
Learning the Deterministically Constructed

Echo State Networks

Fengzhen Tang

School of Computer Science

University of Birmingham

Edgbaston, Birmingham, B15 2TT, UK

Email: fxt126@cs.bham.ac.uk

Peter Tiňo

School of Computer Science

University of Birmingham

Edgbaston, Birmingham, B15 2TT, UK

Email: P.Tino@cs.bham.ac.uk

Huanhuan Chen

UBRI, School of Computer Science and

Technology, University of Science and

Technology of China,

Hefei, 230027, China

Email: hchen@ustc.edu.cn

Abstract—Echo State Networks (ESNs) have shown great
promise in the applications of non-linear time series processing
because of their powerful computational ability and efficient
training strategy. However, the nature of randomization in the
structure of the reservoir causes it be poorly understood and
leaves room for further improvements for specific problems. A
deterministically constructed reservoir model, Cycle Reservoir
with Jumps (CRJ), shows superior generalization performance
to standard ESN. However, the weights that govern the structure
of the reservoir (reservoir weights) in CRJ model are obtained
through exhaustive grid search which is very computational
intensive. In this paper, we propose to learn the reservoir weights
together with the linear readout weights using a hybrid optimiza-
tion strategy. The reservoir weights are trained through non-
linear optimization techniques while the linear readout weights
are obtained through linear algorithms. The experimental results
demonstrate that the proposed strategy of training the CRJ
network tremendously improves the computational efficiency
without jeopardizing the generalization performance, sometimes
even with better generalization performance.

I. INTRODUCTION

Reservoir Computing [1] represents a class of new ap-
proaches of designing Recurrent Neural Networks [2] for
the purpose of accelerating the training process. The training
techniques applied in reservoir computing methods make a
conceptual and computational separation of the whole process
into two parts [1], [3]: representation of temporal structure in
the input stream through a non-adaptable dynamic reservoir
and a recurrence-free readout mapping that produces the de-
sired output from the reservoir. In these methods, such as Echo
Sate Networks (ESNs) [4] and Liquid State Machines (LSMs)
[5], the dynamic reservoir is randomly constructed and fixed
through the training process, only the readout weights need
to be obtained through training. Therefore these methods are
very computational efficient.

ESN [6], [7] is one of the pioneering reservoir computing
methods. It is of simple form but very effective. Essentially,
ESN is a recurrent neural network with a randomly generated
and fixed sparse recurrent part (the reservoir) and a very
simple linear readout. The reservoir connection weights and
the input weights are randomly generated and fixed through
the training process. The reservoir connection weights will
be scaled in the way that the spectral radius of the reservoir
connection weight matrix is less than one. This is to ensure
the network has ”Echo State Property” or ” fading memory”,
where the network depends far more on the recent history

of the input, works efficiently as a Markovian classifier [8]
without explicitly making any Markovian assumption. The
networks with fading memory have theoretically been proved
to possess powerful computational capabilities [9]. In ESN,
only the linear readout weights need to train, therefore it
is very computational efficient compared with fully trained
RNN. Thus, it has been successfully applied in many time-
series prediction task, such as speech recognition, dynamic
pattern prediction and language modelling [1], [3]. However,
it has several limitations. Since the network structure of the
reservoir in ESN is randomly constructed, there might be
some properties of the reservoir that are poorly understood
and reservoir specification requires numerous trials and even
luck [10]. Moreover random connectivity and weight structure
of the reservoir is unlikely to be optimal [11].

The randomization of generating the reservoir in ESN
cause it to be poorly understood, as a result leaving the room
for further investigation on what exactly a reservoir structure
leads to good performance for a given problem [11]–[13].
A Simple Cycle Reservoir (SCR) introduced in [3] shows
comparable performances to the traditional randomized ESN.
One extension of SCR by adding regular bidirectional shortcuts
(Jumps) (CRJ) introduced in [14] has shown superior perfor-
mance to those of the traditional randomized reservoir models
in non-linear system identification, real time series prediction
and speech recognition [14]. Besides, the characterizations of
the selected reservoir model is well understood.

Recently, CRJ has been employed for cognitive fault diag-
nosis [15]. The ability of CRJ to approximate the dynamic
system has been verified in this work. Besides, the CRJ
has been used for efficient time series classification and its
promising performance has been reported in [16].

