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Abstract

Kwok and Smith (2005) recently proposed a new kind of optimization dynamics us-
ing self-organizing neural networks (SONN) driven by softmax weight renormalization.
Such dynamics is capable of powerful intermittent search for high-quality solutions in
difficult assignment optimization problems. However, the search is sensitive to temper-
ature setting in the softmax renormalization step. It has been hypothesized that the
optimal temperature setting corresponds to the symmetry breaking bifurcation of equi-
libria of the renormalization step, when viewed as an autonomous dynamical system
called iterative softmax (ISM). We rigorously analyze equilibria of ISM by determining
their number, position and stability types. It is shown that most fixed points exist
in the neighborhood of the maximum entropy equilibrium w = (N=!, N=1, ..., N~1),
where N is the ISM dimensionality. We calculate the exact rate of decrease in the
number of ISM equilibria as one moves away from W. Bounds on temperatures guar-
anteeing different stability types of ISM equilibria are also derived. Moreover, we offer
analytical approximations to the critical symmetry breaking bifurcation temperatures
that are in good agreement with those found by numerical investigations. So far the
critical temperatures have been determined only via trial-and-error numerical simu-
lations. On a set of N-queens problems for a wide range of problem sizes N, the
analytically determined critical temperatures predict the optimal working tempera-
tures for SONN intermittent search very well. It is also shown that no intermittent
search can exist in SONN for temperatures greater than 1/2.

1 Introduction

Since the pioneering work of Hopfield (1982), adaptation of neural computation techniques
to solving difficult combinatorial optimization problems has proved useful in numerous
application domains (Smith, 1999). In particular, a self-organizing neural network (SONN)
was proposed as a general methodology for solving 0-1 assignment problems in (Smith,

1995). The methodology has been successfully applied in a wide variety of applications,



from assembly line sequencing to frequency assignment in mobile communications (see e.g.
(Smith, Palaniswami, and Krishnamoorthy, 1998)).

The key difference between the traditional self-organizing maps (SOM) (Kohonen,
1982) and SONN lies in the notion of neighborhood of the winning unit (the unit most
responsive to the current input). In the Kohonen-type SOM, neural units play the role of
codebook vectors in a constrained vector quantization of the input space. Close units on
the map represent close regions of the input space. As the map develops, the notion of
”closeness” on the map changes only in scale, while the topology of neighborhood relations
remains unchanged. In contrast, SONN adopt a more flexible notion of the winning unit
neighborhood. Neural units represent partial solutions to an assignment optimization
problem. The criterion for closeness of two units is their relative performance in solving
the optimization task. In this view, neighborhood of the winning unit contains only
relatively successful partial assignment solutions to the optimization task being solved.
There is no pre-determined neighborhood topology on the neural units. However, both
SOM and SONN share the philosophy of neighborhood-based updating of the parameters
(weights). The winner unit, as well as units from its neighborhood are modified to better
respond to the current input stimulus.

Searching for 0-1 solutions in general assignment optimization problems can be made
more effective when performed in a continuous domain, with values in the interval (0, 1)
representing partial (soft) assignments (e.g. (Kosowsky and Yuille, 1994)). Typically the
softmax function is employed to ensure that elements within a set of positive parameters
sum up to one. The softmax function was incorporated into SONN in (Guerrero et al.,
2002) and was used in other optimization frameworks e.g. in (Gold and Rangarajan,
1996; Rangarajan, 2000). When endowed with a physics-based Boltzmann distribution
interpretation, the softmax function contains a free parameter - temperature 7' (or inverse
temperature T~ 1). As the system cools down, the assignments become increasingly crisp.

Recently, interesting observations have been made regarding the appropriate values of
the temperature parameter when solving assignment problems with SONN endowed with
softmax renormalization of the weight parameters (Kwok and Smith, 2002, 2004). There
is a critical temperature 7T, at which the SONN achieves superior performance in terms
of both quality and efficiency. It has been suggested that the critical temperature may
be closely related to the symmetry breaking bifurcation of equilibria in the autonomous
softmax dynamics (Kwok and Smith, 2003). Even of greater interest is the finding that
at Ty, when the neighborhood size and learning rate are kept fixed at appropriate values,
SONN is capable of powerful intermittent search through a multitude of high quality
solutions represented as meta-stable states of the SONN dynamics (Kwok and Smith,
2005). Kwok and Smith (2005) numerically studied global dynamical properties of SONN
in the intermittent search mode and argued that such models display characteristics of
systems at the edge-of chaos (Langton, 1990; Crutchfield and Young, 1990).

In this contribution we attempt to shed more light on the phenomenon of critical tem-



peratures and intermittent search in SONN. In particular, since the critical temperature
is closely related to bifurcations of equilibria in autonomous iterative softmax systems
(ISM), we rigorously analyze the number, position and stability types of fixed points of
ISM. Moreover, we offer analytical approximations to the critical temperature, as a func-
tion of the ISM dimensionality. So far the critical temperatures have been determined
only via trial-and-error numerical investigations.

The paper has the following organization: After a brief introduction to SONN in section
2, we formally define ISM in section 3. The numbers and positions of ISM equilibria
are studied in section 4, while their stability is investigated in section 5. Analytical
approximations to the critical temperature for SONN intermittent search are derived and

verified in section 6. The paper is concluded by summarizing key findings in section 7.

