a given error (precision value) is bounded by a value that is reciprocally depen-
dent only on the square of the error and the size of test sample that is used. As such, regardless of the
complexity of the game (or problem in general), one can obtain a better estimate by increasing the size
of the test sample. However, a tighter probability bound can be obtained for a strategy if the variance of
its performance against random test strategies is known (which can be estimated as well). In addition,
we showed that games also affect the accuracy of the estimation for some sizes of random test samples
because they affect the variance of a strategy’s performance against random test strategies drawn from
the strategy space.

We have illustrated the generalization framework to determine the generalization performance of co-
evolutionary learning of the n-choice IPD games. For the empirical study, we have investigated two
definitions of generalization performance based on different performance criteria, e.g., in terms of the
number of wins based on individual outcomes and in terms of average payoff. In particular, it is known
that the bounds in probability (Chebyshev’s bounds) that we used in our analysis is a loose bound, and
that in general, the actual estimated value is closer to the true value than predicted by Chebyshev’s
bounds. We have shown experimentally for the IPD games, a small test sample can be used to provide
a sufficiently accurate estimation of the generalization performance.

In the context of game-playing, the generalization in terms of average performance against “good”
strategies (e.g., found in tournaments) may be more important than that against all strategies. We have
introduced and investigated a simple approach using the multiple partial enumerative search to obtain a
diverse sample of test strategies that are challenging to allow the estimation of generalization performance
against the biased test sample. This approach does not require human expertise, and provides a more
direct and meaningful comparison between evolved strategies and the test strategies because the later
strategies are obtained from enumerative search of a larger population size compared to the maximum
that co-evolutionary learning can achieve. We have demonstrated the approach on the co-evolutionary
learning of IPD games. In particular, experiments show that the generalization performance of a co-
evolutionary learning system against a biased test sample is lower compared to that of an unbiased test
sample for IPD games.

The theoretical framework introduced here is the first step towards applying a rigorous and quantitative
approach to analyze the performance of co-evolutionary learning through the notion of generalization
from machine learning. It is now possible to analyze whether co-evolutionary learning leads to increasing
generalization performance for a particular problem. For example, one can now investigate earlier claims
whether diversity maintenance techniques actually help to improve generalization performance of co-
evolutionary learning. The generalization framework allows for a quantitative comparison of whether a
particular co-evolutionary learning system generalizes better compared to other systems. In addition, the
generalization framework also provides tools for analysis and further study of co-evolutionary dynamics
in context of how generalization performance changes during an evolutionary process. For example, the
impact of different selection procedures to how generalization performance changes during co-evolution
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can be investigated.
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A Applying Chebyshev’s Theorem

Chebyshev’s Theorem [45]: Consider a random variable U distributed according to the probability
density p(u). Given a positive number a > 0, we can bound the probability that U ≤ −a or U > a, i.e.,
the probability that U falls outside [−a, +a], by

P (|U | ≥ a) ≤ E[U2]

a2
,

where E[U2] is the mean of the new random variable V = U2 with respect to p.

First,

DN = Ĝi − Gi

=
1

N

∑

j∈SN

Gi(j) − Gi

=
1

N

∑

j∈SN

Gi(j) −
1

N

∑

j∈SN

Gi (since Gi is a constant)

=
1

N

∑

j∈SN

(

Gi(j) − Gi

)

=
1

N

∑

j∈SN

gj

where gj = Gi(j)−Gi. Applying Chebyshev’s Theorem with DN as the random variable, we obtain the
following:

P (|DN | ≥ ǫ) = P (|Ĝi − Gi| ≥ ǫ) ≤ EPN (SN )

[
D2

N (SN )
]

ǫ2

where EPN (SN )

[
D2

N (SN )
]

is with respect to distribution PN = P1 × ... × P1
︸ ︷︷ ︸

N times

= PN
1 for a positive number

ǫ > 0.

Next, we need to determine EPN (SN )

[
D2

N(SN )
]

= EPN (SN )

[
(Ĝi(SN ) − Gi)

2
]
, which is given as follows:

EPN (SN )

[
D2

N (SN )
]

= EPN (SN )

[
( 1

N

∑

j∈SN

gj

)

·
( 1

N

∑

k∈SN

gk

)
]
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= EPN (SN )

[

1

N2

(
∑

j,k∈SN
j 6=k

EP2(j,k)

[

gj · gk

]

+
∑

j∈SN

EP1(j)[g
2
j ]

)]

=
1

N2

∑

j,k∈SN

EP2(j,k)

[

gj · gk

]

.

We note the following points:

1. We pick strategies j and k (j 6= k) into sample SN independently, which implies

EP2(j,k)[gj · gk] = EP1(j)[gj] · EP1(k)[gk].

2. We use the same rules to pick j and k (j 6= k), which implies,

EP1(j)[gj] = EP1(k)[gk].

3. We can obtain the following:

EP1(j)[gj ] = EP1(j)[Gi(j) − Gi]

= EP1(j)[Gi(j)] − Gi (since Gi is a constant)

= 0 (since EP1(j)[Gi(j)] = Gi)

and that the same applies to EP1(k)[gk] as well.

4. As such,

EP2(j,k)[gj · gk] =

{
0, if j 6= k,
EP1(j)[g

2
j ], if j = k.

Given the above, we can now obtain EPN (SN )

[
D2

N (SN )
]

as follows:

EPN (SN )

[
D2

N (SN )
]

=
1

N2

∑

j∈SN

EP1(j)[g
2
j ]

=
1

N2
· N · EP1(j)[g

2
j ] (since E[gj

2] is a constant)

=
EP1(j)[g

2
j ]

N

=
σ2

i

N
,

where σ2
i = EP1(j)[g

2
j ].
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