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1 INTRODUCTION

ABSTRACT

The recent advanced LIGO detections of gravitational waves from merging binary
black holes enhance the prospect of exploring binary evolution via gravitational-wave
observations of a population of compact-object binaries. In the face of uncertainty
about binary formation models, model-independent inference provides an appealing
alternative to comparisons between observed and modelled populations. We describe
a procedure for clustering in the multi-dimensional parameter space of observations
that are subject to significant measurement errors. We apply this procedure to a
mock data set of population-synthesis predictions for the masses of merging compact
binaries convolved with realistic measurement uncertainties, and demonstrate that we
can accurately distinguish subpopulations of binary neutron stars, binary black holes,
and mixed neutron star — black hole binaries with tens of observations.
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The advanced LIGO detectors (Aasi et al. 2015) observed
the first gravitational waves from a merger of two black
holes (BHs), GW150914, on 14 September, 2015 (Abbott
et al. 2016¢). This discovery was followed in a few months by
another BH-BH merger detection, GW151226 (Abbott et al.
2016¢), and a further likely BH-BH candidate, LVT151012
(Abbott et al. 2016b). The BH-BH merger rate inferred from
these events implies that tens to hundreds of detections are
likely over the next few years (Abbott et al. 2016¢,b). Mean-
while, both massive binary evolution models and observa-
tions of Galactic binary pulsars and short gamma ray bursts
suggest that gravitational-wave detections of mergers of two
neutron stars (NSs) and mergers of mixed NS-BH binaries
are also likely in the coming years (see Abadie et al. 2010,
for a review).

Multiple observations should make it possible to address
the inverse problem of gravitational-wave astrophysics: to
study the currently uncertain massive stellar binary evolu-
tion through its evolution end products — the population of
merging compact remnants. One approach to this problem
involves creating forward models of binary evolution, e.g.,
via population synthesis Monte Carlo simulations (see Post-
nov & Yungelson 2014, for a review), and comparing them to
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the observed population to constrain the input assumptions,
such as the common-envelope physics (Ivanova et al. 2013).
This approach has been advocated by Bulik & Belczyniski
(2003); Mandel & O’Shaughnessy (2010); O’Shaughnessy
(2013); Stevenson et al. (2015) and others.

While this approach is very promising, existing bi-
nary evolution models may not correctly encapsulate the
full range of physical uncertainties (e.g., Dominik et al.
2012; Mennekens & Vanbeveren 2014; Belczynski et al. 2016;
Eldridge & Stanway 2016; Lipunov et al. 2016). More-
over, some of the merging compact binaries could form
through channels other than isolated binary evolution via
the common-envelope phase, including chemically homoge-
neous evolution in very close binaries (Mandel & de Mink
2016; Marchant et al. 2016; de Mink & Mandel 2016), dy-
namical formation in globular clusters, young stellar clus-
ters, or galactic nuclei (Rodriguez et al. 2016; Mapelli 2016;
Bartos et al. 2016; Stone et al. 2017), mergers of population
III remnants (Inayoshi et al. 2016) or even primordial black
hole mergers (Bird et al. 2016). In the possible presence of
both systematic model uncertainty and confusion from dif-
ferent formation channels, a model-independent approach to
learning from the observed population is desirable.

Mandel et al. (2015) proposed that clustering on the pa-
rameters of observed merging compact-object binaries could
provide useful model-independent information about the
population. This clustering is greatly complicated by the
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limited accuracy with which the masses and spins of merg-
ing binaries can be inferred from gravitational-wave obser-
vations (e.g., Veitch et al. 2015a; Littenberg et al. 2015; Ab-
bott et al. 2016d). Nevertheless, Mandel et al. (2015) sug-
gested that for astrophysically plausible binary populations
and realistic measurement uncertainties, a few tens to a few
hundred detections should be sufficient to cluster merging
binaries into NS-NS, BH-BH, and NS-BH subpopulations,
estimating their relative rates to within Poisson uncertainty.

This paper describes specific algorithms for clustering
on the observed merging compact binary population in the
presence of significant measurement uncertainty. We show
how the clustering could proceed in practice when subpopu-
lations with distinct mass parameters are brought into con-
tact once the underlying mass distributions are convolved
with measurement errors. We demonstrate the accuracy of
the analytical predictions of Mandel et al. (2015) with a
quantitative study. Our approach can be trivially extended
to include other parameters such as spin magnitudes and
spin tilt angles.

