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Abstract
Extracting the statistics of event streams in natural environments is critical for interpreting current events and predicting
future ones. The brain is known to rapidly find structure and meaning in unfamiliar streams of sensory experience, often by
mere exposure to the environment (i.e., without explicit feedback). Yet, we know little about the brain pathways that support
this type of statistical learning. Here, we test whether changes in white-matter (WM) connectivity due to training relate to our
ability to extract temporal regularities. By combining behavioral training and diffusion tensor imaging (DTI), we demonstrate
that humans adapt to the environment’s statistics as they change over time from simple repetition to probabilistic
combinations. In particular, we show that learning relates to the decision strategy that individuals adopt when extracting
temporal statistics. We next test for learning-dependent changes in WM connectivity and ask whether they relate to
individual variability in decision strategy. Our DTI results provide evidence for dissociable WM pathways that relate to
individual strategy: extracting the exact sequence statistics (i.e., matching) relates to connectivity changes between caudate
and hippocampus, while selecting the most probable outcomes in a given context (i.e., maximizing) relates to connectivity
changes between prefrontal, cingulate and basal ganglia (caudate, putamen) regions. Thus, our findings provide evidence
for distinct cortico-striatal circuits that show learning-dependent changes of WM connectivity and support individual ability
to learn behaviorally-relevant statistics.
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Significance Statement

Training is known to improve performance in a range of sensory-motor tasks and alter white-matter (WM)
connectivity, as measured by diffusion tensor imaging (DTI). Yet, learning to extract the statistics of event
streams in natural environments is thought to often occur without explicit feedback (i.e., by mere exposure
to the environment). Here, we demonstrate that this type of statistical learning of temporal structures
without trial-by-trial feedback relates to changes in WM connectivity in the human brain. Our findings
provide evidence for distinct cortico-striatal circuits that support individual ability to learn behaviorally-
relevant statistics. In particular, individuals engage dissociable structural brain networks depending on their
decision strategy, suggesting alternate brain routes to learning predictive structures.
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Introduction
Interacting successfully in dynamic environments en-

tails that we extract meaningful structure from initially
incomprehensible streams of events. This ability to extract
spatial and temporal regularities from the environment,
often without explicit feedback, is known as statistical
learning (Perruchet and Pacton, 2006; Aslin and Newport,
2012). In particular, observers report that stimuli (shapes,
tones, or syllables) that co-occur spatially or follow in a
temporal sequence appear familiar (Saffran et al., 1996,
1999; Chun, 2000; Fiser and Aslin, 2002; Turk-Browne
et al., 2005). Typically, regularities in the natural environ-
ment are probabilistic; for instance, combinations of
sounds or syllables appear at different frequencies in the
context of music or language. Learning such sequences
entails extracting the probabilistic statistics that govern
the temporal structure of events. Previous work has high-
lighted the role of strategies in probabilistic learning
(Shanks et al., 2002; Erev and Barron, 2005) and percep-
tual decision making (Eckstein et al., 2013; Acerbi et al.,
2014; Murray et al., 2015). That is, observers are shown to
match their choices stochastically according to the un-
derlying input statistics or maximize their success by
selecting the most probable outcomes. Despite the fun-
damental importance of statistical learning for making
perceptual decisions, we know surprisingly little about the
brain pathways that support individual ability and strate-
gies for learning temporal regularities.

Here, we combine behavioral measurements and multi-
session diffusion tensor imaging (DTI; before and after
training) to investigate the structural [i.e., white matter
(WM)] pathways that engage in statistical learning of tem-
poral structures. Recent advances in DTI allow us to
reliably measure brain connectivity as indexed by local
water molecule diffusion (Basser and Pierpaoli, 1996; Le
Bihan et al., 2001) or long-distance brain connections
(Basser et al., 2000). DTI work provides accumulating
evidence for learning-dependent changes in WM connec-
tivity (Zatorre et al., 2012) due to training in a range of
tasks including motor learning (Scholz et al., 2009;
Taubert et al., 2010; Sampaio-Baptista et al., 2013), spa-
tial navigation (Sagi et al., 2012; Hofstetter et al., 2013),
working memory (Takeuchi et al., 2010), artificial grammar

learning (Flöel et al., 2009), and language (Schlegel et al.,
2012; Hofstetter et al., 2016). Here, we ask whether mere
exposure to streams of information (i.e., without trial-by-
trial feedback) changes WM connectivity in pathways that
support our ability to extract statistical regularities. Fur-
ther, we test whether these learning-dependent changes
in WM connectivity relate to individual decision strategies
when learning temporal structures.

In particular, to investigate the brain pathways involved
in learning temporal structures unencumbered by past
experience, we generated temporal sequences based on
Markov models of different orders (i.e., context lengths of
0, 1, or 2 previous items; Fig. 1). To simulate event struc-
tures in the natural environment that typically contain
regularities at different scales, from simple repetition to
probabilistic combinations, we exposed participants to
sequences of unfamiliar symbols and varied the sequence
structure unbeknownst to the participants by increasing
the context length. We presented participants first with
sequences determined by frequency statistics (i.e., occur-
rence probability per symbol), followed by sequences
determined by context-based statistics that increased in
context length (i.e., the probability of a given symbol
appearing depends on the n preceding symbols). Partic-
ipants performed a prediction task, indicating which sym-
bol they expected to appear next in the sequence.
Following previous statistical learning paradigms, partici-
pants were exposed to the sequences without trial-by-
trial feedback.

Our behavioral results show that individuals adapt to the
environment’s statistics, that is, they are able to extract
predictive structures that change over time. Further, we
show that individual learning of structures relates to decision
strategy. In particular, learning context-based statistics re-
lates to selecting the most probable outcomes in a given
context (i.e., maximizing) rather than the exact sequence
statistics (i.e., matching). Our DTI results demonstrate that
individual strategies for learning behaviorally-relevant statis-
tics engage distinct cortico-striatal circuits. In particular,
learning-dependent changes in WM connectivity relate to
individual variability in decision strategy: matching relates to
connectivity changes between caudate and hippocampus,
while maximizing relates to connectivity changes between
prefrontal, cingulate and basal ganglia (caudate, putamen).
Thus, our findings provide evidence for learning-dependent
changes of WM connectivity in distinct cortico-striatal cir-
cuits that support our ability to extract behaviorally-relevant
statistics in variable environments.

Materials and Methods
Observers

Forty-four healthy volunteers (15 female, 29 male) partic-
ipated in the experiment; half participated in the training
group and the rest in the no-training control group. The data
from one participant per group were excluded from the
study due to excessive head movement, resulting in twenty-
one participants per group (training group: mean age, 21.56
years and SD, 1.84 years; no-training group: mean age,
25.53 years and SD, 2.60 years). All participants were naive
to the study, had normal or corrected-to-normal vision and
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signed an informed consent. The training experiment was
conducted in the School of Psychology, University of Bir-
mingham and the no-training control experiment was con-
ducted in the Department of Psychology, University of
Cambridge. Both experiments were approved by the re-
spective University Ethics Committees.

