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Abstract— Learning Using privileged Information (LUPI),
originally proposed in [1], is an advanced learning paradigm
that aims to improve the supervised learning in the presence of
additional (privileged) information, available during training,
but not in the test phase. We present a novel metric learn-
ing methodology that is specially designed for incorporating
privileged information in ordinal classification tasks, where
there is a natural order on the set of classes. This is done
by changing the global metric in the input space, based
on distance relations revealed by the privileged information.
The proposed model is formulated in the context of ordinal
prototype based classification with metric adaptation. Unlike the
existing nominal version of LUPI in prototype models [8], [9], in
ordinal classifications the proposed LUPI model takes explicitly
into account the class order information during the input space
metric learning. Experiments demonstrate that incorporating
privileged information via the proposed ordinal-based metric
learning can improve the ordinal classification performance.

I. INTRODUCTION

LEarning Using privileged Information (LUPI) is a new
learning paradigm originally proposed by Vapnik [1]

in a Support Vector Machine (SVM) framework, namely
SVM+. It aims to improve the supervised learning in the
presence of additional (substantial) information x∗ ∈ X∗

about training examples x ∈ X , where the privileged
information will not be available at the test stage. In the
SVM+ context, the additional information is used to estimate
the slack variable model. Indeed, slack variables are needed
only in the training stage, eliminating the need for privileged
information during testing. However, this approach a) is
limited to binary classification problems; b) is difficult to
interpret in terms of how exactly the additional information
influences the resulting classifier through the slack model; c)
can be computationally expensive for large-scale data sets,
and d) is specially designed for the SVM model and hence
inapplicable to other classifiers.

A more direct and flexible methodology for LUPI, based
on Information Theoretic Metric Learning (ITML) [10], was
proposed in the context of prototype-based classification [8],
[9]. Prototype-based models lend themselves naturally to
multi-class problems, are more amenable to interpretations
and can be constructed at a smaller computational (compared
to SVM+). The main idea behind the LUPI approach in [8],
[9] is the modification of the metric in the original data
space X , via the ITML formulation, based in data proximity
‘hints’ obtained from the privileged information space X∗.
Furthermore, in [8], [9] two methods were proposed for
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incorporation of the new metric (obtained based on privileged
information) into the original data space X .

All previous LUPI variants (whether in SVM+ or in
metric learning formulation) were designed for incorporating
privileged information for nominal classification problems.
However, the training examples may be labeled by classes
with a natural order imposed on them (e.g classes can repre-
sent rank). In the context of LUPI in prototype-based models
[8], [9], the applied metric learning (i.e. ITML) for LUPI
learns a distance metric for data space X from a number
of (dis)similarity constraints obtained in the privileged space
X∗ through proximity information and label agreement. The
appropriate metric for space X is found by keeping similar
and dis-similar pairs closer and farther, respectively. Such an
intuitive strategy may not, however, work well when classes
are ordered, i.e. ordinal classification tasks. The ordinal label
information is not considered explicitly during the constraints
selection and metric learning. This can have detrimental
effect on model performance.

This paper proposes an ordinal version of the ITML ap-
proach, namely Ordinal-based ITML (OITML), specifically
designed for incorporating privileged data during training in
ordinal prototype-based models. In particular, the new metric
learning method will be applied in the context of Ordinal
Generalized Matrix LVQ (OGMLVQ) [2], [3]. The proposed
metric learning method, OITML , aims to learn a new metric
in the original data space X , based on distance relations
revealed in the privileged space X∗, while preserving the
linear order of classes in the training set. The class order
information is utilized in formulating the (dis)similarity
constraints, as well as in the distance metric learning Itself.
The new metric is then incorporated into X in the context
of OGMLVQ classification as suggested in [8], [9].

In supervised nominal classification settings, recent ad-
vances in metric learning make it possible to learn distance
functions that help to improve the classification accuracy,
provided some side information is available (e.g. in the
form of (dis)similarity constraints), e.g. Information Theo-
retic Metric Learning (ITML) [10], Large Margin Nearest
Neighbor [11]. However, in this paper we are interested
in learning a distance metric in the original space using
similarity constraints obtained form the privileged space, that
is specifically tailored to ordinal classification settings.

Some advances have been made in the development of
metric learning algorithms for improving rank prediction ac-
curacy (e.g. [17], [18], [19], [20]). Using a SVM formulation,
the method presented in [20] aims to learn a metric from
relative comparisons. The learned metric preserves ranks of



distances based on a set of qualitative constraints derived
from the training data. Such constraints lead to a convex
quadratic programming problem. A similar approach has
been presented in [18], in the context of image retrieval. It
addresses the problem of heterogeneous input space where
‘must-link’ (or similarity) constraints may vary from one
query to another.

We empirically study our general methodology - LUPI
via the proposed OITML - in three experimental settings:
a) ordinal classification benchmark data sets, b) large scale
astronomical ordinal classification problem and c) large scale
ordinal time series prediction.

