
1

Exploitation of Pairwise Class Distances for Or-
dinal Classification

J. Sánchez-Monedero1, Pedro A. Gutiérrez1, Peter Tiňo2, C. Hervás-
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Abstract

Ordinal classification refers to classification problems in which the classes have a natu-

ral order imposed on them because of the nature of the concept studied. Some ordinal

classification approaches perform a projection from the input space to 1-dimensional



(latent) space that is partitioned into a sequence of intervals (one for each class). Class

identity of a novel input pattern is then decided based on the interval its projection falls

into. This projection is trained only indirectly as part of the overall model fitting. As

with any latent model fitting, direct construction hints one may have about the desired

form of the latent model can prove very useful for obtaining high quality models. The

key idea of this paper is to construct such a projection model directly, using insights

about the class distribution obtained from pairwise distance calculations. The proposed

approach is extensively evaluated with eight nominal and ordinal classifiers methods,

ten real world ordinal classification datasets, and four different performance measures.

The new methodology obtained the best results in average ranking when considering

three of the performance metrics, although significant differences are found only for

some of the methods. Also, after observing other methods internal behaviour in the

latent space, we conclude that the internal projection do not fully reflect the intra-class

behaviour of the patterns. Our method is intrinsically simple, intuitive and easily un-

derstandable, yet, highly competitive with state-of-the-art approaches to ordinal classi-

fication.

1 Introduction

Ordinal classification or ordinal regression is a supervised learning problem of predict-

ing categories that have an ordered arrangement. When the problem is really exhibiting

an ordinal nature, it is expected that this order is also present in the data input space

(Hühn and Hüllermeier, 2008). The samples are labelled by a set of ranks with an
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ordering amongst the categories. In contrast to nominal classification, there is an or-

dinal relationship throughout the categories and it is different from regression in that

the number of ranks is finite and exact amounts of difference between ranks are not de-

fined. In this way, ordinal classification lies somewhere between nominal classification

and regression.

Ordinal regression should not be confused with sorting or ranking. Sorting is related

to ranking all samples in the test set, with a total order. Ranking is related to ranking

with a relative order of samples and a limited number of ranks. Of course, ordinal

regression can be used to rank samples, but its objective is to obtain a good accuracy,

and, at the same time, a good ranking.

Ordinal classification problems are important, since they are common in our ev-

eryday life where many problems require classification of items into naturally ordered

classes. Examples of these problems are the teaching assistant evaluation (Lim et al.,

2000), car insurance risk rating (Kibler et al., 1989), pasture production (Barker, 1995),

preference learning (Arens, 2010), breast cancer conservative treatment (Cardoso et al.,

2005), wind forescasting (Gutiérrez et al., 2013) or credit rating (Kim and Ahn, 2012).

Variety of approaches have been proposed for ordinal classification. For exam-

ple, Raykar et al. (2008) learns ranking functions in the context of ordinal regression

and collaborative filtering datasets. Kramer et al. (2010) map the ordinal scale by as-

signing numerical values and then apply a regression tree model. The main problem

with this simple approach is the assignment of a numerical value corresponding to each

class, without a principled way of deciding the true metric distances between the ordi-

nal scales. Also, representing all patterns in a class by the same value may not reflect
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the relationships among the patterns in a natural way. In this paper we propose that the

numerical values associated with different patterns may differ (even within the same

class), and, most importantly, the value for each individual pattern is decided based of

its relative localization in the input space.

Other simple alternative that appeared in the literature tried to impose the ordinal

structure through the use of cost-sensitive classification, where standard (nominal) clas-

sifiers are made aware of ordinal information through penalizing the misclassification

error, commonly selecting a cost equal to the absolute deviation between the actual and

the predicted ranks (Kotsiantis and Pintelas, 2004). This is suitable when the knowledge

about the problem is sufficient to completely define a cost matrix. However, when this

is not possible, this approach is making an important assumption about the distances

between the adjacent labels, all of them being equal, which may not be appropriate.

The third direct alternative suggested in the literature is to transform the ordinal

classification problem into a nested binary classification one (Frank and Hall, 2001;

Waegeman and Boullart, 2009), and then to combine the resulting classifier predictions

to obtain the final decision. It is clear that ordinal information allows ranks to be com-

pared. For a given rank k, an associated question could be “is the rank of pattern x

greater than k?”. This question is exactly a binary classification problem, and ordinal

classification can be solved by approaching each binary classification problem inde-

pendently and combining the binary outputs to a rank (Frank and Hall, 2001). Other

alternative (Waegeman and Boullart, 2009) imposes explicit weights over the patterns

of each binary system in such a way that errors on training objects are penalized pro-

portionally to the absolute difference between their rank and k. Binarization of ordinal
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regression problems can also be tackled from augmented binary classification perspec-

tive, i.e. binary problems are not solved independently, but a single binary classifier is

constructed for all the subproblems. For example, Cardoso and Pinto da Costa (2007)

add additional dimensions and replicate the data points through what is known as the

data replication method. This augmented space is used to construct a binary classifier

and the projection onto the original one results in an ordinal classifier. A very inter-

esting framework in this direction is that proposed by Li and Lin (2007); Lin and Li

(2012), reduction from cost-sensitive ordinal ranking to weighted binary classification

(RED), which is able to reformulate the problem as a binary problem by using a matrix

for extension of the original samples, a weighting scheme and a V-shaped cost matrix.

An attractive feature of this framework is that it unifies many existing ordinal ranking

algorithms, such as perceptron ranking (Crammer and Singer, 2005) and support vector

ordinal regression (Chu and Keerthi, 2007). Recently, in (Fouad and Tiňo, 2012) the

Learning Vector Quantization (LVQ) is adapted to the ordinal case in the context of

prototype based learning. In that work the order information is utilized to select class

prototypes to be adapted, and to improve the prototype update process.

Vast majority of proposals addressing ordinal classification can be grouped under

the umbrella of threshold methods (Verwaeren et al., 2012). These methods assume that

ordinal response is a coarsely measured latent continuous variable, and model it as real

intervals in one dimension. Based on this assumption, the algorithms seek a direction

onto which the samples are projected and a set of thresholds that partition the direction

into consecutive intervals representing ordinal categories (McCullagh, 1980; Verwaeren

et al., 2012; Herbrich et al., 2000; Crammer and Singer, 2001; Chu and Keerthi, 2005).
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Proportional Odds Model (POM) (McCullagh, 1980) is a standard statistical approach

in this direction, where the latent variable is modelled by using a linear combination

of the inputs and a probabilistic distribution is assumed for the patterns projected by

this function. Crammer and Singer (2001) generalized the online perceptron algorithm

with multiple thresholds to perform ordinal ranking. Support Vector Machines (SVMs)

(Cortes and Vapnik, 1995; Vapnik, 1999) were also adapted for ordinal regression, first

by the large-margin algorithm of Herbrich et al. (2000). The main drawback of this

first proposal was that the problem size was a quadratic function of the training data

size. A related more efficient approach was presented by Shashua and Levin (2002),

who excluded the inequality constraints on the thresholds. However this can result

in non desirable solutions because the absence of constrains can lead to difficulties

in imposing order on thresholds. Chu and Keerthi (2005) explicitly and implicitly in-

cluded the constraints in the model formulation (Support Vector for Ordinal Regression,

SVOR), deriving the associated dual problem and the optimality conditions. From an-

other perspective, discriminant learning has been adapted to the ordinal set-up by (apart

from maximizing between-class distance and minimizing within-class distance) trying

to minimize distance separation between projected patterns of consecutive classes (Ker-

nel Discriminant Learning for Ordinal Regression, KDLOR) (Sun et al., 2010). Finally,

threshold models have also been estimated by using a Bayesian framework (Gaussian

Processes for Ordinal Regression, GPOR) (Chu and Ghahramani, 2005), where the

latent function is modelled using Gaussian Processes and then all the parameters are

estimated by Maximum Likelihood optimization.

While threshold approaches offer an interesting perspective on the problem of ordi-
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nal classification, they learn the projection from the input space onto the 1-dimensional

latent space only indirectly as part of the overall model fitting. As with any latent model

fitting, direct construction hints one may have about the desired form of the latent model

can prove very useful for obtaining high quality models. The key idea of this paper is

to construct such a projection model directly, using insights about the class distribu-

tion obtained from pairwise distance calculations. Indeed, our motivation stems from

the fact that the order information should also be present in the data input space and it

could be interesting to take advantage from it to construct an useful variable for ordering

the patterns using the ordinal scale. Additionally, regression is clearly the most natural

way to approximate this continuous variable. As a result, we propose to construct the

ordinal classifier in two stages: 1) the input data is first projected into a one dimensional

variable by considering the relative position of the patterns in the input space, and, 2) a

standard regression algorithm is applied to learn a function to predict new values of this

derived variable.