Stimuli
Stimuli comprised four symbols chosen from Ndjuká

syllabary (Fig. 1A). These symbols were highly discrim-

inable from each other and were unfamiliar to the partic-
ipants. Each symbol subtended 8.5° of visual angle and
was presented in black on a mid-gray background. Ex-
periments were controlled using Matlab and the Psycho-
physics toolbox 3 (Brainard, 1997; Pelli, 1997). For the
behavioral training sessions, stimuli were presented on a
21-inch CRT monitor (ViewSonic P225f 1280 ! 1024
pixel, 85-Hz frame rate) at a distance of 45 cm. For the
test sessions, stimuli were presented inside the MRI scan-
ner using a projector and a mirror set-up (1280 ! 1024

a

b

        Sequence (8-14 items)     Cue   Response

         Time

Level-0: Zero-order model

Level-1: First-order model

Level-2: Second-order model

A B C D

0.18 0.72 0.05 0.05

A B

D C

A

D

AB

XB

BC

YC

Level-1
Target

A B C D
Co

nt
ex
t A 0.8 0.2

B 0.8 0.2
C 0.2 0.8
D 0.8 0.2

Level-2
Target

A B C D

Co
nt
ex
t

A 0.8 0.2
B 0.8 0.2
C 0.2 0.8
D 0.8 0.2
AB 0.2 0.8
BC 0.2 0.8

DTI scan
(Pre)

level-0 
training

level-0
post-test

level-1 
training

level-1
post-test

level-2 
training

level-2
post-test

DTI scan
(Post)

Time

level-0
level-1
level-2

pre-test

c

Figure 1. Trial and sequence design. A, The trial design: 8 –14 symbols were presented sequentially followed by a cue and the
test display. B, Sequence design: Markov models of the three context-length levels. For the zero-order model (level-0): different
states (A, B, C, D) are assigned to four symbols with different probabilities. For first-order (level-1) and second-order (level-2)
models, diagrams indicate states (circles) and conditional probabilities (solid arrow: high probability; dashed arrow: low
probability). Transitional probabilities are shown in a four-by-four (level-1) or four-by-six (level-2) conditional probability matrix,
where rows indicate the temporal context and columns the corresponding target. C, Timeline of the imaging and behavioral
sessions included in the study. Training involved three to five sessions for each level. DTI scans and behavioral test sessions
were completed on a single day.
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pixel, 60-Hz frame rate) at a viewing distance of 67.5 cm.
The physical size of the stimuli was adjusted so that the
angular size was constant during training and test ses-
sions.

Sequence design
We generated probabilistic sequences by using a tem-

poral Markov model and varying the memory length (i.e.,
context length) of the sequence (Wang et al., 2017a). The
model consists of a series of symbols, where the symbol
at time i is determined probabilistically by the previous k
symbols. We refer to the symbol presented at time i, s(i),
as the target and to the preceding k-tuple of symbols
(s(i-1), s(i-2), . . ., s(i-k)) as the context. The value of k is the
order or level of the sequence:

P!s!i"!s!i " 1", s!i " 2", !, s!1"" # P!s!i"!s!i " 1",
s!i " 2", !, s!i " k"", k $ i

In our study, we used three levels of memory length; for
k " 0,1,2. The simplest k " 0th order model is a memory-
less source. This generates, at each time step i, a symbol
according to symbol probability P(s), without taking into
account the context (i.e., previously generated symbols).
The order k " 1 Markov model generates symbol s(i) at
each time i conditional on the previously generated sym-
bol s(i-1). This introduces a memory in the sequence; i.e.,
the probability of a particular symbol at time i strongly
depends on the preceding symbol s(i-1). Unconditional
symbol probabilities P(s(i)) for the case k " 0 are now
replaced with conditional ones, P(s(i)|s(i-1)). Similarly, an
order k " 2 Markov model generates a symbol s(i) at each
time i conditional on the two previously generated sym-
bols s(i-1), s(i-2): P(s(i)|s(i-1),s(i-2)).

At each time, the symbol that follows a given context is
determined probabilistically, thus generating stochastic
Markov sequences. The underlying Markov model can be
represented through the associated context-conditional
target probabilities. We used four symbols that we refer to
as items A, B, C, and D. The correspondence between
items and symbols was counterbalanced across partici-
pants. Note, that we designed the stochastic sources
from which the sequences were generated so that the
memory-conditional uncertainty remains the same across
levels. In particular, for the zero-order source, only two
symbols are likely to occur most of the time; the remaining
two symbols have very low probability (0.05); this is intro-
duced to ensure that there is no difference in the number
of symbols across levels. Of the two dominant symbols,
one is more probable (probability 0.72) than the other
(probability 0.18). This structure is preserved in Markov
chain of order 1 and 2, where conditional on the previous
symbols, only two symbols are allowed to follow, one with
higher probability (0.80) than the other (0.20). This ensures
that the structure of the generated sequences across
levels differs mainly in the memory length (i.e., context
length) rather than the context-conditional probabilities.

In particular, for level-0, the Markov model was based
on the probability of symbol occurrence: one symbol had
a high probability of occurrence, one low probability,

while the remaining two symbols appeared rarely (Fig.
1B). For example, the probabilities of occurrence for the
four symbols A, B, C, and D were 0.18, 0.72, 0.05, and
0.05, respectively. Presentation of a given symbol was
independent of the items that preceded it. For level-1 and
level-2, the target depended on one or two immediately
preceding items, respectively (Fig. 1B). Given a context,
only one of two targets could follow; one had a high
probability of being presented and the other a low prob-
ability (e.g., 80% versus 20%). For example, when Sym-
bol A was presented, only symbols B or C were allowed to
follow, and B had a higher probability of occurrence than
C.

Procedure
We tested learning of temporal structures starting with

sequences determined by frequency statistics (level-0)
and continuing with sequences defined by context-based
statistics (level-1 and level-2). Participants were initially
familiarized with the task through a brief practice session
(8 min) with random sequences (i.e., all four symbols were
presented with equal probability 25% in a random order).
Following this, participants took part in multiple behav-
ioral training and test sessions that were conducted on
different days. In addition, they participated in two DTI
imaging sessions, one before the first training session and
one after the last training session. Participants were
trained with structured sequences and tested with both
structured and random sequences to ensure that training
was specific to the trained sequences.

In particular, first, participants took part in a DTI scan-
ning session (i.e., pre-training). Following this, participants
took part in the first test session (pre-test) during which
they were presented with zero-, first-, and second-order
sequences and random sequences. Next, participants
were trained with zero-order sequences and subse-
quently with first-order and variable (first and second)-
order sequences in multiple behavioral sessions. For each
level, participants completed a minimum of three and a
maximum of five training sessions (840–1400 trials) on
different days. Training at each level ended when partic-
ipant performance reached PI index higher than 70% (i.e.,
at least 25% higher than chance) and it did not change
significantly for two sessions. After completion of training
per level (i.e., on the following day), participants took part
in a test session during which they were presented with
structured sequences determined by the statistics of the
trained level and random sequences (90 trials each). A day
after the last test session, participants took part in the
second DTI scan (i.e., post-training). The mean time inter-
val (#SD) between the pre-training and the post-training
test sessions was 23.3 (#2.5) d. The timeline of the be-
havioral and imaging sessions is depicted in Figure 1C.