This paper has the following organization: Section II
gives the background and briefly describes previous methods
related to this study. Section III and IV introduces a novel
ordinal-based metric learning approach for incorporation
of privileged knowledge in ordinal prototype-based classi-
fication. Experimental results are presented in section V.
Section VI concludes the study by summarizing the key
contributions.

II. BACKGROUND AND RELATED WORK

A. Prototype-Based Models and their Ordinal Extension

Prototype-based models, and particularly Learning Vec-
tor Quantization (LVQ) frameworks, constitute a family of
supervised multi-class learning algorithms that adapt class
prototypes to the training data in an on-line manner [6],
[7], [5], [4]. Kohonen introduced the original LVQ1 scheme
back in 1986 [6]. The prototypes are updated using Hebbian
online learning. Numerous modifications/extensions of the
basic LVQ1 scheme have been proposed in the literature.
Recent variations allow for an explicit cost function [7]
from which the prototype updates are derived, or allow for
incorporation of adaptive distance measure in the data space
[5], [4].

Most of the existing LVQ variants focus on predicting
data labels from nominal (non-ordered) classes. Pattern
recognition problems of classifying examples into ordered
classes (ordinal classification), have received a great deal of
attention as they appear in many practical applications (e.g.
information retrieval [15], astronomical analysis [14] and
medical applications [16]). Recently, the Generalized Matrix
LVQ (GMLVQ) [4] was extended to the Ordinal GMLVQ
(OGMLVQ) [2], that is specifically designed for classifying
data items into ordered classes. The GMLVQ algorithm is a
new heuristic LVQ extension of the GLVQ [7] model with a
full generalized matrix tensor-based distance measure in the
data space.

In the OGMLVQ [2], we assume training data of the
form (xi, yi) ∈ Rm × {1, ...,K}, i = 1, 2, ..., n, where
the K classes are ordered, where K > K − 1 > ... > 1.
As in LVQ models, the OGMLVQ network consists of a
number of prototypes wi ∈ Rm, i = 1, 2, 3, ..., L, which are
characterized by their location in input space and their class
label c(wi) ∈ {1, ...,K}. Given an (m×m) positive definite
matrix Λ, the algorithm uses a generalized form of the full

matrix distance measure,

d2Λ(xi, w) = (xi − w)TΛ(xi − w). (1)

Positive definiteness of Λ can be achieved by substituting
Λ = ΩTΩ, where Ω ∈ Rm×m, is a full-rank matrix.
Furthermore, Λ needs to be normalized after each learning
step to prevent the algorithm from degeneration.

The classification is based on a winner-takes-all scheme:
a pattern xi ∈ Rm is classified with the label of the closest
prototype, c(xi) = c(wj), j = arg minl d

2
Λ(xi, wl). For

each training pattern xi, the algorithm implements Hebbian
updates for the closest prototype w and for the metric pa-
rameter Ω. The nominal GMLVQ algorithm aims to position
the class prototypes in the input space so that the overall
misclassification error is minimized. However, the OGMLVQ
model adapts the class prototypes so that the average absolute
error (|c(xi)− c(wj)|) of class mislabeling is minimized. If
c(xi) and c(w) are close enough in their class order relation,
then w is attracted towards xi, otherwise w is repelled
away. Thus, unlike in nominal LVQ models, the class order
information is utilized during training in selection of the class
prototypes to be adapted, as well as in determining the exact
manner in which the prototypes get updated.

Note that missing values in training patterns can be
handled by LVQ models. One of the most straightforward
options is to simply ignore the missing dimensions when
comparing prototypes with input data. The prototype and
metric updates only affect the known features.

B. Information Theoretic Approach for Learning Using Priv-
ileged Information

In Learning Using privileged Information (LUPI) frame-
work introduced in [1] in the context of SVM+, during
training, a classifier may be given, along with training input
xi ∈ X , some additional information x∗i ∈ X∗ about xi.
Such additional (privileged) information, however, will not
be available in the test phase, where labels must be estimated
using the trained model for previously unseen inputs x ∈ X
only (without x∗).

Our earlier work in [8], [9] introduced a new variant
of LUPI, based on Information Theoretic Metric Learning
(ITML) [10], in prototype-based models (particularly in
the GMLVQ [4]). Prototype-based models lend themselves
naturally to multi-class problems, are more interpretable
and can be constructed at a smaller computational cost
when compared to SVM+. The utilized ITML model is a
supervised metric learning model that aims to learn a distance
metric by minimizing the relative entropy between two mul-
tivariate Gaussian distributions, where the first one encodes
the distance metric to be learned (via Mahalanobis distance)
and the second one a reference Gaussian distribution. The
minimization is enforced subject to a set of (dis)similarity
constraints obtained from the data set [10].

