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Abstract

We present a detailed bifurcation study of iterated renormalization process driven

by softmax transformation parametrized by a temperature parameter. For each emerg-

ing equilibrium we give exact characterization of stable/unstable manifolds of the

linearized dynamics. As the system cools down, new equilibria emerge in a strong

structure until finally a complex skeleton of saddle type equilibria surrounding an

unstable maximum entropy point, with decision enforcing ”one-hot” stable equilibria

emerges.

1 Introduction

There are situations where the quantities of interest, wi ∈ R, i = 1, 2, ..., N , need to be

positive and sum up to one. In other words, the vector w = (w1, w2, ..., wN )′ is constrained

to the standard (N − 1)-simplex

SN−1 = {w = (w1, w2, ..., wN )′ ∈ RN | wi ≥ 0, i = 1, 2, ..., N, and
N∑

i=1

wi = 1}. (1)

For example, wi may be coefficients of a convex combination, or values of a multinomial

distribution over N outcomes (1 trial), or may represent ‘soft’ degrees of membership in

an assignment problem.

One typical example of projecting onto SN−1 is the softmax transformation1

w 7→ F(w;T ) = (F1(w;T ), F2(w;T ), ..., FN (w;T ))′, (2)

1related to Gibbs distribution formulation, or to the link function of multinomial dis-

tribution
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where T > 0 is a (temperature) parameter,

Fi(w;T ) =
exp(wi

T )

Z(w;T )
, i = 1, 2, ..., N, (3)

and

Z(w;T ) =
N∑

k=1

exp(
wk

T
) (4)

is the normalization factor. For high and low settings of the temperature parameter T ,

the images under the softmax transformation cluster around the central point of SN−1

and vertices of SN−1, respectively.

Formally, the softmax transform F (2-4) maps RN to S0
N−1, the interior of SN−1:

S0
N−1 = {w ∈ RN | wi > 0, i = 1, 2, ..., N, and

N∑

i=1

wi = 1}. (5)

Linearization of F around w ∈ S0
N−1 is given by the (symmetric) Jacobian J(w;T ):

J(w;T )i,j =
1

T
[δi,jFi(w;T )− Fi(w;T )Fj(w;T )], i, j = 1, 2, ..., N, (6)

where δi,j = 1 iff i = j and δi,j = 0 otherwise.

Typically, ‘soft assignment’ approaches to ‘hard’ 0-1 combinatorial assignment prob-

lems, or constrained optimization techniques searching over simplexes apply softmax renor-

malization repeatedly after each batch of assignment weight or parameter updates (see e.g.

[1, 2, 3, 4, 5]). Iterated application of softmax transformation also appears e.g. in a pos-

teriori corrections in classification machines [6].

Most ‘soft assignment’ optimization techniques employing periodic application of soft-

max transformation ‘anneal’ the solutions towards the ‘hard’ 0-1 decisions by gradually

decreasing the temperature parameter T . To have an insight about the effects of periodic

or iterated application of the softmax transformation, it is useful to analyse the position

and stability types of invariant sets of autonomous iterated softmax (ISM)

w(t+ 1) = F(w(t);T ). (7)

operating on on S0
N−1. For example, by analyzing its first symmetry-breaking bifurcation

point, we were able to find analytical expressions closely approximating critical tempera-

tures for powerful intermittent search in a ‘soft assignment’ approach to solving N -queens

problem [7]. In this paper we perform a detailed bifurcation study of the autonomous

iterated softmax and give precise characterization and stability types of equilibria, as they
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emerge during the annealing process. Interesting and intricate equilibria structure emerges

as the system cools down. At low temperatures, a complex skeleton of saddle type equi-

libria surrounding the unstable maximum entropy point (equal assignment weight for all

assignment options), with decision enforcing ”one-hot” stable equilibria (hard assignment

decisions selecting exactly one assignment alternative) gradually emerges. This can lead to

adaptation processes exhibiting signatures of complex dynamical behavior and sensitivity

to annealing schedules, as empirically observed e.g. in [8].

It is worth noting that interesting bifurcation structure of fixed points have been re-

vealed in other discrete or continuous time dynamical systems. For example, Agiza [9]

studied fixed point stability of dynamics of 3 and 4 competitors in a Cournot game.

Rich bifurcation structure has been identified with interesting pattern of periodic orbits

emerging through Hopf bifurcation. Peng [10] showed how a stable closed invariant curve

emerges from a fixed point in a two-dimensional delay population model via Neimark-

Sacker bifurcation. Codreanu and László [11] gave analytical underpinning to empirically

observed fixed point bifurcations in some 1- and 2-dimensional iterative function systems.

Fundamental role of symmetry-breaking bifurcation in a periodically driven planar pen-

dulum is revealed in [12]. Sardanyés [13] illustrate how saddle-node bifurcation may play

a key role in the information transfer in an error-prone self-replicating molecular system.

The paper has the following organization: We study the emerging structure and sta-

bility types of renormalization equilibria in sections 2 and 3, respectively. Key findings

are summarized in section 4. We will study systems for N ≥ 2.

2 Equilibria of Iterated Softmax

First, we introduce basic concepts and notation that will be used throughout the paper.

In general, an (n− 1)-simplex is just the convex hull of a set of n affinely independent

points in Rm, m ≥ n − 1. A special case is the standard (N − 1)-simplex SN−1 defined

in (1). It is the convex hull of the standard basis of RN , {e1, e2, ..., eN}, where ei is an

N -dimensional vector of 0’s, except for the coordinate i that has value 1.