Psychophysical training
Each training session comprised five blocks of struc-

tured sequences (56 trials per block) and lasted 1 h. To
ensure that sequences in each block were representative
of the Markov model order per level, we generated 10,000
Markov sequences per level comprising 672 items per
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sequence. We then estimated the Kullback–Leibler diver-
gence (KL divergence) as follows:

KL # #
target

Q!target"log !Q!target"
P!target" "

for the level-0 model, and

KL # #
context

Q!context" #
target

Q!target!context"

log $Q!target!context"
P!target!context"%

for the level-1 and level-2 models, where P() refers to
probabilities or conditional probabilities derived from the
presented sequence and Q() refers to those specified by
the ideal Markov model. We selected fifty sequences with
the lowest KL divergence (i.e., these sequences matched
closely the Markov model per level). The sequences pre-
sented to the participants during the experiments were
selected randomly from this sequence set.

For each trial, a sequence of 8–14 symbols appeared in
the center of the screen, one at a time in a continuous
stream, each for 300 ms followed by a central white
fixation dot (ISI) for 500 ms (Fig. 1A). This variable trial
length ensured that participants maintained attention dur-
ing the whole trial. Each block comprised equal number of
trials with the same number of items. The end of each trial
was indicated by a red dot cue that was presented for 500
ms. Following this, all four symbols were shown in a 2 !
2 grid. The positions of test stimuli were randomized from
trial to trial. Participants were asked to indicate which
symbol they expected to appear following the preceding
sequence by pressing a key corresponding to the location
of the predicted symbol. Participants learned a stimulus-
key mapping during the familiarization phase: key “8,” “9,”
“5,” and “6” in the number pad corresponded to the four
positions of the test stimuli, upper left, upper right, lower
left and lower right, respectively. After the participant’s
response, a white circle appeared on the selected item for
300 ms to indicate the participant’s choice, followed by a
fixation dot for 150 ms (ITI) before the start of the next trial.
If no response was made within 2 s, a null response was
recorded and the next trial started. Participants were
given feedback [i.e., score in the form of performance
index (PI); see below, Behavioral analysis] at the end of
each block, rather than per-trial error feedback, which
motivated them to continue with training.

Test sessions
The pre-training test session (pre) included nine runs

(i.e., three runs per level), the order of which was random-
ized across participants. Test sessions after training per
level included nine runs of structured sequences deter-
mined by the same statistics as the corresponding trained
level and random sequences. Each run comprised five
blocks of structured and five blocks of random sequences
presented in a random counterbalanced order (two trials
per block a total of 10 structured and 10 random trials per
run), with an additional two 16 s fixation blocks, one at the

beginning and one at the end of each run. Each trial
comprised a sequence of 10 stimuli, which were pre-
sented for 250 ms each, separated by a blank interval
during which a white fixation dot was presented for 250
ms. Following the sequence, a response cue (central red
dot) appeared on the screen for 4 s before the test display
(comprising four test stimuli) appeared for 1.5 s. Partici-
pants were asked to indicate which symbol they expected
to appear following the preceding sequence by pressing a
key corresponding to the location of the predicted sym-
bol. A white fixation was then presented for 5.5 s before
the start of the next trial. In contrast to the training ses-
sions, no feedback was given during test. The test ses-
sions took place in the MRI scanner during the acquisition
of fMRI data.

DTI data acquisition
Scanning for the training experiment was conducted

using a 3T Philips Achieva MRI scanner with a 32-channel
head coil. T1-weighted anatomic data (175 slices; 1 ! 1 !
1 mm3 resolution) were collected during the first scanning
session and DTI data were collected in both scanning
sessions (i.e., before the first and after the last training
session). The DTI acquisition consisted of 60 isotropically-
distributed diffusion weighted directions (b " 1500
smm$2; TR " 9.5 s; TE " 78 ms; 75 slices; 2 ! 2 ! 2 mm3

resolution; SENSE) plus a single volume without diffusion
weighting (b " 0 smm$2, denoted as b0). The DTI se-
quence was repeated twice during each session, once
following the anterior-to-posterior phase-encoding direc-
tion and once the posterior-to-anterior direction. This ac-
quisition scheme was implemented to allow correction of
susceptibility-induced geometric distortions (Andersson
et al., 2003).

Scanning for the no-training control experiment was
conducted using a 3T Siemens Trio MRI scanner with a
32-channel head coil. T1-weighted anatomic data (175
slices; 1 ! 1 ! 1 mm3 resolution) were collected during
the first scanning session and DTI data in both scanning
sessions (26.1 # 5.2 d apart). The DTI acquisition param-
eters were matched as closely as possible to the training
group: 60 isotropically-distributed diffusion weighted di-
rections (b " 1500 smm$2; TR " 8.9 s; TE " 91 ms; 72
slices; 2 ! 2 ! 2 mm3 resolution; GRAPPA) plus a single
volume without diffusion weighting (b " 0 smm$2). The
DTI sequence was repeated twice during each session,
once following the anterior-to-posterior phase-encoding
direction and once the Posterior-to-Anterior direction.
Each scanning session was followed by a behavioral test
in the lab the following day.

Behavioral analysis
Performance index (PI)

We assessed participant responses in a probabilistic
manner. We computed a PI per context that quantifies the
minimum overlap (min, minimum) between the distribution
of participant responses and the distribution of presented
targets estimated across 56 trials per block by:
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PI!context" # #
s

min!Presp!st!contextt",

Ppres!st!contextt""
where t is the trial index and the target s is from the
symbol set A, B, C, and D.

The overall PI is then computed as the average of the
performance indices across contexts, PI(context),
weighted by the corresponding context probabilities:

PI # #
context

PI!context"·P!context"

To compare across different levels, we defined a nor-
malized PI measure that quantifies relative participant
performance above random guessing. We computed a
random guess baseline, i.e., performance index PIrand that
reflects participant responses to targets with (1) equal
probability of 25% for each target per trial for level-0
(PIrand " 0.53); (2) equal probability for each target for a
given context for level-1 (PIrand " 0.45) and level-2 (PIrand
" 0.44). To correct for differences in random-guess base-
lines across levels, we subtracted the random guess
baseline from the performance index (PInormalized " PI $
PIrand).

Strategy choice and strategy index
To quantify each participant’s strategy, we compared

individual participant response distributions (response-
based model) to two baseline models: (1) a probability
matching model, where probabilistic distributions are de-
rived from the Markov models that generated the pre-
sented sequences (model matching); and (2) a probability
maximization model, where only the most likely outcomes
are allowed for each context (model maximization). We
used KL divergence to compare the response distribution
to matching versus maximization. KL is defined as fol-
lows:

KL # #
target

M!target"log!M!target"
R!target" "

for the level-0 model, and

KL # #
context

M!context" #
target

M!target!context"

log $M!target!context"
R!target!context"%

for the level-1 and level-2 models, where R () and M ()
denote the probability distribution or conditional proba-
bility distribution derived from the human responses and
the models (i.e., probability matching or maximization)
respectively, across all the conditions.