In the ITML for LUPI formulation [8], [9], we are given
training data (xi, yi) ∈ Rm, i = 1, 2, ..., n in the original
space X and additional information x∗i ∈ X∗ for r ≤ n



training examples xi ∈ X , i = 1, 2, ..., r. A metric tensor
M on space X defines the distance,

d2M (xi, xj) = (xi − xj)TM(xi − xj), xi, xj ∈ X. (2)

The privileged information in X∗ is used to describe a set
of constraints specifying pairs of privileged examples that
are ‘similar’ (S+) or ‘dis-similar’ (S−):

• S+ = {(xi, xj)|xi and xj are judged to be similar}
• S− = {(xi, xj)|xi and xj are judged to be dis-similar}

Such constraints are imposed on the original space X through
the ITML model. The metric d2M is modified so that the
distances under the new learned metric d2C on X are shrunk
and enlarged for pairs of points that have ‘similar’ and ‘dis-
similar’ privileged information, respectively.

Whereas in typical ITML [10] (dis)similarity constrains
are taken directly from label agreements between training
pairs, the ITML for LUPI [8], [9] uses proximity information
about privileged pairs in space X∗, as well as the label
matches of corresponding pairs in space X . Given a global
metric tensor M∗ on X∗ with the corresponding distance,

d2M∗(x∗i , x
∗
j ) = (x∗i−x∗j )TM

∗(x∗i−x∗j ), x∗i , x∗j ∈ X∗, (3)

the sets S+ and S− are constructed as follows:

• If d2M∗(x∗i , x
∗
j ) ≤ u∗ and c(xi) = c(xj)(same label),

then (xi, xj) ∈ S+.
• If d2M∗(x∗i , x

∗
j ) ≥ l∗ and c(xi) 6= c(xj)(different label),

then (xi, xj) ∈ S−.

Where u∗ and l∗ are small and large distance thresholds
defined on space X∗, initialized as given in [8], [9].

In ITML for LUPI, closeness relation between the learned
metric tensor C and the original metric tensor M is
measured through the Bregman divergence (Burg) which
is minimized during learning while enforcing the derived
constraints.

Two approaches for incorporating the learned metric tensor
C into a classifier operating on X were proposed in [8], [9].
The first approach performs a linear projection in the original
space X such that distances pairs in S+ are minimized, while
they are maximized for pairs in S−. The classifier is then
trained on the transformed points. In the second approach,
that is specially designed for the OGMLVQ classification, the
new metric tensor C is used only for retraining the prototype
positions in X , knowing that the metric tensor on X has
changed. This is done by running the OGMLVQ algorithm
while fixing C.

It was shown in [8], [9] that the new learned metric (which
reflect the privileged data distance structure) can improve
the performance of nominal classification tasks. However,
the training examples may be labeled by classes with a
natural order imposed on them. The next section proposes an
ordinal metric learning algorithm, based on the ITML [10],
specifically designed for incorporating privileged for ordinal
classification tasks.

III. ORDINAL-BASED INFORMATION THEORETIC METRIC
LEARNING (OITML) FOR INCORPORATING PRIVILEGED

INFORMATION

Consider a training data set (xi, yi) ∈ Rm × {1, ...,K},
where i = 1, 2, .., , n, and K is the number of ordered classes
K > K − 1 > ... > 1. As before, assume that additional
(privileged) information x∗i ∈ X∗ is given for r ≤ n training
examples xi ∈ X , i = 1, 2, ..., r.

As in the case of nominal version of ITML for LUPI
[8], [9], the aim here is to learn a data metric C for the
original space X informed by inter-point distances in the
privileged X∗ space. The privileged information in X∗ is
used to describe sets of similarity S+ and dis-similarity S−
constraints, as defined in section II-B. However, due to the
ordinal nature of the underlying training classes, the class
order information will be explicitly taken into account in the
constraints derivation, as well as in distance metric learning
for the original space X .

A. (Dis)similarity Constraints Derivation

Consider a privileged pair (x∗i , x
∗
j ) ∈ X∗ with distance

d2M∗(x∗i , x
∗
j ), see Eq.(3) and the corresponding original

training pair (xi, xj) ∈ X with distance d2M (xi, xj) Eq. (2).
Whereas in nominal ITML for LUPI [8], [9] constrains are
decided based on proximity information and label agreement,
in the OITML instead of strict label agreement, we will use
the absolute class difference,

H(xi, xj) =| c(xi)− c(xj) | (4)

where c(x) denotes the class label of x.
Given a “tolerable class difference threshold” κ ≥ 0,

defined on the range of the loss function1, the (dis)similarity
sets S+ and S− are now constructed as follows2:
• If d2M∗

(
x∗i , x

∗
j

)
≤ u∗ and H(xi, xj) ≤ κ (close in their

class order), then (xi, xj) ∈ S+.
• If d2M∗

(
x∗i , x

∗
j

)
≥ l∗ and H(xi, xj) > κ (apart in their

class order), then (xi, xj) ∈ S−,
where, as before, u∗ and l∗ are ‘small’ and ‘large’ distance
thresholds (on X∗), respectively.