The convex hull of any nonempty subset of n vertices of an (r − 1)-simplex ∆, n ≤ r,

is called an (n− 1)-face of ∆. There are
(
r
n

)
distinct (n− 1)-faces of ∆. Each (n− 1)-face

is an (n − 1)-simplex. In particular, the 0-faces and 1-faces are the vertices and edges,

respectively, of ∆. The (r−2)-faces are the facets of ∆. Obviously, the unique (r−1)-face

of ∆ is the simplex ∆ itself.
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Given a set of n vertices w1,w2, ...,wn ∈ Rm defining an (n−1)-simplex ∆ in Rm, the

central point,

w(∆) =
1

n

n∑

i=1

wi, (8)

is called the maximum entropy point of ∆.

We will denote the set of all (n − 1)-faces of the standard (N − 1)-simplex SN−1 by

PN,n. The set of their maximum entropy points is denoted by QN,n, i.e.

QN,n = {w(∆)| ∆ ∈ PN,n}. (9)

The n-dimensional column vectors of 1’s and 0’s are denoted by 1n and 0n, respectively.

Note that

wN,n =
1

n
(1′n,0

′
N−n)

′ (10)

is inQN,n. In addition, all the other elements ofQN,n can be obtained by simply permuting

coordinates of wN,n. Due to this symmetry, we will be able to develop most of the material

using wN,n only and then transfer the results to permutations of wN,n. The maximum

entropy point wN,N = N−1
1N of the standard (N−1)-simplex SN−1 will often be denoted

simply by w. To simplify the notation we will use w to denote both the maximum entropy

point of SN−1 and the vector w− 0N .

Let us now briefly recall findings of [7] that will be needed in this paper.

The maximum entropy point w is a fixed point of ISM (7) for any temperature setting

T . All the other fixed points w = (w1, w2, ..., wN )′ of ISM have exactly two different

coordinate values: wi ∈ {γ1, γ2}, such that N−1 < γ1 < N−1
1 and 0 < γ2 < N−1, where

N1 is the number of coordinates γ1 larger than N−1. Since w ∈ S0
N−1, we have

γ2 =
1−N1γ1

N −N1
. (11)

The number of coordinates γ2 smaller thanN−1 is denoted byN2. Obviously, N2 = N−N1.

If w = (γ11
′
N1

, γ21
′
N2

)′ is a fixed point of ISM (7), so are all
(
N
N1

)
distinct permutations

of it. We collect w and its permutations in a set defined as follows: given integers N ≥ 2,

0 < N1 < N , and a real number N−1 < γ1 < N−1
1 , we write

EN,N1
(γ1) =

{
v ∈ S0

N−1| v is a permutation of

(
γ11

′
N1

,
1−N1γ1

N −N1
1
′
N−N1

)′}
. (12)

The fixed points in EN,N1
(γ1) exist if and only if the temperature parameter T is set to

TN,N1
(γ1) = (Nγ1 − 1)

[
−(N −N1) · ln

(
1−

Nγ1 − 1

(N −N1)γ1

)]−1

. (13)
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For a givenN ≥ 2 and 0 < N1 < N , the temperature function TN,N1
(γ1) : (N

−1, N−1
1 )→

R+ is concave and

lim
γ1→N−1

TN,N1
(γ1) = N−1. (14)

In addition, the slope of TN,N1
(γ1) at N−1 approaches

κN,N1
= lim

γ1→N−1

dTN,N1
(γ1)

dγ1
= 1−

N

2(N −N1)
. (15)

For temperatures T > 1/2, the maximum entropy point w is the unique equilibrium

of ISM.

2.1 Bifurcations of equilibria of ISM

In this section we examine the mechanism of emergence of new ISM equilibria, as the

system anneals. As mentioned earlier, the maximum entropy point w = N−1
1N is a fixed

point of ISM (7) for any temperature setting. The existence of other fixed points depends

on the temperature T , as described by (13). We will show that as the system cools down,

increasing number of equilibria emerge in a strong structure.

Let w,v ∈ SN−1 be two points on the standard simplex. The line from w to v is

parametrized as

`(τ ;w,v) = w + τ · (v−w), τ ∈ [0, 1]. (16)

Theorem 2.1 All equilibria of ISM (7) lie on lines connecting the maximum entropy point

w of SN−1 with the maximum entropy points of its faces. In particular, for 0 < N1 < N

and N−1 < γ1 < N−1
1 , all fixed points from EN,N1

(γ1) lie on lines `(τ ;w,w), where

w ∈ QN,N1
.

Proof: We know that for a given 0 < N1 < N and N−1 < γ1 < N−1
1 , there is a

temperature setting TN,N1
(γ1) such that all permutations of (γ11

′
N1

, γ21
′
N2

)′, where N2 =

N −N1 and γ2 is given by (11), are fixed points of ISM. Instead of dealing with the whole

set EN,N1
(γ1), we will concentrate only on the representative w(γ1) = (γ11

′
N1

, γ21
′
N2

)′; the

result then follows by symmetry.

Consider the maximum entropy point wN,N1
of an (N1−1)-face of SN−1 (see eq. (10)),

wN,N1
= 1

N1
(1′N1

,0′N2
)′. Then w(γ1) lies on the line `(τ ;w,wN,N1

) for the parameter
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setting τ = 1−Nγ2. In other words,

γ1 =
1

N

(
1 + τ

N2

N1

)
(17)

γ2 =
1

N
(1− τ), (18)

which can be easily verified by plugging in τ = 1−Nγ2 into (17). ¤

For an ISM fixed point w ∈ EN,N1
(γ1) we will denote by Γ(w) the maximum entropy

point Γ(w) ∈ QN,N1
of the (N1 − 1)-face of SN−1, such that w ∈ `(τ ;w,Γ(w)).

The result is illustrated in figure 1. Fixed points of ISM operating on the standard

3-simplex S3 can only be found on the lines connecting the maximum entropy point w

(filled circle) with maximum entropy points of its faces. Triangles, squares and diamonds

represent maximum entropy points of 0-faces (vertices), 1-faces (edges) and 2-faces (facets),

respectively. Fixed points with three coordinates larger than 1/4 can be be found on the

lines connecting w with maximum entropy points of 2-faces (solid bold lines). Analogously,

fixed points with two and one coordinate larger than 1/4 can be be found on the lines

connecting w with maximum entropy points of 1- and 0-faces (dashed and dashed-dotted

bold lines, respectively).