We quantified the difference between the KL diver-
gence from the response-based model to model match-
ing and the KL divergence from the response-based
model to model maximization. We refer to this quantity as
strategy choice indicated by %KL (model maximization,
model matching). We then derived an individual strategy

index by calculating the integral of each participant’s
strategy curve across trials and subtracting it from the
integral of the exact matching curve across trials, as
defined by model matching. We defined the integral curve
difference (ICD) between individual strategy and exact
matching as the individual strategy index (where 0 "
matching and values higher than 0 indicate deviation from
matching toward maximization).

DTI analysis
Whole-brain probabilistic tractography

We used the Automated Anatomic Labeling (AAL) atlas
(Tzourio-Mazoyer et al., 2002) to define three anatomic
regions (vmPFC: medial orbitofrontal in AAL, putamen
and caudate) in MNI space as seed regions. We then
tested WM connectivity seeded from these regions bilat-
erally using FSL 5.0.8 to perform the following prepro-
cessing steps: (1) artifact correction, (2) modeling of
diffusion parameters with crossing fibers, (3) simulation of
whole-brain probabilistic tractography, and (4) transfor-
mation of individual maps to standard space for group
analysis (i.e., alignment to MNI).

We first corrected the data for susceptibility distortions,
eddy currents, and motion artifacts (Andersson and Soti-
ropoulos, 2016) and rotated the gradient directions
(bvecs) to correct for the estimated motion rotation (Lee-
mans and Jones, 2009; Jones and Cercignani, 2010;
Ersoz et al., 2014). We generated a distribution model in
each voxel using FSL BedpostX (Behrens et al., 2003) with
default parameters.

We aligned each seed region to each participant’s na-
tive space, as probabilistic tracking is conducted in the
native diffusion space. We followed a four-step registra-
tion procedure: (1) aligned the non-weighted diffusion
volume (b0) of each session to their midspace and create
a midspace-template (rigid-body; Smith et al., 2001;
Thomas and Baker, 2013), (2) aligned the midspace-
template to the anatomic (T1) scan (affine), (3) aligned the
T1 to the MNI template of FSL (non-linear), and (4) in-
verted and combined all the transformation matrices of
the previous steps to obtain the MNI-to-native registra-
tion. To extract the seed regions, the final transformation
matrix was applied to the AAL atlas (nearest-neighbor
interpolation). The results of each step were visually in-
spected to ensure that the alignment was successful.

We simulated tracts (i.e., probabilistic streamlines)
starting from each seed region and extending to any other
area of the brain using the probabilistic tracking algorithm
(ProbtrackX; Behrens et al., 2007). To test the connectivity
from each seed area to the whole brain, we used a
mid-sagittal exclusion mask to prevent tracts from cross-
ing hemisphere (no termination or waypoint mask were
used; Behrens et al., 2007). The parameters we used in
ProbtrackX are: 5000 samples per voxel, 2000 steps per
sample until conversion, 0.5-mm step length, 0.2 curva-
ture threshold, 0.01 volume fraction threshold and loop-
check enabled to prevent tracts from forming loops.

The main output of ProbtrackX is a visitation map in the
native space which shows the number of tracts passing
through each voxel (streamline count). To control for dif-
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ferences in volume across seeds and participants, we
estimated connection probability between each brain
voxel and a seed region by dividing the streamline count
by the total number of tracts started from the seed region
(Johansen-Berg and Rushworth, 2009), resulting in a nor-
malized visitation map per participant.

Regression analysis of WM connectivity with strategy
To perform statistical tests on the probabilistic tractog-

raphy maps across participants, we aligned each partic-
ipant’s normalized visitation map to MNI using trilinear
interpolation. For further analysis we applied a threshold
of 0.1% connection probability on this map to remove the
less probable pathways and reduce the number of voxels
to be tested (Schulz et al., 2015). We then binarized the
connection probability map per participant and averaged
the maps across participants to generate a map of voxels
with connection probability higher than 0.1% in at least
50% of the participants (Cohen et al., 2008; de Wit et al.,
2012; van den Brink et al., 2014) and further reduce the
number of voxels considered for statistical analysis.

We used this thresholded map as a mask for the individual
participant connection probability maps for each of the two
test sessions (pre- and post-training). We then subtracted
the pre-training connection probability map from the post-
training one, resulting in a connection probability change
map for each participant. To test whether connectivity in this
map relates to individual behavior (i.e., strategy), we con-
ducted nonparametric voxel-wise statistical testing using a
permutation-based statistical tool, FSL Randomise (Winkler
et al., 2014). We tested a GLM model with strategy index for
frequency statistics (level-0) and strategy index for context-
based statistics (mean index for level-1 and level-2) as re-
gressors. Note that modeling the behavioral data showed
that the strategy index was highly correlated between level-1
and level-2 (r " 0.72, p & 0.001a), while no significant
correlations were observed with level-0 (level-0 versus lev-
el-1: r " -0.21, p " 0.35; level-0 versus level-2: r " -0.15, p
" 0.52). To avoid including collinear predictors in the regres-
sion model (Farrar and Glauber, 1967; Hill and Adkins, 2011),
we averaged the strategy index across level-1 and level-2,

generating a single predictor for learning context-based
statistics. This allowed us to estimate robustly the effect of
each predictor (strategy for learning frequency statistics or
context-based statistics) independently. The Randomise al-
gorithm permutes all participants’ samples 10,000 times to
generate a null-distribution based on the data; it then com-
pares the observed data to the generated null-distribution.
To determine significance we used the threshold-free cluster
enhancement (TFCE) method that takes into account the
spatial extent of voxel clusters (Smith and Nichols, 2009).
We accepted voxels that passed multiple comparisons us-
ing Family-wise Error Rate (FWER) correction at a " 0.05.
This analysis results in voxel clusters that are significantly
correlated with each regressor (i.e., strategy for frequency or
context-based statistics). Further, we present correlation
plots showing connection probability change values ex-
tracted from the peak voxel of each significant cluster with
strategy index of individual participants to demonstrate that
our results were not driven by outliers (see Results). Note
that these plots are only descriptive; no additional statistics
were conducted on these data to avoid circularity.

Statistical analysis
Statistical analyses of the behavioral and DTI data are

summarized in Table 1 (superscript letters in the statistical
results indicate the reported tests). In particular, voxel-
wise DTI connectivity tests were performed in FSL using a
permutation-based statistical tool, FSL Randomise (Win-
kler et al., 2014). We conducted repeated measures
ANOVA and power calculations in IBM SPSS 25. For
comparison between groups (training versus no-training
control) we also conducted Bayesian statistics (repeated
measures Bayesian ANOVA, Bayesian t test) in JASP (JASP
Team 2018, JASP version 0.8.6). The Bayes factor (BF10)
quantifies the strength of evidence in favor of the data
supporting the alternative rather than null hypothesis: BF10

& 1 provides evidence favoring the null hypothesis (with
BF10 between 1/10 and 1/3 providing substantial evidence
for the null hypothesis; Kass and Raftery, 1995; Wagenmak-

Table 1. Summary of statistical analyses

Data structure Type of test Power
a. Normal distribution Pearson correlation 99%
b. Normal distribution Three-way repeated measures ANOVA Group: 17% (n.s.)
c. Normal distribution Two-way repeated measures ANOVA Group: 8% (n.s.)
d. Normal distribution Two-sample t test 12% (n.s.)
e. Normal distribution Two-way repeated measures ANOVA Session: 100%

Level: 100%
f. Normal distribution Three-way repeated measures ANOVA Group: 100%

Group ! session: 100%
g. Normal distribution Two-way repeated measures ANOVA Group: 6% (n.s.)