B. Weighting Scheme for the Metric Learning

Unlike nominal ITML for LUPI, the OITML for LUPI
aims to learn an optimal metric in space X where distances
induced among similar/dis-similar data pairs preserve the
natural order relation between their classes. Thus, the notion
of similar/dis-similar data pairs vary according to the corre-
sponding class differences. Loosely speaking, if the class of
point x1 is closer in class order to the class of x2 than to the
class of x3, i.e. H(x1, x2) < H(x1, x3) ≤ κ, then during
the metric learning the ‘force’ pulling together x1 and x2 is
larger the force applied to x1 and x3. Analogous principle
applies the “repulsive force” applied on dis-similar pairs.

1in our case [0,K − 1]
2Note that it is not necessary for all training points in X to be involved

pairs of points in S+ or S−.



In the following we will propose a weighting scheme3

for the OITML for LUPI which controls the amount of
distance updates imposed on data pairs. There are two
distinct weighting schemes for similar and dis-similar points.

1) Weighting two similar points in (xi, xj) ∈ S+:
We propose a Gaussian weighting scheme,

ϑ+ij = exp

{
− (H(xi, xj))

2

2σ2
+

}
, (5)

where, σ+ is the Gaussian kernel width.
2) Weighting two dis-similar points in (xi, xj) ∈ S−:

Denote by εmax the maximum class rank difference
within all dis-similar pairs (xl, xm)∀(l,m) ∈ S−, i.e.,

εmax = max
(xl,xm)∈S−

H(xl, xm)

The weight factor ϑ−ij for two dis-similar points
(xi, xj) ∈ S− is then calculated as follows:

ϑ−ij = exp

{
− (εmax −H(xi, xj))

2

2σ2
−

}
(6)

where σ− is the Gaussian kernel width.
The calculated weighting factors ϑ± are utilized in the new
OITML scheme presented in the next section.

C. Ordinal-Based Metric Learning

We aim to learn a new positive definite matrix (metric
tensor) C on X , yielding the distance

d2C(xi, xj) = (xi − xj)TC(xi − xj), xi, xj ∈ X,

that while incorporating dominant distance relations in the
privileged space X∗, also respects the class order.

Distance metric updates for similar/dis-similar pairs in
space X are performed using the corresponding weights
ϑ±. Thus, different degree of attraction and repulsive forces
(based on data pairs class order relations) are allocated
among similar and dis-similar pairs, respectively.

As in the standard ITML [10], the similarity between two
the metrics C and M is measured through the Bregman
divergence (Burg) defined over the cone of positive definite
matrices as,

DBurg (C,M) = tr (CM)
−1 − log det (CM)−m,

where tr denotes the trace operator and m is the data
dimensionality. Hence, the learning task is posed as the
following constrained minimization problem4:

min
C�0

DBurg (C,M) , subject to

d2C (xi, xj) ≤ l · ϑ+ij , if (xi, xj) ∈ S+, and

d2C (xi, xj) ≥ u · ϑ−ij , if (xi, xj) ∈ S−, (7)

where 0 < l < u are the small and large distance thresholds
on X , respectively.

3A similar technique was originally introduced in [2] for ordinal prototype
based models.

4 We use the notation C � 0 to signify that C is positive definite matrix

As in the original ITML formulation [10], [8], [9], in the
OITML, for guaranteeing a feasible solution for C, a trade-
off parameter ν > 0 is introduced governing the influence
of the constraints (and hence the influence of the privileged
information). Let s(i, j) denote the index of the (i, j)-th
constraint, and let ξ be a vector of slack variables, initialized
to ξ0, with components equal to l for similarity constraints
and u for dissimilarity constraints. Then the optimization
problem can be reformulated as:

min
C�0,ξ

DBurg (C,M) + ν ·DBurg (diag(ξ), diag(ξ0))

subject to dC (xi, xj) ≤ ξs(i,j) · ϑ+ij , if (xi, xj) ∈ S+,

and dC (xi, xj) ≥ ξs(i,j) · ϑ−ij , if (xi, xj) ∈ S−. (8)

Similarly to the original ITML model [10], [8], [9],
optimizing (8) involves repeatedly projecting (Bregman pro-
jections) the current solution onto a single constraint, via the
update:

Ct+1 = Ct + βtC t(xit − xjt)(xit − xjt)
TCt, (9)

where xit and xjt are data points associated with one of
the (dis)similarity constraints from S± at time t and the
learning rate βt decreases in time [10], [8], [9]. The algorithm
initializes C to the precision matrix of the data in X
(Mahalanobis distance).

The OITML algorithm for LUPI can be summarized as
follows:
• Inputs and Initialization:

X: original training data n×m matrix, where m is the
dimensionality of the original data.
X∗: privileged training data r × q matrix, where q is
the dimensionality of the privileged data.
κ: tolerable class difference threshold, used in Eq. (4).
σ+, σ−: Gaussian kernel widths, used in Eq. (5) and
(6), respectively.
ν: trade-off parameter, used in Eq. (8).
Lower and upper distance threshold (l∗, u∗) and (l, u)
in spaces X∗ and X , respectively.