Theorem 2.2 For N1 < N/2, there exists a temperature TE(N,N1) > N−1 such that

for T ∈ (0, TE(N,N1)], ISM fixed points in EN,N1
(γ1) exist for some γ1 ∈ (N−1, N−1

1 ),

and no ISM fixed points in EN,N1
(γ1), for any γ1 ∈ (N−1, N−1

1 ), can exist at temperatures

T > TE(N,N1). The temperature TE(N,N1) is given by TN,N1
(γ∗1), where γ∗1 is the unique

solution of

ln

[
(N −N1)γ1

1−N1γ1

]
=

γ1 −
1
N

γ1(1−N1γ1)
. (19)

For each temperature T ∈ (N−1, TE(N,N1)), there are two coordinate values γ−1 (T )

and γ+
1 (T ), N−1 < γ−1 (T ) < γ+

1 (T ) < N−1
1 , such that ISM fixed points in both EN,N1

(γ−1 (T ))

and EN,N1
(γ+

1 (T )) exist at temperature T . Furthermore, as the temperature decreases,

γ−1 (T ) decreases towards N−1, while γ+
1 (T ) increases towards N−1

1 .

Proof: The temperature function TN,N1
(γ1) (13) is concave and can be continuously

extended to [N−1, N−1
1 ). At γ1 = N−1, the temperature is N−1 and since N1 < N/2, the

slope of TN,N1
(γ1) at γ1 = N−1 is positive. Because

lim
γ1→N−1

1

TN,N1
(γ1) = 0 < N−1,
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Figure 1: Positions of ISM equilibria illustrated for the case of 4-dimensional assignment

weight vectors w. ISM is operating on the standard 3-simplex S3 and its equilibria can

only be found on the lines connecting the maximum entropy point w (filled circle) with

maximum entropy points of its faces. Triangles, squares and diamonds represent maximum

entropy points of 0-faces (vertices), 1-faces (edges) and 2-faces (facets), respectively.

TN,N1
(γ1) must have a unique maximum at some γ∗1 ∈ (N−1, N−1

1 ),

γ∗1 = argmax
γ1∈(N−1,N−1

1 )

TN,N1
(γ1).

Setting the derivative of TN,N1
(γ1) to zero leads to (19).

Obviously, no ISM fixed points in EN,N1
(γ1), for any N−1 < γ1 < N−1

1 , can exist for

temperatures greater than TN,N1
(γ∗1).

Since TN,N1
(γ1) is concave, for temperatures N−1 < T < TN,N1

(γ∗1), there are two

coordinate values γ−1 (T ) and γ+
1 (T ), γ−1 (T ) < γ+

1 (T ), such that T = TN,N1
(γ−1 (T )) =

TN,N1
(γ+

1 (T )). The values γ−1 (T ) and γ1+(T ) correspond to the increasing and decreasing

branches of TN,N1
(γ1), and so as the temperature decreases, γ−1 (T ) decreases as well, while

γ+
1 (T ) increases. ¤

Note that for low-temperature regimes, T < N−1, there is only one value of γ1(T ) close

to N−1
1 , such that T = TN,N1

(γ1(T )). In other words, if N1 < N/2, in low temperature

regimes the fixed points tend to accumulate around the maximum entropy points of (N1−

1)-faces of SN−1. The same is true for the ISM fixed points with N1 ≥ N/2 coordinates

γ1 larger than N−1.
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Theorem 2.3 If N/2 ≤ N1 < N , for each temperature T ∈ (0, N−1), there is exactly one

coordinate value γ1(T ) ∈ (N−1, N−1
1 ), such that ISM fixed points in EN,N1

(γ1(T )) exist at

temperature T . No ISM fixed points in EN,N1
(γ1), for any γ1 ∈ (N−1, N−1

1 ) can exist for

temperatures T > N−1. As the temperature decreases, γ1(T ) increases towards N−1
1 .

Proof: Since N/2 ≤ N1 < N , the slope of TN,N1
(γ1) at γ1 = N−1 is not positive.

In addition, TN,N1
(γ1) is concave. It follows that for temperatures T > N−1, there is no

γ1(T ) such that T = TN,N1
(γ1(T )). For 0 < T < N−1, TN,N1

(γ1) is decreasing and there

is exactly one γ1(T ) such that T = TN,N1
(γ1(T )). ¤

Next, we will show that the set of bifurcation temperatures TE(N,N1) > N−1, for

N1 < N/2, is linearly ordered.

Lemma 2.4 Consider 0 < N1 < N ′
1 < N and a coordinate value γ1 ∈ (1/N, 1/N ′

1). Then,

γ2 =
1−N1γ1

N −N1
>

1−N ′
1γ1

N −N ′
1

= γ′2. (20)

In addition, TN,N ′1
(γ1) < TN,N1

(γ1).

Proof: Let N ′
1 = N1 + 1 and assume

γ2 =
1−N1γ1

N −N1
≤

1− (N1 + 1)γ1

N −N1 − 1
= γ′2.

Then,

(N −N1)(1−N1γ1 − γ1) ≥ (N −N1 − 1)(1−N1γ1),

which is equivalent to γ1 ≤ N−1. This is a contradiction. Hence, γ2 > γ′2. If N
′
1 = N1 +k,

for some k > 1, (20) can be obtained by induction.

Note that the temperature function can be re-written as

TN,N1
(γ1) =

γ1 − γ2

ln γ1 − ln γ2
, (21)

with γ2 given by (11).

