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Abstract-The probabilistic classification vector machine is 
a very effective and generic probabilistic and sparse classifier. 
A recently published incremental version improved the runtime 
complexity to quadratic costs. We derive the Nystrom approx­
imation for asymmetric matrices to obtain linear runtime and 
memory complexity for the incremental probabilistic classification 
vector machine while keeping similar prediction performance. 

I. INTRODUCTION 

The Probabilistic Classification Vector Machine (PCVM) 
was introduced in [1] as a sparse probabilistic kernel classifier 
pruning unused basis functions during training. The PCVM 
was found to be very successful and is a high ranked clas­
sification algorithm' with a recently published incremental 
version called (EPCVM) [2]. Initially, the PCVM model is 
generated with N basis functions and has a complexity of 
O(N3), where N is the number of samples. The EPCVM 
has improved this complexity to O(N2) by iteratively adding 
relevant basis function. This update is based on a sparse 
relevance learning concept as originally introduced for the 
Relevance Vector Machine (RVM) [3]. The relevance learning 
used in EPCVM operates on a (in general) quadratic kernel 
matrix, containing the input similarities. While the EPCVM 
has significantly improved the scalability of PCVM the update 
of the relevance parameters is still costly with quadratic costs 
in memory and runtime. We propose to approximate the 
input matrix using the Nystrom approximation [4] and to 
redefine the relevance learning for this approximated matrix. 
This operation remains exact if the rank of the matrix equals 
the number of independent landmarks points. The Nystrom 
approximation is a very popular approach used not only in 
classification but also for other kernel algorithms [5], [6]. A 
simple application into EPCVM is not possible and some more 
elaborated modifications are needed. 

In Section II we review PCVM and EPCVM and derive 
the Nystrom approximation for asymmetric (potentially rect­
angular) matrices. We also outline various modifications of 
the original EPCVM formulation to ensure that memory and 
runtime complexity remains linear as discussed in Section III. 
An accurate probabilistic model is obtained making EPCVM 
efficient also for problems at larger scale. We evaluate the 
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derived algorithm on a variety of classical vectorial benchmark 
data from medium to larger scale in comparison to state of 
the art classifiers in Section IV . Additionally we show the 
efficiency of Ny-EPCVM and EPCVM for data representations 
based on non-mercer kernels. The latter one is very important 
in a variety of application fields where the data are measured 
by non-standard often non-metric similarity measures. Section 
V concludes with a brief summary and discussion of our 
results. 

II. PROBABILISTIC CLASSIFICATION VECTOR LEARNING 

FOR LARGE SCALE 

A. Probabilistic classification vector machine 

In the following we briefly review PCVM [1]. As other 
kernel methods PCVM uses a kernel regression model 

2::1 wiC!Ji,e(X)  + b to which a link function is applied, with 
Wi being the weights of the basis functions cPi,e(X)  and b as 
a bias term. The basis functions will correspond to kernels 
evaluated at data items. Consider binary classification and a 
data set of input-target training pairs D = {Xi'Y;}�l' where 
Yi E {-I, + I}. The implementation of PCVM [2] uses the 
probit link function, i.e. 

w(x) = [Xoo N(tIO, l)dt, 

where W (x) is the cumulative distribution of the normal dis­
tribution N(O, 1). Parameters are optimized by an Expectation 
Maximization (EM) scheme. After incorporating the probit link 
function, the PCVM model becomes: 

Where <I> e (x) is a vector of basis function evaluations for data 
item x. 

In the PCVM formulation [1], a truncated Gaussian prior 
Nt with mode at ° is introduced for each weight Wi. Its support 
is restricted to [0,(0) for entries of the positive class and 
( -00,0] for entries of the negative class as shown in Eq. (4). A 
zero-mean Gaussian prior is adopted for the bias b. The priors 



are assumed to be mutually independent. 

p(wla) 

p(bljJ) 

N N 
IIp(wilai) = II Nt(WiIO, a;l), 
i=l i=l 
N(bIO,jJ-l), 

where ai and jJ are inverse variances: 

{ 
0
2N(WiI0,a;1) if Yiwi > ° 

otherwise 

2N(WiI0, a;l) ·6(Yiwi). 
where 6(-) is the indicator function lx>o(x). 