2 Self-Organizing Neural Network with softmax weight renor-

malization

In this section we briefly introduce Self-Organizing Neural Network (SONN) endowed with
weight renormalization for solving assignment optimization problems (see e.g. (Kwok and
Smith, 2005)). Consider a finite set of "inputs” j € J = {1,2,..., M} that need to be
assigned to "outputs” i € Z = {1,2,..., N}, so that a global cost (potential) Q(A) of an
assignment A : J — 7 is minimized. Partial cost of assigning j € J to ¢ € Z is denoted by
V(i,7)- Both the input and output elements j € J and i € Z, respectively, are represented
through one-hot-encoding, i.e. there is one input and one output unit exclusively devoted
to each input and output element, respectively. The ”strength” of assigning j to i is
represented by the ”weight” w; ; € [0,1].
The SONN algorithm consists of the following steps:

1. Initialize connection weights w; ;, 7 € J, ¢ € Z, to random values around 0.5.

2. Choose at random an input item j. € J and calculate partial costs V (i, 7.), 7 € Z,

of all possible assignments of j..

3. The winner output node i(j.) € Z is the one that minimizes V (i, j.), i.e. i(j.) =
argmin;c7 V (4, j¢).
The neighborhood Br(i(j.)) of size L of the winner node i(j.) consist of L nodes
i # i(j.) that yield the smallest partial costs V (4, j.).

4. Weights of nodes i € Br(i(j.)) get strengthened, those outside Br(i(j.)) are left

unchanged:
wijo < Wi + (@)1 —wij), i€ Bri(jc)),

where

77(7') — ,Bexp {_ ‘V(Z(]c)ajc) - V(iajc)l }’

|V(k(jc)ajc) - V(iajc)|
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and k(j.) = argmax;c7 V (1, jc).

5. Weights' w; = (w15, ws,j,...,wn,;) for each input node j € J are normalized using

softmax
Wi j

eXP( T )
N .
> k1 exp(=5)

6. Repeat from step 2 until all inputs j. € J have been selected (one epoch).

Wi, j <~

Even though the soft assignments w;; evolve in continuous space, when needed, a
0-1 assignment solution can be produced by imposing A(j) = ¢ if and only if i =
argmaxycz W ;.

A frequently studied (NP-hard) assignment optimization problem in case of SONN
is the N-queen problem (e.g. (Kwok and Smith, 2004, 2005)): place N queens onto
an N x N chessboard without attacking each other. In this case J = {1,2,..., N} and
7 =1{1,2,...,N} index the columns and rows, respectively, of the chessboard. Partial cost
V (4,4) evaluates the diagonal and column contributions? to the global cost @ of placing a
queen on column j of row 4. For more details, see (Kwok and Smith, 2004, 2005).

Many neural-based approaches and heuristic techniques have been proposed to solve
the N-queen problem (e.g. (Minton et al., 1992; Tagliarini and Page, 1987)). Previous
SONN studies of the N-queen problem used the problem as a convenient testbed for illus-
trating optimization capabilities of SONN, without intending to devise the most efficient
algorithm. The N-queen problem is used in this study in a similar manner.

Kwok and Smith (2003, 2005) argue that step 5 of the SONN algorithm is crucial
for intermittent search by SONN for globally optimal assignment solutions. In particu-
lar, they note that temperatures at which symmetry breaking bifurcation of equilibria of
the renormalization procedure in step 5 occur correspond to temperatures at which opti-
mal (both in terms of quality and quantity of found solutions) intermittent search takes
place. In the following sections we rigorously analyze equilibria of softmax viewed as an
autonomous dynamical system. Our findings will later allow us to formulate analytical
approximations to the critical temperatures at which symmetry breaking bifurcations of

the softmax renormalization dynamics take place.

3 Iterative softmax

Denote the (N — 1)-dimensional simplex in RY by Sy_1, i.e.

N
Sy_1={w = (w1, wy, ..., wy) €RY | w; >0,i=1,2,...,N, and Zw,— =1} (1)
i=1

lhere ! denotes the transpose operator
2in the sense of directions on the chessboard



Interior of Sy_1 is denoted by S?V_I:
N
Sy 1 ={weRY |w; >0,i=1,2,..,N, and Y w; =1}. (2)
=1

Given a parameter T > 0 (the ”temperature”), the softmax maps RY into S%,_;:
W F(W; T) = (Fl (W; T)a FQ(W; T)a ey FN(W; T)),a (3)

where ]
exp(T)
N 7
> k=1 €xp(‘F)
We will denote the common normalization factor of Fj’s by Z(w;T), i.e.

Fi(w;T) = i=12,..,N. (4)

N
W
Z(w;T) = Why.

(w:T) = 3 exp() Q

k=1
Linearization of F around w € S%, , is given by the Jacobian J(w;T), the (i, j)-th

element of which reads
1

J(w; T)ij = 710 Fi(wi T) — Fi(w; T) Fj (w3 ), (6)

where §; ; = 1 iff i = j and §; ; = 0 otherwise. The Jacobian is a symmetric N x N matrix.

The softmax map F induces on S?V_l a discrete time dynamics
w(t+1) = F(w(t); T), (7)

sometimes referred to as Iterative Softmaz (ISM). In the next section we study the re-
lationship between the number and position of equilibria of ISM and the temperature

parameter T'. We study systems for N > 2.