Logarithm is a concave function. Since 0 < γ ′2 < γ2 < γ1 < 1, we have

TN,N1
(γ1) =

γ1 − γ2

ln γ1 − ln γ2
>

γ1 − γ′2
ln γ1 − ln γ′2

= TN,N ′1
(γ1).

¤
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Theorem 2.5 The bifurcation temperature TE(N,N1) is decreasing with increasing num-

ber N1 of equilibrium coordinates larger than N−1.

Proof: By lemma 2.4, for any feasible value of the larger coordinate γ1 > N−1, if

there are two fixed points w ∈ EN,N1
(γ1) and w

′ ∈ EN,N ′1
(γ1) of ISM, such that N1 < N ′

1,

then w exists at a higher temperature than w
′ does.

For a given N1 < N/2, the bifurcation temperature TE(N,N1) corresponds to the

maximum of TN,N1
(γ1) on γ1 ∈ (N−1, N−1

1 ). It follows that N1 < N ′
1 implies TE(N,N1) >

TE(N,N ′
1). ¤

We now summarize the results of this section. For temperatures T > 1/2, the ISM has

exactly one equilibrium - the maximum entropy point w of SN−1. As the temperature is

lowered and hits the first bifurcation point, TE(N, 1), new fixed points of ISM emerge

on the lines `(τ ;w, w̃), w̃ ∈ QN,1, one on each line. The lines connect w with the

vertices w̃ of SN−1. As the temperature decreases further, on each line, the single fixed

point splits into two fixed points, one moves towards w, the other moves towards the

corresponding high entropy point w̃ in QN,1 (vertex of SN−1). When the temperature

reaches the second bifurcation point, TE(N, 2), new fixed points of ISM emerge on the

lines `(τ ;w, w̃), w̃ ∈ QN,2, one on each line. This time the lines connect w with the

maximum entropy points (midpoints) w̃ of the edges of SN−1. Again, as the temperature

continues decreasing, on each line, the single fixed point splits into two fixed points, one

moves towards w, the other moves towards the corresponding maximum entropy point

w̃ in QN,2 (midpoint of an edge of SN−1). Decreasing temperature further to TE(N, 3),

new fixed points of ISM emerge on the lines `(τ ;w, w̃), w̃ ∈ QN,3, connecting w with

maximum entropy points w̃ of 2-faces of SN−1. Decreasing the temperature even further,

on each line, the single fixed point splits into two fixed points, one moves towards w, the

other moves towards the corresponding maximum entropy point w̃ in QN,3. The process

continues until the last bifurcation temperature TE(N,N1) is reached, where N1 is the

largest natural number smaller than N/2. At TE(N,N1), new fixed points of ISM emerge

on the lines `(τ ;w, w̃), w̃ ∈ QN,N1
, connecting w with maximum entropy points w̃ of

(N1 − 1)-faces of SN−1. As the temperature continues decreasing, on each line, the single

fixed point splits into two fixed points, one moves towards w, the other moves towards the

corresponding maximum entropy point w̃ in QN,N1
. At temperatures below N−1, only

the fixed points moving towards the maximum entropy points of faces of SN−1 exist.
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Figure 2: Demonstration of the process of creation of new ISM fixed points and their

flow as the system temperature cools down. Here N = 10, e.g. the ISM operates on

the standard 9-simplex S9. Against each temperature setting T , the values of the larger

coordinate γ1 > N−1 of the fixed points existing at T are plotted. The horizontal bold

line corresponds to the maximum entropy point w = 10−1
1
′
10.

In the low temperature regime, 0 < T < N−1, a fixed point occurs on every line

`(τ ;w, w̃), w̃ ∈ QN,N1
, N1 = dN/2e, dN/2e+ 1, ..., N − 1. Here, dxe denotes the smallest

integer y, such that y ≥ x. As the temperature decreases, the fixed points w move towards

the corresponding maximum entropy points Γ(w) = w̃ ∈ QN,N1
of (N1−1)-faces of SN−1.

The process of creation of new fixed points and their flow as the temperature cools

down is demonstrated in figure 2 for an ISM operating on 9-simplex S9. We plot against

each temperature setting T the values of the larger coordinate γ1 > N−1 = 0.1 of the fixed

points existing at T .

Next theorem summarizes the number of ISM equilibria as a function of temperature

T .

Theorem 2.6 At temperature T > 0 there exist 1+NN (T ) fixed points of ISM (7), where

1. for temperatures T > TE(N, 1), NN (T ) = 0,
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2. for temperatures T = TE(N,N1), N1 = 1, 2, ..., dN/2e − 1,

NN (T ) =

(
N

N1

)
+ 2

N1−1∑

n=1

(
N

n

)
,

3. for temperatures TE(N,N1) < T < TE(N,N1 − 1), N1 = 2, ..., dN/2e − 1,

NN (T ) = 2

N1−1∑

n=1

(
N

n

)
,

4. for temperatures N−1 < T < TE(N, dN/2e − 1),

NN (T ) = 2

dN/2e−1∑

n=1

(
N

n

)
,

5. at temperature T = N−1,

NN (T ) =

dN/2e−1∑

n=1

(
N

n

)
,

6. for temperatures 0 < T < N−1,

NN (T ) =
N−1∑

n=1

(
N

n

)
.

Proof: The result follows from the ISM bifurcation scenario outlined above and

realizing that there are
(
N
n

)
(n− 1)-faces in an (N − 1)-simplex.

1. For T > TE(N, 1) there is a unique fixed point w ∈ SN−1 of ISM (7).

2. When T = TE(N,N1), N1 = 1, 2, ..., dN/2e − 1,
(
N
N1

)
ISM fixed points are created

on
(
N
N1

)
lines from w to (N1− 1)-faces of SN−1. For each 1 ≤ n < N1, there already

exists a pair of ISM fixed points on each of
(
N
n

)
lines from w to (n−1)-faces of SN−1.