(2) 

(3) 

(4) 

We follow the standard probabilistic formulation and as­
sume that ze(x) = <I>e(x)w + b is corrupted by an additive 
random noise E , where E rv N(O, 1). According to the probit 
link model, if he(x) = <I>e(x)w + b + E � 0, Y = 1 and if 
he(x) = <I>e(x)w + b + E < 0, Y = -1. We obtain: 

p(y = 11x, w, b) = p(<I>e(X)W+b+E � 0) = w(<I>e(x)w+b). 
(5) 

he(x) is a latent variable because E is an unobservable variable. 
We collect evaluations of he (x) at training points in a vector 
He(x) = (he(Xl), ... , he(XN))T. In the expectation step 
the expected value He of He with respect to the posterior 
distribution over the latent variables is calculated (given old 
values wold, bold). In the maximization step the parameters are 
updated through 

wnew M(M<I>J (x)<I>e(x)M + IN)-l 
T 

-
T M(<I>e (x)He - b<I>e (x)I) 

t(l + tNt)-lt(ITHe - IT <I>e(x)w) 

(6) 

(7) 

(8) 

where IN is a N-dimensional identity matrix and I a all-ones 
vector, the diagonal elements in the diagonal matrix Mare: 

if YiWi � ° 
else 

and the scalar t = J2lbl. For further details see [1]. 

B. Laplace Approximation for EPCVM 

(9) 

In [2] an extension of PCVM was proposed which cal­
culates the same model but with an incremental set of basis 
functions employing automatic relevance determination. In the 
EPCVM the model is generalized by applying the logistic 
sigmoid link function a(x) = Hex�(-x)' and adopting the 
Bernoulli distribution for p(tlw), the likelihood is then written 
as follows: 

N 
p(t I w) = II a�n [1 - an]l-tn , 

n=l 
where an = a (>. L�o Wi¢Yi (xn)) and we assume Yo = 1 
to facilitate the representation, t = (h," . ,t N ) T is a vector 
of targets, t n = Ynil E {O, I} is the probabilistic target. 

According to Bayes' theorem, the posterior distribution of 
weights w can be obtained with the current values of a as 
follows: 

( I ) - p(tlw)p(wla) p w t -
p(tla) . 

with p(wla) given in Eq. (2) and p(tla) = n�o exp (0:<;'7), 
where the bias term has been included for i = 0. After incor­
porating the truncated Gaussian prior, the integral in Bayesian 
inference is intractable. In order to obtain the posterior, Laplace 
approximation will be employed to approximate the posterior. 
Laplace approximation is a deterministic approximation algo­
rithm using a Gaussian to represent a given probability. 

The most probable weight setting under the posterior, MAP 
estimate of w, w M AP can be obtained by maximizing the log 
of p(wlt) with respect to the parameters w: 
Q log {p(tlw)p(wla)} -log p(tla) 

N 1 N 
L [tn log an + (1 - tn) log(l - an)] - "2 L aiwT 
n=l i=O 

N 
+ Llog 6(Wi) - const. 

i=l 

As the indicator function 6(-) is not differentiable, a 
sigmoid link function with jJ = 3 is employed to replace it, 
i.e. approximate 6(wi) by �i3(Wi) = a(jJwi), the gradient is 

f)Q T f)w=>'<I> (t- a)-Aw +k, 

where a = h, ···,aN]T, an = a(>'L�OWi¢Yi(Xn))' 
A = diag(ao, al," . ,aN) is the (N + 1) x (N + 1) diagonal 
matrix, k = [O,jJ(l- a(jJwd) , ... ,jJ(l- a(jJWN))]T is the 
N + 1 vector. 

Setting the gradient to zero and we obtain 

The Hessian can be explicitly computed as follows: 

f)2Q T f)w2 = -((I) B(I) + A + D ), 

(10) 

where B = diag(bl,· .. , bN) and D are diagonal matrices, 
where bi = >.2an(1 - an) and D = diag(O, dl,' .. , dN) 
diag(O, a(jJwl)(l a(jJwl))jJ2, ... , a(jJwN )(1 
a(jJwN))jJ2), respectively. 

Hence, the posterior covariance is 

�MAP = ((I)TB(I) + A + D ) -I. (11) 

By incorporating the indicator function, i.e. k and D in 
Equations (lO) and (11) one prevents the weight from negative 
values, i.e. complying with truncated prior. A more detailed 
derivation is given in [2]. 

