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Over-sampling the minority class
in the feature space
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Abstract—The imbalanced nature of some real-world data is
one of the current challenges for machine learning researchers.
One common approach over-samples the minority class through
convex combination of its patterns. We explore the general idea
of synthetic over-sampling in the feature space induced by a
kernel function (as opposed to input space). If the kernel function
matches the underlying problem, the classes will be linearly
separable and synthetically generated patterns will lie on the
minority class region. Since the feature space is not directly
accessible, we use the empirical feature space (a Euclidean space
isomorphic to the feature space) for over-sampling purposes.
The proposed method is framed in the context of support
vector machines where imbalanced datasets can pose a serious
hindrance. The idea is investigated in three scenarios: 1) over-
sampling in the full and reduced-rank empirical feature spaces; 2)
a kernel learning technique maximising the data class separation
to study the influence of the feature space structure (implicitly
defined by the kernel function); 3) a unified framework for
preferential over-sampling that spans some of the previous
approaches in the literature. We support our investigation with
extensive experiments over 50 imbalanced datasets.

Index Terms—Over-sampling, imbalanced classification, kernel
methods, empirical feature space, support vector machines

I. INTRODUCTION

Classification methods often conveniently assume that the
prior class probability distribution is of high entropy. However,
this is not the case in many real-world applications from
areas such as medical diagnosis, information retrieval, fraud
detection, etc. The classification paradigm when one or several
classes have a much lower prior probability in the training set
is known as imbalanced classification [1], [2] and it poses a
difficult challenge for machine learning researchers. Because
of that, imbalanced classification is currently receiving a lot
of attention from the pattern recognition and machine learning
communities [3]–[9]. Often, the minority class happens to
be more important than the majority one, but it may also
be much more difficult to model due to the low number
of available samples. Since most traditional learning systems
have been designed to work on balanced data, they will usually
be focused on improving overall performance and be biased
towards the majority class, consequently harming the minority
one [10]. Although from a formal definition an imbalanced
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dataset is any set of labelled data exhibiting an unequal
distribution between classes, it has been shown that this is not
the only factor involved hindering the learning in this context
[1], [2]. The complexity of the data (existence of noisy and
non-representative samples or class overlapping) or the size of
the training set (high-dimensional data or small sample size)
can also be part of the nature of the class imbalance problem.
The approaches developed over the years for tackling the class
imbalance problem can be categorised in two groups:

• Data approach - based on sampling methods, including
over-sampling minority groups (groups of interesting rare
examples), or under-sampling majority groups (groups
with large example sizes), the combination of both being
also very popular [1].

• Algorithm approach - forces the classifier to pay more
attention to the minority class (e.g. by cost-sensitive
learning [11]).

The analysis made in this paper is contextualised on data
approaches. Thus, a brief discussion on these techniques is
now given (for a detailed review of over-sampling see [1]).
Roughly speaking, it can be said that over-sampling and under-
sampling are opposite and equivalent, since they are aimed
at the same purpose (i.e., balance the class distribution) but
using different approaches. Formally, over-sampling concerns
to the process of sampling a distribution with a significantly
higher frequency than the given one and under-sampling to
the process of reducing the frequency of the majority class.
In both cases, the methodologies impose a balance in the
class distribution in order to avoid aliasing and focus on
the classification of minority classes. Although both over-
sampling and under-sampling approaches have been shown
to improve classifier performance over imbalanced datasets,
different studies suggest that over-sampling is more useful
than under-sampling [2], specially for highly imbalanced and
complex datasets. Recall that under-sampling could entail a
loss of potentially meaningful information of the dataset.

Concerning over-sampling, the first idea is to perform a
random replication of minority data, but this often leads to
over-fitting [10]. Another common approach is to generate new
synthetic patterns according to the minority class distribution.
One of the most well-known methods to do so is the synthetic
minority over-sampling technique (SMOTE) [3] based on gen-
erating new instances by convex combination of one point and
one of its k-nearest neighbours (both belonging to the minority
class). However, the classes in general cannot be assumed to be
convex and hence SMOTE does not avoid synthetic patterns to
fall inside majority regions, therefore, more careful techniques
have been developed to prevent this issue (prevent, but not
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solve). Adaptive synthetic [5]–[7] and cluster-based sampling
methods [8], [9] are examples of more powerful techniques,
based on extracting knowledge from the data to analyse which
patterns and regions of the space are more suitable for over-
sampling. This will be referred in the paper to as preferential
over-sampling. At the same time, kernel methods have been
spreading rapidly and gaining acceptance in machine learning
due to their good generalisation ability and determinism, being
one of the most widely used the Support Vector Machine
(SVM) [12], [13]. However, for SVM, imbalanced data pose
a serious challenge, due to the formulation of the soft-margin
maximisation which focus on improving overall performance.
Thus, the combination of kernel methods with techniques for
tackling class imbalance is widely spread [4], [14].

It is clear that over-sampling by linear interpolation is not
as suitable when dealing with nonlinear classifiers as it could
be than when applying linear classifiers. However, linearly
separable datasets are not common in real-world applications,
thus making advisable the application of classifiers able to
capture this nonlinearity. Besides, the development of a suit-
able nonlinear over-sampling strategy could be tricky. Thus, in
contrast to previous approaches, we propose to generate new
synthetic data by convex combination of points in a space
where the classes are (ideally) linearly separated - making
generation of new synthetic points by convex combination of
the original points belonging to the same class safe. This is
done using the feature space induced by a kernel function
for over-sampling the patterns rather than using the input
space. However, this is not so straightforward, because when
dealing with kernel methods the only information available
is the dot products of the images of the patterns [15]. To
cope with this issue, this paper makes use of the notion of the
empirical feature space (EFS) [16], [17], which is Euclidean
and preserves the geometrical structure of the original feature
space, given that distances and angles in the feature space are
uniquely determined by dot products and that the dot products
of the corresponding images are the original kernel values.

The main motivation for performing over-sampling in the
EFS (instead of in the input space) is the hypothesis that the
feature space provide a more suitable space for over-sampling
via convex combination because the class separation will be
simpler and larger (ideally, due to the kernel trick linearly
separable). At the same time, this technique can be seen as a
general nonlinear over-sampling in the input space due to the
application of the nonlinear map Φ related to the kernel trick
and could be used in combination with any classifier.

To the best of our knowledge, performing over-sampling in
the feature space has only been researched in [14] (recall that
in our case, it is performed in the EFS). In this previous work,
the synthetic instances were generated by using the geometric
interpretation of the dot products in the kernel matrix, and
the pre-images of the synthetic instances were approximated
based on a distance relation between the feature space and
the input one, since inverse mapping Φ(·)−1 from the feature
space to the input space is not available. Our proposal is free
of the assumptions of this inverse mapping approximation.

The study made in this paper intends to provide an extensive
analysis of over-sampling in the EFS and can be subdivided in

three sections. The first one deals with the issue of extending
the SMOTE algorithm to be used in the full and reduced-rank
EFS. The objective is to test whether the EFS provides a more
suitable framework for over-sampling by convex combination
of patterns and to deal with the dimensionality of the EFS.
The second part deals with the kernel function choice (since
our methodology depends on how the kernel matches the
underlying classification problem) and we develop a strategy
for optimising the feature space based on analytical knowledge
(using the notion of kernel-target alignment [18], [19]). Ideally,
a better fitted kernel will increase the class separability,
providing a ‘safer’ environment for the generation of synthetic
patterns. The last part of this paper proposes a unified adaptive
framework for preferential over-sampling generalising several
over-sampling approaches in the literature [3], [5], [6]. The
optimal SVM hyperplane and kernel learning techniques are
used for optimising the synthetically generated patterns. The
objective is to check if some regions of the space can be
more useful for over-sampling than others. To test the different
hypotheses exposed in this paper, we perform a thorough set
of experiments with 50 binary imbalanced datasets.

The paper is organized as follows: Section II introduces
some useful notions; Section III exposes how to perform over-
sampling in the EFS; Section IV develops a new methodology
for kernel learning; Section V proposes a general preferential
over-sampling framework; Section VI exposes the experimen-
tal study and analyses the results obtained; and finally, Section
VII outlines some conclusions and future work.