The main contribution of the current work is the projection onto a one dimensional

variable, which is done by a guided projection process. This process exploits the ordi-

nal space distribution of patterns in the input space. A measure of how ‘well’ a pattern

is located within its corresponding class region is defined by considering the distances

between patterns of the adjacent classes in the ordinal scale. Then, a projection interval

is defined for each class, and the centres of those intervals (for non-boundary classes)

are associated with the ‘best’ located patterns for the corresponding classes (quantified

by the measure mentioned above). For the boundary classes (first and last in the class

order), the extreme end points of their projection intervals are associated with the most
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separated patterns of those classes. All the other patterns are assigned proportional po-

sitions in their corresponding class intervals, again according to their ‘goodness’ values

expressing how ‘well’ a pattern is located within its class. We refer to this projection

as Pairwise Class Distances (PCD) based projection. The behaviour of this projection

is evaluated over synthetic datasets, showing an intuitive response and a good ability to

separate adjacent classes even in non-linear settings.

Once the mapping is done, our framework allows to design effective ordinal ranking

algorithms based on well-tuned regression approaches. The final classifier constructed

by combining PCD and a regressor is called Pairwise Class Distances Ordinal Clas-

sifier (PCDOC). In this contribution, PCDOC is implemented using ε-Support Vector

Regression (ε-SVR) (Schölkopf and Smola, 2001; Vapnik, 1999) as the base regressor,

although any other properly handled regression method could be used.

We carry out an extensive set of experiments on ten real world ordinal regression

datasets, comparing our approach with eight state-of-the-art methods. Our method,

though simple, holds out very well. Under four complementary performance metrics,

the proposed method obtained the best mean ranking for three of the four metrics.

The rest of the paper is organized as follows. Section 2 introduces the ordinal clas-

sification problem and performance metrics we use to evaluate the ordinal classifiers.

Section 3 explains the proposed data projection method and the classification algorithm.

It also evaluates the behaviour of the projection using two synthetic datasets, and the

performance of the classification algorithm under situations that may hamper classi-

fication. The following section presents the experimental design, datasets, alternative

ordinal classification methods that will be compared with our approach and discusses
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the experimental results. Finally, the last section sums up key conclusions and points to

future work.

2 Ordinal classification

This section briefly introduces the mathematical notation and the ordinal classification

performance metrics. Finally, the last subsection includes the threshold model formu-

lation.

2.1 Problem formulation

In an ordinal classification problem, the purpose is to learn a mapping φ from an input

space X to a finite set C = {C1, C2, . . . , CQ} containing Q labels, where the label set

has an order relation C1 ≺ C2 ≺ . . . ≺ CQ imposed on it. The symbol ≺ denotes

the ordering between different ranks. A rank for the ordinal label can be defined as

O(Cq) = q. Each pattern is represented by aK-dimensional feature vector x ∈ X ⊆ RK

and a class label y ∈ C. The training dataset T is composed of N patterns T =

{(xi, yi) | xi ∈ X, yi ∈ C, i = 1, . . . , N}, with xi = (xi1, xi2, . . . , xiK).

Given the above definitions, an ordinal classifier should be constructed taking into

account two goals. First, the nature of the problem implies that the class order is some-

how related to the distribution of patterns in the space of attributes X, and also to the

topological distribution of the classes. Therefore the classifier must exploit this a priori

knowledge about the input space (Hühn and Hüllermeier, 2008). Second, when evaluat-

ing an ordinal classifier, the performance metrics must consider the order of the classes
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so that misclassifications between adjacent classes should be considered less important

than the ones between non-adjacent classes, more separated in the class order. For ex-

ample, given an ordinal dataset of weather prediction {Very cold,Cold,Mild,Hot,Very hot}

with the natural order between classes {Very cold ≺ Cold ≺ Mild ≺ Hot ≺ Very hot},

it is straightforward to think that predicting class Hot when the real class is Cold repre-

sents a more severe error than that associated with a Very cold prediction. Thus, special-

ized measures are needed for evaluating ordinal classifiers performance (Pinto da Costa

et al., 2008)(Cruz-Ramı́rez et al., 2011).

2.2 Ordinal classification performance metrics

In this work, we utilize four evaluation metrics quantifying the accuracy of N pre-

dicted ordinal labels for a given dataset {ŷ1, ŷ2, . . . , ŷN}, with respect to the true targets

{y1, y2, . . . , yN}:

1. Acc: the accuracy (Acc), also known as Correct Classification Rate1, is the rate

of correctly classified patterns:

Acc =
1

N

N∑
i=1

Jŷi = yiK,

where yi is the true rank, ŷi is the predicted rank and JcK is the indicator func-

tion, being equal to 1 if c is true, and to 0 otherwise. Acc values range from

0 to 1 and they represent a global performance on the classification task. Al-

though Acc is widely used in classification tasks, is it not suitable for some type

of problems, such as imbalanced datasets (Sánchez-Monedero et al., 2011) (very

1Acc is referred as Mean Zero-One Error when expressed as an error.
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different number of patterns for each class) or ordinal datasets (Baccianella et al.,

2009).

2. MAE: The Mean Absolute Error (MAE) is the average absolute deviation of

the predicted ranks from the true ranks (Baccianella et al., 2009):

MAE =
1

N

N∑
i=1

e(xi),

where e(xi) = |O(yi)−O(ŷi)|. The MAE values range from 0 to Q− 1. Since

Acc does not reflect the category order, MAE is typically used in the ordinal

classification literature together with Acc (Pinto da Costa et al., 2008; Agresti,

1984; Waegeman and De Baets, 2011; Chu and Keerthi, 2007; Chu and Ghahra-

mani, 2005; Li and Lin, 2007). However, neither Acc, nor MAE are suitable for

problems with imbalanced classes. This is rectified e.g. in the average MAE

(AMAE) (Baccianella et al., 2009) measuring the mean performance of the clas-

sifier across all classes.

3. AMAE: This measure evaluates the mean of the MAEs across classes (Bac-

cianella et al., 2009). It has been proposed as a more robust alternative to MAE

for imbalanced datasets – a very common situation in ordinal classification, where

extreme classes (associated with rare situations) tend to be less populated.

AMAE =
1

Q

Q∑
j=1

MAEj =
1

Q

Q∑
j=1

1

nj

nj∑
i=1

e(xi),

where AMAE values range from 0 to Q− 1 and nj is the number of patterns in

class j.

4. τb: The Kendall’s τb is a statistic used to measure the association between two

measured quantities. Specifically, it is a measure of the rank correlation (Kendall,
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1962):

τb =

∑N
i,j=1 ĉijcij√∑N

i,j=1 ĉ
2
ij

∑N
i,j=1 c

2
ij

,

where ĉij is +1 if ŷi is greater than (in the ordinal scale) ŷj , 0 if ŷi and ŷj are

the same, and −1 if ŷi is lower than ŷj , and the same for cij (using yi and yj).

τb values range from−1 (maximum disagreement between the prediction and the

true label), to 0 (no correlation between them) and to 1 (maximum agreement).

τb has been advocated as a better measure for ordinal variables because it is inde-

pendent of the values used to represent classes (Cardoso and Sousa, 2011) since

it works directly on the set of pairs corresponding to different observations. One

may argue that shifting the predictions one class would will keep the same τb

value whereas the quality of the ordinal classification is lower. However, note

that since there is a finite number of classes, shifting all predictions by one class

will have detrimental effect in the boundary classes and so would substantially

decrease the performance, even as measured by τb. As a consequence, τb is an

interesting measure for ordinal classification but should be used in conjunction

with other ones.

2.3 Latent variable modelling for ordinal classification

Latent variable models or threshold models are probably the most important type of

ordinal regression models. These models consider the ordinal scale as the result of

coarse measurements of a continuous variable, called the latent variable. It is typically

assumed that the latent variable is difficult to measure or cannot be observed itself

(Verwaeren et al., 2012). The threshold model can be represented with the following
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general expression:

f(x,θ) =



C1, if g(x) ≤ θ1,

C2, if θ1 < g(x) ≤ θ2,

...

CQ, if g(x) > θQ−1,

(1)

where g : X → R is the function that projects data space onto the 1-dimensional latent

space Z ⊆ R and θ1 < . . . < θQ−1 are the thresholds that divide the space into ordered

intervals corresponding to the classes.