1) Based on Eq.(3) and (4), derive sets of similar S+

and dis-similar S− constraints, as given in section
III-A.

2) ∀ (i, j) ∈ S+ or (i, j) ∈ S− do:
– if (xi, xj) ∈ S+, calculate the corresponding
ϑ+ij based on Eq. (5).

– if (xi, xj) ∈ S−, calculate the corresponding
ϑ−ij based on Eq. (6).

3) Initialize C to the precision matrix of the data in
X .

4) ξs(i,j) ← l for (i, j) ∈ S+, ξs(i,j) ← u for (i, j) ∈
S−

5) Solve optimization problem in Eq. (8) with repeat-
edly projecting (Bregman projections) the current
solution onto a single constraint, via the update in
Eq. (9).

• Output: New metric tensor C in X incorporating the
privileged data.



IV. INCORPORATING PRIVILEGED INFORMATION INTO
THE OGMLVQ

As in [8], [9], we suggest two approaches for incorporating
the learned metric tensor C into the OGMLVQ classifier
operating on X .

1. Linear Transformation on X (OITML-LT):
Knowing that metric tensor C is found in the parametrized
form C = UTU , then for any training point x ∈ X , x̃ = Ux
is the image of x under the basis transformation U . Distances
imposed on similar or dis-similar data pairs will now in
general be shrunk or expanded according to (dis)similarity
constraints. The standard OGMLVQ algorithm is now ap-
plied to the transformed data {(x̃1, y1), ...., (x̃n, yn)}. Note
that,the linear transformation approach allows for application
of any suitable ordinal regression classifier.

2. Extended OGMLVQ (OITML-Ext):
OGMLVQ is first run on the original training set without
privileged information, yielding a global metric d2M (given
by metric tensor M ) and a set of prototypes wj ∈ Rm,
j = 1, 2, ..., L. Then, the OITML technique finds metric d2C
on X , based on the privileged information, that will replace
d2M . Finally, OGMLVQ is run once more while fixing the
metric tensor C and modifying the prototype positions.

V. EXPERIMENTS AND EVALUATIONS

We perform experiments in three ordinal classification
settings; a) ordinal classification benchmark data sets, b)
large scale astronomical ordinal classification problem and c)
large scale ordinal time series prediction. In each experiment,
we evaluate the effectiveness of incorporating the privileged
information, via the proposed OITML, against the state
of art OGMLVQ (trained without privileged information)
used as a baseline. Furthermore, to show flexibility the
proposed OITML model, we also employ the SVM Ordinal
Regression with IMplicit Constraints (SVOR-IMC) classifier
[15] operating in the modified metric found by OITML. For
computational feasibility only data from the first experiment
was used.

Three evaluation metrics are utilized to measure accuracy
of predicted class ŷ with respect to true class y on a test set:

1) Mean Zero-one Error (MZE) - (misclassification rate)
is the rate of incorrect classified patterns, MZE =∑v

i=1 I(yi 6=ŷi)
v . where v is the number of test examples

and I(yi 6= ŷi) denotes the indicator function returning
1 if the predicate holds and 0 otherwise.

2) Mean Absolute Error (MAE) - the average absolute
deviation of the predicted ranks from the true ranks,
MAE =

∑v
i=1 |yi−ŷi|

v .
However, MZE and MAE are not suitable for ordinal
classification problems with imbalanced classes. Macro-
averaged Mean Absolute Error (MMAE) [21], is an
evaluation measure which estimates the mean of the
class-conditional mean performances of the classifier.
It is more appropriate for evaluating a classifier perfor-
mance under imbalanced classes.

3) Macro-averaged Mean Absolute Error (MMAE) [21]
- macro-averaged version of Mean Absolute Error - it
is a weighted sum of the classification errors across
classes, MMAE = 1

K

∑K
k=1

∑
yi=k |yi−ŷi|

vk
. where K

is the number of classes and vk is the number of test
points whose true class is k.

In all experiments, metric tensor M∗ in X∗ is set
to the precision matrix5 of the privileged training points
x∗1, x

∗
2, ..., x

∗
r (Mahalanobis distance in X∗). The same ap-

plies to the initial metric tensor M in the original space X .
For OITML6 approach, in order to set small and larger

distance thresholds (0 < l∗ < u∗) in space X∗, we first
calculate all pairwise squared distances dM∗(x∗i , x

∗
j ), 1 ≤

i < j ≤ r. These distances are then sorted in ascending
order and, given a lower percentile parameter a∗ > 0, a
distance threshold l∗ is found such that a∗ percent of the
lowest pairwise squared distances dM∗(x∗i , x

∗
j ) are smaller

than l∗. Analogously, given an upper percentile parameter
b∗ > a∗, a distance threshold u∗ > l∗ is found such that
(1 − b∗) percent of the largest pairwise squared distances
dM∗(x∗i , x

∗
j ) are greater than u∗. The same strategy is

applied for obtaining the distance thresholds 0 < l < u
on X . In all experiments, (hyper-)parameters of OITML and
OGMLVQ algorithms were tuned via cross-validation on the
training set. In OITML, lower and upper bound percentiles
for the privileged and original spaces are chosen over the
values of {3, 5, 10} for (a, a∗) and of {90, 95, 98} for (b,
b∗). Furthermore, the trade-off parameter ν is tuned over
the values {0.01, 0.1, 1} and the tolerable class difference
threshold κ is is tuned over the values {0, 1, 2}.