II. BACKGROUND

This section is intended to introduce the notation used
throughout all the paper and to provide some previous notions
about SVM classifiers and the empirical feature space.

Consider a sample D = {xi, yi}mi=1 ⊆ X × Y generated
i.i.d. from a (unknown) joint distribution P (x, y), where
X ⊆ Rd,Y = {+1,−1}. The goal in binary classification
is to assign an input vector x to one of 2 classes {+1,−1}.
Denote by Xtr and Xts the sets of training and testing inputs,
respectively. Furthermore, we will mark by subscript + and
− to the sets containing inputs from the positive and negative
class, respectively. For a set X , we denote by X the design
matrix storing points of X as rows.

Reproducing kernels (often referred as Mercer kernels)
[15] are functions k : X × X → R which for all pattern
sets {x1, . . . ,xm} give rise to semidefinite positive matrices
Km×m, where Kij = k(xi,xj). Kernel functions allow us
to derive nonlinear classifiers by reducing them to linear
ones but in some Hilbert space H nonlinearly related to the
input space and furnished with a dot product k(xi,xj) =
〈Φ(xi),Φ(xj)〉H. The use of this kernel function instead of the
dot product in Rm corresponds to using a (usually) nonlinear
mapping of patterns from X to a high-dimensional or infinite-
dimensional Hilbert Space H such that Φ : X → H, where the
separation would ideally be easier, and take the dot product
there. Kernel machines trained on D do not operate on the
whole of H but on its subset F = span{Φ(x1), . . . ,Φ(xm)},
which we will refer to as the feature space such that F ⊂ H.
Note that F is at most an m-dimensional linear space.
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A. Support Vector Machines

SVM [12], [13] is perhaps the most common kernel method
for statistical pattern recognition due to its good generalisation
ability and freedom from local minima. The basic idea behind
this technique is the separation of two different classes through
a hyperplane which is specified by a normal vector w and a
bias b. The optimal separating hyperplane is the one which
maximises the distance between the hyperplane and the nearest
points in both classes (called margin). Beyond the application
of kernel techniques to allow non-linear decision discriminants
(the kernel trick), another generalisation was made to replace
hard margins with soft margins [13], using the so-called
slack-variables ξi in order to deal with overlapping classes.
Therefore, this algorithm seeks for a classifier f : Rd → R of
the form f(x) = w ·Φ(x) + b (Φ being the mapping function
induced by the kernel) that minimises the objective function:

1

2
||w||2 + C

m∑
i=1

ξi, (1)

for some parameter C, subject to the constraints:

yi(w · Φ(xi) + b) ≥ 1− ξi, ξi ≥ 0, ∀i ∈ {1, . . . ,m}.

It is clear that, using SVMs, the soft-margin maximization
paradigm poses a serious hindrance for imbalanced datasets
[20]. The main reason for this is that soft-margin SVM
optimisation is focused on overall error, therefore, they are
inherently biased toward the majority class. In the worst case,
for a noisy and highly imbalanced dataset, the SVM paradigm
is very likely to obtain a trivial classifier (i.e., the one that
classifies all the patterns in the majority class), a solution
that, as said, if the imbalance is severe, could provide the
minimal error [1]. To cope with this issue, several studies in the
machine learning literature have explored different solutions to
the imbalanced classification problem considering the SVM
paradigm. Most of them are based on over-sampling [20],
under-sampling [4], cost-sensitive classification [?], ensembles
[21], [22] and kernel optimisation techniques [23], [24], among
others [25], [26]. However, some studies suggest that under-
sampling is not as effective as over-sampling in this case
because of the potential loss of information on the class
boundaries [20], which is crucial for the SVM solution.

B. Synthetic minority over-sampling technique (SMOTE)

As stated, one of the most widely used techniques for over-
sampling is the SMOTE algorithm [3]. The process is very
simple: the method consists on generating new instances on the
line that connects one randomly chosen point with one of its k-
nearest neighbours [27], both belonging to the minority class.
Therefore, this methodology relies on a convex combination
of two patterns. Note that with this approach new patterns
could lie inside the majority class region (although choosing
a correct value for the k parameter of the k-nearest neighbours
method could avoid this to happen in some cases).

C. Empirical feature space (EFS)

We can endow an r-dimensional (r ≤ m) space F with an
orthonormal basis {ug}, g ∈ B,B = {1, 2, . . . , r}, satisfying
orthogonality, normalisation and completeness. Consider the
set: E = {ϕ(v)|v ∈ F}, where ϕ(v) = {〈v,ug〉F}g∈B .
The map ϕ is an isometric isomorphism of F and E [28],
i.e. a bijective linear mapping such that the dot products are
preserved: 〈ϕ (v) , ϕ (v′)〉E = 〈v,v′〉F . When F is the feature
space, the set E is referred to as empirical feature space (EFS).

Consider a set of training points {xi}mi=1 ⊆ X . Then, when
working with kernel methods we use a kernel function k to
map the patterns to the feature space F and thus obtain a Gram
matrix K with rank r, r ≤ m. The nonlinear map from the
input space to the r-dimensional Euclidean space Φer : X →
Rr which preserves the feature space structure is referred to as
the empirical kernel map [16]. The EFS E is chosen so as to
preserve the dot product information about F contained in K,
i.e., to be isometric isomorphic to the embedded feature space
F ⊂ H. In this sense, it can be said that the empirical kernel
map corresponds to a bijective linear mapping ϕ : F → E .

A graphical representation of the input space, feature space,
EFS and mappings between these spaces is shown in Fig. 1.

Fig. 1: Representation of the relation and mapping between
input space, feature space and empirical feature space.

Any given Gram matrix K of rank r can be diagonalised
as follows:

Km×m = Pm×r ·Λr×r ·PT
r×m,

where (·)T is the transpose operation, Λ is a diagonal matrix
containing the r nonzero eigenvalues of K in decreasing order
(i.e., λ1, . . . , λr), and P is a unitary matrix that consists
of the eigenvectors associated to those r eigenvalues (i.e.,
u1, . . . ,ur) constituting an orthonormal basis of Rr. Then,
the empirical kernel map is defined as:

Φer : xi → Λ−1/2 ·PT · (k(xi,x1), . . . , k(xi,xm))T. (2)

Consider the set {Φer(x1), . . . ,Φer(xm)} of the EFS images
of the training points. Let Zm×r be the design matrix storing
Φer(xi) as rows. It is easy to check that the standard dot
product matrix of Φer(xi), i = 1, . . . ,m evaluated in E is
K [16], [17]. Writing Z = Λ−1/2 ·PT ·K, we obtain1:

ZTZ = PΛPTPΛ−1PTPΛPT = K.

Since the distances and the angles of the m vectors Φ(xi), (i =
1, . . . ,m) in the feature space are uniquely determined by the

1Note that P is a unitary matrix and K a symmetric matrix
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dot product (i.e., ||Φ(xi)−Φ(xj)||2 = k(xi,xi)+k(xj ,xj)−
2k(xi,xj)), the training data have the same geometrical struc-
ture in both spaces F and E .

However, recall that the map Φ into the feature space is
nonlinear, therefore each point in the span of the mapped
input data would not necessarily be the image of some input
pattern [16], [29]. This is known as the preimage problem. This
problem also appears when using the empirical kernel map,
because it also corresponds to a nonlinear transformation. Note
that this is not a problem for the over-sampling of minority
class, since the linear decision boundary is built in the feature
space and if the classes are (almost) linearly separable in the
feature space, doing local convex combination is reasonable,
whether the pre-images of the synthetic points exist or not.

III. SYNTHETIC OVER-SAMPLING BY CONVEX
COMBINATION IN THE EFS

The main hypothesis in this section is that the EFS provide
us with a more suitable class distribution for over-sampling.
It is clear that when classes are nonlinearly separable (which
may occur in the input space), one should be very careful when
creating synthetic patterns by convex combination because
these could lie on the majority class region. However, if
the data are linearly separable (a statement that will be
true if the kernel function matches the underlying learning
problem), over-sampling by convex combination of patterns
is not a problem. To illustrate this, consider Fig. 2 where a
toy nonlinearly separable dataset have been represented by the
Φe2 transformation using a Gaussian kernel retaining only two
dominant dimensions2.