In our proposal, it is assumed that a model φ : X → Z can be found that links data

items x ∈ X with their latent space representation φ(x) ∈ Z . We place our proposal in

the context of latent variable models for ordinal classification because of its similarity

to these models. In contrast to other models employing a one dimensional latent space,

e.g. POM (McCullagh, 1980), we do not consider variable thresholds, but impose fixed

values for θ. However, suitable dimensionality reduction is given due attention: first,

by trying to exploit the ordinal structure of the space X, and second we explicitly put

external pressure on the margins between the classes in Z (see Section 3.2).

3 Proposed method

Our approach is different from the previous ones in that it does not implicitly learn

latent representations of the training inputs. Instead, we impose how training inputs xi

are going to be represented through zi = φ(xi). Then, this representation is generalized

to the whole input space by training a regressor on the (xi, zi) pairs, resulting in a

projection function g : X → Z . To ease the presentation, we will sometimes write
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training input patterns x as x(q) to explicitly reflect their class label rank q (i.e. the class

label of x is Cq).

3.1 Pairwise Class Distance (PCD) projection

To describe the Pairwise Class Distance (PCD) projection, first, we define a measure

wx(q) of “how well” a pattern x(q) is placed within other instances of class Cq, by con-

sidering its Euclidean distances to the patterns in adjacent classes. This is done on the

assumption of ordinal pattern distribution in the input space X. For calculating this

measure, the minimum distances of a pattern x
(q)
i to patterns in the previous and next

classes, Cq−1 and Cq+1, respectively, are used. The minimum distance to the previ-

ous/next class is

κ(x
(q)
i , q ± 1) = min

x
(q±1)
j

{
||x(q)

i − x
(q±1)
j ||

}
, (2)

where ||x− x′|| is the Euclidean distance between x,x′ ∈ RK . Then,

w
x
(q)
i

=



κ(x
(q)
i , q + 1)

max
x
(q)
n

{
κ(x

(q)
n , q + 1)

} , if q = 1,

κ(x
(q)
i , q − 1) + κ(x

(q)
i , q + 1)

max
x
(q)
n

{
κ(x

(q)
n , q − 1) + κ(x

(q)
n , q + 1)

} , if q ∈ {2, . . . , Q− 1} ,

κ(x
(q)
i , q − 1)

max
x
(q)
n

{
κ(x

(q)
n , q − 1)

} , if q = Q ,

(3)

where the sum of the minimum distances of a pattern with respect to adjacent classes is

normalized across all patterns of the class, so that w
x
(q)
i

has a maximum value of 1.

Figure 1 shows the idea of minimum distances for each pattern with respect to the

patterns of the adjacent classes. In this figure, patterns of the second class are consid-

ered. The example illustrates how the wx(2) value is obtained for the pattern x(2) marked
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class 1
class 2
class 3
class 4

Figure 1: Illustration of the idea of minimum Pairwise Class Distances. All the mini-

mum distances of patterns of class C2 regarding patterns of adjacent classes are painted

with lines. x(2) is the point we want to calculate its associated wx(2) .

with a circle. For distances between x(2) and class 1 patterns, the item x(1) has the min-

imum distance, so κ(x(2), 1) is calculated by using this pattern. For distances between

x(2) and class 3 patterns, κ(x(2), 3) is the minimum distance between x(2) and x(3).

By using w
x
(q)
i

, we can derive a latent variable value zi ∈ Z . Before continuing,

thresholds must be defined in order to stablish the intervals on Z which correspond to

each class, so that calculated values for zi may be positioned on the proper interval.

Also, predicted values ẑi of unseen data would be classified in different classes accord-

ing to these thresholds (see Subsection 3.3), in a similar way to any other threshold

model. For the sake of simplicity, Z is defined between 0 and 1, and the thresholds are
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positioned in the uniform manner2 :

θ = {θ1, θ2, . . . , θQ} = {1/Q, 2/Q, . . . , 1} . (4)

Considering θ, the centres cq ∈ {c1, c2, . . . , cQ} for Z values belonging to class Cq

are set to: c1 = 0, cQ = 1 and

cq =
q

Q
− 1

2Q
, q = 2, 3, ...Q− 1. (5)

We now construct zi values for training inputs x(q)
i by considering the following criteria.

If x(q)
i has similar minimum distances κ(x(q)

i , q−1) and κ(x(q)
i , q+1) (and consequently

a high value of w
x
(q)
i

), the resulting zi value should be closer to ci, so that intuitively, we

consider this pattern as well located within its class. If κ(x(q)
i , q − 1) and κ(x(q)

i , q + 1)

are very different (and consequently a low value of w
x
(q)
i

is obtained), the pattern x
(q)
i is

closer to one of these classes and so the corresponding zi value should be closer to the

interval of Z values of the closest adjacent class, q−1 or q+1. This idea is formailized

in the following expression:

zi = φ
(
x
(q)
i

)
=



c1 + (1− w
x
(1)
i
) · 1

Q
, if q = 1,

cq − (1− w
x
(q)
i
) · 1

2Q
, if q ∈ {2, . . . , Q− 1} and

κ(x
(q)
i , q − 1) ≤ κ(x

(q)
i , q + 1),

cq + (1− w
x
(q)
i
) · 1

2Q
, if q ∈ {2, . . . , Q− 1} and

κ(x
(q)
i , q − 1) > κ(x

(q)
i , q + 1),

cQ − (1− w
x
(Q)
i

) · 1
Q

, if q = Q,

(6)

2This does not in any way hamper generality, as our regressors defining g will be smooth non-linear

functions.
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Figure 2: Example of the generated zi values on a synthetic dataset with a linear order

relationship.

where w
x
(q)
i

is defined in Eq. (3), cq is the centre of class interval corresponding to Cq

(see Eq. (5)) and Q is the number of classes. Eq. (6) guarantees that all z values lie

in the correct class interval3. This methodology for data projection is called Pairwise

Class Distances (PCD).

3.2 Analysis of the proposed projection in synthetic datasets

For illustration purposes, we generated synthetic ordinal classification datasets in X ∈

R2 with four classes (Q = 4). Figure 2 shows the patterns of a synthetic dataset, Syn-

theticLinearOrder, with a linear order between classes, whereas Figure 3 shows Syn-

theticNonLinearOrder dataset, with a non-linear ordinal relationship between classes.

3Recall that the threshold set θ delimiting class intervals is defined in Eq. (4).
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Points at SyntheticLinearOrder were generated by adding an uniform noise to points of

a line. Points in SyntheticNonLinearOrder were generated by adding a Gaussian noise

to points on a spiral. In both figures, points belonging to different classes are marked

with different colours and symbols. Besides the points, the figures also illustrate ba-

sic concepts of the proposed method on example points (surrounded by grey circles).

For these points, the minimum distances are illustrated with lines of the corresponding

class colour. The minimum distance of a point to the previous and next class patterns

are marked with dashed and solid lines, respectively. For selected points we show the

value of the PCD projection (calculated using Eq. (6)).

In Figure 2 it can be seen that the z value increases for patterns of the higher classes,

and this value varies depending of the position of the pattern x(q) in the space with re-

spect to the patterns x(q−1) and x(q+1) of adjacent classes. Extreme values, z = 0.0 and

z = 1.0 correspond to the patterns more distant from the classes 1 and Q respectively

(and with a maximum wx(q) value). SyntheticNonLinearOrder in Figure 3 is designed

to demonstrate that the PCD projection is suitable for more complex ordinal topologies

of the data. This is, for any topology in a ordinal dataset, it is expected that patterns of

classes q − 1 and q + 1 are always the closest ones to the patterns of class q, and PCD

will take advantage from this situation to decide the relative order of the pattern within

its class, even when this is produced in a non-linear manner.

Figure 4a and Figure 4b show histograms of the PCD projections from the synthetic

datasets in Figure 2 and Figure 3, respectively. The thresholds θ that divide the z values

of the different classes are also included. Observe that the z values of the different

classes are clearly separated, and that they are compacted within a range which is always
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(a) General disposition of the points of the dataset.
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(b) Upper left area of the dataset.

Figure 3: Example of the generated zi values on the synthetic dataset with a non-linear

class order structure. Figure on the right shows a zooming over the upper left area at

the center of the dataset shown on the left.

smaller than the range initially indicated by the thresholds. This is due to the scaling of

the z values in Eq. (3), where the wx(q) value cannot be zero, so a pattern can never be

located ‘close’ to the boundary separating intervals of adjacent classes.