4 Fixed points of Iterative Softmax

Recall that w € S%_, is a fixed point (equilibrium) of the ISM dynamics driven by F, if
w = F(w). It is easy to see that for any temperature setting® there is always at least one
fixed point of ISM (7).

Lemma 4.1 The mazimum entropy point w = (N~L, N7 . N~ € S% | is a fized
point of ISM (7) for any T € R.

Proof: The result directly follows from wy = wo = ... = Wy Q.E.D.

There is a strong structure in the fixed points of ISM - coordinates of any fixed point

of ISM can take on only up to two distinct values.

3In ISM, T is usually positive, but this claim is true for any 7' € R.



Theorem 4.2 Ezcept for the mazimum entropy fized point W = (N~1, .., N~  for all
the other fized points w = (w1, wa, ...,wn)" of ISM (7) it holds: w; € {y1(w;T),v2(w;T)},
i = 1,2,...,N, where yi(w;T) > N7 and vo(w;T) < N~ are the two solutions of
Z(w;T) -z = exp(F).

Proof: We have

exp(F) .
wz:E(W;T):Z(T;TCI'), Z:1,2,...’N.

That means

Z(w;T) - w; zexp(%),

and so all the coordinates of w must lie on the intersection of the line Z(w;T) - z and
the exponential function exp(7). Since the exponential is a convex function, any line can
intersect with it in at most two points.

Because w # W, there must be a coordinate w; of w, such that w; # N~1.

If w; < N~!, then (since w € S?V_l) there exists another coordinate w; of w, such
that w; > N ~1. By the argument above, all the other coordinates of w must be equal to
either w; or w;. In addition, w;, w; are solutions of Z(w;T) - z = exp(F).

The case w; > N ! can be treated analogously. Q.E.D.

We will often write the larger of the two fixed-point coordinates as

yi(w;T) =aN~!, ae(1,N). (8)

Theorem 4.3 Fiz o € (1,N) and write y1 = aN7'. Let y;, be the smallest natural
number greater than (o — 1)/v1. Then, for £ € {Lmin, bmin + 1,..., N — 1}, at temperature

—1\17!
To(y1; N, 8) = (a — 1) [_e.ln (1_0‘ )] : (9)
€y
there exist (12{) distinct fized points of ISM (7), with (N — £) coordinates having value 1
and ¢ coordinates equal to

=m0V 20 (10)

Proof:  First, we verify that £,,;, can never be greater than N — 1. It is sufficient to

show that
a—1

g
Eq. (11) is equivalent to stating N > «, which is automatically fulfilled since a € (1, N).

<N-1 (11)




Now, consider £ € {£pin, bmin+1,..., N—1}, and a fixed point w € S?V_l of ISM having
N — / coordinates equal to ;. Then w has £ coordinates of value 7o < N~!. Because

w € S?V_l, we have
(N —0)y1 + by = 1.

It follows that ) (N —0)
— ’y —_—
= M2, (12)

Note that v, must be positive and so 41 < (N — £)~!. This is indeed the case, since
otherwise w would not lie in S%_;.

Normalizing constant Z(w;T) is equal to

Z(w;T) = (N —¥)-exp (%) + ¢ -exp (%)

Because w is a fixed point of ISM, we have

exp (%)
M=
Z(w;T)
Hence
7 - [(N—E) + Lexp (L ;’Yl)] =1
Consequently,
14 1-a _1
’yl-[l—f—N_gexp( T )]—(N—E) . (13)
Equation (13) can be reformulated to
a—1 a-—1
— =1- . 14
P ( Te ) by, 14

Since £ > £pin > (o — 1) /71, the right hand side of eq. (14) is always positive. Given
the number £ of coordinates with value 7,, we can solve for the temperature T,(y1; N, £)

satisfying (14):

—1\17!
To(yi; N, €) = (o — 1) [—e-ln (1—0‘ )] . (15)
€n
To conclude the proof, we need to show that 2 in eq. (12) satisfies the fixed point
condition ( . )
exp T
= TJ 1
"2 Z(w;T) (16)
From (16) we have
-1
Yo = [(N —£) exp (%) —l—E] .
Denote (1 — v2)/T by w. Then
N = [N—f+Lexp(—w)]™
v = [(N—0explw)+4" (17)



Figure 1: A geometric interpretation of the temperature T.(7y1; N,£). The decreasing
exponential function h(x;T) is intersected by the decreasing line g(z). Given a particular
number £, temperature T can be set to Te(y1; N, £), so that h(x;Te(y1; N,£)) intersects
g(z) in £g = £71. In this case, N = 10, a = 1.5, y; = 0.15, £ppi, = 4, £ = 5, To(71; N, £) =
0.0910.

By (12),
1, N-—¢
2= N — {0+ Lexp(—w) ]’

which reduces to (17).
By symmetry of the argument, there are (]Z ) possibilities for equilibria of ISM with
N — /£ and /£ coordinates equal to y; and -2, respectively. Q.E.D.