Imbalanced two-dimensional donut 
toy dataset (non-linearly separable)

Two-dimensional projection of the imbalanced toy data
by the empirical kernel map (linearly separable)

Fig. 2: Synthethic two-dimensional dataset representing a non-
linearly separable classification problem and their transforma-
tion to the 2 dominant dimensions of the EFS E(2) induced
by the Gaussian kernel function (linearly separable problem).

A. Reduced empirical feature space

In this subsection, we present a reduced version of the
EFS, where we select the q (q < r) dominant dimensions
to approximate the kernel matrix.

In relation to classification, it has been argued that most
decisive information can be contained in a subspace of the
feature space [30] (under the assumption of smooth kernels
matching the underlying problem). However, for the case of
SVMs, the capacity control (inclusion of slacks variables and

2Dimensions associated with the highest eigenvalues of the Gram matrix.

parameter cross-validation for preventing over-fitting) is equiv-
alent to some form of regularisation so that “denoising” is not
necessary although it could be very useful for unregularised
methods [31]. In this section, we test whether over-sampling a
minority class in the reduced dimensionality EFS (as opposed
to over-sampling in the full EFS) can be beneficial. One
motivation for over-sampling in reduced dimensionality EFS is
that the over-sampling procedure relies on distances in the EFS
to perform the neighbourhood analysis. Roughly speaking,
these distances have been proven to be misleading as the
data dimensionality increases, making more probable that the
neighbours are chosen in a random fashion [32], [33].

It is well-known that for any real symmetric m×m matrix
K of rank r, we can find its real nonzero eigenvalues λ1 ≥
. . . ≥ λr and the corresponding orthonormal eigenvectors
u1, . . . ,ur, so that K =

∑r
i=1 λiuiu

T
i . In this case, the best

rank-q (q < r) approximation to K is Kq =
∑q
i=1 λiuiu

T
i , in

the sense that it minimises ||K−Kq||2F over all rank-q matrices
(where || · ||F denotes the Frobenius norm). This concept can
be said to be the main idea for the reduced EFS.

Instead of working in the full-rank EFS E we can operate in
its lower dimensional subspace E(q) where the kernel matrix
has the form:

K
(q)
m×m = P

(q)
m×q ·Λ

(q)
q×q · (P(q))T

q×m, q < r,

where P(q) and Λ(q) consist of the first q columns of P and
Λ, respectively3.

Consider the preimage F (q) of E(q) under the isomorphism
ϕ. Let {uj}qj=1 be an orthonormal basis of F (q). Given v ∈ F ,
its projection onto F (q) is obtained as {〈v,uj〉F}qj=1. The
isomorphism ϕ from F to E carries the structure over: ϕ(v) ∈
E is projected onto E(q) as {〈ϕ(v), ϕ(uj)〉E}qj=1. Moreover,
for all j = 1, . . . , q,

〈v,uj〉F = 〈ϕ(v), ϕ(uj)〉E .

Therefore, we could define the kernel associated with the
reduced EFS by:

k(q)(xi,xj) =
〈
Φeq(xi),Φ

e
q(xj)

〉
E ,

which, for q being the rank of K, will correspond to k.

B. Synthetic minority over-sampling in the reduced or full-
rank EFS

Once that the notion of EFS has been introduced, this
subsection will show the main steps to extend a well-known
over-sampling algorithm to this space.

Concerning the training phase, the first step of the proposed
methodology corresponds to the computation of the training
kernel matrix K through a predefined kernel function k. Then,
the reduced or full-rank empirical kernel map Φeq, 1 ≤ q ≤ r,
can be computed via the eigenvector decomposition of this
training kernel matrix K (Eq. (2)). As said, let Z be the set
generated by applying the Φeq transformation to the training
patterns and Zm×q the design matrix storing points of Z
as rows. In the second step, the over-sampling process is

3We assume that the singular values are sorted.
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performed over the minority class images of this Z matrix,
resulting in the generation of n new synthetic images, arranged
in the set S (and the design matrix Sn×q). More specifically,
as the standard SMOTE algorithm [3] has been chosen for
over-sampling, each new synthetic instance will be generated
using a linear interpolation between pattern xi and one of its
k-nearest neighbours (both belonging to the minority class).
At every step j = 1, . . . , n, we create a point sj in E(q) by
picking at random a minority class point xi and calculating:

sj = Φeq(xi) + (Φeq(x̂i)− Φeq(xi)) · δ,

where Φeq(x̂i) is one of the k-nearest neighbours for Φeq(xi) in
the EFS E(q), and δ is a random number generated from the
uniform distribution U [0, 1]. For simplicity, we over-sample
the minority class so that the two classes become balanced.
From the definition of the EFS, we know that ϕ−1(sj) ∈
F (q) (i.e., the representation of the new pattern in the feature
space) will be unique and will lie on the line between ϕ−1(xi)
and ϕ−1(x̂i) (ϕ is a linear map). Recall that the norms and
distances are preserved, e.g.:

‖Φeq(x̂i)− Φeq(xi)‖E = ‖Φ(x̂i)− Φ(xi)‖F ,

and so are the angles, (Φeq(xi) − Φeq(x̂i))
T(Φeq(xi) − sj) =

〈Φ(xi) − Φ(x̂i),Φ(xi) − ϕ−1(sj)〉. As a consequence, if
Φeq(x̂i) is one of the k-nearest neighbours of Φeq(xi) in the
EFS, this will be so in the feature space as well.

The third step is the execution of the learning machine
over the set ϕ−1(Z ∪ S) ⊂ F (q). In this case, there are
two different possibilities to consider. First, we could employ
the EFS as a new representation for the data and use the
classification algorithm in this new space as done in other
works [34], [35]. This idea will provide us with a more easily
separable and balanced space than the input space which could
indeed be used for any learning machine, independently of
being kernelized or not. However, when dealing with a kernel
function, it could actually be more advisable to recompute
the dot products between patterns (i.e., create a new over-
sampled kernel matrix), due to the high number of features
(the dimensionality of the EFS), which in most of the cases
will increase the computational cost of the learning machine
considered. To do so, synthetic samples will be used to
complete the kernel matrix, by obtaining their dot product in
the EFS with respect to the rest of the training patterns. Using
this approach, the over- sampled training Gram matrix K̃tr

will be composed as follows:

K̃tr
(m+n)×(m+n) =

(
(Z · ZT)m×m (Z · ST)m×n

(S · ZT)n×m (S · ST)n×n

)
. (3)

Note that for any number of dominant dimensions q for the
empirical kernel map Φeq , the over-sampled kernel matrix K̃tr

obtained will be positive semidefinite. Furthermore, since we
are generating new patterns by a linear combination of other
patterns in the dataset, the empirical kernel maps associated
to ϕ−1(Z) and to ϕ−1(Z ∪ S) can be said to be equivalent.

For the generalisation phase, the same steps are considered
to complete the test kernel matrix, considering that the EFS
images of the test patterns are derived using the same Φeq map

(considering only the training data). Note that in this case we
will compute the dot product between train and test patterns
and between test and synthetic patterns. The over- sampled
test Gram matrix K̃ts will be composed as follows:

K̃ts
(m+n)×(t) =

(
(Z ·TT)m×t (S ·TT)n×t

)
, (4)

where T is the representation in the EFS of the test patterns
and t corresponds to the number of test patterns.

Note that these new over-sampled kernel matrices K̃tr and
K̃ts can be used for any kernel-based algorithm.

A summary of this kernel-based over-sampling method can
be seen in Fig. 3.

Algorithm synthetic over-sampling in the empirical feature space
• Input: Training patterns (Xtr), training targets (ytr) and testing patterns (Xts).
• Output: Testing targets (yts)

1) Compute kernel matrix Ktr for training patterns.
2) Compute the empirical kernel map Φeq via Ktr.
3) Map training patterns to the EFS using Φeq and obtain their new represen-

tation Z.
4) Generate synthetic patterns S using the new representation Z of the training

patterns.
5) Complete the over-sampled train kernel matrix K̃tr with the dot product

between patterns (Eq. 3).
6) Train the learning algorithm with kernel matrix K̃tr and obtain a hyper-

plane w and a bias term b.
7) Map testing patterns to the EFS using Φeq and obtain their new represen-

tation T.
8) Complete the over-sampled test kernel matrix K̃ts with the dot product

between patterns (Eq. 4).
9) Predict yts using K̃ts and the model {w, b} (Eq. 1).