2 BINARY POPULATION

We analyse a realistic population of compact object binaries
produced with a population synthesis code that evolves bi-
naries from zero-age main sequence stars through stellar evo-
lution, mass transfer including a possible common-envelope
phase, wind-driven mass loss, supernovae, and eventual
gravitational-wave driven merger. For ease of comparison,
we use the same simulated binary data set as in Mandel et al.
(2015). This data set was constructed with the StarTrack
code (Belczynski et al. 2008), using the ‘Standard’ model B
of Dominik et al. (2012), including the rapid supernova en-
gine (Belczynski et al. 2012; Fryer et al. 2012), down-selected
to binaries potentially detectable by the advanced-detector
network as estimated by Dominik et al. (2015). A number of
parameters governing binary evolution are highly uncertain,
including wind-driven and luminous blue variable mass loss
rates (e.g., Vink et al. 2001; Mennekens & Vanbeveren 2014),
mass transfer efficiency (e.g., de Mink et al. 2007), common-
envelope physics (e.g., Ivanova et al. 2013), and black hole
natal kicks (e.g., Repetto & Nelemans 2015; Mandel 2016).
Therefore, this model should be viewed only as a realistic
illustration for the model-independent inference technique.

The modelled population is plotted in Figure 1. This
population shows clear evidence of a mass gap between neu-
tron stars, whose masses go up to ~ 2 solar masses, and
black holes, whose masses start at ~ 5 solar masses. This
mass gap is a feature of the rapid supernova engine, and re-
produces the observed mass gap in neutron star and black
hole masses (Ozel et al. 2010; Farr et al. 2011) (but see Krei-
dberg et al. 2012).

In the absence of measurement errors, clustering on a
subset of observations should be straightforward, and we
demonstrate the feasibility of such clustering in Figure 2.
Here, we have chosen 400 merging compact binaries from the
population of Figure 1. The binaries were randomly drawn
with a draw probability of NS-NS, NS-BH, and BH-BH bi-
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Figure 1. Masses of merging compact-object binaries as simu-
lated via population synthesis. The lower left corner is occupied
by NS-NS merging binaries (yellow), the upper right by the more
massive BH-BH systems (blue) while the NS-BH population (or-
ange) is asymmetric.
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Figure 2. K-means clustering on the true masses of 400 simulated

compact-object binaries. The three clusters perfectly match the

actual source subpopulations, with the cluster means shown by

magenta Xs.

naries set to 25%, 25%, and 50%, respectively'; the actual
population of 400 selected systems has 23%, 26%, and 52% of
binaries of the three respective types. These should be inter-
preted as fractional rates in the observed population, as we
do not model selection effects here (cf. Mandel et al. 2016).
Our goal is to extract these arbitrarily chosen relative con-
tributions of the three subpopulations through clustering.
We performed K-means clustering on the exact mass pa-
rameters of the 400 binaries. For clustering, we used the mass
ratio ¢ = ma/ma 2 and the chirp mass M, = (m1 +ma)n’/?,
where 7 is the symmetric mass ratio n = ¢(1 + ¢)~2. The

1 These fractions represented an ad hoc choice, not based on the
population synthesis model.

2 From here on, my is the smaller companion mass; in Figure 1,
it was the mass of the remnant of the secondary star — the star
which initially had a lower mass, but could end up as a more
massive compact remnant at the end of binary evolution.
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chirp mass is chosen because it determines the gravitational-
wave frequency evolution at the lowest order and is therefore
the best-measured mass combination (see below). For clus-
tering purposes, we use a logarithmic coordinate on the chirp
mass, In(M./Mg — 0.8). Simple k-means clustering (Mac-
Queen 1967), which assigns each observation to a cluster
with the closest mean, proves adequate for perfect classifica-
tion on the true source parameters: every binary in Figure 2
is correctly assigned to the right cluster.