For the OGMLVQ classifier, number of prototypes per
class are tuned over the set {1, 2, 3, 4, 5} in the first ex-
periment (small-scale benchmark data sets), and over the
set {5, 10, 15, 20} in second and third experiments (large-
scale data sets). The class prototypes are initialized as means
of random subsets of training samples selected from the
corresponding class. Relevance matrices are normalized after
each training step to

∑
iΛii = 1 (see section II-A).

A. Controlled Experiments on Benchmark Data Sets

In this section we report on experiments performed us-
ing two benchmark ordinal regression data sets7, namely
Pyrimidines and MachineCpu, used in several ordinal regres-
sion formulations (e.g. [15]). Each data set was randomly
partitioned into training/test splits 10 times independently,
yielding 10 re-sampled training/test sets of size 50/24 and
150/59 for Pyrimidines and MachineCpu, respectively. On
each data set, labels are discretized into five ordinal quantities
using equal-frequency binning.

In order to demonstrate the advantage of the proposed
method for incorporating the privileged information, an ini-

5The inverse of the covariance matrix.
6We modified the ITML Matlab code available from http://www.

cs.utexas.edu/users/pjain/itml/. The parameters are tuned via
cross-validation.

7Available at http://www.gatsby.ucl.ac.uk/˜chuwei/
ordinalregression.html



tial experiment is conducted which categorizes the input
dimensions into ’original’ and ’privileged’ features in spaces
X and X∗, respectively. Features categorization is driven by
a ‘wrapper’ approach. For each data set, we sort the input
features in terms of their relevance for the ordinal classifier
(in our case OGMLVQ). The first most relevant half of
the features will form privileged information, the remaining
half will constitute the original space X . privileged features
will only be incorporated in the metric learning, via the
proposed OITML model, and will be absent during the
ordinal classification testing. On each data set, parameters of
the algorithm were tuned through 5-fold cross-validation on
the training set. Note that, the ordinal classification process
on the new manipulated metric in the input space does not
necessarily need to be implemented using the OGMLVQ
classifier. Hence, in this experiment (using the same data pre-
processing and experimental settings), the proposed OITML
is assessed using the SVOR-IMC classifier after learning the
new metric via OITML. We used 5-fold cross validation
to determine the optimal values of the SVOR-IMC model
parameters (the Gaussian kernel parameter and the regular-
ization factor) [15], both ranging from {-2, -1,..., 1, 2}.

The average MZE and MAE results over 10 random-
ized data sets splits (trials), along with standard deviations
are shown in Table I. In the OGMLVQ classification, the
OITML-LT approach achieves the best overall performance.
In relative terms, on average, it outperforms the base-
line OGMLVQ (trained on X only) by 8% and 6% on
Pyrimidines and MachineCpu data sets, respectively. For the
SVOR-IMC classification, incorporating the privileged infor-
mation via the proposed OITML-LT improves the general
performance on the Pyrimidines data set by 2% (relatively)
when compared to the baseline SVMOR-IMC (trained on X
only). However, it slightly reduces the performance on the
MachineCpu data set. Incorporating privileged information
via OITML in the OGMLVQ classifier is more successful
than in the SVMOR based classifier. This is because OGM-
LVQ does not only incorporate the privileged information in
terms of the learned metric on X , but it also re-positions
the class prototypes ‘optimally’ with respect to the modified
metric. Our OITML method can be considered a natural
extension of the recent developments in LVQ, where the
original LVQ approaches have been first extended to diagonal
[5] and later to full metric tensors [4], which is further
extended to the ordinal version, the OGMLVQ classifier [2].

B. Galaxy Morphological Ordinal Classification using Full
Spectra as privileged Information

Astronomers have been using several schemes for classi-
fying Galaxies according to their morphological structure,
i.e. visual appearance (e.g [12], [14]). The popular Hub-
ble sequence scheme8 classifies galaxies into three broad
categories - Elliptical, Spiral and Irregular. Later on, the
de Vaucouleurs scheme9 (used in [14]) proposed a wider

8http://www.galaxyzoo.org/
9http://en.wikipedia.org/wiki/Galaxy_

morphological_classification

TABLE I
MZE AND MAE RESULTS ON TWO BENCHMARK ORDINAL REGRESSION

DATA SETS, ALONG WITH STANDARD DEVIATIONS (±) ACROSS 10
TRAINING/TEST RE-SAMPLING, FOR OGMLVQ AND SVOR-IMC

CLASSIFICATIONS (WITHOUT PRIVILEGED DATA) AND THE OGMLVQ
AND SVOR-IMC (WITH OITML FOR LUP).

