Sequential Relevance Vector Machine Learning

from Time Series

Nikolay Nikolaev
Department of Computing, Goldsmiths College, University of London
London SE14 6NW, United Kingdom
E-mail: n.nikolaev@gold.ac.uk
Peter Tino
School of Computer Science, The University of Birmingham
Birmingham B15 2TT, United Kingdom
E-mail: P.Tino@cs.bham.ac.uk

Abstract— This paper presents an approach to sequen-
tial training of the relevance vector machine suitable for
Bayesian learning from time series. The key idea is to
perform simultaneous incremental optimization of both the
weight parameters and their prior hyperparameters using
data arriving one at a time. Algorithms for efficient se-
quential regularized dynamic learning rate training of the
weights and gradient-descent training of their priors are
derived. It is shown that this fast sequential RVM can
outperform similar Bayesian kernel methods, like: batch
RVM, fast RVM, variational RVM, and Gaussian Processes
on multistep ahead forecasting of time series.

I. INTRODUCTION

Recent research indicates that kernel-based methods are
successful in time series regression [1], [5], [6], [7], [9], [13],
[15]. Such an approach that yields well generalizing mod-
els is the Relevance Vector Machine (RVM) [13], [14]. The
RVM offers three essential advantages [13]: 1) it allows the
liberal use of arbitrary kernels; 2) it performs reliable in-
ference with training formula obtained using proper prob-
abilistic treatment of the inductive process, including the
data and the noise; and 3) it does not require to determine
the error/margin parameter in advance. Most of the work
on the RVM for regression and time series forecasting how-
ever has been conducted in offline setting [1], [2], [4], [13],
[14], [16]. The design of good incremental algorithms for
the RVM is still a challenge which can make it useful for
addressing real-world applications.

An attractive characteristic of the RVM is that it pro-
duces parsimonious probabilistic models. It is a Bayesian
framework that estimates the weight posterior distribution
through maximization of the marginal likelihood of their
hyperparameters. The marginalization leads to automatic
identification of the relevant kernels, and thus sparsifies
the model. The achieved property sparseness implies ca-
pacity to realize accurate predictions. A serious drawback
of the original RVM [13] is that it operates in offline mode
and thus it is limited to applications where all data are

available and are processed as a batch.

The RVM is problematic to use for real time series mod-
eling where the data arrive one at a time because of the
following three reasons. First, it is computationally de-
manding as it involves inversion of a large square matrix
of size equal to the number of the data. Second, the ana-
lytical batch training formulae sometimes can not be eval-
uated safely due to instabilities in their numerical compu-
tation. Third, the batch strategy is intrinsically incapable
of capturing the dynamics of time series in the sense of
dependency on the past history. Moreover in very noisy,
drifting and non-stationary environments the offline algo-
rithm fails to generate satisfactory results. These problems
may be alleviated using incremental strategeies for com-
puting the posterior distributions using one data at a time,
and update the model instantaneously.

There have been suggested already several incremental
approaches to relevance vector regression. The fast algo-
rithm of Tipping and Faul [14] is an improvement over the
RVM in that it stabilizes the inversion of covariance ma-
trix, and also accelerates considerably its speed. The fast
RVM [14] it carries out a greedy search by learning and
unlearning of kernels till the marginal likelihood is maxi-
mized, which however can stuck at suboptimal solutions.
The re-estimation formulae for the hyperparameters some-
times produce unuseful negative values which prevent from
careful tuning the model. A different incremental proce-
dure for pruning redundant kernels commencing from the
complete model is offered by the Backfitting RVM [4]. Tt
adjusts the kernels by passing continuously through the
data until the desired accuracy is reached. Although the
Backfitting RVM is also a probabilistic method performing
expectation maximization, it uses too complex formulae
with many meta-parameters that are extremely difficult
to tune and synchronize as they are in interplay.