The maximum entropy fixed point w of ISM (7) always exists.

3. For TE(N,N1) < T < TE(N,N1 − 1), N1 = 2, ..., dN/2e − 1, for each 1 ≤ n < N1,

there exists a pair of ISM fixed points on each of
(
N
n

)
lines from w to (n− 1)-faces

of SN−1.

4. For N−1 < T < TE(N, dN/2e − 1), all “paired” ISM fixed points exist, and so for

each 1 ≤ n < dN/2e, there is a pair of ISM fixed points on each of
(
N
n

)
lines from w

to (n− 1)-faces of SN−1.
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5. At T = N−1, for every 1 ≤ n < dN/2e, the ISM fixed points closer to w on each of
(
N
n

)
lines from w to (n− 1)-faces of SN−1 seize to exist and those lines now contain

a single ISM fixed point each.

6. For 0 < T < N−1, a single ISM fixed point on each of the lines connecting w with

each face2 of SN−1 exists.

¤

Having characterized the number and position of ISM equilibria, in the next section

we present their stability analysis.

3 Stability analysis of renormalization equilibria

The maximum entropy point w is not only a fixed point of ISM (7), but also, regarded

as a vector w − 0N , it is an eigenvector of the Jacobian J(w;T ) (see eq. (6)) at any

w ∈ S0
N−1, with eigenvalue λ = 0. This simply reflects the fact that ISM renormalization

acts on the standard simplex SN−1, which is a subset of a (N −1)-dimensional hyperplane

with normal vector 1N .

We have already seen that the maximum entropy point w plays a special role in the

ISM equilibria structure: all equilibria lie on lines going from w towards maximum entropy

points of faces of SN−1. The lines themselves are of special interest, since we will show

that these lines are invariant manifolds of the ISM renormalization and their directional

vectors are eigenvectors of ISM Jacobians at the fixed points located on them.

First, we need an auxiliary lemma.

Lemma 3.1 Let w ∈ EN,N1
(γ1) for some 1 ≤ N1 < N , γ1 ∈ (N−1, N−1

1 ), be a fixed point

of ISM (7) with squared Euclidean norm ‖w‖2 = w
′
w. Then, γ1 > ‖w‖2 and γ2 < ‖w‖2,

where γ2 = (1−N1γ1)/(N −N1).

Proof: We have

‖w‖2 = N1γ
2
1 +N2γ

2
2 =

NN1γ
2
1 − 2N1γ1 + 1

N −N1
.

2except for SN−1 itself

12



Now, ‖w‖2 − γ1 < 0 only if

κ(γ1) = NN1γ
2
1 − γ1(N +N1) + 1 < 0. (22)

Given N,N1, κ(γ1) can be considered quadratic function of γ1 on R with zeros at γ1 = N−1

and γ1 = N−1
1 . Hence κ(γ1) < 0 for all γ1 in (N−1, N−1

1 ), exactly the allowed range for

γ1.

The statement γ2 < ‖w‖2 can be proved in a completely symmetric manner. ¤

Theorem 3.2 Let w ∈ EN,N1
(γ1) for some 1 ≤ N1 < N , γ1 ∈ (N−1, N−1

1 ), be a fixed

point of ISM (7). Then, w∗ = w −w is an eigenvector of the Jacobian J(w;TN,N1
(γ1))

of ISM at w with the corresponding eigenvalue

λ∗ =
γ1 · (γ1 − ‖w‖

2)

TN,N1
(γ1) · (γ1 −N−1)

> 0, (23)

where ‖w‖2 = w
′
w is the squared Euclidean norm of w.

Proof: To simplify the notation, we will denote the Jacobian of ISM at w =

(w1, w2, ..., wN )′ by J and the temperature at which w exists by T . From

Jw∗ = J(w−w) = Jw− Jw = −Jw,

and using (6), we have that the i-th element of Jw∗ is equal to

wi

T
w

′
w− wie

′
iw =

wi

T
(‖w‖2 − wi).

For w∗ to be an eigenvector of J with eigenvalue λ∗, it must hold

Jw∗ = λ∗w− λ∗w,

and so the i-th element of Jw∗ must also be equal to λ∗N
−1 − λ∗wi. Hence,

wi

T
(‖w‖2 − wi) = λ∗N

−1 − λ∗wi (24)

should hold for all i = 1, 2, ..., N . But we know that wi ∈ {γ1, γ2}, γ2 = (1−N1γ1)/(N −

N1), and so
γ1 · (γ1 − ‖w‖

2)

γ2 · (γ2 − ‖w‖2)
=

γ1 −N−1

γ2 −N−1
(25)

13



would need to be true. Since γ1, γ2 > 0, (25) can be rewritten as

γ1 − ‖w‖
2

γ2 − ‖w‖2
=

1− (Nγ1)
−1

1− (Nγ2)−1
. (26)

To verify whether (26) holds, we write

γ1 − ‖w‖
2

γ2 − ‖w‖2
=

γ1 − ‖w‖
2

1−N1γ1

N−N1
− ‖w‖2

= 1−
1−Nγ1

1−N1γ1 − (N −N1)‖w‖2
. (27)

and

1− 1
Nγ1

1− 1
Nγ2

=

Nγ1−1
Nγ1

N1(Nγ1−1)
N(N1γ1−1)

= 1−
1

N1γ1
. (28)

We need to show that
1−Nγ1

1−N1γ1 − (N −N1)‖w‖2
=

1

N1γ1
. (29)

Note that the denominators in (29) are guaranteed to be nonzero, since N1, γ1 > 0 and by

lemma 3.1,

1−N1γ1 − (N −N1)‖w‖
2 = 1−N1γ1 −N2‖w‖

2 < 1−N1γ1 −N2γ2 = 0.