For a geometric interpretation of the temperature Te(7y1; N, £), consider functions

W@ T) = exp (—0‘;133) and (18)

a—1
71

g(z) = 1- z, (19)

operating on (0,00) and plotted in figure 1. The decreasing exponential h(z;T) is in-
tersected by the decreasing line g(x) at xzg. Given a particular number £ of coordinates
of value 7,, we can set T to T = T.(y1; N, ¥£), so that the exponential h(z;T,(vy1; N, ¥£))

intersects g(z) in zg = £ 1.

Corollary 4.4 Consider the ISM (7). For £ € {0,1,..., N — 1}, define
N

ap=—.

N -/

8



# possible fixed points
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Figure 2: Number of possible fixed points as a function of the larger coordinate 7y; in
ISM with N = 10. The further we move from the maximum entropy equilibrium w =
(0.1,0.1, ...,0.1)’, the less fixed points are possible.

Fiz a € (1, N)U[ay_1,¢), £ € {1,..., N —1}. Then, by varying the temperature parameter
T, the ISM can have
N-1
avi =Y (V)
k=¢
distinct fized points.

Proof: By Theorem 4.3, for o € (1, N) U [ay_1, o), there are temperature settings
(9) so that points w € S, with N —k and k coordinates equal to y; = aN~! and 7, (eq.
(10)), respectively, are equilibria of the ISM, k = £,£+ 1, ..., N — 1. For this value of «, no
other fixed points are possible. This is easily observed, since for a € (1, N) U [ap—1, o),
The lower bound #,,;, on the number of smaller coordinates is equal to £. Q.E.D.

Since ap = 1 < a1 < ag < ... < ay—1 = N, Corollary 4.4 tells us that the richest
structure of equilibria of ISM can be found in a small neighborhood of the maximum
entropy fixed point w. The least number of fixed points exist in the ”corner” areas of
Sn-1 (any—2 = N/2 < a < ay—1 = N), namely only (N]il) = N fixed points are possible
- points at the vertexes of Sy_1. In addition, we can analytically describe decreasing
trend in the number of possible equilibria as one diverges from W. When increasing o
crosses ay, the number of possible fixed points decreases by (IZ ) As an example we show
in figure 2 the number of possible fixed points as a function of the larger coordinate y; in

a 10-dimensional ISM system.



5 Fixed point stability in Iterative Softmax

Lemma 5.1 Let w € S%_,, W # W be a fized point of ISM with larger and smaller
coordinates equal to y1 and 73, respectively. Then, 1 is never further from % than 7y is;
i.e.

(20)

1
Mg <

1
v 9|

Proof: Assume first that v, € (0, %] Then since y; > 79, (20) is automatically
satisfied.

Assume now that v; € (%, 1). Since w € S%_,, there can be only one coordinate of w
with value ;. Also yo < %

The coordinates must sum up to one, and so
y1=1— (N —1)7.

For N > 2 we have*

Q.E.D.

Theorem 5.2 Consider a fized point w € S%_, of ISM (7) with one of its coordinates
equal to N~! <~y < 1. Then, if

T>Ta(n)=2m (1—m), (21)

or if
T>Ts0(n) =, (22)

the fized point w is stable.

Proof:  Jacobian J(w;T) of the ISM map (3)—(4), is given by (6). The Jacobian is

a symmetric matrix and so the column and row sum norms coincide:

N
17w T)lloe = _max &S I(wi )il o (23)
) &

“recall that we study systems for N > 2

10



The sum of absolute values in the i-th row of the Jacobian is equal to

Fi(w; T)

Si = —p— |- FwT)+ > Fi(w;T) (24)
J#i
= % (1—wi)+Z’wj (25)
J#i
_ “’? [(1—w) + (1 — w)] (26)

Note that (25) follows form (24) because w is a fixed point of F, i.e. w = F(w), and (26)
follows form (25) because w € S_,. We have

1T (w: T)lleo = _max {Si} (28)
2
= 7omex  {g(wi)}, (29)

where ¢ : [0,1] — [0,1/4] is a unimodal function ¢(z) = z(1 — z) with maximum at

z =1/2. Point z = 1/2 is also the point of symmetry. Hence,

2

17w T) oo = a().

where w is the coordinate value of w closest to 1/2.

By theorem 4.2, there can be at most two distinct values taken on by the coordinates
of w. If w = W, all the coordinates are the same and @ = N~!. If w # W, by lemma 5.1,
it is the bigger value of the two®, 7; > N~!, that is close to 1/2. Hence @ = ;. It follows
that if one of the coordinates of w is equal to N™! < 1 < 1, then ||J(w; T)||c0 = 2¢(71)/T.

Now, if |J(w;T)||cc < 1, the fixed point w is contractive. In other words, if T >
Ts1(v1) = 271(1 — 1), w is a stable fixed point of ISM (7).

Note that all eigenvalues of Jacobian J(w;1) (ISM operating at temperature 1) are
upper-bounded by max;<x<n F(w; 1) (Elfadel and Wyatt, 1994). It follows that all eigen-
values of J(w;T) are upper-bounded by max;<x<y T~' Fi(w;T). For each fixed point w
of ISM operating at temperature 7', w = F(w;T') and so by theorem 4.2, all eigenvalues of
J(w;T) are upper-bounded by v;7~!. Hence, the spectral radius p(J(w;T)) of J(w;T)
(the maximal absolute value of eigenvalues of J(w;T)) is upper-bounded by v;T~1. If
p(J(w;T)) <1, ie if T > Tso(y1) =71, W is a stable equilibrium of ISM (7).  Q.E.D.