Group ! level: 20% (n.s.)
h. Normal distribution One-way repeated measures ANOVA 87%
i. Normal distribution Fisher’s z test Right putamen - IFG: 55%

Left vmPFC - caudate: 52%
Left caudate - hippocampus: 87%

j. Normal distribution Two-way repeated measures ANOVA Group: 20% (n.s.)
Group ! pathway: 39% (n.s.)

Letters refer to reported tests in the Results.
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ers et al., 2011), while BF10 ' 1 provides evidence favoring
the alternative hypothesis.

Comparison between groups
Data quality

The training and no-training control groups were tested
at different 3T scanners (3T Phillips Achieva, 3T Siemens
Trio) using highly similar sequences and scanning param-
eters. To ensure that the data quality was comparable
across groups and control for interscanner variability we
conducted the following analyses. First, we calculated the
sum of squared errors (sse) from diffusion tensor model
fit, that is, we used the dtifit algorithm (Behrens et al.,
2003) to fit a diffusion tensor model per voxel and as-
sessed the quality of the fit based on the residuals (sse of
the model per voxel). We then used this data quality
measure as a nuisance regressor in the analyses compar-
ing connectivity between the two groups to ensure that
differences between groups could not be simply ex-
plained by variability in DTI data quality (see Results,
Comparing DTI-based connectivity between training and
no-training groups). Second, we computed whole-brain
WM SNR from the b0 data (i.e., DTI data without diffusion
weighting) as &%/2signal / noise (Dietrich et al., 2007),
where signal is the mean value in WM, and noise is the
mean value in an area outside the brain (sphere of 10-mm
radius). Third, we computed whole-brain gray matter (GM)
SNR from a separate T1 scan, similarly to the b0 SNR. We
then compared these three data quality measures across
groups using conventional and Bayesian statistics. No
significant differences were observed between groups for
diffusion tensor model fit for each area of interest (includ-
ing all seed and target regions) as well as the whole brain
and the WM (F(1,40) " 1.05, p " 0.311, BF10 " 0.209b), b0
SNR (F(1,40) " 0.25, p " 0.620, BF10 " 0.668c) nor T1 SNR
(t(40) " 0.76, p " 0.451, BF10 " 0.382d). Thus, these
analyses suggest that it is unlikely that differences in DTI
connectivity between groups could be due to differences
in data acquisition or quality. This is supported by further
analysis showing no significant differences in WM con-
nectivity before training (pre-training scan) across groups
(see Results, Comparing DTI-based connectivity between
training and no-training groups).

The results of these analyses controlling for interscan-
ner variability are consistent with several studies showing
high reliability for DTI measurements within [coefficient of
variation (CV) & 1%] and between (CV & 3%) the scan-
ners used in our study: 3T Phillips Achieva, 3T Siemens
Trio (Magnotta et al., 2012; Palacios et al., 2017). Further
studies have shown high intrascanner reliability for these
scanners, specifically for DTI measurements [3T Phillips
Achieva (Jansen et al., 2007; Danielian et al., 2010; Wang
et al., 2012; Jovicich et al., 2014; Grech-Sollars et al.,
2015; Kamagata et al., 2015), 3T Siemens Trio (Fox et al.,
2012; Huang et al., 2012)]. Similar reliability for DTI mea-
surements has also been reported across field strength
and TE/TR parameters. For example, Grech-Sollars et al.
(2015) report reproducibility across both 1.5T and 3T
scanners for DTI, and Palacios et al. (2017) report high
interscanner reliability for different scanner models, as

well as for small changes in the TE/TR. Further, interscan-
ner variability becomes problematic when comparing a
single measurement between two participant groups
tested in different scanners. In contrast to previous stud-
ies, we collected two measurements per group on the
same scanner. This design allows us to test the effect of
training by comparing each individual participant data
after training to a baseline measurement collected before
training on the same scanner. This comparison requires
compatible data quality across sessions. We took the
following steps to ensure this. First, there is evidence that
intrascanner reliability increases with higher number of
gradient directions and the number of DTI acquisitions
(Wang et al., 2012). We used a higher number of gradient
directions (i.e., 60 directions) compared to the minimum
of 30 directions that is typically used and two phase-
encoding direction acquisitions. Second, it has been
shown that the tract-specific analysis we performed in our
study has higher reliability across sessions (Kamagata
et al., 2015). Third, non-linear registration to a standard
space (e.g., MNI space) has been shown to improve
interscanner reliability (Vollmar et al., 2010); we included
this step in our data preprocessing.

DTI connectivity
To compare WM connectivity between the two groups

of participants (training, no-training control), we first per-
formed whole-brain probabilistic tractography for the
control group using the same seed regions, exclusion
mask and parameters in ProbtrackX, as for the training
group. We followed the same normalization steps to de-
rive connection probability change maps which we then
used for nonparametric voxel-wise regression with strat-
egy for frequency and context-based statistics. We de-
fined strategy index from the second test session, as
there were no training data for the control group. We
accepted voxels that passed multiple comparisons
(FWER corrected, a " 0.05).

Second, to directly test for differences between groups,
we performed a voxel-wise ANCOVA on the connection
probability change maps with strategy for frequency and
context-based statistics as predictors per group. This
analysis results in voxel clusters (FWER corrected, a "
0.05) whose correlation with each regressor (i.e., strategy
for frequency or context-based statistics) is significantly
different between groups. To illustrate these results, we
present correlation plots showing connection probability
change values extracted from the peak voxel of each
significant cluster with strategy index of individual partic-
ipants per group.

Finally, we performed seed-to-target probabilistic trac-
tography in cortico-striatal pathways related to strategy
for learning frequency and context-based statistics. We
focused on the pathways we identified based on the
whole-brain regression analysis for the training group. In
particular, we used the same seed regions and identified
target regions using a sphere of 5-mm radius around the
peak voxel of each significant cluster revealed by the
previous analysis (Robinson et al., 2012). We used a
mid-sagittal exclusion mask and the same parameters in
ProbtrackX as in the whole-brain tractography and ap-

New Research 8 of 21

May/June 2018, 5(3) e0382-17.2018 eNeuro.org



plied the same normalization procedure to derive connec-
tion probability maps. For each participant, we computed
a single connection probability value per seed-target con-
nection, that is, we averaged the connection probability
value across voxels in the target area. Then for each
group, we calculated the connection probability change
(i.e., post- minus pre-training) and correlated this value
with strategy index. We computed the correlations using
the robust correlation toolbox (Pernet et al., 2013) which
accounts for potential outliers and calculates a boot-
strapped confidence interval for 1000 permutations. We
then converted the r coefficients to z-scores using Fisher
z-transform and tested whether the correlations were sig-
nificantly different between groups (a " 0.05).