Hence, (29) can be restated as

N1γ1(1−Nγ1) = 1−N1γ1 − (N −N1)‖w‖
2. (30)

But (30) holds, since

‖w‖2 = N1γ
2
1 +N2γ

2
2 = N1γ

2
1 +

(1−N1γ1)
2

N −N1
. (31)

The expression (23) for λ∗ follows from (24), by plugging in3 γ1 for wi.

It remains to be shown that λ∗ is positive. This follows directly from (23) since

γ1 > N−1 > 0, T > 0, and by lemma 3.1, γ1 − ‖w‖
2 > 0.

¤

Theorem 3.3 Let w ∈ EN,N1
(γ1) for some dN/2e ≤ N1 ≤ N − 1, γ1 ∈ (N−1, N−1

1 ), be a

fixed point of ISM (7) and λ∗ be the eigenvalue associated with eigenvector w∗ = w −w

of the Jacobian J(w;TN,N1
(γ1)) of ISM at w. Then, 0 < λ∗ < 1.

3alternatively, we could have used γ2

14



Proof:

Using parametrization (17-18),

‖w‖2 = N1γ
2
1 +N2γ

2
2

=
1

N

(
1 + τ2N2

N1

)
,

(32)

so that

γ1 − ‖w‖
2 =

1

N

(
τ
N2

N1
− τ2N2

N1

)

=
N2

N1N
τ(1− τ), (33)

and since

γ1 −N−1 =
N2

N1N
τ,

we can write
γ1 − ‖w‖

2

γ1 −N−1
= 1− τ. (34)

From (23) and (34) we obtain

λ∗ =
γ1

T
(1− τ). (35)

Now, assume λ∗ ≥ 1. That means (using (35) and (18))

T

γ1
=

1− γ2

γ1

− ln γ2

γ1

≤ 1− τ = γ1N
γ2

γ1
,

which can be written as
a− 1

ln a
≤ Nγ1a, (36)

where

0 < a =
γ2

γ1
< 1. (37)

Since

N1γ1 + (N −N1)γ2 = N1γ1 + (N −N1)aγ1 = 1,

we have

γ1 = (N1 + (N −N1)a)
−1,

15



and (36) reads4

ln a ≤ −
1− a

a
(ρ+ a(1− ρ))

= −ρ
(1− a)2

a
+ a− 1 = f(a; ρ). (38)

where

0 < ρ =
N1

N
< 1. (39)

The function f(a; ρ) is increasing on a ∈ (0, 1) (actually on a > 0), since its derivative

f ′(a) = ρ/a2 + 1− ρ is positive. The second derivative of f , f ′′(a) = −2ρ/a3, is negative

for a > 0, and so f(a) is concave.

On a > 0, both ln a and f(a) are continuous concave functions with ln 1 = f(1) = 0

and ln′(1) = f ′(1) = 1. So the function values, as well as the slopes of ln a and f(a)

coincide at a = 1. We will investigate conditions under which the slope of f(a) exceeds

that of ln a on the whole interval (0, 1). Then, for a ∈ (0, 1), we would have f(a) < ln a.

The inequality

f ′(a)− ln′(a) > 0

holds, whenever 1− ρ+ ρa−2 − a−1 > 0, which is equivalent to

g(a) = a2(1− ρ)− a+ ρ > 0. (40)

Since 1 − ρ > 0, g(a) > 0 on a ∈ (0, a1) ∪ (a2, 1), where a1, a2 are zeros of the quadratic

function g(a),

a1,2 =
1± |1− 2ρ|

2(1− ρ)
. (41)

For ρ ∈ (0, 1/2), we have a1 = ρ/(1− ρ) and a2 = 1, whereas for ρ ∈ [1/2, 1), a1 = 1 and

a2 = ρ/(1 − ρ). The boundary points a1 and a2, plotted as functions of ρ ∈ (0, 1), are

shown in figure 3.

Because N1 ≥ dN/2e, we have ρ ≥ 1/2, and so g(a) > 0 on a ∈ (0, 1). But a = γ2/γ1

is always in the interval (0, 1) (see eq. (37)). It follows that f(a) < ln a for any a ∈ (0, 1).

This is a contradiction to (38), and so it must be that λ∗ < 1. By theorem 3.2, λ∗ is

positive. ¤

4ln a < 0
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Figure 3: Boundary points a1 (solid bold line) and a2 (dashed bold line), plotted as

functions of ρ ∈ (0, 1). The quadratic function g(a) (see (40)) is positive for a < a1 and

a > a2.

Theorem 3.4 Let w ∈ EN,N1
(γ1) for some 1 ≤ N1 < dN/2e and N−1 < γ1 < (2N1)

−1,

be a fixed point of ISM (7) and λ∗ be the eigenvalue associated with eigenvector w∗ = w−w

of the Jacobian J(w;TN,N1
(γ1)) of ISM at w. Then, λ∗ > 1.

Proof: First note that the bound N−1 < γ1 < (2N1)
−1 is well defined, since from

N1 < N/2 we have 1/(2N1) > 1/N .

The proof proceeds analogously to the proof of theorem 3.3, but this time we are

interested in the negative range of g(a), implying f ′(a) < ln′(a). For a ∈ (0, 1), g(a) < 0

only on a ∈ (a1, 1). Since ln a and f(a) are continuous concave functions with ln 1 = f(1) =

0, ln′(1) = f ′(1) = 1, and f ′(a) < ln′(a), it must be that on a ∈ (a1, 1), f(a) > ln a. That

means λ∗ > 1.

For ρ ∈ (0, 1/2),

a1 =
ρ

1− ρ
=

N1

N
N−N1

N

=
N1

N2
.

Now,
1−N1γ1

N2γ1
=

γ2

γ1
= a > a1 =

N1

N2
,

only if γ1 < 1/(2N1).