3.3 Algorithm for ordinal classification

Once the PCD projections have been obtained for all training inputs, we construct

a new training set T′ =
{
(xi, φ(x

(yi)
i ) | (xi, yi) ∈ T

}
. Any generic regression tool

can be trained on T′ to obtain the projection function g : X → Z . In this respect,

our method is quite general, allowing the user to choose his or her favorite regression

method or any other improved regression tool introduced in the future. The resulting

algorithm, named Pairwise Class Distances for Ordinal Classification (PCDOC), is de-
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Figure 4: Histograms of the PCD projection of the synthetic datasets.

scribed in two steps in Figure 5 and Figure 6.

It is expected that formulating the problem as a regression problem would help

the model to capture the ordinal structure of the input and output spaces, and their

relationship. In addition, due to the nature of the regression problem, it is expected

that the performance of the classification task will be improved regarding metrics that

consider the difference between the predicted and actual classes within the linear class

order, such as MAE or AMAE, or the correlation between the target and predicted

values, such as τb. Experimental results confirm this hypothesis in Section 4.3.

3.4 PCDOC performance analysis in some controlled experiments

Analysis of the influence of dimensionality and class overlapping. This section

analyses the performance of the PCDOC algorithm under situations that may hamper

classification: class overlapping and large dimensionality of the data. For this purpose,

different synthetic datasets have been generated by sampling random points from Q
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PCDOC Training: {g,θ} = PCDOCtr(T).

Require: Training dataset T.

Ensure: Regressor (g) and thresholds (θ).

1: Calculate thresholds θ and centres c according to Eq. (4) and Eq. (5).

2: For each pattern, calculate zi according to Eq. (6): zi = φ(x
(q)
i ).

3: Build a regressor g, considering z as the regression response variable: z = g(x).

4: return {g,θ}

Figure 5: PCDOC regression training algorithm pseudocode.

PCDOC Prediction: ŷ = PCDOCpr(x, g,θ).

Require: Regressor (g), thresholds (θ) and test input (x).

Ensure: Predicted label (ŷ).

1: Predict the latent variable value using the regressor g: ẑ = g(x).

2: Map the ẑ value to the corresponding class using f as defined in Eq. (1): ŷ =

f(ẑ,θ).

3: return ŷ

Figure 6: PCDOC classification algorithm for unseen data.

Gaussian distributions, where Q is the number of classes, so that each class points are

random samples of the corresponding Gaussian distribution. In order to easily control

the overlap of the classes, the variance (σ2) is kept constant independently of the number

of dimensions (K). In addition, the Q centres (means µq) are set up in order to keep

the distance of 1 between two adjacent class means independently of K. Under this

situation, each coordinate of adjacent class means is separated by4µ = 1/
√
K so that
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(a) Synthetic Gaussian dataset with σ = 0.167.
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(b) Synthetic Gaussian dataset with σ = 0.667.

Figure 7: Synthetic Gaussian dataset example for two dimensions.

µ1 = 0, µ2 = µ1 +4µ, µ3 = µ2 +4µ and so on.

The number of features tested (input space dimensionality) were K ∈ {10, 50, 100}

and the different width values are σ ∈ {0.167, 0.333, 0.500, 0.667, 0.800, 1.000}, so

that 18 datasets were generated. The number of patterns for each class from one to four

was 10, 100, 100 and 5. Figure 7 shows two of these datasets generated with different

variance values for K = 2.

For these experiments, our approach uses the Support Vector Regression (SVR)

algorithm as the model for the z variable (the method will be referred to as SVR-

PCDOC). We have also included three methods as baseline methods: the C-Support

Vector Classification (SVC) (Cortes and Vapnik, 1995; Vapnik, 1999), the Support Vec-

tor Ordinal Regression with explicit constraints (SVOREX) (Chu and Keerthi, 2005,

2007) and the Kernel Discriminant Learning for Ordinal Regression (KDLOR) (Sun

et al., 2010). As in the next experimental section (Section 4), the experimental design

includes 30 stratified random splits (with 75% of patterns for training and the remain-
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(a) MAE with K = 10.
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(b) AMAE with K = 10.
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(c) MAE with K = 50.
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(d) AMAE with K = 50.
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(e) MAE with K = 100.
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(f) AMAE with K = 100.

Figure 8: MAE and AMAE performance for synthetic Gaussian dataset with distribu-

tion x = N (µ, σ2IK×K) and x ∈ X ⊆ RK , where IK×K is the identity matrix.
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ing for generalization). The mean MAE and AMAE generalization results are used

for comparison purposes at Figure 8. For further details about experimental procedure,

methods description and hyper-parameters optimization please refer to the next experi-

mental section (Subsection 4.2).

From the results depicted at Figure 8, we can generally conclude that the three

methods, except KDLOR, have similar MAE performance degradation with the in-

crease of class overlapping and dimensionality. Figure 8a shows that SVR-PCDOC

have a slightly worse performance than SVC and SVOREX. However, in experiments

with higher K (Figures 8c and 8e) the performance of the three ordinal methods varies

in a similar way. In partigular, in Figure 8e we can observe that SVC performance

decreases with high overlapping and high dimensionality, whereas the ordinal methods

have similar performance here. From the analysis of the AMAE performance we can

conclude that KDLOR outperforms the rest of the methods in cases of low class over-

lapping. Regarding our method, we can conclude that compared with the other methods

its AMAE performance is worse in the case of low class overlap. However, in general,

our method seems more robust when the class overlap increases.

Analysis of the influence of data multimodality. This section extends the above

experiments to the case of multimodal data, the datasets are generated with K = 2

and σ2 = 0.25, and the number of modes per class is varied. Figure 9a presents the

unimodal case. The datasets with more modes per class are generated in the following

way. A Gaussian distribution is set up as in the previous section, with center µq. For

each class, each additional Gaussian distribution is centered in a random location within
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Figure 9: Illustration of the unimodal and bimodal cases of the synthetic Gaussian

dataset example for K = 2 and σ2 = 0.25.
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Figure 10: MAE and AMAE performance for synthetic Gaussian dataset with distri-

bution x = N (µ, σ2IK×K) and x ∈ X ⊆ RK , where IK×K is the identity matrix (being

K = 2 and σ2 = 0.25 for all the synthetic datasets).

the hyper-sphere with center µq and radius 0.75. Then, patterns are sampled from each

distribution. For each class, we considered different number of modes, from one mode

to four modes. The number of patterns generated for each mode was 36, 90, 90 and 24
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for class 1, 2, 3 and 4, respectively, using the same number for all modes of a class. An

example of the bimodal case (two Gaussian distributions per class) is shown in Figure

9b, having 72, 180, 180 and 48 patterns for class 1, 2, 3 and 4, respectively.

Experiments were carried out as in the previous section, and MAE and AMAE

generalization results are depicted in Figure 10. Regarding MAE, Figure 10a reveals

that the fours methods perform similarly in datasets with one and four modes but they

differ on performance for the two and three modes. Only considering MAE, SVR-

PCDOC has the worse performance in case two and three. Nevertheless, considering

AMAE results at Figure 10b, SVRPCDOC and KDLOR achieve the best results. The

different behaviour of the methods depending on the performance measure can be ex-

plained by observing the nature of the bimodal dataset (see Figure 9b), where the ma-

jority of the patterns are from classes two and three. In this context, the optimization

done by SVOREX and SVC can move the decision thressholds to better classify pat-

terns of these two classes at the expense of misclassifying class one and four patterns,

especially patterns of those classes placed on the class boundaries (see Figure 9b).

4 Experiments

In this section we report on extensive experiments that were performed to check the

competitiveness of the proposed methodology. Source code of the proposed method,

synthetic datasets analysis code and real ordinal data sets partitions used for the exper-

iments are available at a public website4.

4http://www.uco.es/ayrna/
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4.1 Ordinal classification datasets and experimental design

To the best of our knowledge, there are no public specific datasets repositories for real

ordinal classification problems. The ordinal regression benchmark datasets repository

provided by Chu et. al (Chu and Ghahramani, 2005) is the most widely used repository

in the literature. However, these datasets are not real ordinal classification datasets but

regression ones. To turn regression into ordinal classification, the target variable was

discretized into Q different bins (representing classes), with equal frequency or equal

width. However, there are potential problems with this approach. If equal frequency la-

belling is considered, the datasets do not exhibit some characteristics of typical complex

classification tasks, such as class imbalance. On the other hand, severe class imbalance

can be introduced by using the same binning width. Finally, as the actual target regres-

sion variable exists with observed values, the classification problem can be simpler than

on those datasets where the variable z is really unobservable and has to be modelled.