This paper develops a sequential approach to relevance
vector regression suitable for Bayesian learning from time



series. The key idea is to organize adaptive model se-
lection through simultaneous incremental optimization of
both the weight parameters and their prior hyperparame-
ters. We derive and integrate two algorithms for efficient
gradient descent training of the RVM: 1) a regularized dy-
namic learning rate (DLR) training algorithm resembling
an approximated Bayesian Kalman filter, and 2) a least
mean squares (LMS) training algorithm for hyperparame-
ter adaptation. The formulae are especially derived so as
to preserve the spirit of sparse Bayesian learning.

Empirical studies on time series regression demonstrate
that the proposed Sequential Relevance Vector Machine
(SRVM) can infer models with excellent generalization.
Two time series are considered: one artificially generated
series with a varying mean, and a large hard series with
Electricity load measurements. We report that the SRVM
outperforms the batch RVM [13], the fast RVM [14], the
variational RVM [2], and a Gaussian Process model [15]
on multistep ahead forecasting of the selected series.

This paper outlines the RVM in section two. Section
three offers the mechanisms for sequential Bayesian learn-
ing, including the algorithms for weight and hyperparame-
ter optimization. Section three gives experimental results
on time series modelling. Finally, a discussion is given and
a conclusion is derived.

II. RELEVANCE VECTOR LEARNING

The inductive task is to find a mapping that accurately
describes the relationship between a series of observables
sampled at discrete time intervals. The series are viewed
as a data set D = {(X,,y,)}\_; of size N where x,, =
(Tp—(d=1)7> Tne(d=2)r» -1 Tn) € R? (d is the embedding
dimension and 7 is the delay) and y, € R. Here we use
mappings that are linear superpositions of kernels [13]:

M
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where w,, are the weight parameters forming the vec-
tor w = [wy,we,...,wy]?, K(x,x%,) are the basis func-
tions or kernels, k(x) are the kernel vectors k(x) =
[K(x,%x1), K(x,X2), ..., K(x,%3)]%, and and ¢ is indepen-
dent zero-mean Gaussian noise with unknown variance
o2, Usually the Gaussian kernel is preferred K(x,x,) =
exp|—(x — x,)? (x — x,,)/(25?)], where s? is the width.

The RVM of Tipping [13] provides a procedure for
Bayesian learning of sparse kernel models. It estimates
the weight posterior according to the Bayes’ rule using
the data likelihood p(y|x,w(a),37 1), the weight prior
p(w|a), and the normalising term p(y|a, 371):

p(ylx, w(e), 8~ ")p(w|a)
p(yla, 571)
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ph) = (2)

p(wly, o

where o = (g, ..., apr) and [ are hyperparameters.

This Bayesian inference implies that the search for opti-
mal weights is governed by their priors. The hyperparame-
ters a = (a1, ag, ..., apr) quantify ”the prior beliefs in the
weights” (see below), and the hyperparameter 8 quanti-
fies the output noise 8 = 0~2. RVM optimizes iteratively
the marginal likelihood p(y|x, o, 37!) by re-estimation of
the hyperparameters. They are computed with formulae
obtained according to the evidence procedure [8] by max-
imization of the log likelihood £(a) = log p(y|x, ¢, 371):

L) = (log |X| + Nlog 8+ log|A|)

N =
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where A is the diagonal matrix A = diag(a1, ag, ..., an),
K is the design matrix K = [k(x1), ..., k(xar)]7, and X is
the inverse matrix ¥ = (BKTK + A)~!

The relevance vector learning apparatus uses least
squares fitting to calculate the maximum aposteriori
weights. It adopts a quadratic penalty function for the
prior over the weights, also known as weight decay regu-
larization. This kind of regularization shrinks the weights
of irrelevant kernels leading to model sparsification. The
prior distribution is a zero-mean factorized Gaussian:

£ o 4n)

assuming that the hyperparameters are independent.