C. Hyperparameters Optimization for EPCVM 

Originally the PCVM was optimized by a top-down ap­
proach including all basis functions in the beginning, and 
then pruning irrelevant basis functions when the corresponding 
a� s tending to infinity. However, the top-down approach will 
typically consume a lot of computational resources, especially 
in the beginning of the training. In order to make the algorithm 
more computationally efficient in [2] a constructive approach 
was proposed, based on marginal likelihood maximization to 



include basis functions step by step starting from an empty 
model. 

The previous sections presented the training algorithm of 
EPCVM with fixed hyperparameter a. In order to sequentially 
update a for a practical algorithm, we can maximize the type­
II marginal likelihood p(Dla). The fast algorithm to optimize 
the type-II marginal likelihood is to decompose p(Dla) into 
two parts, one part denoted by p(Dla\i)' that does not depend 
on ai and another that does, i.e. , 

p(Dla) = p(Dla\i) + l(ai), 

where l(ai) is a function that depends on ai. 

(12) 

The updating rule for ai can be obtained with the derivation 
of marginal likelihood [7]. The procedure leads to a prac­
tical algorithm for optimizing the hyperparameters that has 
significant speed advantages. To make this approach scale 
invariant each basic function has to be normalized to one (the 
columns of ¢). As a consequence the design matrix becomes 
asymmetric. Further this matrix is also of large scale leading to 
substantial memory consumption. Subsequently we review the 
Nystrom approximation as an efficient technique for low-rank 
matrix approximation. The classical Nystrom approximation 
is defined only for symmetric positive semi definite (psd) 
matrices and we provide a derivation also for asymmetric 
(potentially rectangular) matrices. 

D. Nystrom approximation 

The Nystrom approximation technique has been proposed 
in the context of kernel methods in [4] and is used in the fol­
lowing to derive an approximated EPCVM called Ny-EPCVM. 
Here, we give a short review of this technique before it is 
employed in EPCVM. One well known way to approximate 
a N x N Gram matrix, is to use a low-rank approximation. 
This can be done by computing the eigendecomposition of 
the kernel matrix K = U AUT, where U is a matrix, whose 
columns are orthonormal eigenvectors, and A is a diagonal 
matrix consisting of eigenvalues All � A22 � ... � 0, 
and keeping only the m eigenspaces which correspond to the 
m largest eigenvalues of the matrix. The approximation is 
[( ;::::; UN,mAm,mUm,N, where the indices refer to the size 
of the corresponding submatrix restricted to the largest m 
eigenvalues. The Nystrom method approximates a kernel in 
a similar way, without computing the eigendecomposition of 
the whole matrix, which is an O(N3) operation. 

By the Mercer theorem kernels k (x, y) can be expanded by 
orthonormal eigenfunctions CPi and non negative eigenvalues Ai 
in the form 

The eigenfunctions and eigenvalues of a kernel are defined as 
the solution of the integral equation 

J k(y,X)CPi(X)P(x)dx = AiCPi(Y), 

where p(x) is the probability density of x. This integral can 
be approximated based on the Nystrom technique by an i.i.d. 
sample {xk}k"=l from p(x): 

1 � k k - � k(y, x )CPi(X ) ;::::; AiCPi(Y)' m k=l 

Using this approximation we denote with K(m) the corre­
sponding m x m Gram sub-matrix and get the corresponding 
matrix eigenproblem equation as: 

K(m) u(m) = u(m) A (m) 
with u(m) E jRmxm is column orthonormal and Mm) is a 
diagonal matrix. 

Now we can derive the approximations for the eigenfunc­
tions and eigenvalues of the kernel k 

A(m) . N Jm/N T (m) Ai;::::; " , CPi(Y);::::; (m) 
ky ui ' (13) 

m >-; 
where u;m) is the ith column of u(m). Thus, we can ap­
proximate CPi at an arbitrary point Y as long as we know 
the vector ky = (k(xl, y), ... , k(xm, y)). For a given N x N 
Gram matrix K we randomly choose m rows and respective 
columns. The corresponding indices are called landmarks, 
and should be chosen such that the data distribution is suf­
ficiently covered. A specific analysis about selection strategies 
was recently given in [8]. We denote these rows by Km,N. 
Using the formulas (13) we obtain [( = 2::':1 1/ A;m) . 
KT (u(m))T(u(m))K where A(m) and u(m) correspond m,N 1- t m,N, 1- t. 
to the m x m eigenproblem. Thus we get, K;; 1m denoting the 
inverse2, 

, 

(14) 

as an approximation of K. This approximation is exact, if 
Km,m has the same rank as K. 