We have therefore decided to use a set of real ordinal classification datasets pub-

licly available at the UCI (Asuncion and Newman, 2007) and mldata.org repositories

(Sonnenburg, 2011) (see Table 1 for data description). All of them are ordinal classi-

fication problems, although one can find literature where the ordering information is

discarded. The nature of the target variable is now analysed for two example datasets.

bondrate dataset is a classification problem where the purpose is to assign the right or-

dered category to bonds, being the category labels {C1 = AAA, C2 = AA, C3 = A,

C4 = BBB, C5 = BB}. These labels represent the quality of a bond and are assigned

by credit rating agencies, AAA being the highest quality and BB the worst one. In

this case, classes AAA, AA, A are more similar than classes BBB and BB so that no
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assumptions should be done about the distance between classes both in the input and

latent space. Other example is eucalyptus dataset, in this case the problem is to predict

which eucalyptus seedlots are best for soil conservation in a seasonally dry hill country.

Being the classes {C1 = none, C2 = low, C3 = average, C4 = good, C5 = best}, it

cannot be assumed an equal width for each class in the latent space.

Regarding the experimental set up, 30 different random splits of the datasets have

been considered, with 75% and 25% of the instances in the training and test sets respec-

tively. The partitions were the same for all compared methods, and, since all of them are

deterministic, one model was obtained and evaluated (in the test (generalization) set),

for each split. All nominal attributes were transformed into as many binary attributes as

the number of categories. All the datasets were property standardized.

4.2 Existing methods used for comparison purposes

For comparison purposes, different state-of-the-art methods have been included in the

experimentation (all of them mentioned in the Introduction):

• Gaussian Processes for Ordinal Regression (GPOR) (Chu and Ghahramani,

2005), presents a probabilistic kernel approach to ordinal regression based on

Gaussian processes where a threshold model that generalizes the probit function

is used as the likelihood function for ordinal variables. In addition, Chu applies

the automatic relevance determination (ARD) method proposed by (Mackay, 1994)

and (Neal, 1996) to the GPOR model. When using GPOR with ARD feature se-

lection, we will refer the algorithm to as GPOR-ARD.

• Support Vector Ordinal Regression (SVOR) (Chu and Keerthi, 2005)(Chu and
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Table 1: Datasets used for the experiments (N is the number of patterns, K is the

number of attributes and Q is the number of classes).

Dataset N K Q Ordered Class Distribution

automobile 205 71 6 (3,22,67,54,32,27)

bondrate 57 37 5 (6,33,12,5,1)

contact-lenses 24 6 3 (15,5,4)

eucalyptus 736 91 5 (180,107,130,214,105)

newthyroid 215 5 3 (30,150,35)

pasture 36 25 3 (12,12,12)

squash-stored 52 51 3 (23,21,8)

squash-unstored 52 52 3 (24,24,4)

tae 151 54 3 (49,50,52)

winequality-red 1599 11 6 (10,53,681,638,199,18)

Keerthi, 2007), proposes two new support vector approaches for ordinal regres-

sion. Here, multiple thresholds are optimized in order to define parallel discrim-

inant hyperplanes for the ordinal scales. The first approach, with explicit in-

equality constraints on the thresholds, derive the optimal conditions for the dual

problem, and adapt the SMO algorithm for the solution, and we will refer to it as

SVOREX. In the second approach, the samples in all the categories are allowed

to contribute errors for each threshold, therefore there is no need of including

the inequality constraints in the problem. This approach is named a SVOR with

implicit constraints (SVORIM).
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• RED-SVM (Li and Lin, 2007) applies the reduction from cost-sensitive ordinal

ranking to weighted binary classification (RED) framework to SVM. The RED

method can be summarized in the following three steps. First, transform all train-

ing samples into extended samples by using a coding matrix, and weighting these

samples with a cost matrix. Second, all the extended examples are jointly learned

by a binary classifier with confidence outputs, aiming at a low weighted 0/1 loss.

Last step is used to convert the binary outputs to a rank. In this paper, the coding

matrix considered is the identity and the cost matrix is the absolute value matrix,

applied to the standard binary soft-margin SVM.

• A Simple Approach to Ordinal Regression (ASAOR) by Frank et. al (Frank

and Hall, 2001) is a general method that enables standard classification algorithms

to make the use of order information in attributes. For the training process, the

method transforms the Q-class ordinal problem into Q−1 binary class problems.

Any ordinal attribute with ordered values is converted intoQ−1 binary attributes.

The prediction of new instances class is done by estimating the probability of

belonging to each of the Q classes with the Q − 1 models. In the current work,

the C4.5 method available in Weka (Hall et al., 2009) is used as the underlying

classification algorithm since this is the one initially employed by the authors of

ASAOR. In this way, the algorithm is identified as ASAOR(C4.5).

• The Proportional Odds Model (POM) is one of the first models specifically

designed for ordinal regression (McCullagh, 1980). The model is based on the

assumption of stochastic ordering of the space X. Stochastic ordering is satisfied
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by a monotonic function (the model) that defines a probability density function

over the class labels for a given feature vector x. Due to the thresholds that divide

the monotonic function values corresponding to different classes, this method was

the first one to be named a threshold model. The main problem associated with

this model is that the projection is done by considering a linear combination of the

inputs (linear projection), which hinders its performance. For the POM model,

the mnrfit function of Matlab software has been used.

• Kernel Discriminant Learning for Ordinal Regression (KDLOR) (Sun et al.,

2010) extends the Kernel Discriminant Analysis (KDA) using a rank constraint.

The method looks for the optimal projection that maximizes the separation be-

tween the projection of the different classes and minimizes the intra-class dis-

tance as in traditional discriminant analysis for nominal classes. Crucially, how-

ever, the order of the classes in the resulting projection is also considered. The

authors claim that, compared with the SVM based methods, the KDA approach

takes advantage of the global information of the data and the distribution of the

classes, and also reduces the computational complexity of the problem.

• Support Vector Machine (SVM) (Cortes and Vapnik, 1995; Vapnik, 1999) nom-

inal classifier is included in the experiments in order to establish a baseline nomi-

nal performance. C-Support Vector Classification (SVC) available in libSVM 3.0

(Chang and Lin, 2011) is used as the SVM classifier implementation. In order

to deal with the multiclass case, a “1-versus-1” approach has been considered,

following the recommendations of Hsu and Lin (Hsu and Lin, 2002).
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In our approach, the Support Vector Regression (SVR) algorithm is used as the

model for the z variable. The method will be referred to by the acronym SVR-PCDOC.

The ε-SVR available in libSVM is used. The authors of GPOR, SVOREX, SVORIM

and RED-SVM provide publicly available software implementations of their methods5.

In the case of KDLOR, this method has been implemented by the authors using Matlab

software (Perez-Ortiz et al., 2011).

Model selection is an important issue and involves selecting the best hyper-parameter

combination for all the methods compared. All the methods were configured to use the

Gaussian kernel. For the support vector algorithms, i.e. SVC, RED-SVM, SVOREX,

SVORIM and ε-SVR, the corresponding hyper-parameters (regularization parameter,

C, and width of the Gaussian functions, γ), were adjusted using a grid search over each

of the 30 training sets by a 5-fold nested cross-validation with the following ranges: C ∈

{103, 102, . . . , 10−3} and γ ∈ {103, 102, . . . , 10−3}. Regarding ε-SVR, the additional

ε parameter has to be adjusted. The range considered was ε ∈ {103, 102, 101, 100}.

For KDLOR, the width of the Gaussian kernel was adjusted by using the range γ ∈

{103, 102, . . . , 10−3}, and the regularization parameter, u, for avoiding the singularity

problem values were u ∈ {10−2, 10−3, . . . , 10−5}. POM and ASAOR(C4.5) methods

have not hyper-parameters. Finally, GPOR-ARD has no hyper-parameters to fix, since

the method optimizes the associated parameters itself.

5GPOR (http://www.gatsby.ucl.ac.uk/˜chuwei/ordinalregression.html),

SVOREX and SVORIM (http://www.gatsby.ucl.ac.uk/˜chuwei/svor.htm) and

RED-SVM (http://home.caltech.edu/˜htlin/program/libsvm/)
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For all the methods, the MAE measure is used as the performance metric for guid-

ing the grid search to be consistent with the authors of the different state-of-the-art

methods. The grid search procedure of SVC at libSVM has been modified in order to

use MAE as the criteria for hyper-parameters selection.