However, in the original CRJ model introduced in [14],
the parameters that govern the design of reservoir are tuned by
costly and potentially unstable cross-validation technique using
exhaustive grid search. Furthermore, the selected parameters
from grid search may not be the optimal, because of the
discretization of the continuous parameters.

In this paper, we propose a hybrid optimization strategy
to train the CRJ network (TCRJ). The linear output weights
of the network are determined by ridge regression, while the
reservoir weights are found using a nonlinear optimization
technique. Regularization on the output weights and early
stopping strategy have been incorporated in this proposed

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 77

training strategy. The experimental results show that the new
learning method tremendously improves the computational
efficiency and can achieve comparable, sometimes even better,
performance to the original cross-validation CRJ fitting.

This paper is organized as follows. Section II briefly
describes Echo State Networks (ESNs). Section III presents
the CRJ model. Our proposed algorithm of training the CRJ
model are described in details in Section IV. Experimental
results and analysis are given in Section V. The main findings
are discussed and summarized in Section VI.

II. ECHO SATE NETWORKS

Echo State Networks (ESNs) are essentially recurrent neu-
ral networks (RNNs) with a randomly generated and fixed
sparse recurrent part (the reservoir) and a simple linear readout.
ESN can be regarded as a kind of parametric state space
models parameterized by input weights V , internal unit con-
nection weights R and output weights W . The input stream
s is mapped into a state vector x (a vector of reservoir
neuron activation), and the output will be described as a linear
transformation of the state vector [1]. Given an ESN with d
input units, N internal units and O output units, the network
architecture can be summarized as Figure 1. The state vector
at time t, x(t) ∈ R

N , of the network is updated according to:

x(t) = f(R x(t − 1) + V s(t)) (1)

where f(·) is the activation function, usually tanh(·) or
sigmoid function, applied element-wise, s(t) ∈ R

d is the input
vector, matrix V ∈ R

N×d describes the connection between
the input units and the internal units, matrix R ∈ R

N×N

collects the connections between internal units. The internal
weight matrix R, and the input weight matrix V are randomly
generated and fixed through the training. The internal weight
matrix R will be scaled in the way that the spectral radius is
less than 1, in order to ensure the ”Echo state property”, where
the reservoir state is an ”echo” of the input history.

The linear readout is computed follows:

ŷ(t) = Wx(t) (2)

where ŷ(t) ∈ R
O is the output and matrix W ∈ R

O×N

represents the connections between internal units and output
units1. The linear readout parameter W is trained using ridge
regression [17]. Collecting the whole state vectors into a matrix
X ∈ R

N×T and representing the whole true targets in matrix
Y ∈ R

O×T , the output matrix can be obtained:

W = Y XT (XXT + λI)−1 (3)

where I is the identity matrix and λ is a regularization
parameter which can be determined by cross validation.

ESN has been successfully applied in many time-series
prediction tasks because of its high computational efficiency.
The randomized reservoir construction leads to high compu-
tational efficiency (compared with the fully trained RNN) -
only the linear readout weights need to be trained through

1As usual, the weight matrices and input/reservoir vectors are extended so
that bias terms are accounted for.

an efficient linear optimization algorithm. Meanwhile, the
randomly constructed reservoir also poses limitations. The
properties of the reservoir that are poorly understood, and the
specification of the reservoir requires numerous trials and even
luck [10]. Besides, random construction is quite different from
optimal design [11], be it in a constrained setting [14].

.

.

.
.
.
.

N internal unitsd input units O ouput units

Fig. 1. The network architecture of ESN. In this architecture, the input
units to internal units are randomly connected and internal units are randomly
connected to each other.