Fig. 3: Different steps for the kernel over-sampling algorithm.

As mentioned before, our over-sampled points in the feature
space may not have preimages in the input space. However,
this does not pose a methodological problem since the class
separation is formulated in the feature space.

IV. OPTIMISING THE FEATURE SPACE BY KERNEL
LEARNING FOR OVER-SAMPLING

As stated before, our first hypothesis was that over-sampling
in the EFS was more advisable if the kernel function matched
the underlying problem in the sense that it can asymptotically
represent the function to be learned and is sufficiently smooth.
In this section, we propose a method for kernel learning that
would ideally provide a clearer class separation in the feature
space to analyse its effect in the over-sampling method.

Ideally, we would like to find the kernel that minimises the
true risk of a classifier for a specific dataset. Unfortunately, the
risk is not accessible; therefore, different analytical bounds for
the generalisation error have been developed in the machine
learning literature with the aim of better suiting a given dataset.
In the kernel machine literature, a considerable interest has
been devoted to learning the “optimal” kernel given a partic-
ular classification task, as opposed to imposing them. One of
the prominent approaches in kernel learning is centred kernel-
target alignment (KTA) [19]. Centred KTA is data distribution
independent, making it particularly suitable for imbalanced
classification. Note that KTA is related to the Fisher criterion,
which maximises the distance between different classes and
minimises the within class distance. This can be a useful
property of the feature space in which to perform minority
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class over-sampling. Minority patterns would be far from the
majority class region and closely clustered together.

KTA optimises the kernel by aligning it to the so-called
ideal kernel matrix Ki [18], which will submit the structure:

ki(xi,xj) =

{
+1 if yi = yj ,

−1 otherwise,

where yi is the target of pattern xi ∈ Xtr. In this sense,
Ki will provide information about which patterns should be
considered to be similar when performing a learning task.

Thus, the problem of finding an optimal kernel k is changed
to the one of finding a good approximation K for the ideal
kernel matrix Ki, given a family of kernel functions. This
formulation allows to separate the optimisation from kernel
machine learning and to reduce the increase in the computa-
tional cost of learning more complex kernels, given that the
kernel machine will be unaffected by this higher complexity.

As said before, concerning imbalanced classification, previ-
ous studies have noted several issues in KTA for different
pattern distributions [18], [36] but a recent study [19] has
shown that this can be solved by the use of centred kernel
matrices. The notion of centred alignment Ac between K and
Ki [18], [19] is defined as:

Ac(K,Ki) =
〈Kc,Kic〉F√

〈Kc,Kc〉F 〈Kic ,Kic〉F
,

where Kc denotes the centred version of kernel matrix K and
is computed as:

Kc = K−K1 1
m
− 1 1

m
K + 1 1

m
K1 1

m
,

being 1 1
m

a matrix with all elements equal to 1
m .

Centred KTA is maximised when a kernel reflect the dis-
criminant properties of the data used to define the ideal kernel.

Consider a kernel function depending on a vector of param-
eters α. Because of the differentiability of Ac with respect
to these kernel parameters α, a gradient ascent algorithm
can be used to maximise the alignment between the kernel
matrix constructed Kα and the ideal one Ki, as follows:
α∗ = arg maxαAc(Kα,Ki). The alignment derivative with
respect to these kernel parameters α is:

∂Ac(Kα,Ki)
∂α = (5)

= 1
||Kic ||F

[
〈( ∂Kα

∂α ),Kic〉F
||Kαc ||F

−
〈Kα,Kic 〉F·〈Kαc ,(

∂Kα
∂α )〉

F

||Kαc ||3F

]
,

where ||A||F =
√
〈A,A〉F and, for arbitrary matrices K1 and

K2, it holds that 〈K1c
,K2c

〉F = 〈K1,K2c
〉F = 〈K1c

,K2〉F
[19], which simplifies the computation.

In this paper, we will consider a generalised Gaussian kernel
with covariance structure defined by a positive semidefinite
matrix Q:

k(xi,xj) = exp
(
(xi − xj)

TQ(xi − xj)
)
.

As usual, the matrix Q will be parametrised by UTU, where
U is a d× d matrix (d being the dimensionality of the input
space). Therefore, we can equivalently restate our problem as
learning the best matrix U:

k(xi,xj) = exp
(
(xi − xj)

TUTU(xi − xj)
)
.

Now, we can compute the derivative of the kernel with
respect to the entries of the U matrix:(

∂k(xi,xj)

∂U

)
=
(
U(xi − xj)

T(xi − xj)
)
· k(xi,xj).

Therefore, we will optimise a vector of parameters α
composed of the entries of the U matrix.

It is important to note that some attempts have been made
to establish learning bounds for the Gaussian kernel with
several parameters when considering large margin classifiers
[37]. These studies suggest that the interaction between the
margin and the complexity measure of the kernel class is multi-
plicative, thus discouraging the development of techniques for
the optimisation of more complex kernels. However, recent
developments have shown that this interaction is additive [38]
(up to log factors), rather than multiplicative, yielding then
stronger bounds. Therefore, the number of patterns needed to
obtain the same estimation error with the same probability for
a multi-scale kernel compared to a spherical one grows slowly
(and directly depends on the number of parameters).

To demonstrate the usefulness of learning the kernels, we
present in Fig. 4 a graphical representation of three two-
dimensional toy datasets and their mapping Φe2 using a spher-
ical Gaussian kernel with Q = 0.001 · Id, an optimised
spherical Gaussian kernel obtained through centred KTA and
an optimised generalised Gaussian kernel.

Summarising, kernel learning will be applied before the
over-sampling procedure to learn a suitable kernel Kα∗ for
the data representation. After this, the EFS Φeq associated to
this kernel Kα∗ will be computed, and then, the images of
the training patterns for the minority class (contained in the
Z matrix) will be over-sampled. For comparison purposes, we
will also test the optimization of a spherical Gaussian kernel
with one kernel parameter via kernel-target alignment.

V. UNIFIED FRAMEWORK FOR PREFERENTIAL
OVER-SAMPLING

As stated before, several approaches have been developed in
the literature for handling imbalanced data, and a large number
of these contributions are based on analysing the patterns
which could be more suitable for over-sampling, giving rise to
approaches based on over-sampling on the class boundary [5],
[7] or in the within class “safe region” [6] (these techniques are
commonly referred to as weighted over-sampling). However,
to our best knowledge, there is no principled method for
choosing the region of the minority class to be used for over-
sampling. In this section we propose a new adaptive weighted
over-sampling technique that naturally spans unweighted and
weighted over-sampling methods (both on the boundary and
within class). To do so, our approach will take advantage of
the spatial distribution of the patterns according to the optimal
hyperplane obtained from the SVM solution.

A. Knowledge extraction: Spatial distribution of the patterns

Weighted over-sampling techniques are based on the idea
that not all the patterns of the dataset are equally important
and suitable for over-sampling and therefore, they should not
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Fig. 4: Synthethic two-dimensional datasets representing non-linearly separable classification problems and their transformation
to the 2 dominant dimensions of the EFS induced by the Gaussian kernel function (linearly separable problem).

contribute equally to the new synthetic data. One of the first
steps of these methodologies corresponds to the identification
of the ‘useful’ patterns to be used for over-sampling. Most
of the approaches in the literature do so by analysing local
neighbourhood of points in the minority class. In this paper,
however, we will derive a weighted over-sampling technique
considering the spatial distribution of the patterns with respect
to the optimal SVM hyperplane. In particular, the patterns to be
used for over-sampling will be selected based on their position
and distance to the optimal hyperplane.