4.3 Performance results

Tables 2 and 3 outline the results through the mean and standard deviation (SD) of

AccG, MAEG, AMAEG and τ bG across the 30 hold-out splits, where the subindex G

indicates that results were obtained on the (hold-out) generalization fold. As a summary,

Table 4 shows, for each performance metric, the mean values of the metrics across

all the datasets, and the mean ranking values when comparing the different methods

(R = 1 for the best performing method and R = 9 for the worst one). To enhance

readability, in Tables 2, 3 and 4 the best and second-best results are in bold face and

italics, respectively.
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Table 2: Comparison of the proposed method to other ordinal classification methods and SVC. The mean and standard deviation (SD) of

the generalization results are reported for each dataset. The best statistical result is in bold face and the second best result in italics.
Acc MeanSD

Method/DataSet automobile bondrate contact-lenses eucalyptus newthyroid pasture squash-stored squash-unstored tae winequality-red

ASAOR(C4.5) 0.6960.059 0.5330.074 0 .7500 .085 0.6390.036 0.9170.039 0.7520.145 0.6030.118 0 .7740 .101 0.3950.058 0.6030.021

GPOR 0.6110.073 0.5780.032 0.6060.093 0.6860.034 0.9660.024 0.5220.178 0.4510.101 0.6440.162 0.3280.041 0.6060.015

KLDOR 0.7220.058 0.5420.087 0.5890.174 0.6110.028 0 .9720 .019 0 .6780 .125 0.7030.112 0.8280.104 0.5550.052 0.6030.017

POM 0.4670.194 0.3440.161 0.6220.138 0.1590.036 0 .9720 .022 0.4960.154 0.3820.152 0.3490.143 0.5120.089 0.5940.017

SVC 0 .6970 .062 0 .5560 .069 0.7940.129 0 .6530 .037 0.9670.025 0.6330.134 0.6560.127 0.7000.082 0.5390.062 0.6360.021

RED-SVM 0.6840.055 0.5530.073 0.7000.111 0.6510.024 0.9690.022 0.6480.134 0.6640.104 0.7490.086 0.5220.074 0.6180.022

SVOREX 0.6650.068 0.5530.096 0.6500.127 0.6470.029 0.9670.022 0.6300.125 0.6280.133 0.7180.128 0.5810.060 0.6290.022

SVORIM 0.6390.076 0.5470.092 0.6330.127 0.6390.028 0.9690.021 0.6670.120 0.6390.118 0.7640.103 0.5900.066 0.6300.022

SVR-PCDOC 0.6780.060 0.5400.101 0.6890.095 0.6480.029 0.9730.020 0.6560.103 0 .6850 .123 0.6950.084 0 .5820 .064 0 .6310 .022

MAE MeanSD

Method/DataSet automobile bondrate contact-lenses eucalyptus newthyroid pasture squash-stored squash-unstored tae winequality-red

ASAOR(C4.5) 0.4010.095 0.6240.079 0 .3670 .154 0.3840.042 0.0830.039 0.2480.145 0.4440.140 0 .2390 .109 0.6860.146 0.4410.023

GPOR 0.5940.131 0.6240.062 0.5110.175 0.3310.038 0.0340.024 0.4890.190 0.6260.148 0.3560.162 0.8610.155 0.4250.017

KLDOR 0.3340.076 0.5870.107 0.5390.208 0.4240.032 0 .0280 .019 0 .3220 .125 0.3080.128 0.1720.104 0.4730.069 0.4430.019

POM 0.9530.687 0.9470.321 0.5330.241 2.0290.070 0 .0280 .022 0.5850.204 0.8130.248 0.8260.230 0.6260.126 0.4390.019

SVC 0.4460.095 0.6240.090 0.3110.222 0.3940.042 0.0330.025 0.3670.134 0.3770.160 0.3080.090 0.5780.083 0.4080.020

RED-SVM 0 .3930 .073 0.5980.088 0.3780.169 0 .3800 .027 0.0320.022 0.3590.142 0.3460.110 0.2510.086 0.5150.087 0.4190.021

SVOREX 0.4080.089 0 .5730 .121 0.4890.185 0.3920.031 0.0330.022 0.3700.125 0.3820.139 0.2820.128 0.4850.078 0.4080.023

SVORIM 0.4240.090 0.5910.102 0.5060.167 0.3950.035 0.0310.021 0.3330.120 0.3720.126 0 .2390 .109 0 .4610 .081 0 .4060 .022

SVR-PCDOC 0.3970.093 0.5680.126 0 .3670 .154 0.3920.038 0.0270.020 0.3480.104 0 .3260 .141 0.3050.084 0.4570.071 0.4000.023
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Table 3: Comparison of the proposed method to other ordinal classification methods and SVC. The mean and standard deviation (SD) of

the generalization results are reported for each dataset. The best statistical result is in bold face and the second best result in italics.
AMAE MeanSD

Method/DataSet automobile bondrate contact-lenses eucalyptus newthyroid pasture squash-stored squash-unstored tae winequality-red

ASAOR(C4.5) 0.5110.104 1.2260.175 0 .3150 .124 0.4280.045 0.1150.056 0.2480.145 0.5020.192 0.2560.149 0.6890.151 1 .0450 .080

GPOR 0.7920.200 1.3600.122 0.6510.286 0.3620.040 0.0620.049 0.4890.190 0.7970.234 0.4430.226 0.8630.164 1.0650.065

KLDOR 0.3450.104 1 .0370 .270 0.5190.280 0.4260.038 0.0590.040 0 .3220 .125 0.3490.156 0 .3090 .180 0.4710.070 1.2580.069

POM 1.0260.800 1.1030.403 0.5350.275 1.9900.048 0 .0500 .040 0.5850.204 0.8150.251 0.7910.332 0.6270.128 1.0850.037

SVC 0.4860.125 1.2650.183 0.3070.277 0.4330.048 0.0600.051 0.3670.134 0.4460.189 0.4440.163 0.5760.083 1.1190.069

RED-SVM 0.4680.096 1.1840.225 0.3850.198 0.4140.030 0.0570.049 0.3590.142 0.3910.149 0.3480.159 0.5130.086 1.0680.069

SVOREX 0.5180.096 1.0720.217 0.5170.303 0.4110.034 0.0540.042 0.3700.125 0.4330.172 0.4260.157 0.4840.079 1.0950.067

SVORIM 0.5230.105 1.1140.233 0.5890.259 0.4200.043 0.0550.042 0.3330.120 0.4270.148 0.3670.140 0 .4590 .081 1.0930.072

SVR-PCDOC 0 .4400 .128 0.9690.224 0.4200.098 0 .4000 .043 0.0450.040 0.3480.104 0 .3600 .184 0.3960.158 0.4550.071 1.0400.096

τb MeanSD

Method/DataSet automobile bondrate contact-lenses eucalyptus newthyroid pasture squash-stored squash-unstored tae winequality-red

ASAOR(C4.5) 0.7410.069 0.1430.159 0 .6040 .216 0 .8020 .025 0.8530.067 0.7780.132 0.4150.245 0 .6920 .145 0.2430.177 0.4960.036

GPOR 0.5570.118 0.0000.000 0.3480.304 0.8300.020 0.9380.045 0.4610.314 0.0750.211 0.4200.331 −0.0180.108 0.5230.026

KLDOR 0.7930.056 0.3560.257 0.4480.273 0.7860.017 0.9480.034 0 .7180 .133 0.6460.160 0.7640.161 0.4770.114 0.4600.028

POM 0.4950.283 0.2900.302 0.4580.309 0.0080.038 0 .9490 .040 0.4630.237 0.1690.304 0.1090.305 0.3170.129 0.4970.025

SVC 0.6950.077 0.1210.177 0.6010.300 0.7830.025 0.9390.045 0.6980.133 0.5410.240 0.5990.140 0.3750.110 0.5160.027

RED-SVM 0 .7510 .054 0.2540.247 0.5770.242 0.8000.017 0.9430.041 0.7070.129 0.6010.148 0.6620.108 0.4170.120 0.5250.030

SVOREX 0.7490.062 0 .3690 .216 0.4250.304 0.7940.019 0.9410.040 0.6910.115 0.5340.207 0.5920.212 0.4450.110 0.5310.028

SVORIM 0.7480.065 0.2990.230 0.3820.269 0.7920.020 0.9440.038 0.7100.114 0.5420.167 0.6560.187 0 .4820 .118 0 .5330 .030

SVR-PCDOC 0.7440.076 0.4550.218 0.6200.217 0.7950.024 0.9520.037 0.7120.102 0 .6100 .201 0.6020.133 0.4930.101 0.5420.033
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Regarding Tables 2 and 3, it can be seen that the majority of methods are very com-

petitive. The best performing method depends on the considered performance metric,

as it can be seen from the mean rankings. This is also true when separately consid-

ering each of the datasets, and the performance for some datasets varies noticeably

if AMAEG is considered instead of MAEG (see bondrate, contact-lenses, eucalyp-

tus, squash-unstored and winequality-red). In the case of winequality-red, it happens

that the second worse method in MAEG, ASAOR(C4.5), is the second best one for

AMAEG. It is worthwhile to mention that for pasture dataset the mean MAEG and

AMAEG are the same, which is due to the fact that pasture is a perfectly balanced

dataset (see Section 2.2). In the case of tae, MAEG and AMAEG are very similar

since the patterns distribution across classes is very similar. Regarding τ bG, it is in-

teresting to highlight that a value close to zero of this metric reveals that the classifier

predictions are not related to the real values, this is, the classifier performance is sim-

ilar to the performance of a trivial classifier. This happens for GPOR method in the

bondrate, squash-stored and tae datasets, and for POM in the eucalyptus dataset.