III. CYCLE RESERVOIR WITH JUMPS

Cycle Reservoir with Jumps (CRJ) introduced in [14]
deterministically constructs the reservoir in a highly con-
strained form of unidirectional cycle with regular bidirectional
shortcuts. In the CRJ model, the structure of R is particularly
simple: reservoir units are connected in a uni-directional cycle
with bi-directional short-cuts (jumps) (Figure 2). All cyclic
connections have the same weight rc > 0. Likewise, all jumps
share the same weight rj > 0. Specifically, R is a very sparse
matrix with rc and rj spread over, e. g. in a network of 10
internal units with 2 as jump size, the matrix R is of the form
as follows:





























0 0 rj 0 0 0 0 0 rj rc

rc 0 0 0 0 0 0 0 0 0
rj rc 0 0 rj 0 0 0 0 0
0 0 rc 0 0 0 0 0 0 0
0 0 rj rc 0 0 rj 0 0 0
0 0 0 0 rc 0 0 0 0 0
0 0 0 0 rj rc 0 0 rj 0
0 0 0 0 0 0 rc 0 0 0
rj 0 0 0 0 0 rj rc 0 0
0 0 0 0 0 0 0 0 rc 0





























The input weight matrix is also highly constrained: the input
connections have the same absolute value ri > 0 with an
aperiodic sign pattern. The input weight signs are determined
by the expansion of the irrational number π (see [14]).

.

.

.
.
.
.

N internal unitsd input units O output units

Fig. 2. The network architecture of CRJ. In this architecture, the input units
are connected to internal units by the same weight with aperiodic sign. The
internal units are connected by directed cycle with regular jumps. All the cycle
collection weights are the same and all the jump weights are the same.

78

The CRJ model has shown superior performance in non-
linear system identification, real time series prediction and
speech recognition [14], to the randomized ESN. Moreover,
the characterizations of the selected reservoir model can be
better understood. The selected reservoir meets the ”Echo state
property”.

IV. TRAINING CYCLE RESERVOIR WITH JUMPS

In the original CRJ model introduced in [14], the weights
rc, rj and ri are determined by ”train-validation-test” approach
where the whole time series is divided into three sets, i.
e. training set, validation set and test set. The continuous
parameter space of rc, rj and ri is discretized into finite combi-
nations. Exhaustive grid search is used to find the best possible
parameter setting. For each of the parameter combination, the
reservoir will be constructed and the linear readout weights
will be obtained on training set, and then the performance of
the trained CRJ will be evaluated on the validation set. The
best possible parameter combination will be selected on the
basis of the minimum error on the validation set. Finally, the
reported generalization performance is the error of the network
constructed using the selected parameter setting measured on
the test set.

In this paper, we propose to learn the parameters rc, rj

and ri along with the linear output weights W using a hybrid
optimization strategy, where the parameters rc, rj and ri are
obtained using non-linear optimization techniques while output
weights W are learned using linear optimization methods. The
detailed learning algorithm will be presented in the following
subsections.

A. Basic Algorithm

The mathematical formulation of the deterministically con-
structed CRJ model we used in this paper is given as follows:

x(t) = tanh(R x(t − 1) + V s(t)), (4)

ŷ(t) = Wx(t) (5)

The problem of training the network can be formulated as
a problem of the minimization of an error function E. For
convenience, rc, rj and ri are grouped together into a single
vector r (spread over coupling matrix R). We choose the sum-
of-squares error function (other error functions are equivalent
to sum-of-squares error) when training the network. Assuming
the network is running from time stamp t0 up to time step t1,
the sum-of-squares error is given as follows:

E(r, W) =

t1
∑

t=t0+1

||ŷ(t) − y(t)||2 (6)

where ŷ(t) is the predicted output and y(t) is the real output of
the sequence at time stamp t and || · || denotes the Euclidean
norm. Since the value of the sum-of-squares error function
depends on the number of patterns, we consider a normalized
error function for assessing the performance of the trained
network. In this paper, we choose the normalized mean square
error function as follows:

Ẽ(r, W) =
〈||ŷ(t) − y(t)||2〉

〈||y(t) − 〈y(t)〉||2〉
(7)

where 〈·〉 denotes the empirical mean.

The network we considered in this paper is a recurrent
network with linear output units. Since the dependence of the
network mapping on the final-layer weight is linear, the partial
optimization of sum-of-squares error function with respect
to these weights can be performed by linear methods. The
computational effort involved in linear methods is often very
much less than that required for general non-linear optimiza-
tion. Therefore, in this paper, we adopt a hybrid procedure for
optimizing the weights in the network, where linear method
is used for obtaining the final layer weights, and non-linear
method is used for acquiring all the other parameters [18].