However, as stated before, the soft-margin optimisation
of the SVM paradigm poses a serious problem for imbal-
anced datasets. Therefore, for the purpose of weighted over-
sampling, we use the cost-sensitive approach giving more
importance to errors committed by patterns belonging to the
minority class [11]. The cost-sensitive SVM approach consists
of introducing different penalty factors C+1 and C−1 for the
positive and negative SVM slack variables during training. The
primal SVM problem is transformed into:

1

2
||w||2 + C+1

∑
{i|yi=+1}

ξi + C−1

∑
{i|yi=−1}

ξi,

subject to the constraints:

yi((w · Φ(xi)) + b) ≥ 1− ξi, ξi ≥ 0, ∀i ∈ {1, . . . ,m}.

For simplicity, we will set C+1 = m−1

m+1
· C−1, where +1

is assumed to be the minority class, m+1 is the number of
patterns belonging to class +1 and m−1 the number of patterns

belonging to class −1. The ratio m−1

m+1
is usually known as the

imbalanced ratio.
As stated before, each synthetically generated point sz ∈

E(q), z = 1, . . . , n, in the minority class represented by
training samples Xtr

+ is generated by first picking a pair of
points xi and xj from Xtr

+ and then constructing their convex
combination in the EFS E(q):

sz = Φeq(xi) + (Φeq(xj)− Φeq(xi)) · δ,

where δ is a random number generated from the uniform
distribution U [0, 1].

B. Optimisation of the over-sampling procedure
The points xi and xj will be randomly selected based on

their relative position in the feature space with respect to the
separating hyperplane. Because the norm of w is 1, the signed
distance of Φ(xi) ∈ F (q) from the hyperplane is given by
f(xi) = w ·Φ(xi)+b. Note that if Φ(xi) is on the ‘right’ side
of the hyperplane f(xi) is positive, otherwise it is negative4.
We will represent the selection process as draws from a
multinomial distribution over Xtr

+ (i.e., patterns belonging to
the minority class) with natural parameters µi = −β · f(xi),
where β ∈ R is a scale parameter. Using the soft-max link
function, the probability of picking xi ∈ Xtr

+ is:

P (xi) =
exp(−βf(xi))∑

x∈Xtr
+

exp(−βf(x))
. (6)

4If Φ(xi) lies on the separating hyperplane, then f(xi) = 0.
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Note that when β < 0, points deep within the minority class
(in the feature space) are more likely to be picked; when
β > 0, points closer to the class boundary or lying inside the
opposite class are preferred and, when β = 0, all the points
are equally likely to be chosen, as this will correspond to the
uniform distribution over Xtr

+ . This approach naturally spans
different approaches to weighted [5]–[7] and unweighted [3]
over-sampling previously introduced in the literature.

For selecting the pairs (xi,xj) ∈ Xtr
+ we could use two

different ideas:
• Pick xi and xj independently with respect to the distri-

bution of Eq. (6).
• Pick xi according to the distribution of Eq. (6) and select

xj using k-nearest neighbours method [27].
In most of the weighted approaches in the literature they make
use of the k-nearest neighbours method because they obtain
the spatial distribution information of the patterns according
to their neighbourhood. However, for this approach, note that
it is actually more advisable to select xi and xj independently
according to the probability distribution obtained, because
otherwise the effect of the preferential learning in the over-
sampling process could be smoothed (i.e., picking points by
the k-nearest neighbours approach may differ to a large extent
to the selection made with the probability function).

Based on the arguments in Section III, over-sampling of
the minority class in the feature space is done through over-
sampling in the EFS. Note that the patterns preferred for over-
sampling in the input space could not be the ones preferred in
the feature space, therefore the use of the EFS is needed for
this methodology as well.

To optimise the β values (as different β values will induce
different synthetic patterns), we will test two approaches:
• The first idea is to use a single value of β found by, e.g.,

cross-validation over a set of p predefined β values.
• The second idea is to use multiple β values within the

framework of multiple kernel learning (MKL), i.e., a
combination of different over-sampled kernel matrices.
For a particular value of β, we denote by K̃β the kernel
matrix obtained on the extended data sample (i.e., includ-
ing over-sampled points obtained using β). We fix a set
of β values {β1, . . . , βp} and compute the over-sampled
kernel matrices {K̃β1 , . . . , K̃βp}. Then, using KTA, we
could derive a kernel matrix K̃ω =

∑p
k=1 ωkK̃βk with

ωk ≥ 0 and
∑p
k=1 ωk = 1 (convex combination of kernel

matrices K̃βk ) by multiple kernel learning techniques.
Thus, this strategy will be more flexible than the cross-
validation one, because we can optimise a combination
of over-sampled kernel matrices, instead of restricting the
solution to only choosing the best performing one. For
the optimisation we will need to define an extended ideal
kernel matrix K̃i, by introducing the information of the
new synthetic patterns (recall that all these patterns will
belong to the minority class). The optimisation problem
to solve in this case will be the following:

max
ω∈M

〈
K̃ωc , K̃i

〉
F

||K̃ωc ||F
,

where M = {ω : ||ω||2 = 1}. Note that since we are
trying to align the real kernel matrix K̃ with the ideal one
K̃i the value of

〈
K̃i, K̃i

〉
F

does not change and it can
be obviated in the optimisation process. The Quadratic
Programming (QP) optimization problem associated can
be seen in [19].

Fig. 5 shows the representation of the training data for
the cleveland0vs4 dataset in different EFS using the trans-
formation Φe2 (original EFS, over-sampled EFS for β = −5
and β = 5, and optimised over-sampling through MKL). In
this case, the difference between over-sampling for different β
values could be difficult to appreciate. However, for the case
of the optimised over-sampled EFS one can note that the class
separation increases and the within class decreases (recall that
KTA was related to the Fisher criterion).
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Fig. 5: Empirical feature spaces for the cleveland0vs4 dataset
associated to the original data, over-sampling for different β
values and optimised over-sampling.

In the same vein, Fig. 6 shows the case of the training data
for the led7digit02456789vs1 dataset and the transformation
Φe2. In this case, the difference for the over-sampling procedure
when using different β values can be easily appreciated.

VI. EXPERIMENTAL RESULTS

The proposed methodologies have been tested considering
Support Vector Machines (SVM) [13] and the well-known
SMOTE algorithm [3]. 50 binary datasets from the UCI
repository [39] with different imbalance ratios (proportion of
majority patterns with respect to minority ones) have been used
to test the performance of the methods in different situations.
The characteristics of these datasets can be seen in TABLE I.
As done in other state-of-the-art works [10], some multiclass
datasets have also been considered by grouping some classes,
e.g. ecoli1 represents the ecoli dataset when considering class
1 versus the rest, and yeast0359vs78 is the yeast dataset when
grouping classes 0, 3, 5, and 9 versus classes 7 and 8 in order
to obtain higher imbalance ratio (IR) values.

A stratified 5 × 2-fold Dietterich technique was performed
to divide the data and the results are taken as mean and
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Fig. 6: Empirical feature spaces for the led7digit02456789vs1
dataset associated to the original data, over-sampling for
different β values and optimised over-sampling.

standard deviation of the selected measures as done elsewhere
(e.g. [10]). Each experiment over each data partition has been
repeated 6 times using a different seed to obtain more robust
results5 (i.e., at the end of the execution we will have 30
results for each dataset). The Gaussian kernel was used. The
kernel width and the cost parameter of SVM were selected
within the values {10−3, 10−2, . . . , 103} by means of a nested
5-fold method applied to the training set. As done in other
works [8], [9], the number of synthetic patterns generated was
that needed to balance the distributions, i.e. after applying the
over-sampling process, the number of majority and minority
patterns were the same. k = 3 nearest neighbours were
evaluated to generate synthetic samples, in order to minimise
the chance that synthetic patterns are generated in the majority
class region when using the standard SMOTE technique.

The results have been reported in terms of two metrics, one
of them specially designed to deal with imbalanced data:

1) The well-known Accuracy metric (Acc), which corre-
sponds to the ratio of correctly classified patterns and
measures overall performance. For imbalanced datasets,
this metric may not be the best option, since the classi-
fication of the minority class may be compromised for
the sake of the majority one (it does not distinguish
between the numbers of correctly classified examples
of each class), and we could therefore obtain a trivial
classifier always outputting the majority class.