From Table 4, it can be observed how best mean value across the different datasets

is not always translated into best mean ranking (seeAccG andRAccG columns). We now

analyze the results in greater detail, highlighting the best and second best performances.

When considering AccG, SVC is clearly the best method, both in average performance

and ranking. KDLOR and SVR-PCDOC are the second best methods, in average value

and ranking, respectively. However, results are very different for all the other measures,

where the order is included in the evaluation. The best method in average MAEG and

ranking of MAEG is SVR-PCDOC and the second best ranks are for KDLOR and
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Table 4: Mean results of accuracy (AccG), MAE (MAEG), AMAE (AMAEG) and

τb (τbG) and mean ranking (RAccG , RMAEG
, RAMAEG

and RτbG) for the generalization

sets.

Method/Metric AccG RAccG MAEG RMAEG AMAEG RAMAEG τbG RτbG

GPOR 0.666 5.40 0.392 5.25 0.534 4.90 0.577 5.20

ASAOR(C4.5) 0.600 6.50 0.485 7.00 0.688 7.00 0.413 7.50

KDLOR 0.680 4.20 0.363 4.00 0.509 3.80 0.640 3.60

POM 0.490 7.90 0.778 7.80 0.861 7.00 0.375 6.90

SVC 0.683 3.60 0.385 5.55 0.550 6.20 0.587 6.20

RED-SVM 0.676 4.15 0.367 4.00 0.519 4.10 0.624 4.00

SVOREX 0.667 5.05 0.382 4.75 0.538 4.90 0.607 5.00

SVORIM 0.672 4.40 0.376 4.05 0.538 4.80 0.609 4.20

SVR-PCDOC 0.678 3.80 0.359 2.60 0.487 2.30 0.653 2.40

RED-SVM, having similar mean MAEG. AMAE is a better alternative than MAE

when the distribution of patterns is not balanced, and this is clearly the case for several

datasets (see Table 1). The best values for mean AMAEG and mean ranking are ob-

tained by SVR-PCDOC, and the second ones are those reported by KDLOR. Finally,

the τ bG is revealing the most clear differences. When using this metric, the best mean

values and ranks are reported by SVR-PCDOC, followed by KDLOR.

4.4 Statistical comparisons between methods

To quantify whether a statistical difference exists between any of these algorithms, a

procedure for comparing multiple classifiers over multiple datasets is employed (Demšar,

2006). First of all, a Friedman’s non-parametric test (Friedman, 1940) with a signifi-
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cance level of α = 0.05 has been carried out to determine the statistical significance of

the differences in the mean ranks of Table 4 for each different measure. The test rejected

the null-hypothesis stating that the differences in mean rankings of AccG, MAEG,

AMAEG and τ bG obtained by the different algorithms were statistically significant

(with α = 0.05). Specifically, the confidence interval for this number of datasets and

algorithms is C0 = (0,F(α=0.05) = 2.070), and the corresponding F-value for each

metric were 3.257 /∈ C0, 4.821 /∈ C0, 4.184 /∈ C0 and 5.099 /∈ C0, respectively.

On the basis of this rejection, the Nemenyi post-hoc test is used to compare all clas-

sifiers to each other (Demšar, 2006). This test considers that the performance of any

two classifiers is deemed significantly different if their mean ranks differ by at least the

critical difference (CD), which depends on the number of datasets and methods. A 5%

significance confidence was considered (α = 0.05) to obtain this CD and the results can

be observed in Figure 11, which shows CD diagrams as proposed in (Demšar, 2006).

Each method is represented as a point in a raking scale, corresponding to its mean rank-

ing performance. CD segments are included to measure the separation needed between

methods in order to assess statistical differences. Red lines group algorithms were sta-

tistically different mean ranking performance cannot be assessed. Table 4 should also

be considered when interpreting this graph.

Figure 11a shows that SVC, i.e. the nominal classifier, has the best performance in

Acc, this is, when not considering the order of the label prediction errors, and SVR-

PCDOC has the second best one. RED-SVM, KDLOR and SVORIM have similar

performance here. In Figure 11b, the best mean ranking is for SVR-PCDOC, and

SVORIM, KDLOR and RED-SVM have similar performance. However, when con-
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(a) Nemenyi CD diagram comparing generalization Acc mean rankings

of the different methods.
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(b) Nemenyi CD diagram comparing the generalization MAE mean

rankings of the different methods.
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(c) Nemenyi CD diagram comparing the generalization AMAE mean

rankings of the different methods.
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(d) Nemenyi CD diagram comparing the generalization τb mean rankings

of the different methods.

Figure 11: Ranking test diagrams for the mean generalization Acc, MAE, AMAE and

τb.
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Table 5: Differences and Critical Difference (CD) value in rankings in the Bonferroni-

Dunn test, using SVR-PCDOC as the control method.

Method

Metric ASAOR(C4.5) GPOR KDLOR POM SVC RED-SVM SVOREX SVORIM

Acc 1.60 2.70 0.40 4.10• 0.20 0.35 1.25 0.60

MAE 2.65 4.40• 1.40 5.20• 2.95 1.40 2.15 1.45

AMAE 2.60 4.70• 1.50 4.70• 3.90• 1.80 2.60 2.50

τb 2.80 5.10• 1.20 4.50• 3.80• 1.60 2.60 1.80

Bonferroni-Dunn Test: CD(α=0.05)= 3.336

•: Statistical difference with α = 0.05

sidering AMAE, it can be seen at Figure 11c that SVR-PCDOC mean ranking distance

to the other methods increases, specifically for RED-SVM and SVORIM. Finally, Fig-

ure 11d shows the mean rank CD diagram for τb where SVR-PCDOC is still having the

best mean performance.

It has been noticed that the Nemenyi approach comparing all classifiers to each

other in a post-hoc test is not as sensitive as the approach comparing all classifiers

to a given classifier (a control method) (Demšar, 2006). The Bonferroni-Dunn test

allows this latter type of comparison and, in our case, it is done using the proposed

method as the control method for the four metrics. The results of the Bonferroni-Dunn

test for α = 0.05 can be seen in Table 5, where the corresponding critical values are

included. From the results of this test, it can be concluded than SVR-PCDOC does not

report a statistically significant difference with respect to the SVM ordinal regression

methods, KDLOR and ASAOR(C4.5), but it does when it is compared to POM for

all the metrics and compared to GPOR for the ordinal metrics. Moreover, there are
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significant differences with respect to SVC, when considering AMAE and τb.

From the above experiments, we can conclude that the reference (baseline) nom-

inal classifier, SVC, is improved with statistical differences when considering ordinal

classification measures. Regarding ASAOR(C4.5), SVOREX, SVORIM, KDLOR and

RED-SVM, whereas the general performance is slightly better, there are no statistically

significant differences favouring any of the methods.

As a summary of the experiments, two important conclusions can be drawn about

the performance measures: When imbalanced datasets are considered, AccG is clearly

omitting important aspects of ordinal classification and so does MAEG. If the com-

parative performance is taken into account, KDLOR and SVR-PCDOC appear to be

very good classifiers when the objective is to improve AMAEG and τG. The best mean

ranking performance is obtained by our method proposed in this paper.