E. A Nystrom approximation for asymmetric matrices 

The original Nystrom approximation was proposed for 
psd symmetric kernel matrices only [4] with approximation 
bounds detailed recently in [9]. An asymmetric Nystrom 
approximation can be derived in various ways. Here we 
show an approach which directly links back to a symmetric 
approximation, keeping the known approximation guarantees 
and another more simple approach, already discussed in [10], 
which works on the generalized Nystrom approximation [11]. 
The first strategy makes use of a singular value decomposition 
(SVD). For an arbitrary matrix K an SVD can be constructed 
such that K = U . S . V', where U and V contain the so 
called left or right singular vectors of K and S contains the 
singular values. This decomposition can be also obtained for 
asynunetric matrices. 

The singular value decomposition based on a Nystrom 
approximated similarity matrix [( = KNmK;;�mKJ;m with 
m landmarks, calculates the left singular vectors of [( as the 
eigenvectors of [( [(T and the right singular vectors of [( 
as the eigenvectors of [(T [(. The matrices [( [(T and [(T [( 
are obviously symmetric matrices which can be approximated 
by the regular Nystrom approximation with the guarantees as 
shown in [9]. 

The non-zero singular values of [( are then found as 
the square roots of the non-zero eigenvalues of both [(T [( 
or [( [(T. Accordingly one only has to calculate a new 

2If K;;�m has not full rank, e.g. due to identical points in the training data, 
one may also use the Moore-Penrose pseudoinverse 



Nystrom approximation of the matrix k kT using e.g. the 
same landmark points as for the input matrix K. Subse­
quently an eigenvalue decomposition (EVD) is calculated on 
the approximated matrix ( = k kT as shown later on. This 
eigenvalue calculation should not be based on the small matrix 
Km,m which can lead to inaccuracies due to the sub-sampling, 
nor on the full matrix K which would be very costly. Instead 
it is desirable to use a slightly more complicated way but with 
the benefit of providing exact 3 estimates of the eigenvalues. 

For a matrix approximated by Eq. (14) it is possible to 
compute its exact eigenvalue decomposition in linear time 4. 
To compute the eigenvectors and eigenvalues of a potentially 
indefinite matrix we first compute its squared form, since the 
eigenvectors in the squared matrix stay the same and only the 
eigenvalues are squared. 

Let K be a psd similarity matrix, for which we can write 
its decomposition as 

� 

-1 K = KN,mKm,mKm,N 
=K U A-1UTKT N,m N,m 
=BBT, 

where we defined B = KN,mU A -1/2 with U and A being the 
eigenvectors and eigenval�es of Km,m, respectively. Further it 
follows for the squared K 

k2 = BBTBBT 

= BVAVTBT, 

where V and A are the eigenvectors and eigenvalues of B T B, 
respectively. The corresponding eigenequation can be written 
as BT Bv = avo Multiplying it with B from left we get the 
eigenequation for k 

BBT ( Bv) 
� --..,­

k u 

a ( Bv) 
--..,-

u 

It is clear that A must be the matrix with the eigenvalues of k. 
The matrix Bv is the matrix of the corresponding eigenvectors, 
which are orthogonal but not necessary orthonormal. The 
normalization can be computed from the decomposition: 

k = BVVTBT 

= BV A-1/2 AA-1/2VT BT 

= CACT, 

where we defined C = BV A -1/2 as the matrix of orthonormal 
eigenvectors of K. The eigenvalues of k can be obtained using 
A = cTkc. 

Using the above introduce Nystrom based SVD and EVD 
we can represent an aSYlmnetric matrix K by a Nystrom 
approximated SVD. 

An alternative derivation is based on analyzing the sub­
matrices involved in the standard Nystrom approximation lead­
ing to the generalized Nystrom approximation [11], by taking 

3Within the Nystrom framework. 
4The approximation is indeed in linear time given the matrix has low rank, 

which is the standard assumption for the Nystrom approximation. 

analogies into account 5 One finally obtains a formulation 
similar to the original Nystrom approximation such that an 
asymmetric kernel matrix K is approximated as 

� 

-1 K = KN,mKm,mKm,N 

with KN,m i- K-:',N' Regardless of the chosen approach we 
have three different matrices which for the SVD approach are 
subsequently denoted as Kl = U, K2 = S, K3 = VT or 
in case of the generalized Nystrom will be denoted as Kl = 
KN,m, K2 = K;;;'�m' K3 = Km,N, all having a low rank 
m. It should be noted that the presented approach can be also 
used for the approximation of (asymmetric) squared and non­
squared input matrices. 