¤
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Theorem 3.5 Consider ISM (7) and 1 ≤ N1 < dN/2e. Then there exists γ̄1 ∈ ((2N1)
−1, N−1

1 ),

such that for all ISM fixed points w ∈ EN,N1
(γ1) with γ1 ∈ (γ̄1, N

−1
1 ), the eigenvalue as-

sociated with eigenvector w∗ = w − w of the Jacobian J(w;TN,N1
(γ1)) of ISM at w is

positive and less than 1, e.g. 0 < λ∗ < 1.

Proof: Based on proof of theorem 3.3, for a ∈ (0, a1), we have f ′(a) > ln′(a). This

corresponds to γ1 > 1/(2N1) (see proof of theorem 3.4).

Now, ln a and f(a) are continuous concave functions with ln 1 = f(1) = 0, ln′(1) =

f ′(1) = 1, and on a ∈ (a1, 1), we have f ′(a) < ln′(a), implying that for a ∈ (a1, 1),

ln a < f(a).

Since

lim
a→0+

f(a) = lim
a→0+

ln a =∞

and (using L’Hospital rule)

lim
a→0+

ln a

f(a)
= 0,

there exists ā ∈ (0, a1), such that on a ∈ (0, ā), f(a) < ln a (both f(a) and ln a are

negative). The coordinate γ̄1 corresponds to the value ā. Since ā < a1, we have γ̄1 >

1/(2N1). Furthermore, a ∈ (0, ā) corresponds to γ1 ∈ (γ̄1, N
−1
1 ).

¤

Theorem 3.6 Consider ISM (7) and 1 ≤ N1 < N . Then for each maximum entropy

point w̃ ∈ QN,N1
of an (N1 − 1)-face of SN−1, the line `(τ ;w, w̃), t ∈ [0, 1) (eqs. (17-

18)), connecting the maximum entropy point w with w̃ is an invariant set under the ISM

dynamics.

Proof: Without loss of generality, consider the canonical form of w̃ ∈ QN,N1
, namely

w̃ = wN,N1
=

1

N1
(1′N1

,0′N−N1
)′,

a parameter value τ ∈ [0, 1) and the point w(τ) = `(τ ;w, w̃) addressed by it on the

line connecting w with w̃ ∈ QN,N1
. The image F(w(τ)) of w(τ) under the ISM has the

following form:

γ1 = Fi(w(τ)) =
exp{ 1

TN (1− τ) + 1
TN1

τ}

N1 exp{
1

TN (1− τ) + 1
TN1

τ}+N2 exp{
1

TN (1− τ)}

18



=
exp{ 1

TN1
τ}

N1 exp{
1

TN1
τ}+N2

, i = 1, 2, ..., N1, (42)

and

γ2 = Fi(w(τ)) =
exp{ 1

TN (1− τ)}

N1 exp{
1

TN (1− τ) + 1
TN1

τ}+N2 exp{
1

TN (1− τ)}

=
1

N1 exp{
1

TN1
τ}+N2

, i = N1 + 1, N1 + 2, ..., N. (43)

Denoting N1 exp{
1

TN1
τ}+N2 by Z, the parameter value τ giving γ2 = Z−1 under the

line parametrization (18) is

τ∗ = 1−
N

Z
. (44)

Plugging τ ∗ into the parametrization (17) for γ1 yields

Z +N1 −N

ZN1
=

Z −N2

ZN1
=

exp{ 1
TN1

τ}

Z
.

So the image under ISM map F of any point w(τ) = `(τ ;w, w̃), τ ∈ [0.1), can be written

as F(w(τ)) = `(τ ∗;w, w̃), where 0 ≤ τ ∗ = 1−N/Z < 1.

¤

We have established that for any fixed point w ∈ S0
N−1 of ISM (7), w∗ = w − w

is always an eigendirection of the linearized system at w. If w ∈ EN,N1
(γ1) for some

dN/2e ≤ N1 < N , γ1 ∈ (N−1, N−1
1 ), the eigendirection w∗ is stable with non-oscillatory

behavior, i.e. the associated eigenvalue λ∗ of the ISM Jacobian at w is a real positive

number, smaller than 1. If 1 ≤ N1 < dN/2e, the eigendirection w∗ is stable for fixed

points close enough to the maximum entropy points of faces of SN−1, for those close to

w, the eigendirection w∗ is unstable. Moreover, 1N is always an eigendirection of the

linearized ISM system with zero eigenvalue. As mentioned earlier, this is due to the

fact that ISM renormalization acts on the standard simplex SN−1, which is part of an

(N − 1)-dimensional hyperplane with normal vector 1N .

We now continue with analysis of the remaining N −2 eigendirections of the linearized

ISM system at its fixed points w. Recall that Γ(w) ∈ QN,N1
denotes the maximum entropy

point of an (N1− 1)-face of SN−1, such that w lies on the line segment connecting w with

Γ(w).

Theorem 3.7 Consider a ISM fixed point w ∈ EN,N1
(γ1) for some 1 ≤ N1 < N and

N−1 < γ1 < N−1
1 . Let π be a permutation of wN,N1

= 1
N1

(1′N1
,0′N−N1

)′ such that
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π(wN,N1
) = Γ(w). Let B = {u1,u2, ...,uN−N1−1} be a set of (N − N1)-dimensional

unit vectors, such that B, together with 1N−N1
/‖1N−N1

‖, form an orthonormal basis of

RN−N1. Then, there are N −N1− 1 eigenvectors of the Jacobian J(w;TN,N1
(γ1)) of ISM

at w of the form:

v
i
− = π((0′N1

,u′
i)
′), i = 1, 2, ..., N −N1 − 1. (45)

All eigenvectors v
1
−,v2

−, ...,vN−N1−1
− have the same associated eigenvalue

0 < λ− =
1−N1γ1

(N −N1)TN,N1
(γ1)

< 1. (46)

Proof: Without loss of generality assume that w = (γ11
′
N1

, γ21
′
N2

)′, where γ2 is

defined by (11) and N2 = N − N1. All the results translate to permutations of w in a

straightforward manner.