2) The Geometric Mean of the sensitivities (GM =√
Sp · Sn) [40], where Sp is the sensitivity for the

positive class (ratio of correctly classified patterns con-
sidering only this class) and Sn is the sensitivity for the
negative one.

The measure for the parameter selection was GM , given its
robustness and extended use for imbalanced data [40]–[42].
Note that this metric gives much importance to worst-classified

5Recall that synthetic patterns are randomly generated.

TABLE I: Datasets used for the experiments (N corresponds
to the total number of patterns, d to the dimensionality of the
input space and IR to the imbalance ratio).

Dataset N d IR Dataset N d IR
ecoli0vs1 352 7 1.84 ecoli067vs35 354 7 9.41

glass1 342 9 1.85 glass04vs5 146 9 9.43
wisconsin 1092 9 1.86 ecoli0267vs35 358 7 9.53

pima 1228 8 1.87 yeast05679vs4 844 8 9.55
yeast1 2374 8 2.46 ecoli067vs5 352 6 10.00

haberman 488 3 2.81 glass016vs2 306 9 10.77
vehicle2 1352 18 2.89 ecoli01vs5 384 6 11.00
vehicle1 1352 18 2.91 led7digit02456789vs1 708 7 11.21
vehicle3 1352 18 3.00 glass06vs5 172 9 11.29
vehicle0 1352 18 3.25 glass0146vs2 328 9 11.62

glass0123vs456 342 9 3.28 glass2 342 9 12.15
ecoli1 536 7 3.39 ecoli0147vs56 530 6 12.25

newthyroid1 344 5 5.14 cleveland0vs4 276 13 12.80
newthyroid2 344 5 5.14 ecoli0146vs5 448 6 13.00

ecoli2 536 7 5.54 shuttle0vs4 2926 9 13.78
yeast3 2374 8 8.13 yeast1vs7 734 7 14.29
ecoli3 536 7 8.57 ecoli4 536 7 15.75

ecoli034vs5 320 7 9.00 pageblocks13vs4 754 10 16.14
yeast0359vs78 808 8 9.10 abalone9-18 1168 10 16.70

ecoli046vs5 324 6 9.13 glass016vs5 294 9 20.00
yeast0256vs3789 1606 8 9.16 yeast2vs8 770 8 23.06
yeast02579vs368 1606 8 9.16 shuttle2vs4 206 9 24.75

ecoli0347vs56 410 7 9.25 yeast4 2374 8 28.68
ecoli01vs235 390 7 9.26 yeast5 2374 8 32.91

yeast2vs4 822 8 9.28 yeast6 2374 8 41.39

classes being therefore sensitive to trivial classifiers (e.g. if
Sp = 0 then GM = 0, independently of the value of Sn).

The source codes in Matlab for the methods developed in
this paper are available, together with the datasets, partitions
and the results on the website associated with this paper6.

The purpose of this section is three-fold. The first exper-
iment is intended to test whether the empirical kernel map
provides a more suitable space for over-sampling than the
input space when dealing with kernel methods and analyses the
effect of the number of dimensions chosen for over-sampling
(i.e., the influence of the concentration of spectral properties).
The second experimental subsection will complement the ap-
proach proposing a new kernel learning algorithm, to optimise
a more flexible kernel function, which would ideally better fit
the data. The purpose of this experiment is to test whether
the kernel function chosen influences the results and how,
optimising this kernel function the synthetic generated data
will be better adapted to the classification problem. Finally,
the third experiment focuses on the case of weighted or
preferential over-sampling to analyse which patterns should be
more prone to be over-sampled and test a new multiple kernel
learning algorithm for optimising the generated patterns.

TABLE II contains information about all of the methods
used for this three-fold experimentation and a brief summary
(mean and standard deviation) of the mean results obtained
along the 50 datasets used. Apart from the fact that the SVM
without over-sampling performs poorly for minority classes, it
can be seen that the standard deviation is very high in GM ,
indicating large fluctuations in the results. One can also see
that the optimisation of a spherical Gaussian kernel by KTA
(i.e., OSK) does not lead to very good results, and a better
option is to use cross-validation instead or a more flexible

6http://www.uco.es/grupos/ayrna/efso
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kernel, as the one used in OGK. Further information about
the results will be extracted using statistical tests.

The complete results for all of the methods can be seen in
the webpage associated to this paper6, including the individual
results for all the datasets. For the sake of comparison, we
included the results obtained by a majority class rule (MCR)
classifier as a baseline result (i.e., a naı̈ve rule that classify
all the patterns as belonging to the majority class). From the
results of MCR it can be seen that Acc is not a suitable metric
to take into account, since this trivial methodology achieves
the best results in some cases (haberman, yeast05679vs4,
glass016vs2, glass0146vs2, glass2, yeast4 and yeast6). In the
following subsections, we will perform three differentiated
statistical tests to validate the previously stated hypotheses.

TABLE II: Abbreviation for all the methods considered for
the experimentation and mean and standard deviation results
(MeanSD) for all of the datasets.

Algorithm Acc(%) GM (%)
Majority class rule classifier (MCR) 86.700.53 0.000.00

SVM without over-sampling (SVM ) 93.352.02 77.2812.07

SVM applying over-sampling in the input space (OIS) 90.333.11 85.728.50

SVM with over-sampling in the empirical feature space
(OEFS)

90.243.50 86.308.14

SVM with over-sampling in the reduced empirical
feature space (OREFS)

90.413.27 86.837.20

SVM with an optimised spherical kernel for over-
sampling (OSK)

90 .953.16 80.4511.34

SVM with an optimised generalised kernel for over-
sampling (OGK)

89.454.09 87 .176.86

SVM with over-sampling via cross-validated preferen-
tial learning (OCPL)

90.153.35 87.186.74

SVM with over-sampling via preferential multiple ker-
nel learning (OPMKL)

90.593.45 86.897.20

The best method is in bold face and the second one in italics

A. First experiment: Over-sampling in the EFS

In this subsection, we will validate the hypothesis that the
EFS is a more suitable space for over-sampling than the input
space. Furthermore, we will test whether by optimising the
dimensionality of this space the generated patterns are more
adequate for the classification problem. To do so, we will test
four different approaches: SVM , OIS, OEFS and OREFS
(see TABLE II for the meaning of the acronyms).

As said before, we discarded all dimensions that correspond
to zero eigenvalues for the computation of the EFS for
OEFS. Furthermore, we performed a nested 5-fold cross-
validation over the training sets of the number of dominant
dimensions when considering over-sampling in the reduced
EFS (OREFS). To do so, we considered the following values
for the q value of the empirical kernel map Φeq: q ∈ {b0.1rc ,
b0.25rc , b0.5rc , b0.75rc , r}, where r is the original rank of
the training kernel matrix K and b·c is the floor function.

It can be seen that the results in GM for SVM are
in general very poor (analyse for example the case of the
haberman and glass2 datasets). Concerning the OIS method,
it can be seen that in some cases the results of OEFS
are much better (analyse the result of the glass04vs5 dataset
where SVM even obtained better results or the case of the
glass016vs5 dataset). In relation to the effect of controlling the

dimensionality, it can be seen that OREFS generally yielded
similar or better performance than OEFS (see the result of the
yeast2vs8 and led7digit02456789vs1 datasets, two examples
which will be afterwards analysed). When taking Acc into
account, it can be seen that the three over-sampling methods
obtain very similar values (although OEFS and OREFS
obtain better results in some cases, e.g. ecoli0267vs35).

TABLE III shows the test mean rankings (1 for the best
method and 4 for the worst) for the methods considered in
this experiment along all of the 50 datasets in terms of Acc
and GM . The results show that SVM is the best performing
method for Acc but the worst performing when considering a
metric that takes into account the imbalanced nature of the data
(GM ). Furthermore, it is shown that both approaches for over-
sampling in the EFS (OEFS and OREFS) outperfomed the
results obtained when over-sampling in the input space (OIS).
Finally, it can be seen that controlling the EFS dimensionality
we improve the results in most cases, as the OREFS method
obtained better mean results than OEFS.