3 MEASUREMENT UNCERTAINTY

In practice, inference on gravitational-wave signals permits
only a limited accuracy of parameter estimation. These limi-
tations are due to significant correlations in the occasionally
multi-modal parameter space of 15 or more parameters, in-
cluding component masses and spins, as well as the binary’s
sky location and orientation. Approximate techniques pi-
oneered more than 20 years ago have demonstrated that
the chirp mass is a relatively well-measured parameter for
systems with a total mass of a few tens of solar masses or
less, but other mass combinations, such as the mass ratio,
can only be relatively poorly constrained (Cutler & Flana-
gan 1994; Poisson & Will 1995). More recently, Bayesian
techniques have been used to directly measure the posterior
probability density functions (PDFs) of the signal parame-
ters given the observed noisy data (Aasi et al. 2013; Abbott
et al. 2016d). These techniques, encoded in the LALINFER-
ENCE parameter-estimation pipeline (Veitch et al. 2015a),
have been used to constrain the accuracy of parameter esti-
mation on NS-NS, NS-BH, and BH-BH binaries in a variety
of realistic contexts (e.g., Vitale et al. 2014; Veitch et al.
2015b; Littenberg et al. 2015; Mandel et al. 2015; Haster
et al. 2016; Farr et al. 2016).

Here, we use these earlier results to generate mock pos-
terior PDF's marginalised over all parameters other than m,
and ma. We generate posterior samples in {chirp mass M.,
symmetric mass ratio n} parameter space, given true values
(MT,nT), as follows:

- 12
M, =M! {1—&-&?(7"04—?)} ;

12,
=" {14—0.03?(7"04-7")] . (1)

Here, ro and r{, are random numbers drawn from the stan-
dard normal distribution and the corresponding terms en-
capsulate the shift in the mean of the posterior relative to
the true value, while ¥ and 7' are independent and identi-
cally distributed arrays of such random numbers and rep-
resent the spread of the posterior. The measurement uncer-
tainty scales inversely with the signal-to-noise ratio p, which
is drawn from the distribution p(p) o< p~*, which holds for
isotropically distributed sources in a static universe, sub-
ject to the threshold p > 8 for detection. The scaling « is
motivated by analyses of mock data with the LALINFERENCE
pipeline (e.g., Littenberg et al. 2015; Mandel et al. 2015) and
includes the impact of correlation with parameters describ-
ing arbitrary remnant spins; a = 0.01, 0.03, and 0.1 when
n% >0.1,0.1 > nT > 0.05, and 0.05 > T, respectively. Only
posterior samples with 0.25 > 1 > 0.01 are kept; no a priori
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Figure 3. 500 posterior samples from each of 400 binaries in the
catalog are placed on the same plot to demonstrate the impact
of measurement uncertainty; samples are coloured based on the
binary type of the source they are associated with, as in Figure 1.

cuts on individual masses are assumed, making this an in-
tentionally somewhat conservative estimate of measurement
uncertainty.

For each of the 400 mock binaries in our catalog shown
in Figure 2, we generate between 500 and 2000 posterior
samples in {m1, m2} space, consistent with the typical pos-
terior PDFs produced by LALINFERENCE (e.g., Aasi et al.
2013). In Figure 3, we overplot 500 posterior samples from
each of the 400 measured events. Each posterior distribution
exhibits a typical ‘banana’-like shape, following contours of
roughly constant chirp mass but spanning a range of values
of the symmetric mass ratio. The actual size of the poste-
rior depends on the parameter values of the event and its
simulated signal-to-noise ratio, while the distribution is ran-
domly shifted relative to the true value so that the true
value has a uniform probability of falling into every quan-
tile of the posterior. The combined posterior distributions
appear to show an absence of a gap in between NS-NS and
NS-BH binaries, and some overlap between NS-BH and BH-
BH binaries; meanwhile, due to the lower merger density of
higher-mass BH-BH binaries in our model, gaps appear at
higher masses in the {mi, m2} distribution.

As an indication of the difficulty of clustering on the ob-
served population suffering from measurement uncertainties,
we can apply the k-means clustering procedure described in
the previous section to the full bag of 400 x 500 posterior
samples plotted in Figure 3. The result of this attempt is
shown in Figure 4. The very large extent of the posteriors
in the ¢ direction makes it difficult to estimate the true lo-
cations of the clusters, as evidenced by the shifting of the
cluster means in mass ratio relative to their values in Fig-
ure 2. It is still possible to cluster on the chirp mass, however,
since it is relatively accurately measured.