F. EPCVM for large scale proximity data 

The EPCVM parameters are optimized using the laplacian 
approximation to iteratively adapt the weight vector w during 
learning by keeping only those basis function which are rele­
vant for the model. We will now show multiple modifications 
of EPCVM to integrate the Nystrom approximation and to 
ensure that the memory and runtime complexity remains linear 
at all time. We refer to our method as Ny-EPCVM. First we 
consider the normalization of the large quadratic input design 
matrix6 ¢. This matrix leads to a complexity of O(N2) and 
therefore we would like to approximate it by a lower rank 
representation. 

To ensures that all basis function are equally treated in the 
relevance learning scheme used in EPCVM, the matrix ¢ is 
normalized leading to an aSYlmnetric matrix ¢'. This normal­
ization is in fact common also for other similar methods, e.g. 
the original RVM and hence the approach is more generic and 
not restricted to EPCVM. The matrix ¢' can not any longer 
be approximated by the classical Nystrom approximation but 
one of the schemes as discussed before has to be used. 

In the preprocessing the matrix ¢ is normalized to unit length 

¢' . = 
¢.,j 

',J Pj 

The calculation of the scaling parameters Pj requires an 
operation on the full matrix ¢ this can be avoided by using a 
Nystrom approximation of the input matrix ¢ (with squared en­
tries) and by calculating the approximated scaling coefficients 
p* in matrix notation as: 

A corresponding approximated and normalized matrix ¢" * is 
obtained by deriving new Nystrom matrices as shown before 
but with scaled landmark columns based on the vector p*. It 
should be noted that the obtained matrix is asymmetric. 

Another source of squared complexity in EPCVM is the 
parameter initialization. In EPCVM the basis function is set 

5The work in [II] however lacks a specific proof. 
6In general the original design matrix ¢ is just a symmetric kernel matrix 

of the input data 



to the largest projection with the target values. This operation 
reads as: 

and is approximated by 

where (>9 indicates the scaling of all columns of K1 by t and 
the matrices K1, K2 and K3 are obtained from q/,*. 

Also in the calculation of the quality factor Q and the sparsity 
factor S see [3] the full basis function matrix ¢ is used. The 
original S is calculated (in matrix notation) as: 

(3pp (( ¢c(>9(3)T . ¢')T 

S ((3T . ( ¢.2))T - 2 )(3pp
' U -1).2 

j 

with ¢c as the current set of included basis functions and 2 
indicating element wise square and U is the upper triangle 
matrix of the Hessian matrix Q as defined before. The quality 
factor Q is calculated mainly by: 

Q = (t _ y) T . ¢' 

Q is related to how well the basis function contributes to 
reducing the error. S is related to how orthogonal a given basis 
function is to the currently used set of basis functions. Again 
the Nystrom approximation can be employed to calculate the 
approximated terms with linear costs. 

scales to million of points modeling the SVM problem by 
means of a minimum enclosing ball optimization problem. 
The only extra parameter is the error tolerance which we 
have set to E = 0.01. An efficient, Nystrom based, SVM for 
psd kernels was proposed recently in [15] (LLSVM), scaling 
quadratic in the number of landmarks. But our objective is on 
generic, probabilistic output models as detailed later on which 
can not be obtained by LLSVM or CVM. The experiments 
to CVM are given to show that EPCVM and Ny-EPCVM 
perform competitive in the prediction accuracy for standard 
psd data. Further we show that the runtime of Ny-EPCVM 
is substantially better for larger data sets in comparison to 
EPCVM and scales reasonable compared to optimized SVM 
approaches. 

The original EPCVM update rules of the relevance param­
eters involve matrix vector operations on the whole kernel 
matrix which has a computational complexity O(N2) and 
memory storage O(N2), where N is the number of samples. 
In the former derivation of Ny-EPCVM we have replaced all 
quadratic operations of EPCVM by a corresponding Nystrom 
approximation of these operations. As the Nystrom approxi­
mation is linear if the number of landmarks M « N also the 
Ny-EPCVM has now a complexity of O(N). 