Since Ts2(v1) < Tsa(v1) on (N71,1/2] and Tso(v1) > Ts1(v1) on (1/2,1), it is useful

to combine the two bounds into a single one.

Snote that the smaller value vy, is automatically less than N1

11



Corollary 5.3 Consider a fized point w € SS,_, of ISM (7) with one of its coordinates
equal to N1 <y, < 1. Define

Ts(m1) = { Toan) 4 m €IV 51/2)
S Tsp(m), i m€[1/2,1).

Then, if T > Tg(y1), the fized point w is stable.

(30)

Lemma 4.1 tells us that the maximum entropy point w = (N~!, N~ ..., N~1) is an
equilibrium of ISM (7) for any temperature setting 7. By theorem 5.2, for T > Tsx(N~1) =
N, W is guaranteed to be stable. The next theorem claims that for high temperature

settings, no fixed points other than W exist, i.e. W is the unique equilibrium of ISM.

Theorem 5.4 For T > 1/2, the mazimum entropy point w = (N1, N1 ... N~ 1) is the
unique equilibrium of ISM (7).

Proof:  For any w € S% |,

1w Do =, max = ——— (1_E(W;T))+ZFj(W;T)
J#
2
= max g [Rw T = Fi(w;T))]
21 1
Sl 1
= T4 2T (8D

For T > 1/2, the ISM (7) is a global contraction. By the Banach fixed point theorem,
there exists a unique attractive fixed point of the ISM. But w is always a fixed point of
the ISM. It follows that for 7' > 1/2, the only fixed point of ISM (7) is W. In addition, W
is attractive. Q.E.D.

Theorem 5.4 sharpens the statement by Elfadel and Wyatt (1994) that points of Sy_1
converge under ISM (7) to W as T — oc.

We now turn our attention to conditions under which fixed points of ISM are not
stable.

Theorem 5.5 Consider a fixed point w € S?V_l of ISM (7) with one of its coordinates
equal to N~! <~ < 1. Let N — £ be the number of coordinates of value 1. Then if
N -/ n 1 1

NY? N N¢

T < Ty(y1; N,£) =71 (2— Nmp) (32)

w 15 not stable.

12



Proof:  Let p(J(w;T)) be the spectral radius of the Jacobian J(w;T). If for a fixed
point w of ISM (7) p(J(w;T)) > 1, the fixed point is not stable.
Note that
1 1
:T)) > — > =

1 |trace(J(w;T))|
N )

=1

where ); are eigenvalues of the Jacobian J(w;T). By Theorem 4.3, w € S%_; has to have

£ coordinates equal to

72 _ 1—’)’1(€N—€).
We have
ftrace(J(wi 7)) = [V — (1 =) + £ra(1 — )]

1
= — 2—Nvy)(N—-£)+£-1].
o7 1 NN —£) +£-1]
The result follows by imposing

[trace(J(w; T))|
N

> 1.

Q.E.D.

Note that by theorem 5.5, for temperatures
T<Tu N N,N)=N'"-N?=T,(N') - N2

the maximum entropy equilibrium W of ISM (7) cannot be attractive. This bound can be
further improved by realizing that the Jacobian J(w;T) (6) of ISM (7) at W has exactly
one zero eigenvalue (corresponding to the eigenvector (1,1,...,1)") and N — 1 eigenvalues

equal to (NT) . Hence the spectral radius is equal to

1
pUIT)) = o (33)
It follows that the maximum entropy equilibrium W is attractive and non-attractive if
T > N-!and T < N—!, respectively.

An illustrative summary of the previous results for equilibria w # W is provided in
figure 3. The ISM has N = 10 units. Coordinates of such fixed points can only take on two
possible values, the larger of which we denote by ;. Temperatures Ts(7y;) (30) above which
equilibria with larger coordinate equal to y; are guaranteed to be stable are shown as the
solid bold line. Denote the number of coordinates with value v; by Ny, i.e. Ny = N — 4.
For N1 = 1,2,3,4, we show temperatures T, (y1; N,¥¢) (32) below which equilibria with

larger coordinate equal to 7, are guaranteed to be unstable with solid normal lines®. For a

6note that since w € S?\,_l, 1 must be smaller than 1/N;
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stability and existence of ISM fixed points (N=10)

0.5

stable equilibria
0.4

stable equilibria

potentially
saddle-type
equilibria

0.3

0.2

P

0.1f

unstable
equilibria

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
gamma,

Figure 3: Stability regions for equilibria w # W of ISM with N = 10 units as a function of
the larger coordinate ; and temperature 7. The number of coordinates with value ; is
denoted by N;. Temperatures Ts(y1) (30) above which equilibria with larger coordinate
equal to y; are guaranteed to be stable are shown with solid bold line. For Ny = N —
¢ € {1,2,3,4}, we show the temperatures Ty (v1; N,£) (32) below which equilibria with
larger coordinate equal to <y; are guaranteed to be unstable with solid normal lines. Also
plotted are temperatures Te(y1; N, £) (9) at which equilibria with the given number N; of
coordinates of value +y; exist (dashed lines).

given value of 71, temperatures between T, (y1; N, £) and Ts(~y1) potentially correspond to
saddle-type equilibria. We also plot temperatures Te(y1; N, £) (9) at which equilibria with
the given number N; of coordinates of value 7; exist (dashed lines). The figure suggests
that most of ISM equilibria with more than one larger coordinate i, i.e. N3 > 2, are of
saddle type. Only fixed points with extreme values of ; close to N, L are guaranteed to
be unstable. These findings were numerically confirmed by eigenvalue decomposition of
Jacobians of a large number of fixed points corresponding to the dashed lines. Note that,
apart from the maximum entropy equilibrium W, only the ”extreme” equilibria close to
the vertexes of simplex Sy_1 can be guaranteed by our theory to be stable. This happens
when the dashed line for N; = 1 crosses the solid bold line.