To quantify whether a statistical difference exists among
the algorithms, a procedure is employed to compare multiple
classifiers in multiple datasets [43]. TABLE III also shows
the result of applying the non-parametric statistical Friedman’s
test (for a significance level of α = 0.05) to the mean Acc
and GM rankings. The test rejects the null-hypothesis that all
algorithms perform similarly in mean ranking for both metrics
(note that for GM the differences are larger).

TABLE III: Mean ranking results for SVM , OIS, OEFS
and OREFS.

Ranking SVM OIS OEFS OREFS
Acc 1.53 3.21 2.74 2.52
GM 3.64 2.61 1.96 1.79

Friedman’s test
Confidence interval C0 = (0, F(α=0.05) = 2.66)
F-valueAcc: 21.06 /∈ C0, F-valueGM : 35.70 /∈ C0

On the basis of this rejection and following the guidelines
of [43], we consider the best performing methods in GM (the
two proposals, OEFS and OREFS) as control methods for
the post-hoc test and we compare them to the rest according
to their rankings. It has been noted that the approach of com-
paring all classifiers to each other in a post-hoc test is not as
sensitive as the approach of comparing all classifiers to a given
classifier (control method). One approach to this latter type of
comparison is the Holm’s test. The test statistics for comparing
the i-th and j-th method using this procedure is: z =

Ri−Rj√
k(k+1)

6N

,

where k is the number of algorithms, N is the number of
datasets and Ri is the mean ranking of the i-th method. The
z value is used to find the corresponding probability from
the table of normal distribution, which is compared with an
appropriate level of significance α. Holm’s test adjusts the
α value in order to compensate for multiple comparisons.
This is done in a step-up procedure that sequentially tests the
hypotheses ordered by their significance. We will denote the
ordered p-values by p1, p2, . . . , pk so that p1 ≤ p2 ≤ . . . ≤ pk.
Holm’s test compares each pi with α∗Holm = α/(k−i), starting
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from the most significant p value. If p1 is below α/(k − 1),
the hypothesis is rejected and we compare p2 with α/(k−2).
If the second hypothesis is rejected, the test proceeds with the
third, and so on. As soon as a certain null hypothesis cannot
be rejected, all the remaining hypotheses are retained as well.

To analyse the results obtained from the Holm’s test see
TABLE IV. For the OEFS method, the test concluded that
there were statistically significant differences with SVM for
Acc (note that in this case SVM obtained better results),
SVM for GM and OIS for GM as well. This indicates
that, although OEFS obtained worst results for Acc in
comparison with SVM , the results for GM are significantly
better with comparison to SVM and OIS (therefore giving
evidence that the EFS provides a more suitable space for over-
sampling by convex combination of patterns). Concerning the
OREFS method, the same results are obtained, but there
are also significant differences when considering the OIS
method for Acc, which could indicate that over-sampling in the
empirical feature space can be beneficial with other purposes,
for example, for ensuring the class boundaries.

TABLE IV: Results of the Holm procedure using OEFS and
OREFS as control methods (CMs) when compared to SVM
and OIS: corrected α values, compared method and p-values,
all of them ordered by the number of comparison (i).

CM: OEFS Acc GM
i α∗

0.05 Method pi Method pi
1 0.016 SVM 0.0000−− SVM 0.0000++

2 0.025 OIS 0.0687 OIS 0.0118++

3 0.050 OREFS 0.3941 OREFS 0.5102
CM: OREFS Acc GM
i α∗

0.05 Method pi Method pi
1 0.016 SVM 0.0000−− SVM 0.0000++

2 0.025 OIS 0.0007++ OIS 0.0014++

3 0.050 OEFS 0.3941 OEFS 0.5102

Win (++) or lose (−−) with statistical significant difference for α = 0.05

In relation to the optimal dimensionality of the EFS, it can
be said that the decay rate of the eigenvalues is related to
the smoothness of the kernel and the number of necessary
dimensions depends on the interplay between the kernel and
the dataset. In this case, the mean value obtained from the
cross-validation step for the number of dimensions was (0.42±
0.29)r. More specifically, Fig. 7 shows the histogram of the
optimal dimensionality of the EFS for all the datasets tested,
where it can be seen that in most of the cases b0.5rc is enough
to contain all the relevant information about the dataset.

As said before, one of the hypothesis for controlling the di-
mensionality of the EFS was that our over-sampling algorithm
relies on distances computed in the EFS (for computing nearest
neighbours and choosing which patterns to over-sample),
distances which may bear less neighbourhood information as
the EFS dimensionality increases. Fig. 8 shows the histogram
of distances between pairs of patterns for different values
of the dimensionality of the EFS (b0.1rc and 1r) for two
datasets where the OREFS method obtained much better
results than OEFS and where this so-called spectral prop-
erties phenomenon [32] can be appreciated. Note that for the
case of the yeast2vs8 dataset, using all of the dimensions (1r)
corresponds to over-sampling in an almost randomly fashion
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Fig. 7: Histogram of the mean optimal dimensionality of the
EFS for all datasets. The abscissa axis represents the mean
value, over the 30 results, for the rate of the rank of the kernel
matrix. The ordinate axis shows the number of datasets where
this value was selected from the cross-validation step.

as the k-nearest neighbours rule will not be very precise since
most of the distances between pair of patterns are similar.
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Fig. 8: Histogram of distances between pair of patterns for
different dimensionality values of the EFS. The abscissa axis
represents the distance between two patterns and the ordinate
axis the occurrence of each distance.

From the results, several conclusions can be drawn. Firstly,
over-sampling by convex combination is more suitable in an
(ideally) linearly separable space such as the EFS. The method
obtains better results in metrics that consider the imbalanced
nature of the data without compromising the overall accuracy.
However, over-sampling in the input space does not achieve
this balance, indicating that a convex combination of patterns
in a possibly nonlinearly separable space could generate
patterns in unwanted areas. Concerning the optimisation of
dominant dimensions for the feature space this methodology
improves the results in some cases, thus encouraging further
development of an analytical method to do so.

B. Second experiment: Influence of the kernel function

For this experiment we compare three different proposals:
firstly, OEFS, which will be used as a baseline method to test
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if the optimisation of the kernel function leads to better results,
secondly, SVM with an optimised spherical Gaussian kernel
(the same kernel than for OEFS but optimised through KTA)
for performing the over-sampling in the empirical feature
space (OSK) and finally SVM with an optimised generalised
Gaussian kernel in the empirical feature space (OGK).

In this work, the iRprop+ algorithm is used to optimise
the aforementioned centred KTA, because of its robustness
[44]. The gradient norm stopping criterion was set to 10−5

and the maximum number of conjugate gradient steps to
102 [44]. For the optimisation of OGK, we also included
a γ parameter as an additional parameter in the generalised
Gaussian kernel, which will indeed make the parameters
initialisation easier. The initial point for γ for all of the
methods tested was chosen from the set {10−1, 100, 101},
analysing the best result in alignment for the three values.
The Q matrix for the generalised Gaussian kernel is initialised
as the Moore-Penrose pseudoinverse of the covariance of the
training points: Q = (cov(Xtr))+, to address the problem of
ill-conditioned covariance matrices. Once the kernel has been
optimised via KTA, we optimise the C parameter using cross-
validation within the values {10−3, 10−2, . . . , 103} (this two
stage optimisation method is also referred in the literature as
second-order method [45]).

From the results (that can be found in the website6) one can
see that OSK and OGK obtained in some cases better results
in Acc than SVM , this could be due to the application of
the kernel optimisation through KTA, which selected a more
optimal kernel than the cross-validation method. Analysing
GM it can be seen that the performance of the spherical
Gaussian kernel is not satisfactory. In optimising the spherical
kernel, a cross-validation methodology should be preferred
to KTA. To see this, analyse the case of the yeast0359vs78
and glass016vs2 datasets, where although OSK incorporates
a over-sampling stage, SVM obtained better GM results.
Finally, it can be seen that OGK yielded a much better perfor-
mance in most of the cases (analyse the shuttle0vs4 dataset),
demonstrating therefore that a more flexible kernel combined
with kernel learning techniques could optimise the separation
of the classes in the feature space, a necessary condition for
over-sampling by convex combination of patterns.