IV. EXPERIMENTS 

First, we present experimental results for different medium 
size standard data sets using the Nystrom approximated 
EPCVM (Ny-EPCVM) and compare to EPCVM and CVM. 
These experiments will link the new approach to classical tech­
niques to show that the approximation does not significantly 

The approximation for S can be written as: reduce the prediction accuracy. Then we show results for the 

(3 (( ¢ (>9(3)T .K1 .(K2 .(K3T)T))T applicat�on �o Ny-EPCVM on different relatively large
. 
�ata 

PP c sets whIch m general can not be processed by the ongmal 
S (K32T . ( 2:(3 (>9 K12T) . KT2)T - 2:((3pp . U -l).2EPCVM formulation. 

j 

the matrices K1, K2 and K3 are obtained from ¢,,* as well 
as the matrices K12, K22 and K32 but with element-wise 
squared entries of ¢"*. The approximation of the quality factor 
Q can be obtained as: 

The operations used to calculate Q and S as shown before can 
now be done without any N x N matrices. It should be noted 
that these operations can also be used in other algorithms, 
like the RVM, which are based on the same sparse relevance 
learning scheme. 

III. COMPLEXITY ANALYSIS 

Classical Support Vector Machine (SVM) algorithms [12] 
and PCVM have a time complexity of O(N3), where N is the 
number of training points, but the computational complexity 
of SVMs can be reduced to approximately O(N2.1) for 
sequential minimal optimization (SMO) like algorithms [13], 
which breaks the large quadratic programming (QP) problem 
into a series of smallest possible QP problems. In [14] an 
approximated solution for SVM was proposed using core sets 
which is called Core Vector Machine (CVM? This approach 

7We use the code as provided at http://www.c2i.ntu.edu.sg/ivor/cvm.html 

A. Benchmark data sets 

In order to evaluate the performance of the Ny-EPCVM 
we compare different standard algorithms on seven bench­
mark datasets8 which are sufficiently large to motivate the 
Ny-EPCVM approach but are still small enough to be an­
alyzed with the considered alternative approaches. We con­
sider the banana (5300pts,2dims), diabetes (768pts,8dims), 
image (2086pts,18dims), ringnorm (7400pts,20dims), splice 
(2991 pts,60dims), two norm (7400pts,20dims) and waveform 
(5000pts,21dims) dataset given in two classes. All data are 
normalized to have 0 mean and unit variance, neglecting 
constant input dimensions and without cases of missing values. 
To simplify the evaluation process and to ease the reproduction 
of the experiments we use a defacto parameter free extreme 
learning machine kernel (ELM) as suggested in [16] to repre­
sent the data in the kernel space. For Ny-EPCVM we use 100 
randomly sampled landmarks (new sampled in the repeats) for 
each dataset. For all experiments we report mean and standard 
errors and runtimes as obtained by a 10 fold cross validation 
with 10 repeats. 

As can be seen from Table I and II the Ny-EPCVM does 
not sacrifice accuracy for speed9. It is also not very sensitive to 

8Taken from http://www.raetschlab.orgiMembers/raetsch/benchmark 
9Best results are highlighted in bold, significant better ones are marked with 

a *. 



TABLE 1. TEST SET ACCURACY (% ± STD) OF UCI BENCHMARKS 
FOR TWO CLASSES PROBLEMS FOR Ny-PCYM the CVM, for EPCVM, the indefinite kernel matrices need 

not to be corrected by costly eigenvalue correction [21] I 0 
two-class UCI data EPCVM CVM Further the EPCVM provides direct access to probabilistic 
;------------:�.".."..--;-"----,.."--------,;=r=-,.......,,.,,...,,,-------;9""'0,,--.""2-:;;:6-±,......,,0.97*Classification decisions. We compare to the indefinite kernel 

Ny-EPCVM 

banana 86.62 ± 2.46 83.25 ± 4.18 
diabetes 70.44 ± 3.30 71.35 ± 2.21 
image 88.06 ± 1.45 96.55±0.7h 
ringnorms 95.95 ± 0.73 98.55 ± 0.45 
splice 83.98 ± 1.72 83.85 ± 1.76 
twonorm 97.62 ± 0.60 97.84 ± 0.24 

76.84 ± 5. 16 fisher discriminant (iKFD) [24] as the state of the art method 
94.50 ± 1.36 in this field II. However the iKFD is a (in general) non-
98.54 ± 0.36 sparse approach which is not only costly during the model �;.:; :0