We now show that the character of the partitioning of the (1, T)-space with respect to
stability regimes of ISM equilibria remains unchanged for other values of N (dimensionality
of ISM).

Lemma 5.6 Consider equilibria of an N-dimensional (N > 2) ISM (7) with at least two
larger coordinates of value i, i.e. £ < N —2 and y1 € (N1, (N —£)~1). Then, for the
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temperature function (9),

i) = Tons 4,0 = (v~ 1) [ (]

guaranteeing the existence of such equilibria, it holds:
1. Tyn(N7Y) =T,(N71),
2. Ty N 1is concave.

3. Ty n(N71) =1 - N/(2¢).

Proof:

(34)

1. At 73 = 1/N, both the numerator and denominator of (34) are zero. By L’Hospital

rule” Nyin(-N)+1 1
. . Y1|YV1\E — -1
lim T, — — — =T,(N").
iR Tentm) = B ; N =

2. The first derivative of Ty x is calculated as
N 3 Ny —1
e 2 e -
¢ (71(2—7;/)+1> £In (771(5_%”1) (€~ N) + ]

Té,N(’Yl) =

To ease the presentation, In(-) will stand for In (L) We write T; v (1) =

Y1 (—N)+1
L7 (A(m) — B(m)), where v

and
Ny —1

n(-)*ny ¢ —N)+1]°

Bm) =1
Derivative of A(vy),

N
In(- )2y [y (£ - N)+1])

is negative, as for y; € (N71, (N —£)~!), we have y; (£ — N) +1 > 0.
Denote In(-)2y1[y1 (¢ — N) +1] by C. Then,

A(m) = -

B'(m1) = C7*(D(y1) In()* + 21In(")),

where
D(m)=N(N -0y —2(N — )7 + 1.

"we slightly abuse mathematical notation by considering v; continuous variable
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Now, D(7;) is a convex function with minimum at N~! and D(N~!) = £/N > 0.
Also note that since y; > N~!, we have

Ly

——>1
71 (£—N)+1

and so In(-) > 0.
From A’(y1) < 0 and B'(v1) > 0, it follows that Ty (1) <0 and Ty n is concave.

3. The result follows from evaluation of lim,, ,y-1 T} y(71) based on (36). After ap-
plying L’Hospital rule twice, we get

N
lim 7; =1-=.
L dm v () Y,

Q.E.D.

We are now ready to prove that for equilibria of ISM (7) with at least two larger
coordinates y; > N~!, the temperatures at which they exist, Tp(y1; N, £), are always
below the bound T(y1), above which their stability is guaranteed.

Theorem 5.7 Let N > 2 and £ < N — 2. Then, for y1 € (N~ (N — £)71), it holds:

Te(’Yl;Nae) < TS('Yl)-

Proof: By lemma 5.6 (2), Ty n(71) = Te(71; N, £) is a concave function and hence
can be upper-bounded on (N1, (N — £)~!) by the tangent line x(y1) to Ty n(71) at N1
To,n (1) < K(m),

where by (35) and lemma 5.6 (1,3),
1 N 1
”(71)_N+(1_2_e) (71_N)'

1 1
Ty(y1) = — — ).
s(71) N + (’)’1 N)
Since N/(2¢) > 0, we have that on (N=! (N —£)71), To(y1; N,£) < Ts(y1). Hence, the
tangent k(1) upper-bounding T(y;) never crosses Ts(y1) and always stays below it.
Q.E.D.

Now, Ts(y1) is a line,

As an illustrative example, we present analog of figure 3 for 17-dimensional ISM in
figure 4. The number of coordinates with value «y; is denoted by N;. Temperatures T5(7y;)
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(30) above which equilibria with larger coordinate equal to y; are guaranteed to be stable
are shown with solid bold line. For Ny = N — /¢ € {1,2,3,4}, we show the temperatures
Tu(v1; N, £) (32) below which equilibria with larger coordinate equal to 7; are guaranteed
to be unstable with solid normal lines. Temperatures T(y1; N, £) (9) at which equilibria
with the given number N; of coordinates of value -, exist (dashed lines) are also marked
according to stability type of the corresponding fixed points. The stability types were
determined by eignanalysis of Jacobians (6) at the fixed points. Stable and unstable
equilibria existing at temperature T, (~y;; N, £) are shown as stars and circles, respectively.
All the unstable equilibria are of saddle type. Horizontal dashed line shows a numerically
determined temperature by Kwok and Smith (2005) at which attractive equilibria of 17-
dimensional ISM lose stability and the maximum entropy point W remains the only stable
fixed point. Position where Ty(y1) crosses Te(y1; N, £) for Ny = 1 is marked by bold circle.