To simplify the notation, we will denote the Jacobian J(w;TN,N1
(γ1)) by J and the

temperature TN,N1
(γ1) at which w exists by T . The n-dimensional identity matrix is

denoted by In.

The Jacobian can be written as

J =
−1

T


 G1 G12

G′
12 G2


 , (47)

where G1 is an N1 ×N1 symmetric matrix

G1 = γ1(γ11N1
1
′
N1
− IN1

), (48)

G2 is an N2 ×N2 symmetric matrix

G2 = γ2(γ21N2
1
′
N2
− IN2

), (49)

and G12 is an N1 ×N2 matrix

G12 = γ1γ21N1
1
′
N2

. (50)

For u = (u1, u2, ..., uN2
)′ ∈ B,

 G12

G2


u =


 γ1γ2Σ(u)1N1

γ2
2Σ(u)1N2

− γ2u


 ,

where Σ(u) =
∑N2

i=1 ui. All u ∈ B are orthogonal to 1N2
, implying that Σ(u) = 0. Hence,


 G12

G2


u = −γ2


 0N1

u


 .
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It follows that for all i = 1, 2, ..., N −N1 − 1,

Jv
i
− =

γ2

T
v
i
−,

meaning that v
i
− is an eigenvector of J with eigenvalue λ− = γ2/T . Now, λ− > 0, since

γ2 > 0 and T > 0. It remains to be shown that λ− < 1.

By (21),

λ− =
ln γ1

γ2

γ1

γ2
− 1

=
ln b

b− 1
, (51)

where b = γ1/γ2 > 1. But 0 < ln b < b− 1 on b ∈ (1,∞) and so λ− < 1. ¤

Theorem 3.8 Consider a ISM fixed point w ∈ EN,N1
(γ1) for some 1 ≤ N1 < N and

N−1 < γ1 < N−1
1 . Let π be a permutation of wN,N1

= 1
N1

(1′N1
,0′N−N1

)′ such that

π(wN,N1
) = Γ(w). Let B = {u1,u2, ...,uN1−1} be a set of N1-dimensional unit vectors,

such that B, together with 1N1
/‖1N1

‖, form an orthonormal basis of RN1. Then, there are

N1 − 1 eigenvectors of the Jacobian J(w;TN,N1
(γ1)) of ISM at w of the form:

v
i
+ = π((u′

i,0
′
N−N1

)′), i = 1, 2, ..., N1 − 1. (52)

All eigenvectors v
1
+,v2

+, ...,vN1−1
+ have the same associated eigenvalue

λ+ =
γ1

TN,N1
(γ1)

> 1. (53)

Proof: Using arguments analogous to those in the proof of theorem 3.7 one obtains

that for all i = 1, 2, ..., N1 − 1,

Jv
i
+ =

γ1

T
v
i
+.

By (21),

λ+ =
ln γ2

γ1

γ2

γ1
− 1

=
ln a

a− 1
, (54)

where 0 < a = γ2/γ1 < 1. By noting that on a ∈ (0, 1), ln a < a− 1 < 0, we get λ+ > 1.

¤

4 Conclusion

We have rigorously analyzed bifurcations of equilibria of iterated softmax (ISM) renor-

malization. As the system cools down, new ISM equilibria emerge on the lines connecting
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the maximum entropy point w of the standard simplex SN−1 with the maximum entropy

points of its faces of increasing dimensionality. Depending on the face dimensionality, one

or two fixed points can exist on each line. The dimensionality of stable and unstable man-

ifolds of linearized ISM at emerging equilibria decreases and increases, respectively as the

temperature decreases. At low temperatures, a complex skeleton of saddle type equilibria

surrounding the unstable maximum entropy point w (representing equal assignment weight

for all assignment options), with decision enforcing ”one-hot” stable equilibria located near

vertices of SN−1 (representing hard assignment decisions selecting exactly one assignment

alternative) gradually emerges. In ”soft assignment” optimization techniques employing

periodic application of the softmax transformation while annealing the solutions towards

the ”hard” 0-1 decisions, such a bifurcation structure may lead to adaptation processes

exhibiting signatures of complex dynamical behavior and high sensitivity to annealing

schedules, as empirically observed e.g. in [8]. While the present study provides clues for

understanding potential complications in annealing to optimal solutions in soft assignment

optimization approaches employing soft-max renormalization, a complete understanding

can only be achieved by studying the full optimization dynamics in such systems, with

assignment adaptations iteratively coupled with soft-max projections onto the solution

simplex. This is a matter for our future work.

References

[1] Gold S., Rangarajan A.. Softmax to softassign: Neural network algorithms for com-

binatorial optimization Journal of Artificial Neural Networks. 1996;2:381–399.

[2] Rangarajan A.. Self-annealing and self-annihilation: unifying deterministic annealing

and relaxation labeling Pattern Recognition. 2000;33:635–649.

[3] Guerrero F., Lozano S., Smith K.A., Canca D., Kwok T.. Manufacturing Cell Forma-

tion Using a New Self-organizing Neural Network Computers & Industrial Engineer-

ing. 2002;42:377–382.

[4] Smith K.A., Palaniswami M., Krishnamoorthy M.. Neural Techniques for Combi-

natorial Optimization with Applications IEEE Transactions on Neural Networks.

1998;9:1301–1318.

[5] Rangarajan A., Gold S., Mjolsness E.. A Novel Optimizing Network Architecture

with Applications Neural Computation. 1996;8:1041–1060.

22



[6] Duch W., Itert L.. A posteriori corrections to classification methods in Neural Net-

works and Soft Computing (Rutkowski L., Kacprzyk J.. , eds.):406-411New York:

Physica Verlag, Springer 2002.
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