1.�5 generation with O(N3) complexity, but also in the out-of-

9 1' 32 ± i
5
06 sample extension. The indefinite datasets have a size which 

_____________________ . __ . 
can still be processed using iKFD. EPCVM on the other hand 

waveform 81.68 ± 2.66 90.68 ± 0.84 

TABLE II. RUNTIME (% ± STD) OF UCI BENCHMARKS FOR TWO 
CLASSES PROBLEMS FOR Ny-PCYM 

two-class UCI data Ny-EPCVM EPCVM CVM 

banana 13.56 ± 3.46 39.89 ± 3.58 4.3 ± 0.12 
diabetes 0.78 ± 0.58 1.93 ± 0.34 0.14 ± 0.02 
image 19.29 ± 2.62 30.93 ± 3.29 0.65 ± 0.02 
ringnorms 42.74 ± 1.20 232.21 ± 28.09 6.26 ± 0.05 
splice 43.85 ± 1.22 17.60 ± 3.60 2.11 ± 0.02 
twonorm 77.87 ± 12.06 99.00 ± 22.52 3.09 ± 0.00 
waveform 46.24 ± 5.24 131.20 ± 3.31 3.47 ± 0.01 

initialization effects as reflected by the in general low standard 
deviations which are similar to those of CVM. The prediction 
accuracies on the test data are comparable to those of EPCVM. 
For the image and waveform dataset the accuracy dropped 
down in comparison to EPCVM. For the image data we can 
explain this by the large number of potential clusters in this 
segmentation dataset which where not sufficiently represented 
by the rather small number of landmarks. The comparison with 
CVM clearly shows competitive behaviour for both methods. 
The runtime (given in seconds for a single model) of the Ny­
EPCVM is in general much better than for EPCVM. The CVM 
has a runtime complexity independent of N, if probabilistic 
sampling is used [14], but is constrained to metric inputs. 

A runtime analysis of EPCVM, CVM and Ny-EPCVM is 
given in Figure 1 at logarithmic scale. 

In a further experiment we consider non-vectorial data 
given by means of indefinite kernels which have not yet 
been considered for the EPCVM but are of wide interest 
[17]. See [18] for a recent survey on this topic. Indefinite 
kernels are often obtained from domain specific measures like 
alignment functions, shape measures or other score-functions 
[19], [20]. In contrast to many standard kernel approaches like 
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Fig. L CPU time at logarithmic scale for a larger dataset for EPCYM, CYM 
and Ny-EPCYM. For Ny-EPCYM 

is a very sparse method as already outlined in [2] and for new 
samples only the similarities to the very few basis functions 
used in the model have to be calculated. 

The data sets are: Sonatas (l068pts, 5 classes) taken from 
[25]. It is comprised of pairwise dissimilarities between 1,068 
sonatas from the classical period (by Beethoven, Mozart and 
Haydn) and the baroque era (by Scarlatti and Bach). The 
musical pieces were given in the MIDI file format, taken 
from the online MIDI collection Kunst der Fugel2• Their 
mutual dissimilarities were measured with the normalized 
compression distance (NCD), see [26]. 

Gesture (l500pts, 20 classes), taken from [27] is a set of 
dissimilarities generated from a sign-language interpretation 
problem. The gestures are measured by two video cameras 
observing the positions of the two hands in 75 repetitions of 
creating 20 different signs. The dissimilarities are computed 
using a dynamic time warping procedure on the sequence of 
positions [28]. 

Zongker (2000pts, 10 classes) digit dissimilarity data (2000 
points in 10 classes) from [27] is based on deformable template 
matching. The dissimilarity measure was computed between 
2000 handwritten NIST digits in 10 classes, with 200 entries 
each, as a result of an iterative optimization of the non-linear 
deformation of the grid [29]. 

Proteom (2604pts, 53 classes) which contains a compre­
hensive set of protein families and appeared first in the work 
of [30]. The pairwise structural alignments are computed by 
[30]. Each sequence belongs to a group labeled by experts, 
here we use the data as provided in [27]. 

Chromosom (4200pt, 21 classes) from [31] constitute a 
benchmark from cytogenetics. 4,200 human chromosomes 
from 21 classes are represented by grey-valued images. These 
are transferred to strings measuring the thickness of their 
silhouettes. The string indicates the thickness of the gray levels 
of the image. These strings can be directly compared using 
the edit distance based on the differences of the numbers and 
insertion/deletion costs 4.5 [31]. The classification problem is 
to label the data according to the chromosome type. 