Note that no equilibrium with more than one coordinate greater than N~! is stable.

6 Critical temperature for intermittent search in SONN

with softmax weight renormalization

It has been hypothesized that ISM provides an underlying driving force behind intermit-
tent search in SONN with softmax weight renormalization (Kwok and Smith, 2003, 2005)
(see section 2). Kwok and Smith (2005) argue that the critical temperature at which the
intermittent search takes place corresponds to the ”bifurcation point” of the autonomous
ISM dynamics when the existing equilibria lose stability and only the maximum entropy
point W survives as the sole stable equilibrium. The authors numerically determined such
bifurcation points for several ISM dimensionalities V. It was reported that bifurcation
temperatures decreased with increasing N. Based on the analysis in section 5, the bi-
furcation points correspond to the case when equilibria near corners of the simplex Sy 1
(equilibria with only one coordinate with large value 7 ) lose stability. Based on the bound
Ts(v1) (30) and temperatures Te(y1; N, N — 1) (9) at which equilibria of ISM exist, such a
bifurcation point can be approximated by a bold circle in figure 4. Figure 5 shows evolution
of the approximation of the bifurcation point (based on T.(y1; N,N — 1) (9) and bound
Ts(v1) (30)) for increasing ISM dimensionalities N. The bound (30) is independent of N.
In accordance with empirical findings of Kwok and Smith, the bifurcation temperature is
decreasing with increasing N.

We present two approximations to the critical temperature T, (N) at which the bifur-
cation occurs. The first one expands T,(y1; N, N — 1) (9) around 7? as a second-order
polynomial T](\,Qzl(')q). Based on figure 5, a good choice for 7? is e.g. ) = 0.9. Approxi-

mation to the critical temperature is then obtained by solving

T (1) = Ty(m)

for 1, and then plugging the solution 7%2) back to bound (30), i.e. calculating T (fy?)).
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stability types of ISM fixed points (N=17)

0.5

0.4}
0.35F
0.3}
— 025}
0.2

0.151

Figure 4: Stability types for equilibria w # W of ISM with N = 17 units as a function of
the larger coordinate ; and temperature 7. The number of coordinates with value 7, is
denoted by N;. Temperatures T5(y1) (30) above which equilibria with larger coordinate
equal to -1 are guaranteed to be stable are shown with solid bold line. For Ny = N — /4 €
{1,2,3,4}, we show the temperatures Ty (7y1; N, £) (32) below which equilibria with larger
coordinate equal to y; are guaranteed to be unstable with solid normal lines. Temperatures
Te(y1; N, £) (9) at which equilibria with the given number N7 of coordinates of value v,
exist (dashed lines) are also marked according to the stability type of the corresponding
fixed points. Stable and unstable equilibria existing at temperature T, (y1; N, £) are shown
as stars and circles, respectively. Horizontal dashed line shows a numerically determined
temperature by Kwok and Smith (2005) at which attractive equilibria of 17-dimensional
ISM lose stability and the maximum entropy point W remains the only stable fixed point.
Bold circle marks the position where Ts(vy1) crosses Te(y1; N, £) for Ny = 1.
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Figure 5: Approximations of the bifurcation point based on (9) and bound (30) for in-

creasing ISM dimensionalities N.

We have N 1
To(y; NN — 1) = N (CEre (37)
N Ny —1
TN, N ~1) = T ey (3®)
(N —1)In (W) (N =1)m(l = m)ln ( T )
and
Ny =2y +1-2hn7! ((Nlj)jl)
T, (yi;N,N = 1) = IR (39)
(N = 1)72(1 = )2 n? (=2
By solving
Ay + By +C =0, (40)
where

1
AZETeII(’Y?vNaN_l)+27
B=T)(y;N,N —1) = T/(+{; N,N — 1) — 2,
1
C=T.(7{;N,N —1) =) T\(+); N,N — 1) + 5(7‘1))2 TY(v); N, N —1)

(2)

and retaining the solution ;" compatible with the requirement that w € Sy_1, we obtain

an analytical approximation T*(Q) (N) to the critical temperature Ty (N):

TA(N) = 242 (1 - 4?). (41)
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A cheaper approximation to T, (NN) can be obtained by realizing that both functions in
figure 5 are almost linear in the neighborhood of their intersection. First we approximate
the bound Ts(y1) (30) (solid bold line) by the tangent line at (1,0):

v(71) = 2(1 — 7). (42)

Imposing v(y1) = Te(y1; N, N — 1) leads to

y=2(N —1)In(y) - 1, (43)
where v - 1)
—4imn
A S (44)

We expand the RHS of (43) around 4° (corresponding to 7?) as

2(N — 1)

oY +2(N —1)(1 +In(y°) — 1

and so the approximate solution to (43) reads

1 _ 2N -1 +1In(y%) -1

Yy | _ 20v-1) (45)
ey
From (44), the corresponding value of 1 is
1)
1) _ Y
Mmo= N—l—l—y(l)’ (46)
yielding an approximation Tfl)(N ) to the critical temperature Ty (N):
1 1 1
TOW) =20 (1 =), (47

To illustrate the approximations T*(l)(N ) and T (N) of the critical temperature
Tp = T (N), numerically found bifurcation temperatures for ISM systems with dimensions
between 8 and 30 are shown in figure 6 as circles. The approximations based on quadratic
and linear expansions, T\>)(N) and T" (), are plotted with bold solid and dashed lines,
respectively. Also shown are the temperatures 1/N above which the maximum entropy
equilibrium W is stable (solid normal line). At bifurcation temperature, W is already stable
and equilibria at vertexes of simplex Sy_; lose stability. The analytical solutions 7 2) (N)
and TS) (N) appear to approximate the bifurcation temperatures well.