The error function E(r, W) is a quadratic function of W .
For any given value of r, we can perform a one-step exact
minimization with respect to the W using linear regression, in
which r is held fixed. The gradient of E with respect to W is
as follows:

∂E

∂W
= 2

t1
∑

t=t0+1

(ŷ(t) − y(t))x(t) (8)

By making the gradient of E with respect to W equal to zero,
the output weights can be computed as follows:

W = Y XT (XXT)−1 (9)

Since the output weights W are regarded as a function of
the weights r and can be chosen using Equation (9), we can
regard E as a nonlinear function of the reservior weights r only
and a nonlinear function optimization method, e.g. conjugate
gradient descent [19] in this paper, is employed to find these
weights by minimizing E with respect to r. The gradient of E
with respect to r is computed using real-time recurrent learning
[20].

Since the total error is the sum of the errors at the each
time steps, we can compute the gradient by summing up the
gradient at each time step via

∂E

∂θ
= 2

t1
∑

t=t0+1

(ŷ(t) − y(t))W
∂x(t)

∂θ

+ 2

t1
∑

t=t0+1

(ŷ(t) − y(t))x(t)
∂W

∂θ
(10)

The gradient of x(t) with respect to θ, where θ = rc, rj or ri,
can be computed iteratively as:

∂x(t)

∂rc

= sech2(Rx(t − 1) + V s(t))

.∗

(

R
∂x(t − 1)

∂rc

+
∂R

∂rc

x(t − 1)

)

, (11)

79

∂x(t)

∂rj

= sech2(Rx(t − 1) + V s(t))

.∗

(

R
∂x(t − 1)

∂rj

+
∂R

∂rj

x(t − 1)

)

, (12)

∂x(t)

∂ri

= sech2(Rx(t − 1) + V s(t))

.∗

(

∂V

∂ri

s(t) + R
∂x(t − 1)

∂ri

)

, (13)

where .∗ is the element-wise product in matrix calculation (
MATLAB notation). As usual in real time recurrent learning,
the initial conditions for the update equations can be set to:

∂x(t0)

∂rc

= 0,
∂x(t0)

∂rj

= 0,
∂x(t0)

∂ri

= 0. (14)

The gradient of W with respect to θ is very difficult to
compute. However, it is very lucky that the coefficients before
∂W
∂θ

, i.e.
∑t1

t=t0+1
(ŷ(t)−y(t))x(t) is essentially equal to zero

because we compute W by making it so. Therefore, we don’t
need to compute the gradient of W with respect to θ and the
second term in (10) is vanished.

The reservoir weights r are obtained using a non-linear
optimization algorithm while the output weights W are re-
garded as a function of r and are chosen using Equation
(9). Every time the value of r is changed, the weights W
need to be recomputed. Thus, the optimization strategy in this
paper proceeds the training process on two timescales: Longer
timescale, where the weights r are adjusted to minimize the
error function, and a short timescale, where the output weights
are changed to minimize the error as a function of the weights
r alone.

The hybrid optimization strategy of combining linear meth-
ods and non-linear methods together is chosen in this paper
mainly for two reasons: First, the dimensionality of the effec-
tive search space for the non-linear algorithm is reduced. Thus,
it is possible that the time taken for the nonlinear optimization
scheme to find a minimum of the error will be reduced. Second,
the network obtained in this way is always in a state where the
error is at a global minimum in the space of output weights.
This may help the network to reach a minimum more rapidly
and to reach a shallow local minimum less often. The approach
can be characterized as a group-coordinate-wise descent on
the error function, where the parameters are divided into
two groups - output readout weights and the reservoir/input
weights.

B. Readout regularization

If the training set contains noise, the network with an
access of many free coefficients tends to generate mappings
which have a lot of curvature and structure, as a result of
over-fitting to the noise on the training data. In order to avoid
over-fitting, we introduce a quadratic regularization term in
the error function to encourage smoother network mapping, as
follows:

E(r, W) =

t1
∑

t=t0+1

||ŷ(t) − y(t)||2 + λ||W ||2 (15)

The redundant weights will get smaller as the training pro-
ceeds. Ideally, the structure of the network will be simplified
while the accuracy remains. Thus, the generalization ability
can be improved [21]. We only penalize the output weights,
since the input weights and cycle connection weights have
already been pruned when the highly constrained reservoir
is designed. Hence, addition of regularization term will not
change the optimization of the reservoir weights r. The output
weights W will be computed as follows:

W = Y XT (XXT + λI)−1 (16)

which is known as ridge regression. The regularization param-
eter λ can be tuned via cross-validation.