All data are processed as indefinite kernels with 100 
landmarks if not stated otherwise 1 3 .  For all experiments we 
report mean and standard errors as obtained by a 10 fold 
crossvalidation. The probabilistic outputs can be directly used 

IOMore recently the authors have proposed a fast eigenvalue correction for 
low rank matrices [22], [23], but these corrections are not always appropriate. 

lIThe few SYM based kernel methods available for indefinite kernels use 
a proxy approach not scaling to larger data and are not probabilistic. 

12http://www.kunstderfuge.com 
13Dissimilarities have been converted to similarities by double centering 

using the approach given in [32] 



TABLE III. ACCURACIES - INDEFINITE KERNELS 

Sonatas 
gesture 
zongker 
proteom 
chromosom 

Ny-EPCYM 

83.90 ± 2.0 
92.53 ± 1.2 
87.65 ± 0.9 
94.70 ± 1.64 
92.00 ± 1.40 

EPCYM 

84.58 ± 2.8* 
91.20 ± 1.8 
97.70 ± 1.11 
96.24 ± 0.98 
95.86 ± 0.44 

iKFD 

80.54 ± 0.03 
98.07± 0.7* 
96.95 ± 0.1 
99.35 ± 0.8 
97.29 ± 0.7 

TABLE IY. RUNTIMES - INDEFINITE KERNELS 

Ny-EPCYM EPCYM iKFD 

Sonatas 12.46 ± 1.0 13.69 ± 1.78 40.11 ± 0.5 
gesture 12.32 ± 0.3 12.65 ± 0.75 69.38 ± 7.5 
zongker 13.09 ± 1.3 14.12 ± 3.00 74.22 ± 6.9 
proteom 14.26 ± 0.93 30.30 ± 3.30 758.90 ± 28.4 
chromosom 29.97 ± 0.7 37.81 ± 0.9 1073.9 ± 26.2 

to allow for a reject region but can also be used to provide 
alternative classification decisions e.g. in a ranking framework 

In Table III and Table IV we show the results for different 
non-metric proximity datasets using Ny-EPCVM, EPCVM and 
iKFD. We observe that the prediction accuracy of iKFD is 
better compared to Ny-EPCVM on the non-metric proximity 
data. The main reason for this effect can be found if we 
consider the model complexity. For iKFD basically all training 
points are used in the model;::: 97% whereas for Ny-EPCVM 
only less than 0.3% are kept. In practice it is often costly 
to calculate the non-metric proximity measures like sequence 
alignments and accordingly sparse models are very desirable. 
Considering the runtime Ny-EPCVM is again faster although 
not so pronounced as before since the number of points 
per class are smaller then for the benchmarks. The speed-up 
compared to iKFD is obvious. For non-psd data Ny-EPCVM is 
obviously substantially better in runtime and sparsity compared 
to the state of the art approach while showing good prediction 
accuracy. 

V. CONCLUSIONS 

In this paper we presented an alternative formulation of 
the probabilistic classification vector machine employing the 
Nystrom approximation. Here we also provided an alterna­
tive derivation of a Nystrom approximation for asymmetric 
matrices based on a Nystrom approximated SVD. We found 
that Ny-EPCVM is competitive in the prediction accuracy with 
EPCVM and alternative approaches while taking substantially 
less memory and runtime. For a variety of benchmark data 
the Ny-EPCVM performed competitive to EPCVM and CVM. 
Additionally Ny-EPCVM and EPCVM can also be applied to 
non-mercer kernels which make them available for moderate 
to larger scale indefinite proximity data. Ny-EPCVM and 
EPCVM showed quite good results with respect to iKFD but 
with a much sparser model. The complexity of iKFD is cubic 
whereas for EPCVM we have squared and for Ny-EPCVM 
linear complexity. Further, the EPCVM and Ny-EPCVM are 
full probabilistic classifiers with obviously good performance 
on a broad spectrum of problems. Now the effective EPCVM 
technique is also available for even larger data sets. Although 
Ny-EPCVM shows a large number of benefits there are also 
some shortcomings. The major underlying assumption of Ny­
EPCVM is an intrinsically low dimensional feature space, 

scaling with the rank of the Nystrom approximation. If prox­
imity matrices have a high intrinsic dimension the number of 
landmarks has to be large and the benefits of Ny-EPCVM 
are reduced. Also if the data sets are rather small with some 
hundred points one better takes the original EPCVM or even 
PCVM since the approximation effects of the Ny-EPCVM may 
have a negative effect on the results. The Ny-EPCVM provides 
now an effective way to obtain a probabilistic classification 
model for medium to large datasets with linear runtime and 
memory complexity. 
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