We also numerically determined optimal temperature settings for intermittent search
by SONN in the N-queens problems. Following (Kwok and Smith, 2005), the SONN
parameter 3 was set to f = 0.8%. The optimal neighborhood size increased with the

problem size N from L = 2 (for N = 8), through L = 3 (N = 10,13), L = 4 (N =

80ur experiments confirmed finding by Kwok and Smith that the choice of § is in

general not sensitive to N.
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15,17,20), to L = 5 (N = 25,30)°. Based on our extensive experimentation, the best
performing temperatures for intermittent search in the N-queens problems are shown as
stars. Clearly, as suggested by Kwok and Smith, there is a marked correspondence between
the bifurcation temperatures of ISM equilibria and the best performing temperatures in
intermittent search by SONN.

The only equilibria that can be guaranteed to be stable by our theory are the maximum
entropy point w and ”one-hot” solutions at the vertexes of the NV — 1 dimensional simplex
Sn—1. Each of such "one-hot” solutions corresponds to one particular assignment of
SONN inputs to SONN outputs. At the critical point of loosing their stability, the ”one-
hot” solutions do not exhibit a strong attractive force in the ISM state space and SONN
weight updates can easily jump from one assignment to another, occasionally being pulled
by the neutralizing power of the stable maximum entropy equilibrium W. This mechanism
enables rapid intermittent search for good assignment solutions in SONN. Obviously, much
more work is needed to rigorously analyze the intricate influence of the neighborhood size,
SONN weight updates and softmax renormalization in a unified framework. This is a
matter of our future work. It is highly encouraging, however, that the analytically obtained
approximations of critical temperatures predict the optimal working temperatures for
SONN intermittent search very well. So far the critical temperatures have been determined
only via extensive trial-and-error numerical investigations.

Note that, as a direct consequence of theorem 5.4, no intermittent search can exist in
SONN for temperatures 7" > 1/2.

7 Conclusions

Recently proposed new kind of optimization dynamics using self-organizing neural net-
works driven by softmax weight renormalization is capable of powerful intermittent search
for high-quality solutions in difficult assignment optimization problems (Kwok and Smith,
2005). However, such dynamics is sensitive to temperature setting in the softmax renor-
malization step. It has been hypothesized by Kwok and Smith (2005) that the optimal
temperature setting corresponds to symmetry breaking bifurcation of equilibria of the
renormalization step, when viewed as an autonomous dynamical system. Following (Kwok
and Smith, 2003, 2005), we call such dynamical systems iterative softmax (ISM).

We have rigorously analyzed equilibria of ISM. In particular, we determined their
number, position and stability types. Most fixed points can be found in the neighborhood
of the maximum entropy equilibrium point w = (N1, N=1, ..., N~!)’. We have calculated
the exact rate of decrease in the number of ISM equilibria as one moves away from w.

We have derived bounds on temperatures guaranteeing different stability types of ISM

9he increase of optimal neighborhood size I with increasing problem dimension N is
in accordance with findings in (Kwok and Smith, 2005)
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Figure 6: Analytical approximations of the bifurcation temperature Tp = T, (N) for in-
creasing ISM dimensionalities N. The approximations based on quadratic and linear ex-
pansions, % (N) and TV (N), are plotted with bold solid and dashed lines, respectively.
Numerically found bifurcation temperatures are shown as circles. The best performing
temperatures for intermittent search in the N-queens problems are shown as stars. Also
shown are the temperatures 1/N above which the maximum entropy equilibrium w is
stable. As suggested by Kwok and Smith, there is a marked correspondence between the
bifurcation temperatures and the best performing temperatures in intermittent search by
SONN. The analytical solutions T*(Q)(N ) and T,,Sl)(N ) appear to approximate the bifurca-

tion temperatures well.
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equilibria. It appears that most of ISM fixed points are of saddle type. This hypothesis is
supported by our extensive numerical experiments!®.

The only equilibria that can be guaranteed to be stable by our theory are the maximum
entropy point w and ”one-hot” solutions at the vertexes of the N — 1 dimensional simplex.
We argued that close to the critical bifurcation temperature at which such ”one-hot” equi-
libria lose stability the most powerful intermittent search can take place in SONN. Based
on temperature bounds guaranteeing stability of ”"one-hot” equilibria and temperatures
guaranteeing their existence, we were able to derive analytical approximations to the crit-
ical bifurcation temperatures that are in good agreement with those found by numerical
investigations. So far the critical temperatures have been determined only via extensive
trial-and-error numerical investigations. Moreover, the analytically obtained critical tem-
peratures predict the optimal working temperatures for SONN intermittent search very
well. We have also shown that no intermittent search can exist in SONN for temperatures
greater than 1/2.
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