C. Early Stopping

Another way to improve the generalization ability is the
procedure of early stopping [19], [22]. The non-linear opti-
mization process of learning the parameter r corresponds to
an iterative reduction of the error function with respect to the
training dataset. For many of the optimization algorithms, e.g.
conjugate gradient descent, the value of the error function is
a nonincreasing function of the iteration index. However, the
error measured with respect to a dataset independent of the
training, i.e. a validation set, often decreases first and then
increases as the network starts to over-fit. Therefore, in order to
have a good generalization ability, training needs to be stopped
at the point of the smallest error with respect to the validation
dataset, rather than the minimum point with respect to the
training set.

In this paper, we leave out a validation set. The train-
ing process is terminated when the error measured on the
validation set starts to increase, in order to optimize the
generalization performance of the network.

The overall structure of the training process is briefly
demonstrated in Algorithm 1 .

Algorithm 1 The Algorithm of the Training Process

1: Initialize rc, rj and ri.
2: repeat
3: Generate CRJ model using rc, rj and ri to obtain the

state matrix X , and then compute the linear readout
weight W using Equation (16).

4: Assess the performance of the network on the validation
set Dvalidation via the normalized mean square error

Ẽ(Dvalidation).
5: Update the reservoir parameters rc, rj and ri using

non-linear optimization algorithm, such as conjugate
gradient descent.

6: until Ẽ(Dvalidation) starts to increase.

80

V. EXPERIMENTAL STUDIES

In this section, we evaluate our proposed algorithm on a
variety of time series prediction tasks. The topology of the
network was fixed, with 50 internal units and with the jump
size of 15. For comparison, the original CRJ had the same
network topology, but the cycle connection weight rc, jump
weight rj and input weight ri were chosen via cross-validation
through exhaustive grid search and the linear readout weights
were fitted using ridge regression. The range of reservoir
weights are: rc, rj and ri ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1}. Not every combination of the parameters
leads to a network that satisfies the Echo state property, but
the optimum or selected parameters do. Standard randomized
ESN with the same number of internal units was considered.
The linear readout weights of ESN was also learned using
ridge regression. The range of the ridge regression parameter
is: λ ∈ {0.0001, 0.001, 0.01, 0.1, 1, 10, 100}. For ESN, we
reported the average performance for 10 trials. Since, CRJ
and TCRJ are deterministically methods, we only report one
result2.

A. Synthetic data

We first tested our algorithm with a nonlinear system
identification task, i. e. a 10th-order NARMA system [7], given
by:

s(t+1) = 0.3s(t)+0.05s(t)

9
∑

i=0

s(t−i)+1.5u(t−9)u(t)+0.1,

where s(t) is the output at time t, u(t) is the input at time t.
The inputs u(t) form an i. i. d stream generated uniformly in
the interval [0, 0.5]. The current output depends on both the
input and the previous output. The time series is challenging
due to non-linearity and long memory. To make the task harder,
we added zero mean and 0.01 variance Gaussian noise to the
output stream. The networks were trained to predict output
s(t) based on u(t). NARMA sequence has a length of 4000
items where first 2000 were used for training, the following
1000 for validation and the remaining 1000 for testing.

Then the nonlinear Mackey Glass chaotic time series model
was used to generate a time series on which we evaluated the
proposed algorithm. The series is a solution of the following
equation:

dx(t)

dt
= −ax(t) +

bx(t − τ)

1 + x10(t − τ)
(17)

where a, b and τ are the parameters of the equation. We used
the Mackey-Glass series with parameters a = 0.1, b = 0.2,
τ = 30 and the initial condition x(τ) = 1. A length of 4000
items of this time series was generated and zero mean and
0.05 variance Gaussian noise is added to it. As we did for
NARMA sequence, the first 2000 items were used for training,
the following 1000 for validation and the remaining 1000 for
testing.

The experimental results on these two artificial time series
are presented in Tables I and II. Table I shows that our

2we use coarse grid search to initialize the reservoir parameters in TCRJ.
The time for initialization is included when presenting the experiments

proposed algorithm of learning the reservoir parameters in
CRJ slightly outperforms the method of obtaining the reservoir
parameters in CRJ through exhaustive grid search in terms
of generalization error. As shown in Table II, our proposed
algorithm is much better than that of the original CRJ in terms
of the computational time, decreasing by 70% to 80%.