The RVM begins with the full model, having basis func-
tions centered on all given data, and adapts the weights
and their hyperparameters. During the learning process
some hyperparameters grow thus causing their weights to
decrease toward zero. This effects essentially in pruning
kernels from the model, so the approach performs auto-
matically model selection of the relevant basis functions,
called relevance vectors [13].

The RVM allows us to make probabilistic predictions,
as it suggests to compute the mean y, and variance 3,1
of the predictive distribution p(y * |y, x, o, 371):

p(wla) =
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where x, is the future input vector.

III. SEQUENTIAL RVM LEARNING

The fast RVM method of Tipping and Faul [14] performs
model selection by adding to the model and removing from
it kernels until the marginal likelihood of the hyperpara-
meters is maximised. Despite using a fast recurrent least
squares fitting algorithm to estimate the weights, it has
two shortcomings: 1) it carries out greedy search for ker-
nels which is inefficient for sequential processing because



when more data arrive it is difficult to balance between fit-
ting and generalization as the kernel model naturally tends
to increase in size; and 2) it uses analytical formulae for re-
estimation of the hyperparameters which are very sensitive
to fluctuations and noise in the data. These problems are
aleviated in the Backfitting RVM [4] which starts with the
complete model and passes recursively through the data
to determine the most relevant kernels using probabilistic
expectation maximization.

The SRVM learns also by sweeping sequentially through
the data. During one sweep it consideres the newly arrived
data point and optimizes simultaneously both the weight
parameter and the hyperparameter of the corresponding
kernel. While cycling repeatedly over the data it tunes ker-
nel by kernel, and so evolves gradually the model. Starting
from the full model having all basis functions, adaptive se-
lection results as effect from the incremental improvement
of the weights and their priors.

A. Regularized Weight Training

We propose a regularized DLR, algorithm for Bayesian
RVM learning with proper noise treatment. It performs re-
cursive least squares weight estimation in pursuit of reach-
ing the minimum of the mean squared error regularized
with weight decay. The algorithm as originally suggsted
implements an approximated Kalman filter [12]. Instead of
using the full aposteriori weight covariance matrix it uses
its diagonal approximation. The difference from the pre-
vious K1 [12] is that our algorithm operates on one kernel
at a time corresponding to the current training point only.
More precisely we use only one entry from the diagonal
corresponding to the newly arrived data point.

Each covariance entry is actually learned in online
manner from the data. This is done with a gradient-
descent training rule which operates on individual, local
learning meta-parameters. Working in a Bayesian set-
ting this requires to take the derivative of the regular-
ized log-likelihood taken at the posterior mean weights
E(t) = 0.5 (8|ly — Kwl|? + w/' Aw) with respect to the
meta-parameters OF/Op;. Thus we obtain the following
gradient-descent rule:

pi(t+1) = pi(t) + v [Be(®)ki(t) — ai(t)wi()]  (7)

where v is a positive rate change constant, e(t) is the out-
put error e(t) = y(t) — f(x(t)), and k;(t) = K(x;,%;). This
notation uses indices ¢ runing sequentially over the time se-
ries points, while the particular steps of the incremental
learning algorithm are indexed by t.

There are two distinctive features of this meta-
parameters training rule (7): 1) it is a Bayesian rule as
it depends on the output noise § and the weight prior
hyperparameters «;; and 2) it depends only on the instan-
taneous error gradient and not on long term effects from
the past as originally conceived.

Since the covariance should be positive its entries s;;(t)
are defined with the transformation:

54i(t) = cexp(p;(t + 1))

where c is a constant that stabilizes the convergence.

The gradual adaptation of the covariance elements is ad-
vantageous because it enables to tune the weights by vary-
ing step sizes in proportion to their impact on the current
error. The different weights undergo different updates at a
certain incremental step, and this changes from iteration
to iteration. Such effects can be achieved with the follow-
ing regularized DLR version of the approximated Kalman
algorithm for sequential training of the RVM:

B+ k2 (t)su(t)

where G;(t) is known as Kalman gain. Here the factor
s;i(t)oy in the brackets in equation (10) implements the
weight decay regularization.