However, despite the use of the logarithmic chirp mass
coordinate In(M./Mg — 0.8) to aid clustering, some of the
BH-BH binaries are mis-identified by being associated with
the NS-BH cluster. This is most easily seen in Figure 5,
in which we plot each observation at its true mass param-
eters, but colour it in based on the average cluster asso-
ciation of all corresponding posterior samples. This figure
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Figure 4. K-means clustering on a “bag” of posterior samples
(500 samples from each of 400 binaries). Some misclassification is
evident, and the cluster means, denoted with magenta Xs, no

longer correspond to the true subpopulation clusters (cf. Fig-
ure 2).
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Figure 5. K-means clustering on the same bag of posterior sam-
ples as in Figure 4. All 400 observations are displayed at their true
parameter values, but the color reflects the mean cluster associa-
tion of all posterior samples corresponding to each observation.

shows yellow (classified as NS-BH) samples in the top-right
“BH-BH” cluster (see also the right-most yellow strip of Fig-
ure 4). Consequently, the fractions of systems in the clusters
approximately associated with NS-NS;, NS-BH and BH-BH
populations are 23%, 30%, and 47%, respectively. The mis-
classification errors now exceed those expected from Poisson
(trinomial) statistics for 400 objects, and the classification
becomes increasingly poor as the number of observations is
reduced.

Of course, the approach described above is flawed be-
cause it fails to take advantage of all available information.
We lose key information by putting all posterior samples
into a single “bag” and ignoring which observation each sam-
ple corresponds to. For example, this means that we do
not make use of the insight that some posteriors are very
broad (and therefore not very useful for clustering), while
others correspond to very precise measurements. The right
approach must build a hierarchical model out of the full ob-

served population (e.g., Hogg et al. 2010; Bovy et al. 2011,
Mandel 2010; Farr et al. 2015), accounting for the individual
measurement uncertainties, and search for subpopulations in
this reconstructed population. One possible implementation
is described in the following section.

4 DISTRIBUTION INFERENCE AND
CLUSTERING

We separate the problem into two parts: hierarchical mod-
elling of the mass distribution based on a finite number
of limited-accuracy observations, and clustering based on
the inferred mass distribution. There are many possible
ways to parametrise the mass distribution model. We fol-
low Foreman-Mackey et al. (2014) and Abbott et al. (2016a)
in choosing a piecewise-constant two dimensional distribu-
tion, i.e., we divide the mass space into rectangular bins
and model the fraction of systems nj within each bin k €
[1, Kbins]. In this case, we bin in Inm; X Inms space, with
square bins in log space. We cover the range of component
masses from m = 1My to m = 181M with a total of
Khins = 15 x 15 = 225 bins.

When N independent observations are available, each
represented by a data set d¥), the posterior probability den-
sity function on the distribution across the bins 77 = {n;} is
given by (Mandel 2010)

N

p(ii) o w(ii) [ [ p(d 1) . 2)
=1

Here

p(d]i) = / p(d@mi?, my")p(my”,mi? |77 dm| dmy”,

3)
(i))

where p(dm|m§i),m2 is the likelihood of observing the
data d given the specified masses (Veitch et al. 2015a)
and p(mgi),mg”ﬁ) = n(mgi),mg)) is the number density
ng for the appropriate bin k into which these masses fall. In
practice, we can replace the preceding integral over the like-
lihood function by a sum over the available posterior sam-
ples, appropriately re-weighted by the prior used for indi-
vidual event analysis (see Mandel 2010; Mandel et al. 2016,
for details). Finally, w(7) is the prior probability distribu-
tion on the fractions within the Kyns bins. Our prior is a
stationary Gaussian process with a squared-exponential ker-
nel, described in detail in Abbott et al. (2016a). This prior
provides a crucial regularisation, favouring a smooth distri-
bution when the data are sparse®, but allows the posterior
to converge to the expected frequentist multinomial distri-
bution when N is large and the measurements are precise.
We compute the inferred distribution according to this
hierarchical model from our mock data. Figure 6 shows the
posterior mean of the population density in each of the mass
bins inferred from the full set of 400 observations, as well
as from smaller randomly drawn subsets to illustrate the
gradual evolution of the accuracy of the inferred posterior.

3 If sharp edges are expected in the distribution, it would be
preferable to use an alternative prior choice that does not dis-
favour such features.
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Figure 6. Mean density inferred across mass space from mock observations using a binned distribution model with a Gaussian process
prior for N = 10, 20, 40 (top row, left to right) and 80, 160, 400 (bottom row, left to right) observations.
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Figure 7. Water-filling clustering on the mean estimates of the
population fraction in each bin, as inferred from 400 mock obser-
vations.