Results
Behavioral performance

To quantify the ability of the participants to perform the
prediction task (i.e., predict the target following a se-
quence of symbols), we computed a PI that measures
how closely the probability distribution of the participant
responses matches the probability distribution of the pre-
sented symbols. This is preferable to a simple measure of
accuracy because the probabilistic nature of the se-
quences means that the ‘correct’ upcoming symbol is not
uniquely specified; thus, designating a particular choice
as correct or incorrect is often arbitrary.

Comparing normalized performance (i.e., after sub-
tracting performance based on random guessing) before
and after training per level (Fig. 2A) showed that partici-
pants improved substantially in learning probabilistic
structures. A two-way repeated measures ANOVA (Green-
house–Geisser corrected) with session (pre, post) and
level (level-0, level-1, level-2) showed a significant main
effect of session (F(1,20) " 117.9, p & 0.001e) and level
(F(2,40) " 17.9, p & 0.001e), but no significant interaction
between session and level (F(1.44,28.71) " 2.7, p " 0.098),
suggesting enhanced performance after training and sim-
ilar behavioral improvement across levels.

To test whether the behavioral improvement we ob-
served was specific to the training and ensure that our
results were not due to the participants becoming familiar
with the stimuli and/or task between test sessions, we
conducted a no-training control experiment. Participants
in the no-training control group were tested with struc-
tured sequences in two sessions but they did not receive
training in between sessions [the period between test
sessions was similar for the training (23.3 # 2.5 d) and the
no-training control (26.1 # 5.2 d) experiments]. Our be-
havioral results for the control group (Fig. 2B) showed no
significant main effect of session (F(1,20) " 0.1, p " 0.740)
nor a significant interaction between session and level
(F(1.33,26.56) " 0.2, p " 0.695, Greenhouse–Geisser cor-
rected). Comparing performance between the two groups
showed a significant main effect of group (F(1,40) " 39.0, p
& 0.001, BF10 " 1083.7f) and a significant interaction
between group and session (F(1,20) " 73.0, p & 0.001,
BF10 " 2.08·1010f), indicating that behavioral improve-
ment was specific to trained sequences rather than the
result of repeated exposure during the pre- and post-
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Figure 2. Behavioral performance. Mean normalized PI across par-
ticipants per level during the first test session (gray bars) and second
test session (black bars) for (A) the training group and (B) the no-
training control group. Error bars indicate SEM across participants. C,
Strategy index boxplots for level-0, level-1, and level-2 indicate indi-
vidual variability for the training group. The upper and lower error bars
display the minimum and maximum data values, and the central boxes
represent the interquartile range (25th to 75th percentiles). The thick
line in the central boxes represents the median. Open circles denote
outliers.
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training sessions. Finally, comparing pre-training behav-
ioral performance between groups showed no significant
main effect of group (F(1,40) " 0.1, p " 0.739, BF10 "
0.227g) nor a significant interaction between level and
group (F(1.43,57.36) " 1.0, p " 0.355, Greenhouse–Geisser
corrected, BF10 " 0.317g), suggesting that our results are
unlikely to be confounded by differences in pre-training
performance.

Decision strategies: matching versus maximization
Previous work (Shanks et al., 2002; Erev and Barron,

2005; Wozny et al., 2010; Eckstein et al., 2013; Acerbi
et al., 2014; Murray et al., 2015) on perceptual decision
making and probabilistic learning has proposed that indi-
viduals use two possible strategies when making a
choice: matching versus maximization. In the context of
our task, as the Markov models that generated stimulus
sequences were stochastic, participants needed to learn
the probabilities of different outcomes to succeed in the
prediction task. It is possible that participants used prob-
ability maximization whereby they always select the most
probable outcome in a particular context. Alternatively,
participants might learn the relative probabilities of each
symbol (e.g., p(A) " 0.18; p(B) " 0.72; p(C) " 0.05; p(D) "
0.05) and respond so as to reproduce this distribution, a
strategy referred to as probability matching.

To quantify participants’ strategies across training, we
computed a strategy index that indicates each partici-
pant’s preference (on a continuous scale, where 0 "
matching and values higher than 0 indicate deviation from
matching toward maximization) for responding using
probability matching versus maximization (Fig. 2C). Box
plots in Figure 2C indicate variability in strategy index
across participants. Comparing individual strategy across
levels showed a significant main effect of level (F(1.44,28.79)
" 8.0, p " 0.004h, Greenhouse–Geisser corrected) sug-
gesting that participants’ strategy shifted closer to maxi-
mization for higher-order sequences. In particular,
strategy index was higher for level-2 compared to level-0
(t(19) " 3.6, p " 0.002), but not for level-2 compared to
level-1 (t(19) " 1.9, p " 0.066). Further, the strategy index
was highly correlated between level-1 and level-2 (r "
0.72, p & 0.001; see Materials and Methods, Regression
analysis of WM connectivity with strategy). We therefore
calculated a mean strategy index for context-based sta-
tistics pooling data from level-1 and level-2. This mean
strategy index for context-based statistics was signifi-
cantly higher than the strategy index for frequency statis-
tics (level-0; t(19) " 2.8, p " 0.012). These findings suggest
that participants adopted a strategy closer to maximiza-
tion when learning context-based rather than frequency
statistics. Note, that this relationship was not confounded
by differences in performance, as there were no signifi-
cant correlations between performance after training and
strategy index (level-0: r " 0.21, p " 0.38; level-1: r "
0.06, p " 0.82; level-2: r " 0.15, p " 0.52).

DTI-based connectivity analysis
To investigate WM connectivity for learning temporal

structures, we conducted a connection probability analy-
sis on the DTI data collected before and after training.

Previous studies have implicated the striatum and vmPFC
in reward-based learning (de Wit et al., 2012; Piray et al.,
2016) as well as probabilistic and statistical learning
(Schendan et al., 2003; Leaver et al., 2009; Turk-Browne
et al., 2009; Foerde and Shohamy, 2011). To investigate
whether statistical learning changes connectivity in
cortico-striatal pathways involving these regions, we de-
fined vmPFC, putamen and caudate as seed regions (Fig.
3A). We used a whole-brain probabilistic tracking method
to estimate connectivity distributions of WM tracts be-
tween each seed region and the rest of the brain. This
method allowed us to investigate structural connectivity
between distant brain regions extending beyond local
WM and/or GM changes. Figure 3B shows average con-
nection probability maps across participants and ses-
sions for each seed region. This analysis shows the
following cortico-striatal pathways for each seed region in
accordance with previous DTI studies (Lehéricy et al.,
2004; Draganski et al., 2008; de Wit et al., 2012; Jbabdi
et al., 2013; Seger, 2013): (1) tracts from vmPFC project to
the head of caudate and anterior-ventral putamen via
anterior corona radiata; (2) tracts from putamen project to
pre-SMA via corticospinal tract, to occipital lobe via infe-
rior longitudinal fasciculus and to ventromedial and dor-
solateral PFC via anterior corona radiata; (3) tracts from
caudate project to temporal lobe (including hippocampus)
via thalamus and to ventromedial and dorsolateral PFC
via anterior corona radiata.