4.5 Latent space representations of the ordinal classes

In the previous section we have shown that our simple and intuitive methodology can

compete on equal footing with established more complex and/or less direct methods for

ordinal classification. In this section we complement this performance based compar-

ison with a deeper analysis of the main ingredient of our and other related approaches

to ordinal classification - projection onto the one-dimesional (latent) space naturally

representing the ordinal nature of the class organization. In particular, we study how

non-linear latent variable models, SVR-PCDOC, KDLOR, SVOREX and SVORIM or-

ganize their one-dimensional latent space data projections. For comparison purposes,

the latent variable Z values of the training and generalization data of the first fold of
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(a) SVR-PCDOC train PCD histogram.
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(b) SVR-PCDOC train Ẑ histogram.
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(c) SVR-PCDOC generalization PCD histogram.
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(d) SVR-PCDOC generalization Ẑ histogram.
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(e) SVR-PCDOC train Ẑ prediction.
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(f) SVR-PCDOC generalization Ẑ prediction.

Figure 12: PCD projection and SVR-PCDOC’s histograms and Ẑ prediction corre-
sponding to the latent variable of the tae dataset: train PCD, train predicted Ẑ by
SVR-PCDOC, generalization PCD and generalization predicted Ẑ by SVR-PCDOC.
Generalization results are Acc = 0.582, MAE = 0.457, AMAE = 0.455, τb = 0.493.
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tae dataset are shown (Figure 12). Both histograms and values are plotted so that the

behaviour of the models can be analysed. In the case of PCDOC, the PCD projection

is also included to see whether the regressor model is close to the PCDOC projection.

The histograms represent relative frequency of the projections. SVORIM histograms

and latent variable values are not presented since they are similar to the SVOREX ones

in the selected dataset.

We first analyse the SVR-PCDOC method. From PCD projections in Figure 12a we

deduce that classes C1 and C2 contain patterns that are very close in the input space –

projection of some patterns from C2 lies near the threshold that divides the Z values for

the two classes. Analogous comment applies to classes C2 and C3. The regressor seems

to have learnt the imposed projection reasonably well since the predicted latent values

have a histogram similar to the training PCD projection histogram. The generalization

PCD projections (Figure 12c) have similar characteristics as the training ones6. Note

the concentration of values around ẑ = 0.5 on the prediction of the generalization Z .

This concentration of values is due to wrong prediction of class C1 and C3 patterns

that were both assigned to C2. This behaviour can be better seen in Figures 12e and

12f, where the modelled latent value for each pattern is shown together with its class

label. Indeed, during training some C1 and C2 patterns were mapped to positions near

the thresholds. This is probably caused by noise or overlapping class distribution in the

input space.

Figure 13 presents latent variable values of KDLOR. The KDLOR method projects

6There are much less patterns in the hold-out set than in the training set, making direct comparison of

the two histograms problematic
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the data onto the latent space by minimizing the intra-class distance while maximizing

the inter-class distance of the projections. As a result, the latent representations of the

data are quite compact for each class (see training projection histogram in Figure 13a).

While this philosophy often leads to superior classification results, the projections are

not reflecting the structure of patterns within a single class, that is, the ordinal nature of

the data is not fully captured by the model. In addition, KDLOR projections occur in the

wrong bins more often than in the case of SVR-PCDOC (see generalization projections

Z in Figure 13d)).

Finally, Figure 14 presents latent representations of patterns by the SVOREX model.

As in the KDLOR case, (except for a few patterns) the training latent representations

are highly compact within each class. Again, the relative structure of patterns within

their classes is lost in the projections.

In both models, KDLOR and SVOREX, there is a pressure in the model construc-

tion phase to find 1-dimensional projections of the data that result in compact classes,

while maximizing the inter-class separation. In the case of KDLOR this is explicitly

formulated in the objective function. On the other hand, the key idea behind SVM

based approaches is margin maximization. Data projections that maximize inter-class

margins implicitly make the projected classes compact. We hypothesise that the pres-

sure for compact within-class latent projections can lead to poorer generalization per-

formance, as illustrated in Figure 14d. In the case of overlapping classes the drive

for compact class projections can result in locally highly non-linear projections of the

overlapping regions, over which we do not have a direct control (unlike in the case of

PCDOC, where the non-linear projection is guided by the relative positions of points
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(a) KDLOR train Ẑ histogram.
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(b) KDLOR generalization Ẑ histogram.
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(c) KDLOR train Ẑ prediction.
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(d) KDLOR generalization Ẑ prediction.

Figure 13: Prediction of train and generalization Ẑ values corresponding to KDLOR at

tae dataset. Generalization results are Acc = 0.555, MAE = 0.473, AMAE = 0.471,

τb = 0.477.

with respect to the other classes). Having such highly expanding projections can result

in test points being projected to wrong classes in an arbitrary manner. Even though

we provide detailed analysis for one dataset and one fold only, the observed tendencies

were quite general across the data sets and hold-out folds.
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(a) SVOREX train Ẑ histogram.
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(b) SVOREX generalization Ẑ histogram.
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(c) SVOREX train Ẑ prediction.
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(d) SVOREX generalization Ẑ prediction.

Figure 14: Prediction of train and generalization Ẑ values corresponding to SVOREX at

tae dataset. Generalization results are Acc = 0.581, MAE = 0.485, AMAE = 0.484,

τb = 0.445

5 Conclusions

This paper addresses ordinal classification by proposing a projection of the input data

into a one-dimensional variable, based on the relative position of each pattern with

respect to the patterns of the adjacent classes. Our approach is based on a simple and
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intuitive idea: instead of implicitly inducing a one dimensional data projection into a

series of class intervals (as done in threshold based methods), construct such projection

explicitly and in a controlled manner. Threshold methods crucially depend on such

projections and we propose that it might be advantageous to have a direct control over

how the projection is done, rather than having to rely on its indirect induction through

a one-stage ordinal classification learning process.

Applying this one-dimensional projection on the training set yields data on which

generalized projection can be trained using any standard regression method. The gener-

alized projection can in turn be applied to new instances which are then classified based

to the interval into which their projection falls.

We construct the projection by imposing that the ‘best separated’ pattern of each

class (i.e. the pattern most distant from the adjacent classes) should be mapped to the

centre of the interval representing that class (or in the interval extremes for the ex-

treme, first and the last, classes). All the other patterns are proportionally positioned in

their corresponding class intervals around the centres mentioned above. We designed a

projection method having such desirable properties and empirically verified its appro-

priateness on datasets with linear and non-linear class ordering topologies.

We extensively evaluated our method on ten real-world datasets, four performance

metrics, a measure of statistical significance and performed comparison with eight al-

ternative methods, including the most recent proposals for ordinal regression and a

baseline nominal classifier. In spite of the intrinsic simplicity and straightforward intu-

ition behind our proposal, the results are competitive and consistent with respect to the

state-of-the-art in the literature. The mean ranking performance of our method was par-
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ticularly impressive, when robust ordinal performance metrics were considered, such as

the average mean absolute error or the τb correlation coefficient. Moreover, we studied

in detail the latent space organization of the projection based methods considered in

this paper. We suggest, that while the pressure for compact within class latent projec-

tions can make training sample projections nicely compact within classes, it can lead to

poorer generalization performance overall.

We also identify some interesting discussion points. Firstly, the latent space thresh-

olds are fixed by the projection with an equal width. This may be interpreted as an

assumption of equal widths for each class, which is not always true for all the prob-

lems. This would indeed be a problem if we used a linear regressor from the data space

to the projection space. However, we employ non-linear projections and the adjust-

ment for unequal ‘widths’ of the different classes can be naturally achieved within such

non-linear mapping from the data to the projection space. Actually, from the model

fitting standpoint, having fixed-width class regions in the projection space is desirable.

Allowing for variable widths would increase the number of free parameters and would

make the free parameters dependent in potentially complicated manner (flexibility of

projections versus class widths in the projection space). This may have harmful effect

on model fitting, especially if the data set is of limited size. Having less free parameters

is also advantageous from the point of view of computational complexity.

The second discussion point is the possible undesirable influence of outliers in the

PCD projection. One possible solution can be to place each pattern in the projection

considering more classes than just the adjacent ones. However, this idea should be done

carefully in order not to decrease the role of ordinal information in the projection. A
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direct alternative can be to use k-NN like scheme in Eq. (2), where instead of taking the

minimum distance to a point, the average distance to the k closest points of class q ± 1

can be used. This will represent a generalization of the current scheme that calculates

distances with k = 1. Nevertheless, the inclusion of k would imply the addition of a

new free parameter to the training process.

In conclusion, the results indicate that our two-phase approach to ordinal classifica-

tion is a viable and simple-to-understand alternative to the state-of-art. The projection

constructed in the first phase is consistently extracting useful information for ordinal

classification. As such it can not only be used as the basis for classifier construction,

but also as a starting point for devising measures able to detect and quantify possible

ordering of classes in any dataset. This is a matter for our future research.
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