TABLE I. NORMALIZED MEAN SQUARE ERROR OF THE ARTIFICIAL

TIME SERIES

Dataset ESN CRJ TCRJ

NARMA 0.2539±0.0308 0.1019 0.0981

MG 0.0900±0.0004 0.0900 0.0884

TABLE II. COMPUTATIONAL TIME (S) OF THE ARTIFICIAL TIME SERIES

Dataset ESN CRJ TCRJ

NARMA 279 4594 1632

MG 280 4648 962

B. Real-world Time Series Datasets

Three real time series downloaded from website 3 have
been used to evaluate the proposed algorithm.

Darwin-SLP represents the monthly values of the Darwin
sea level pressures from 1882 to 1998. This series is of length
1400 and a key indicator of climatological patterns. The first
1000 patterns were used for training, the following 200 patterns
were used for validation and the remaining 200 patterns were
used for test.

Oxygen Isotope Level (OIL) series contains measurements
of relative abundance of oxygen isotope to oxygen from the
deep ocean cores from various geographical locations over
a period of about 2.5 million years, whose geological time
variations relate to patterns of variation in global ice volume
and ocean temperature [23]. This series contains 866 patterns.
Given the limited size of the dataset, 5-fold cross validation
were performed to tune the parameters, instead of ”train-
validation-test” approach. The first 600 patterns were used for
training and the rest 266 patterns were used for test.

SOI is a series of monthly values of the Southern Oscil-
lation Index during 1950-1995. This series consists of 540
observations on the SOI computed as the difference of the
departure from the long-term monthly mean sea level pressures
at Tahiti in the South Pacific and Darwin in Northern Australia.
As we did for OIL, 5-fold cross validation were used to
tune the parameters. The first 400 observations were used for
training and the remaining 140 observations were used for test.

The experimental results on these three real time series are
presented in Tables III and IV. As shown in Table III, the
proposed methodology appears to have comparable general-
ization ability to the original CRJ model where the reservoir
parameters was obtaining through exhaustive grid search. The
computational time of the proposed algorithm is much less
than that of the original CRJ model.

Three datasets from UCR Time Series Repository [24]
were used for the evaluation of our proposed algorithm. These
datasets are briefly described in Table V. They are mainly used
for time series classification. Here we use the sequences to
demonstrate predictive power of our models, so each sequence

3http://isds.duke.edu/∼mw/ts data sets.html

81

TABLE III. NORMALIZED MEAN SQUARE ERROR OF THE Darwin-SLP,
OIL AND SOI TIME SERIES

Dataset ESN CRJ TCRJ

Darwin-SLP 0.2467(0.0174) 0.1780 0.1843

OIL 0.2214(0.0008) 0.2094 0.2076

SOI 0.5613(0.0039) 0.5374 0.5374

TABLE IV. COMPUTATIONAL TIME (S) OF THE Darwin-SLP, OIL AND

SOI TIME SERIES

Dataset ESN CRJ TCRJ

Darwin-SLP 230 3539 726

OIL 167 2470 781

SOI 122 1622 381

is divided into training, vakidation and test part as indicated
in Table V. The results presented in Tables VI and VII are the
average results over the test parts of the sequences considered.

TABLE V. DESCRIPTION OF THE UCR TIME SERIES. l IS THE LENGTH

OF EACH SEQUENCES IN THE DATASETS AND m IS NUMBER OF SEQUENCES

IN THE DATASETS.

Datasets l m Train/Validation/Test

CinC-ECG-torso 1639 40 1000/300/339

InlineSkate 1882 100 1000/400/482

MALLAT 1024 55 600/200/224

TABLE VI. NORMALIZED MEAN SQUARE ERROR OF THE UCR TIME

SERIES

Dataset ESN CRJ TCRJ

CinC-ECG-torso 0.0060(0.0154) 0.0054(0.0149) 0.0054(0.0150)

InlineSkate 0.0310(0.0695) 0.0104(0.0313) 0.0056(0.0134)

MALLAT 0.0175(0.0138) 0.0152(0.0166) 0.0117(0.0147)

The experimental results on the UCR time series presented
in Tables VI and VII shows similar trends as we find before.