Algorithm Pyrimidines MachineCpu
MZE MAE MZE MAE

OGMLVQ 0.594
±(0.063)

0.787
±(0.082)

0.463
±(0.059)

0.518
±(0.066)

OITML-LT +
OGMLVQ

0.548
±(0.052)

0.728
±(0.088)

0.429
±(0.040)

0.496
±(0.048)

OITML-Ext +
OGMLVQ

0.587
±(0.044)

0.749
±(0.075)

0.424
±(0.040)

0.501
±(0.057)

SVOR-IMC 0.534
±(0.056)

0.681
±(0.12)

0.523
±(0.026)

0.571
±(0.038)

OITML-LT +
SVOR-IMC

0.514
±(0.101)

0.671
±(0.18)

0.535
±(0.019)

0.581
±(0.044)

range of morphological classes (by considering more de-
tailed morphological characteristic) which reflect galaxy age,
thus imposing a meaningful order among the classes. This
turns the galaxy morphology classification into an ordinal
classification problem. Each class in the de Vaucouleurs
system corresponds to one numerical value where smaller
numbers correspond to early-type galaxies (e.g. elliptical and
lenticular) and larger number correspond to late types (e.g.
spiral and irregular).

Most of the existing galaxy morphological ordinal classi-
fication approaches use as input features galaxy photomet-
ric data, and ignore the costly-to-obtain full spectroscopic
information. In a nominal classification setting (under the
Hubble sequence classification scheme), our recent work on
ITML for LUPI in prototype models [8], [9] revealed that
using spectroscopic information as privileged information
in the model construction phase (during training), along-
side the original photometric data, can enhance the galaxy
morphology classification based on photometric data only
(test phase). This leads us to hypothesize that in the ordinal
classification setting (under the de Vaucouleurs classification
scheme), incorporating the spectral privileged information
will improve the ordinal classification in test regime (using
photometric data only).

Our data set contained 7,000 galaxies, classified into six
ordinal morphological classes, extracted from a visual mor-
phological classification catalog10 in the Sloan Digital Sky
Survey (SDSS) Data Release 4 (DR4) (galaxy IDs and their
ordinal labels). As in [9], galaxies are represented through 13
photometric features (in X) and 8 privileged spectral features
(in X∗), both extracted based on galaxy IDs from the SDSS
DR9 [13] data catalog11. Algorithm parameters have been
tuned through 10-fold cross-validation on the training set.

The MZE and MAE results, along with standard deviations

10http://vizier.cfa.harvard.edu/viz-bin/Cat?J/
ApJS/186/427

11http://www.sdss3.org/dr9/



(10-fold cross validation) are shown in Table II. Note that the
galaxy classes are almost balanced. As expected, in general,
the inclusion of the spectral privileged information in the
training phase via the OITML model enhances the ordinal
classification performance, even though in the test phase the
models are fed with the original photometric features only.

TABLE II
MZE AND MAE RESULTS ON THE ASTRONOMICAL DATA SET, ALONG

WITH STANDARD DEVIATIONS (±) ACROSS 10 CROSS VALIDATION RUNS,
FOR THE OGMLVQ (WITHOUT PRIVILEGED DATA) AND THE OGMLVQ

(WITH OITML FOR LUPI)

Algorithm MZE MAE

OGMLVQ 0.458 ±(0.012) 0.648 ±(0.018)

OITML-LT + OGMLVQ 0.457 ±(0.018) 0.640 ±(0.019)

OITML-Ext + OGMLVQ 0.451 ±(0.018) 0.627 ±(0.012)

C. The Santa Fe Laser Time series Ordinal Prediction

In this experiment, we investigate the effectiveness of
incorporating the privileged information (given in the form
of future time series observations), via the proposed OITML,
in an ordinal time series prediction problem. Our model is
verified on the Santa Fe Chaotic Laser time series.

The Santa Fe Laser data set, obtained from a far-infrared-
laser, is a cross-cut through periodic to chaotic intensity
pulses of a real laser. The full time series12, shown in Figure
1, consists of 10092 points. The laser activity produces
periods of oscillations with increasing amplitude, followed by
sudden, difficult to predict, activity collapses. A substantial
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Fig. 1
THE SANTA FE LASER DATA SET (ON THE LEFT). TRANSFORMED SANTA

FE LASER TIME SERIES (ORDINAL SYMBOLS)(ON THE RIGHT)

research activity has been devoted to the prediction and
modeling of the Laser time series, e.g. [22]). However, this
problem is studied here in the context of ordinal prediction
settings rather than in nominal settings [25]. The model
is predicting the order relations between the successive
values instead of the time series values themselves, Ordinal
prediction time series are found to be useful in several fields
(e.g. analysis of stock prices and medical applications [24]).
They are robust under non-linear distortion of the signal,

12Taken from http://www-psych.stanford.edu/˜andreas/
Time-Series/SantaFe/A.cont

since they use the ordinal relations of the time series rather
than their real values.