As done before, TABLE V shows the mean ranking results
for the three methods considered in this subsection and the
result of applying the non-parametric Friedman’s test (the test
accepted the null-hypothesis that all of the algorithms perform
similarly for Acc and rejected it for GM ). From the results
obtained it can be seen that when using a spherical Gaussian
kernel, as in OEFS (optimised through cross-validation) and
OSK (optimised by KTA), the results are comparable and the
methods obtain very similar mean ranking results. In this case,
it is clear that the cross-validation method obtains better GM
results as this is the metric used for the parameters selection
stage. However, when using a more flexible kernel, such as
the one considered in the OGK method, the results can be
significantly improved. Note that applying cross-validation to
the generalised kernel could possibly improve GM results, but
the computational task required would be infeasible.

On the basis of Friedman’s test rejection, the Holm test

TABLE V: Mean ranking results for OEFS, OSK and OGK.

Ranking OEFS OSK OGK
Acc 1.94 1.86 2.20
GM 2.15 2.37 1.48

Friedman’s test
Confidence interval C0 = (0, F(α=0.05) = 3.09)
F-valueAcc: 1.60 ∈ C0, F-valueGM : 13.41 /∈ C0

for multiple comparisons has been applied (see TABLE VI),
and the test concluded that there were statistically significant
differences for GM when considering OSK and OEFS. As
said, there were no statistically significant differences for Acc.

TABLE VI: Results of the Holm procedure using OGK as
the control method when compared to OSK and OEFS:
corrected α values, compared method and p-values, all of them
ordered by the number of comparison (i).

CM: OGK GM
i α∗

0.05 Method pi
1 0.025 OSK 0.0000++

2 0.050 OEFS 0.0008++

Win (++) or lose (−−) with statistical
significant differences for α = 0.05.

The results in this subsection show that over-sampling in
the EFS is affected by the kernel function (although spherical
Gaussian kernel has been proven to show promising results
in the previous subsection), kernel selection/learning which is
indeed a complex issue, shows (much) better results when em-
ploying a more flexible kernel such as the one used. Therefore,
different kernel learning techniques could be explored in the
future for the purpose of over-sampling in the EFS.

C. Third experiment: Preferential over-sampling

This experimental subsection is intended to test if there
are patterns which are more suitable for over-sampling and
if a general adaptive approach, yielding solutions based on
unweighted over-sampling, borderline weighted over-sampling
or ‘safe’ level weighted over-sampling, could achieve better
results than standard unweighted over-sampling. To do so, we
compare OEFS to two different approaches: the first one
based on a cross-validation strategy (OCPL) and the second
one based on kernel learning techniques (OPMKL).

As said before, to test this idea, we first obtain the spatial
distribution of the patterns based on a cost-sensitive SVM
hyperplane and we use a parametrised soft-max link function
(Eq. (6)) to assign different probabilities of being over-sampled
to the patterns according to this spatial distribution. This
parametrisation is made using a β scale parameter, which will
be optimised through cross-validation (OCPL) within a set
of values and through kernel learning techniques (OPMKL).
For the experiments, we select the set β ∈ {−5,−1, 0, 1, 5}.

Analysing the results obtained it can be seen that both
OCPL and OPMKL obtain very competitive results both
for Acc and GM . For some cases, the results obtained are
equal since OPMKL also includes the solutions of OCPL.
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Once again, TABLE VII shows the mean ranking results
when comparing these two approaches to the standard pro-
posed technique OEFS. In this case, the Friedman’s test
accepted the null-hypothesis that the algorithms perform simi-
larly for Acc and rejected it for GM . From these results, it can
be seen that both methods outperform the standard proposal
or at least yield similar performance (when considering Acc).

TABLE VII: Mean ranking results obtained by OEFS,
OCPL and OPMKL.

Ranking OEFS OCPL OPMKL
Acc 1.94 2.13 1.93
GM 2.48 1.93 1.59

Friedman’s test
Confidence interval C0 = (0, F(α=0.05) = 3.09)
F-valueAcc: 0.63 ∈ C0, F-valueGM : 12.38 /∈ C0

The Holm’s test for multiple comparisons has been also ap-
plied (see TABLE VIII). For both OCPL and OPMKL, the
test concluded that there are statistically significant differences
for GM when compared to OEFS, indicating that preferential
over-sampling is preferable over the uniform one [6]. Although
the cross-validation strategy obtains very good results, the
multiple kernel strategy yields slightly better performance
(there are statistically significant differences for α = 0.10).

TABLE VIII: Results of the Holm procedure using OCPL and
OPMKL as control methods when compared to other state-
of-the-art methods: corrected α values, compared method and
p-values, ordered by the number of comparison (i).

CM: OPMKL GM
i α∗

0.05 Method pi
1 0.025 OEFS 0.0000++

2 0.050 OCPL 0.0891+

CM: OCPL GM
i α∗

0.05 Method pi
1 0.025 OEFS 0.0059++

2 0.050 OPMKL 0.0891−

Win (++) or lose (−−) with statistical signifi-
cant difference for α = 0.05
Win (+) or lose (−) with statistical significant
difference for α = 0.10

To analyse the most appropriate region for over-sampling
we analyse the optimal β values obtained from cross-validation
(see Fig. 9 for the histogram). Recall that when β < 0, points
within the minority class (in the feature space) are more likely
to be picked; when β > 0 points on the class boundary or even
on the other side of the hyperplane are preferred and when
β = 0 all the points are equally likely to be chosen. It can
be seen that for most datasets, over-sampling within “interior”
of the minority class is preferable. Moreover, note that for
a relatively large number of datasets the choice is uniform
over-sampling. However, this could mean that uniform over-
sampling could be feasible in some cases for over-sampling in
the feature space (because of the improved data separation).

Finally, to study the computational cost of preferential
over-sampling we included a small comparison of OEFS and
OPMKL using only a data partition. The dataset chosen is
haberman, and the time is reported in terms of seconds
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Fig. 9: Histogram of the mean values for the beta parameter
used in the over-sampling process. The x coordinate represents
the different mean β values chosen for each dataset (related to
preferential over-sampling) and the y the number of datasets
where the value was selected from the cross-validation process.

needed to over-sample the data. Cross-validation of parameters
is not considered. According to this, the results are the
following: 0.04 for OEFS and 0.33 for OPMKL. From these
results, it can be seen that the computational time is affordable.

VII. CONCLUSIONS

This paper explores the notion of over-sampling in the
feature space induced by a kernel function to deal with
imbalanced classification problems. Since the feature space
is not directly accessible, the empirical feature space is used
(a Euclidean space that preserves the structure of the original
feature space). Over-sampling is tackled by convex combina-
tion of patterns (as usually done in the state-of-the-art) and we
focus on the paradigm of kernel methods. We explore the ideas
of over-sampling in the full and reduced-rank empirical feature
space, the optimisation of the feature space by kernel learning
and the notion of preferential over-sampling which analyses
which patterns should be more prone to be over-sampled.
From the results of a thorough set of experiments over 50
imbalanced datasets, several conclusions can be drawn: firstly,
over-sampling in the empirical feature space is seen to yield
better performance than over-sampling in the input space;
secondly, the control of the dimensionality of the empirical
feature space could lead to better results; thirdly, the kernel
used influence the solution to a great extent, making advisable
the optimisation of the feature space structure (although the
spherical Gaussian kernel has been shown to perform well for
several cases); and finally, that there exist some regions of the
dataset which should be preferred for over-sampling and that
multiple kernel learning techniques should be explored in the
future with the purpose of over-sampling.

The authors would also like to stress several lines of
future work: Firstly, an analytical methodology for optimising
the number of dominant dimensions of the empirical feature
space could be developed with the purpose of over-sampling.
Secondly, considering a unique methodology combining the
techniques proposed in this paper could be accomplished, to
analyse how these methods could complement each other.
Furthermore, in the context of kernel learning, the over-
sampling process could be incorporated in the kernel learning
stage to search the more suitable representation for performing
the over-sampling, not only the better class separation. Finally,
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other intelligent optimisation techniques could be developed
for the generation of the synthetic patterns.
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