In this section, two synthetic time series, three real time
series and three UCR time series datasets were used to test
our algorithm compared with the original exhaustive search
CRJ model and standard randomized ESN model. All the
experimental results show the same trend that our TCRJ model
has comparable performance (sometimes even better) to the
original CRJ model in terms of generalization ability, and our
TCRJ model is much more computational efficient than that
of the original CRJ model.

Our proposed algorithm does not jeopardize the general-
ization performance on all the datasets used in this paper with
the exception of Darwin-SLP time series. It may be because
the error surface of this time series contains many shallow
local minimums and the learning algorithm was stuck in one
of the very bad local minimum, while the exhaustive search
method reach the relative global minimum (global minimum on
the discretized parameter space). However, the generalization
performance of our proposed algorithm on Darwin-SLP time
series is still much better than that of standard randomized
ESN model.

Our proposed algorithm tremendously reduces the compu-
tational time in the experiments, compared with the original
exhaustive search CRJ model. The proposed hybrid optimiza-
tion strategy keeps the computational advantage of ESN in
terms of efficient computation of linear readout weights by
the separation of the optimization of linear readout weights
from the weights govern the structure of the reservoir. The
readout weights are computed in linear techniques and as a

TABLE VII. COMPUTATIONAL TIME (S) OF THE UCR TIME SERIES

Dataset ESN CRJ TCRJ

CinC-ECG-torso 155(1.51) 2488(28.14) 398(117.78)

InlineSkate 150(5.10) 2237(11.37) 372(81.56)

MALLAT 165(1.92) 2379(142.64) 353(23.18)

result, the error of the network is always at a global minimum
in the space of output weights, helping the network to reach a
minimum fast. Since the output weights are solved using linear
algorithm, the parameters left for non-linear optimization are
reduced. The reduction of the search space for the non-linear
optimization methods will lead to less number of iteration
to terminate the training. Besides, the early stopping strategy
potentially helps to reduce the computational time and improve
the generalization performance.

VI. CONCLUSION

ESN has been proved to be highly promising in the
applications of non-linear time series processing, because of its
powerful computational ability and efficient training strategy.
However, the random connectivity and weight structure of the
reservoir cause it be poorly understood and leave room for
further improvements on performance. Rodan and Tino showed
that a simple unidirectional cycle with fixed weight (SCR)
[3] is competitive to traditional randomized ESN. Adding
regular bidirectional shortcuts on the basis of SCR model
(CRJ) originating and ending in few higher-clustering coeffi-
cients nodes potentially brings performance improvements and
sometimes significantly beats ESN. However, the weights in
the original CRJ model is obtained through cross-validation
via computational intensive and potentially unstable exhaustive
search. In this paper, we propose to learn these weights
and the linear readout weights through a hybrid optimization
strategy where the weights governing the reservoir structure are
trained through non-linear optimization techniques while the
linear readout weights are obtained through linear algorithms.
Readout regularization and early stopping strategy are applied
in our proposed methodology, in order to improving the
generalization performance.

The proposed TCRJ was compared with the exhaustive-
search CRJ model and the standard randomized ESN. The
results show that, compared with the original CRJ model,
TCRJ can be much more computationally efficient, while
retaining comparable generalization performance. Interestingly
enough, TCRJ performs better than ESN in terms of general-
ization performance. In the exhaustive search, the dominating
computation cost of each grid point involves the inversion of a
N ×N matrix. Therefore, the time complexity for CRJ model
fitting on cross validation will be of order O(mN3), where
m is the number of grid points, while the time complexity of
our method is of order O(kN3), where k = k1 + k2 << m,
k1 is the number of grid point for initialization and k2 is the
number of iterations in the hybrid learning.

ACKNOWLEDGMENT

Peter Tiňo was supported by the EPSRC grant
EP/L000296/1. Huanhuan Chen was supported by the
National Natural Science Foundation of China under Grants
61203292, 61311130140 and the One Thousand Young Talents
Program. The authors would like to thank Professor Xin Yao

82

from University of Birmingham for comments. Fengzhen
Tang would like to thank Liyan Song and Chunlei Xu from
University of Birmingham and Yu Sun from University of
Science and Technology of China for the discussion and
comments.