We then tested whether learning-dependent changes in
WM connectivity relate to individual decision strategy.
There is accumulating evidence for interactions between
learning and decision strategy. Previous studies have
shown that experience shapes the selection of decision
strategies (Rieskamp and Otto, 2006; Fulvio et al., 2014).
Further, faster learning of complex structures has been
shown to be associated with maximizing (i.e., selecting
the most probable outcomes in a given context) rather
than matching the exact sequence statistics (Wang et al.,
2017a). To test for learning-dependent changes in WM
connectivity that relate to decision strategy, we performed
a voxel-wise regression analysis of connection probability
seeded from vmPFC, putamen and caudate with strategy
index. We tested for significant regressions between
changes in WM connectivity (before versus after training)
and individual strategy for frequency and context-based
statistics (Table 2). Positive correlations indicate in-
creased connectivity after training that relates to maximi-
zation, while negative correlations indicate increased
connectivity that relates to matching.

Seeding from vmPFC, we found significant bilateral
clusters extending from the seed to the head of caudate
through anterior cingulate (ACC). These clusters showed
a positive correlation between changes in connection
probability with training and strategy index for learning
frequency and context-based statistics (Fig. 4). For learn-
ing frequency statistics (Fig. 4A) this correlation was
observed bilaterally, while for learning context-based sta-
tistics (Fig. 4B) the spatial extent of this cluster was
smaller and observed only in the left hemisphere, extend-
ing from ACC to the head of caudate. These positive
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I. seed: ventromedial PFC (vmPFC)

III. seed: Caudate

II. seed: Putamen

%1>%1.0

vmPFC
putamen
caudate

a. Seed regions

b. Whole brain tractography

Figure 3. Seed regions and connection probability maps. A, Seed regions for probabilistic tractography overlaid on the MNI template
(z " -8). B, Connection probability maps for each seed region (vmPFC, putamen, caudate). Maps (radiologic convention: left is right)
are thresholded at 0.1% of total tracts per seed and are averaged for pre- and post-training sessions and across participants. Results
are displayed in MNI for I, vmPFC (x " -12, y " 40, z " -8); II, putamen (x " -32, y " 2, z " 2); and III, caudate (x " -22, y " -2, z
" 4) as seeds. Whole-brain tractography was computed separately for the left and right hemisphere and for pre- and post-training
sessions, and the maps were combined for visualization purposes.
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correlations suggest that increased connectivity after
training in this pathway relates to learning by maximizing.
Previous work has provided evidence for both anatomic
(Lehéricy et al., 2004; Seger, 2009) and functional con-
nectivity among these brain regions (Postuma and
Dagher, 2006; Tanaka et al., 2008; Kahnt et al., 2012) that
are known to be part of the motivational cortico-striatal
pathway. Our findings are consistent with the role of
vmPFC, ACC, and caudate in goal-directed actions
(Valentin et al., 2007; Gläscher et al., 2009; Balleine and
O’Doherty, 2010; de Wit et al., 2012; Levy and Glim-
cher, 2012) and individual strategy choice (Piray et al.,
2016).

Seeding from putamen, we found a cluster that showed
significant learning-dependent changes in connection
probability extending from the right anterior putamen to
inferior frontal gyrus (IFG) and to thalamus. This cluster
showed a positive correlation between changes in con-
nection probability with training and strategy index for
learning frequency statistics (Fig. 4A). These brain regions
are known to be part of the executive cortico-striatal
pathway (Lawrence et al., 1998; Seger, 2009) and WM
connectivity between these regions has been implicated
in implicit sequence learning (Song et al., 2012) and arti-
ficial grammar learning (Flöel et al., 2009). In particular,
IFG is implicated in attention (Simon et al., 2002) and rule
switching (Cools et al., 2004), and its connectivity to
anterior putamen has been reported by previous DTI stud-
ies (Lehéricy et al., 2004; Leh et al., 2007; Draganski et al.,
2008).

Seeding from caudate, we found two clusters that
showed significant learning-dependent changes in con-
nection probability between caudate and hippocampus.
These clusters showed a negative correlation between
changes in connection probability with training and strat-
egy index for learning context-based statistics (Fig. 4B).
The first cluster extends from the body and tail of left
caudate to thalamus (caudally) and then to hippocampus,
with an additional branch to postcentral sulcus. The sec-
ond cluster extends from left caudate through medial
thalamus to posterior hippocampus (close to the anterior
part of lingual gyrus). Both pathways are part of the visual
cortico-striatal pathway as suggested by functional and
structural connectivity studies (Cohen et al., 2009; Seger,
2009, 2013; Robinson et al., 2012). Our results suggest

that increased connection probability between these ar-
eas after training relates to matching when learning
context-based statistics. This finding is consistent with
previous work implicating brain regions in the visual
cortico-striatal pathway in categorization learning (Seger
and Cincotta, 2005), sequence learning (Schendan et al.,
2003; Albouy et al., 2008; Gheysen et al., 2011; Rose
et al., 2011; Stillman et al., 2013; Rosenthal et al., 2016),
and predictive associations (Turk-Browne et al., 2010;
Hsieh et al., 2014; Hindy et al., 2016).

Control analyses
We performed additional analyses to control for any

possible tractography-related confounds, following previ-
ous studies (de Wit et al., 2012; van den Brink et al., 2014).
First, we correlated strategy index with: (1) GM density in
each seed area, (2) average fractional anisotropy (FA)
change (i.e., post minus pre) in each significant cluster, (3)
FA change in the peak voxel of each cluster, and (4) age.
Further, we correlated the connection probability change
in the peak voxel of each cluster with cerebral volume and
age. None of the correlations were significant, making it
unlikely that our results were confounded by individual
variability in local GM or WM metrics.

Second, as tractography does not test directionality
(i.e., whether the projections from area A to area B are
afferent or efferent; Jbabdi and Johansen-Berg, 2011), we
tested whether our results hold when seeding from the
clusters that showed significant learning-dependent
changes in our main analysis. In particular, we used bilat-
eral caudate and right triangular IFG as seeds (defined
based on the AAL atlas) for frequency statistics, whereas
left caudate and left hippocampus as seeds for context-
based statistics. Voxel-wise regression analysis of con-
nection probability change with strategy index showed
that we could recover similar clusters as in the main
analysis (Table 2) at a lower statistical threshold (a " 0.05
uncorrected, cluster size ' 20 voxels) with the exception
of the right triangular IFG seed, which did not yield any
significant clusters. However, seeding from the left trian-
gular IFG, we found a significant cluster in lateral putamen
and caudate extending to medial thalamus and showing a
positive correlation with strategy for context-based sta-
tistics. Thus, this analysis suggests that our findings are
connection-specific rather than seed-dependent, consis-

Table 2. DTI regression with strategy for frequency statistics and context-based statistics

Peak voxel
Seed Cluster location Hemisphere Cluster size x y z p value t value
Frequency statistics
vmPFC vmPFC, ACC, caudate (head) L 130 -14 36 -12 0.006 5.12
vmPFC vmPFC, ACC, caudate (head) R 129 12 24 -8 0.012 4.93
Putamen Thalamus, putamen, IFG R 141 28 26 12 0.016 4.63
Context-based statistics
vmPFC ACC, caudate (head) L 20 -14 28 -6 0.040 3.51
Caudate Caudate (body/tail), thalamus, hippocampus, postcentral L 214 -24 -34 6 0.022 -3.82
Caudate Caudate, thalamus, hippocampus/lingual L 115 -8 6 0 0.025 -4.83

Voxel-wise regression was run on connection probability change (subtracting pre- from post-training connection probability maps) with strategy index. Signifi-
cance was determined using the TFCE method and corrected for multiple comparisons with FWER under random field theory for a " 0.05. Seed regions
were selected from the AAL atlas, and the clusters were labeled using the Atlas of the Human Brain (Mai et al., 1997). The MNI coordinates, the p value, and
the t value of the peak voxel are shown.
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Figure 4. DTI regression with strategy. Clusters showing significantly positive (red clusters) or negative (blue clusters) regressions of
connection probability change (post- minus pre-training) with strategy index calculated across all trials during training per level. A, For
learning frequency statistics, clusters comprise left vmPFC to caudate, right vmPFC to caudate and right putamen to IFG. B, For
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tent with the known anatomic cortico-striatal connectivity
(Alexander et al., 1986; Seger, 2009).