The regularization hyperparameters a; and the noise hy-
perparameter 3 in the above weight update rule (10) are
determined within an hierarchical Bayesian setting. The
recursive formula (9) and (10) differ in two ways from
the similar previous approach to hierarchical Bayesian-
Kalman filtering [3]: 1) here the regularization hyperpa-
rameters «; are tuned using a gradient-descent technique
(11), while the output noise f is kept fixed so as to avoid
search difficulties [3]; and 2) here the covariance diagonal is
approximated by a learning rate meta-parameter (8) which
is adapted by gradient-descent (7) and it is also regularized
so as to depend on the weight prior hyperparameters.

The overall effect from the two integrated formula for
the covariance entries (9) and for the weights (10) allows
us to achieve better convergence properties, in the sense
that when the weight changes continue in the same di-
rection the convergence is accelerated. Being a sequential
algorithm the DLR is however sensitive to the initial values
of the weights. The initial weights may be computed as
follows [14]: w;(0) = k(x(i))?y/k(x(i)) ' k(x(i)), which is
the normalized projection of the i-th kernel vector k(x(z))
on the given output vector y.

(8)

Gi(t)
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B. Hyperparameter Training

The simultaneous training of the parameters and hy-
perparameters is convenient to implement with different
techniques in order to avoid eventual degradation of any
of the two search processes. Even if one of the two learn-
ing processes stagnates when the other is technically dif-
ferent, one can expect from it to push the first one on its
search landscape and to improve it. This is important for
the RVM as its two training processes are mutually de-
pendant. In order to achieve stable convergence the noise
hyperparameter (3 is kept fixed [3].



The sequential RVM training aims at marginal likeli-
hood maximization which requires to take the derivatives
of the log likelihood L(a) (3) with respect to the hyper-
parameters 0L(a)/0c; [13]. Using it we develop the fol-
lowing gradient-descent update rule:

it +1) = oi(t) + v [o7 (1) — [Bi —wi(®)]  (11)

where v is a positive constant, and [X];; denotes the i-th
diagonal entry of the matrix . The learning rate constant
v is common for all priors.

The adaptation of the hyperparameters o; (11) is per-
formed after each next training example following the ad-
justment of the weights (10). During this sequential rel-
evance vector learning process some hyperparameters in-
crease while other decrease in magnitude. Thus, it enables
adaptive model selection in the sense that the examina-
tion of the hyperparameters after each next example shows
which kernels to eliminate from the model.

IV. EMPIRICAL INVESTIGATIONS

The goal of the presented research work is to develop
a good tool for time series regression. There are many
computational tools for time series regression which can
predict well regular series, but the opened problem is how
to design tools that have ability to model well and fast also
drifting and non-stationary data.

Following this research goal we implemented several al-
gorithms for Bayesian kernel regression: the SRVM, the
closely related batch RVM [13], the fast FRVM [14], the
variational VRVM [2], and a Gaussian Process model [15].
The presented empirical investigations are conducted using
two time series: a data set with a varying mean produced
with an artificially devised formula, and a hard benchmark
data set with Electricity load data.

The settings in the reported experiments were as follows.
The width of the Gaussian kernels in all algorithms was set
to s2 = 1.0 [10]. All algorithms were initialized with noise
B =1.0/(Nxstdy) [14], where stdy is the standard dviation
of the data in the given series. The pruning threshold in
all algorithms was the same a > aj;4x = 1.0. The SRVM
was made to iterate 50 times over the data. The prior hy-
perparameters were initialized with o;(0) = 1.0e 3 /w2(0),
and their rates were v = 1.0e™®. The initial value of the
learning rate meta-parameters was p;(0) = —1.0, their rate
constant was set to v = 0.25, and ¢ = 0.025. The RVM
and VRVM were both reiterated 5 times over the data,
starting with a(0) = 1.0e 5.