REFERENCES

[1] M. Lukoševičius and H. Jaeger. Reservoir computing approaches to
recurrent neural network training. Computer Science Review, 3(3):127–
149, 2009.

[2] B. Hammer and P. Tiňo. Recurrent neural networks with small weights
implement definite memory machines. Neural Networks, 15(8):1897–
1926, 2003.

[3] A. Rodan and P. Tiňo. Simple deterministically constructed recurrent
neural networks. In Proceedings of the 11th international conference on

Intelligent data engineering and automated learning, IDEAL’10, pages
267–274, Berlin, Heidelberg, 2010. Springer-Verlag.

[4] H. Jaeger. The echo state approach to analysing and training recurrent
neural networks. Technical report, German National Research Center
for Information Technology, 2001.

[5] W. Maass, T. Natschlager, and H. Markram. Real-time computing
without stable states: a new framework for neural computation based
on perturbations. Neural Computation, 14(11):2513 – 2560, 2002.

[6] H. Jaeger. Short term memory in echo state networks. Technical report,
German National Research Center for Information Technology, 2002.

[7] H. Jaeger. Adaptive nonlinear system identification with echo state
networks. In Advances in Neural Information Processing Systems, pages
593–600. MIT Press, Cambridge, MA,, 2003.

[8] S. Gallicchio and A. Micheli. Architectural and markovian factors of
echo state networks. Neural Networks, 24(5):440–456, 2011.

[9] O. L. White, D. D. Lee, and H. Sompolinsky. Short-term memory in
orthogonal neural networks. Physical Review Letters, 92(14):148102.1–
148102.4, 2004.

[10] Y. Xue, L. Yang, and S. Haykin. Decoupled echo state networks with
lateral inhibition. Neural Networks, 20(3):365–376, 2007.

[11] M. C. Ozturk, D. Xu, and J.C. Principe. Analysis and design of echo
state network. Neural Computation, 19(1):111–138, 2007.

[12] S. Hausler, H. Markram, and W. Maass. Perspectives of the high-
dimensional dynamics of neural microcircuits from the point of view
of low-dimensional readouts. Special Issume on Complex Adaptive

Systems, 8(4):39–50, 2003.

[13] A. Rodan and P. Tiňo. Minimum complexity echo state network. IEEE
Transactions on Neural Networks, 22(1):131–144, 2011.

[14] A. Rodan and P. Tiňo. Simple deterministically constructed cycle
reservoirs with regular jumps. Neural Computation, 24(7):1822–1852,
2012.

[15] H. Chen, P. Tiňo, A. Rodan, and X. Yao. Learning in the model space
for cognitive fault diagnosis. IEEE Transactions on Neural Networks

and Learning Systems, 25(1):124–136, 2014.

[16] H. Chen, F. Tang, P. Tino, and X. Yao. Model-based kernel for
efficient time series analysis. In Proceedings of the 19th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining (KDD’13),
pages 392–400, 2013.

[17] Z. Shi and M. Han. Ridge regression learning in esn for chaotic time
series prediction. Control and Decision, 22(3):258–267, 2007.

[18] A. R. Webb and D. Lowe. A hybrid optimization strategy for adaptive
feed-forward layered networks. Technical report, RSRE Memorandum
4193, Royal Signals and Radar Establishment, St Andrews Road,
Malvern, UK, 1988.

[19] C. M. Bishop. Neural networks for pattern recognition. Clarendon
Press, Oxford, 1995.

[20] R. J. Williams and D. Zipser. A learning algorithm for continually
running fully recurrent neural networks. Neural computation, 1(2):270–
280, 1989.

[21] D. Niu, L. Ji, Xing M., and J. Wang. Multi-variable echo state network
optimization by bayesian regulation for daily peak load forecasting.
Journal of Networks, 7(11):1790–1795, 2012.

[22] C. M. Bishop. Pattern Recognition and machine learnig. Springer,
2006.

[23] M. West and J. Harrison. Bayesian forecasting and dynamic models.
Springer-Verlag New York, Inc, 2nd edition, 1997.

[24] E. Keogh, Q. Zhu, B. Hu, Hao. Y., X. Xi, L. Wei, and C. A.
Ratanamahatana. The ucr time series classification/clustering, 2011.
http://www.cs.ucr.edu/∼eamonn/time series data/.

83