As a pre-processing step, the laser activity changes have
been quantized into ordinal symbolic streams. The method
of extracting ordinal categorical information from complex
time series forms the basis of ordinal symbolic dynamic [23].
The transformed time series is shown in Figure. 1

Given the chaotic laser time series yt, t = 1, 2, ..., 10092,
the differenced sequence zt = yt − yt−1 has been quantized
into a symbolic stream st, with st representing ordered
categories of low/high positive/negative laser activity changes
[25]:

st =


1 (extreme down) if zt ≤ Θ1

2 (normal down) if Θ1 < zt < 0

3 (normal up) if 0 ≤ zt < Θ2

4 (extreme up) if Θ2 ≤ zt,

(10)

where Θ1 and Θ2 correspond to Q percent (set here to
10%) and (100 − Q) percent (set to 90%) sample quantile,
respectively. Figure 2 plots the histogram of the differences
between the successive laser activations. Dotted vertical lines
show the corresponding cut values. Given the quantized laser
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Fig. 2
HISTOGRAM OF THE DIFFERENCE BETWEEN THE SUCCESSIVE LASER

ACTIVATION. DOTTED VERTICAL LINES SHOWS THE CUT VALUES

Θ1 = −56 AND Θ1 = 56. ORDINAL SYMBOLS CORRESPONDING TO THE

QUANTIZED REGIONS APPEAR ON THE TOP OF THE FIGURE.

time series, the task here is to predict the next laser activation
change category s(t+1), given the following (in the training):
• History of the last 10 activity differences

(zt−9, zt−8, ..., zt−1, zt), considered as the original
training data in X = R10.

• 10 future activity differences (zt+11, zt+10, ..., zt+2),
considered as the privileged information in X∗ = R10.

The first 5000 values of the series are used for training
and validation, while the remaining 5092 are used for testing.
Algorithm parameters have been tuned through 5-fold cross-
validation on the training set.

The class distribution in the laser data set are highly
imbalanced. Classes 2 and 3 (normal up/down) are more
populated than classes 1 and 4 (extreme up/down). Therefore
in Table III, along with MZE and MAE measures we also
report the Macroaveraged Mean Absolute Error (MMAE),
specially designed for evaluating classifiers operating on
imbalanced data sets.

The results reveal that, in the context of ordinal time
series prediction, the proposed formulation of incorporating



TABLE III
MZE, MAE AND MMAE RESULTS ON THE SANTA FE LASER TEST SET

FOR THE OGMLVQ (WITHOUT PRIVILEGED DATA) AND THE OGMLVQ
(WITH OITML FOR LUPI)

Algorithm MZE MAE MMAE

OGMLVQ 0.081 0.087 0.062

OITML-LT + OGMLVQ 0.073 0.078 0.052

OITML-Ext + OGMLVQ 0.071 0.077 0.054

the future time series data as privileged information [1], can
lead to significant performance boost in the test regime over
the standard classifier OGMLVQ trained on the historical
observations only. Note that the inputs in the test phase were
the same for both OGMLVQ and OGMLVQ-LT/Ext.

VI. CONCLUSION

We have introduced a novel ordinal-based metric learning
methodology, based on Information Theoretic Metric Learn-
ing (ITML)[10], for Learning Using privileged Information
(LUPI) in ordinal classifications. The proposed framework
can be naturally cast in ordinal prototype based classifica-
tion with metric adaptation (OGMLVQ) [2]. The privileged
information is incorporated into the model operating on the
original space X by changing the global metric in X , based
on proximity relations obtained by the privileged information
in X∗. We used two scenarios for incorporating the new
learned metric on X in the ordinal prototype based modeling.

Unlike the nominal version of ITML for LUPI in prototype
models [8], [9], in the proposed ordinal version the order
information among the training classes is utilized to se-
lect the appropriate (dis)similarity constraints. Furthermore,
the ordinal version of ITML realizes distance metric up-
dates, for similar/dissimilar points in space X , using the
assigned weights ϑ±, assigning different degree of similar-
ity/dissimilarity measures (based on class order relations).

To our knowledge, this is the first work which studies the
idea of LUPI into the ordinal classification setting.

We verified our framework in three experimental settings:
(1) controlled experiments using two benchmark ordinal re-
gression data sets, (2) a real world astronomical application-
galaxy morphological ordinal classification. Here, the priv-
ileged information takes the form of costly-to-obtain full
galaxy spectra. (3) ordinal time series prediction on chaotic
time series. Experiment results revealed that incorporating
privileged information via the proposed ordinal-based metric
learning framework can improve the ordinal classification
performance.
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