The FRVM was made with the same starting and prun-
ing values but it did only two sequential passes over the
data. It is important to point out that we implemented
the FRVM with the same recursive least squares fitting
algorithm as Tipping and Faul [14] to find the new weight,
after adding kernels to the model in greedy manner, and
to re-evaluate all previous weights in the current model.

| | | L
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Figure 1. Modelling of the first 380 points and multi-step (50steps)
ahead forecasting of the artificially generated time series with varying

mean by the five Bayesian kernel algorithms.

Error training forecasting RVs
NMSE NMSE number
GP 0.00014 | 0.06155
RVM 0.00021 0.09863 162
VRVM | 0.00022 0.09719 184
FRVM | 0.00039 | 0.11378 158
SRVM | 0.00382 0.00446 292

Table 1. Training and testing errors committed by the Bayesian

kernel algorithms on the time series with varying mean.

However we did not use their hyperparameter estima-
tion formulae which often yield unuseful negative values,
rather we used the EM formulae [13]. The GP model
used Gaussian covariance functions, and conjugate gradi-
ents training iterated 10 times using initial regularization
A = 0.001 for evaluating the covariance parameters.

Artificial series. A time series of 445 points (1 < t <
445) was generated using the equation:

y(t) = sin(0.0125¢) 4+ 0.2 sin(0.2¢) (12)
which is a sinusoidal wave with added sinusoidal noise. In
addition the series was contaminated with random noise
having variance 0.01. The first 380 points were used for
training (lag d = 15) while the remaining 50 were used
only for testing. The results were measured using the nor-
malized mean squared error (NMSE), which is the MSE
divided by the series variance (Table 1).

Figure 1 shows that the SRVM outperforms on multi-
step prediction the remaining studied Bayesian ap-
proaches. It seems that it learns models with really good
generalization. One of the reasons for this seems to be the
sequential nature of the synchronous optimization of the
weights and their priors. The incremental learning offers
potential to capture not only the data characteristics but
also implicitly the time of their arrival.
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Figure 2. Evolution of six randomly selected regularization para-
meters during a single run of IRVM using the artificially generated

series, each starting from a;(0) = 1.0e=5 /w?(0).

It is interesting to observe however that the SRVM does
not learn very sparse models, it seems that it only slightly
prunes the complete model. The SRVM model is not
very sparse but this does not affect in a negative way the
generalization performance. One can see in Table 1 that
the batch RVM, the variational VRVM and even the fast
FRVM algorithms produce much less complex kernel mod-
els. The further experiments with other data indicated
that on average the complexity of the discovered models
is close to this attained by the FRVM (Table 2).

Next we inquire how the hyperparameter gradient-
descent optimimization algorithm modifies the regulariz-
ers o, in orther to find out whether it can prune weights
from the model. When there are regularization hyperpara-
meters that grow indefinitely this is an indication that the
corresponding weight will be removed. If there are regular-
ization hyperparameters whose magnitude saturates this
means that they will remain in the model. Figure 2 de-
picts the evolution curves of randomly selected hyperpara-
meters recorded during a single run carried out using the
same generated series. This figure was made after picking
some informative curves among the available more than
two hundred curves of the remaining alphas.

It can be observed in Figure 2 that really the magnitudes
of some hyperparameters increase rapidly because the top
leftmost curve goes fast toward the threshold. This curve
was taken by identifying one particular kernel that was
removed from the model. The remaining curves in the
middle show typical changes of the regularizers of kernels
that were kept in the model. A comment can be made here
that these curves seem smooth but this can be attributed
to the fact that the generated time series was not extremely
difficult to learn for the incremental algorithm.
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Figure 3. Modelling of the first 950 data points and multi-step

(50steps) ahead forecasting of the Electricity load series with by the

Bayesian kernel algorithms.