Distinct NS-NS, NS-BH, and BH-BH clusters clearly appear
around 40 — 80 observations, consistently with the estimated
requirement of ~ 60 observations made by Mandel et al.
(2015).

In order to identify specific clusters, we use a water-
filling algorithm on the mean estimates of the population
density in each bin (see, e.g., Nielsen & Nock 2008; Van &
Pham-Gia 2010; Applegate et al. 2011, for other proposed
approaches to distributional clustering). We gradually flood
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the posterior landscape until only three clusters stand above
the water level over the m; > mq half of the plane. Clus-
ters here are defined as sets of bins such that all elements
of a cluster are connected through shared edges, but such
connections do not exist between distinct clusters. Some of
the posterior ends up in the under-water bins; the clustering
is deemed successful only when under-water bins account
for no more than a few percent of the posterior. This hap-
pens starting with N = 80 for the plots in Figure 6. As an
example, Figure 7 shows the results of applying the water-
filling clustering strategy to the distribution inferred from
N = 400 observations (mirrored across m; = mgz for plot-
ting). In this case, the NS-NS, NS-BH, and BH-BH sub-
populations contain 23%, 25%, and 51% of the population,
respectively, while less than 2% of the posterior is under-
water.

In general, the appropriate number of clusters does
not need to be assumed in advance, but should be chosen
from the data during the water-filling stage. Specifically, the
amount of water used for flooding can be optimised against
the flooded area. Flooding should continue only while the
flooded area grows rapidly with a modest increase in the
posterior volume (the amount of water used for flooding),
with the remaining above-water areas identified as clusters.

We can obtain estimates of the statistical uncertainty
on the inferred posterior fraction in each cluster by taking
advantage of the full PDFs on the fractional mass distri-
bution within each bin. We use the cluster boundaries pro-
vided by the water-filling clustering algorithm and compute
the posterior on the total mass density within each cluster
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Figure 8. Triangle plots for the posteriors on the inferred fraction of events in each of the NS-NS, NS-BH, and BH-BH subpopulations
(ordering from left to right, and top to bottom); blue lines denote the fractions used to randomly draw the events being clustered. (Left)
The posterior after 80 mock observations. (Right) The posterior after 400 mock observations.

identified with the NS-NS, NS-BH, and BH-BH subpopula-
tions. To be precise, given the posterior over all 77, we simply
add the individual posteriors on the sums of those nj, which
fall into a particular cluster; we do not account for the un-
certainty in the cluster boundaries when computing these
cluster fraction posteriors. The triangle plots for the clus-
ter fraction posteriors are shown in Figure 8.* For both 80
(left) and 400 (right) observations, the uncertainty in the in-
ferred fraction of each subpopulation is within the expected
fluctuation in random-draw statistics from a trinomial dis-
tribution, as predicted by Mandel et al. (2015).

We have presented a practical technique for cluster-
ing observations suffering from significant measurement un-
certainty. We demonstrated its functionality on the mass
parameter space and showed that a realistic population of
merging compact binaries could be accurately clustered into
NS-NS, NS-BH, and BH-BH subpopulations. The number
of observations required for accurate clustering will depend
on how well-separated the true subpopulations are, on the
actual fractions of events in each subpopulation and on the
size of measurement uncertainties. Our example indicates
that ~ 20 observations per subpopulation are more than
sufficient for accurate clustering on the modelled popula-
tion. We have confirmed that this number of observations
per subpopulation is sufficient for accurate clustering even
when the ratio between the numbers of events in different
subpopulations is more extreme, e.g., 1 : 5 : 50 rather than
1:1: 2. With sufficient observations, it should be possible
to use this technique to cluster on any population with mul-
tiple modes separated by lower-density regions in parameter

4 For this figure we associated each under-water bin with a neigh-
bouring cluster; this does not impact the results other than en-
suring that the three fractions sum to 1.

space (gaps), even if the measurement uncertainty on indi-
vidual observations is larger than the width of the gaps. It
is straightforward, though computationally expensive, to ex-
tend this technique to higher-dimensional analyses, e.g., to
include spin information along with mass information, which
could help to distinguish isolated and dynamical formation
channels for binary black holes (Abbott et al. 2016f,b).
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