Error training forecasting RVs
NMSE NMSE number

GP 0.66282 0.26742

RVM 0.74921 0.29562 547

VRVM | 0.95554 | 0.38865 541

FRVM | 0.79278 | 0.41619 628

SRVM | 0.81562 0.26733 732

Table 2. Training and testing errors committed by the Bayesian
kernel algorithms on the Electricity load series.

In practice one can expect more fluctuating curves of
the evolution of the hyperparameters and this depends,
first, on the training data, and, second, on the tuning of
the other meta-parameters. The performance of the reg-
ularized DLR training algorithm depends strongly on the
accurate tuning of its parameters which are in interplay
so special care has to be taken for its proper initialization.
The plots in this Figure 2 can be used as a pattern to find
proper algorithm settings.

FElectricity load series. An important real-world time
series problem is forecasting the electricity demand. This
problem has serious economic implications because having
capacity to predict well the electricity demand may help
to make huge savings. We considered a series of 1015 elec-
tricity load measurements (in megawatts) recorded every
day at 12 : 30 in a certain utility area. Here for simplic-
ity we assume the series directly and do not smooth for
unusual observations. The initial 950 points were taken
for training assuming input dimension d = 15, and the re-
maining 50 points were used only for testing. In order to
facilitate comparisons, and to convince in the ease of tun-
ing the SRVM the same parameter settings were used as
in the previous experiments are given above. The results
from the algorithms using the Electricity load series are
shown in Table 2.



One can see in Table 2 that SRVM demonstrates lower
forecasting error than the other algorithms on multi-step
ahead load prediction. What is interesting to note in Table
2 is that the batch RVM and GP produced models with
quite close testing performance, although the Gaussian
Process model was best on the training data. One notes
again that the best forecast was obtained with the SRVM
which is better than the GP model, and much better than
the results attained by the other RVM approaches. The
variational VRVM seem to oversmooth the model, and we
think that it is also sensitive to the initialization of the
parparameters of the t-student noise distribution. Since
the error on the training series made by the SRVM is large,
we are inclined to conjecture that the SRVM does not seem
to overfit the training data and that is why it shows very
good generalization.

V. DISCUSSION

The realisation of the proposed approach to sequen-
tial Bayesian learning depends strongly on the behaviour
of the regularized DLR training algorithm. First, it has
meta-parameters which can be arduous to set so they re-
quire making reasonable efforts. Second, the developed
Bayesian version of the DLR does not have a strong in-
ductive bias toward less complex models as it does not
change the weights rapidly, that is it does not impose a
strong pressure toward keeping less kernels. Despite this,
we found that it still tends to distinguish relevant from
irrelevant weights with respect to the cost function and
achieves good generalization on unseen data. Third, the
use of the diagonal approximation of the covariance matrix
could be a limitation as it discards the cross-information,
however the proper probabilistic treatment of the regu-
larization and output noise hyperparameters help to over-
come this shortcoming to a great degree as it can be seen
from the presented empirical results.

The regularized DLR algorithm is a successor of K1 [13]
for approximate Kalman filtering. These are both mecha-
nisms for training linear in the parameters models which
are unfortunately quite complex, and extremely difficult
to analyse so as to determine their mistake bounds and
convergence rates. The main reason for the difficulty to
perform error analysis is the complex interaction between
the weights and their learning rate meta-parameters.

VI. CONCLUSION

This paper offered a sequential kernel-based approach
suitable for Bayesian learning of large scale times se-
ries models. The reported empirical results allow us to
think that it is promising for modeling difficult and non-
stationary time series. Although this sequential approach
has been designed for time series modelling, it is a general
purpose method that can be used for doing any kind of
regression. It should be clarified that the SRVM is not

perfect on the training data but it tends to show very
good generalization performance on unseen data as it was
demonstrated using time series regression tasks with dif-
ferent characteristics. In this sense it may be considered
as altenative to the available Bayesian learners from the
RVM family. The SRVM is extremely fast and it makes
Bayesian kernel learning practical. Future research will
be done to develop variational sequential RVM which can
deal properly with various forms of noise in the data.
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