Third, we repeated the whole-brain tractography anal-
ysis with length correction enabled. This method weights
the streamline count in each voxel with its distance from
the seed; to compensate for the fact that the count de-
creases with the distance due to the probabilistic nature
of the analysis (Tomassini et al., 2007). This weighting
procedure assigns a higher weight for longer and lower
weight for shorter connections, resulting in higher con-
nection probability values compared to the previous anal-
yses. Therefore, we applied a threshold of 4% connection
probability (instead of 0.1%) to yield a comparable num-
ber of voxels for the regression analysis. We followed the
same procedure as previously to correlate voxel-wise
connection probability change with strategy index. We
found similar connectivity clusters as in the main analysis
(Table 2) when seeding from bilateral vmPFC and left
caudate (FWER corrected) as well as right putamen (albeit
at uncorrected p & 0.005) as seeds, suggesting our find-
ings could not be significantly confounded by distance
from the seed.

Finally, here we focused on learning-dependent
changes in long-range WM connectivity, as measured by
probabilistic tractography. Probabilistic tractography is an
established methodology (Cohen et al., 2008; de Wit
et al., 2012; van den Brink et al., 2014; van den Heuvel
et al., 2016) that is grounded on biological mechanisms
(van den Heuvel et al., 2015) and has been previously
employed to investigate learning-dependent changes
(Schlaug et al., 2009; Crossley et al., 2017). Yet, previous
work (Scholz et al., 2009; Takeuchi et al., 2010; Taubert
et al., 2010; Sagi et al., 2012; Schlegel et al., 2012;
Hofstetter et al., 2013, 2016) has also reported changes in
local WM due to training, as measured by FA. To test for
local WM changes related to learning temporal statistics,
we used TBSS analysis of FA maps (Smith et al., 2006).
When performed on the whole brain, this analysis did not
result in any significant clusters. We next conducted the
same FA analysis within the pathways revealed by the
whole-brain tractography: (1) left vmPFC and caudate, (2)
right vmPFC and caudate, (3) right putamen and IFG, and
(4) left caudate and hippocampus. We projected the vox-
els in these pathways on the FA skeleton, calculated a FA
change map (i.e., post minus pre) and performed a voxel-
wise regression with strategy index. Our results showed a
significant cluster (FWER corrected, a " 0.05) in the left
vmPFC that was positively correlated with strategy for
context-based statistics. Although long-range connectiv-
ity is more relevant to the brain circuits involved in learn-
ing, our FA analysis suggests that it is possible to
measure local WM changes due to training that are con-
sistent with changes in long-range connectivity, as re-
vealed by whole-brain tractography.

Comparing DTI-based connectivity between training
and no-training groups

To test whether the learning-dependent changes we
observed in WM connectivity are specific to the training
rather than reflecting familiarity with the stimuli and/or

task due to exposure to multiple test sessions, we com-
pared connection probability between the training group
and a no-training control group. Our behavioral results
showed improvement that is specific to the training rather
than the result of repeated exposure to the sequences
during the pre- and post-training sessions (Fig. 2B). To
test for changes in whole-brain tractography for the no-
training control group, we used the same seeds and
regression analysis as for the training group. We corre-
lated voxel-wise connection probability change with strat-
egy after training, as there were no behavioral training
data for the control group. This analysis showed no sig-
nificant clusters for the control group (FWER corrected, a
" 0.05), indicating that the WM connectivity changes with
decision strategy (Fig. 4) are specific to the training and
they could not be simply explained by the repeated ex-
posure to temporal sequences during the pre- and post-
training sessions.

Second, to directly compare between the training and
the no-training control groups, we computed connection
probability change (post- minus pre-training) per group for
the cortico-striatal pathways identified by the whole-brain
regression analysis (Fig. 4). We found two clusters show-
ing significant differences after compared to before train-
ing (a " 0.05 uncorrected, cluster size ' 100 voxels) in
connection probability between groups extending: (1)
from vmPFC to caudate and (2) from caudate to hip-
pocampus. An additional but smaller cluster was ob-
served extending from putamen to IFG (36 voxels). These
clusters remained significant when we controlled for in-
terscanner variability by including the residuals of the
diffusion tensor model fit as nuisance regressor in the
analysis. These results are consistent with our main find-
ings (Fig. 4) and provide additional evidence for differ-
ences in cortico-striatal connectivity across groups
independent of behavioral performance (i.e., strategy in-
dex). We next correlated the average connection proba-
bility change across voxels in these clusters with strategy
index. For the training group, we observed a significant
positive correlation of connection probability change be-
tween vmPFC and caudate for frequency statistics (r "
0.49, CI " [0.19, 0.75]), whereas a significant negative
correlation of connection probability change between
caudate and hippocampus for context-based statistics (r
" -0.54, CI " [-0.77, -0.26]). However, we found no
significant correlations for the same clusters and strategy
for the no-training control group (vmPFC-caudate: r "
0.09, CI " [-0.44, 0.49]; caudate-hippocampus: r " -0.10,
CI " [-0.44, 0.19]). These results corroborate our main
findings providing evidence for training-specific changes
in brain connectivity that relate to behavior.

Third, we performed a voxel-wise ANCOVA on connec-
tion probability change maps with strategy index (fre-
quency, context-based statistics) and group (training, no-
training control). We found two significant clusters (FWER
corrected, a " 0.05), in consistence with the main analy-
ses of the training group data, that is, bilateral clusters
extending from vmPFC (seed region) to the head of cau-
date through ACC. These clusters showed significantly
higher correlation with strategy for frequency statistics for
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the training compared to the no-training control group
(Table 3; Fig. 5A) and remained significant when we con-
trolled for interscanner variability by including the residu-
als of the diffusion tensor model fit as nuisance regressor
in the analysis.

Fourth, we performed seed-to-target tractography per
group using the same seeds as in the main analysis and
defining the significant clusters from the main analysis as
target regions (see Materials and Methods, Comparison
between groups). We calculated connection probability
between seed and target per test session and the differ-
ence between sessions (i.e., second minus first test ses-
sion). We next correlated connection probability change
(post- minus pre-training) with strategy index for each
group (training, no-training control). Comparing correla-
tions between groups (Fig. 5B) showed significant differ-
ences in connection probability between: (1) right
putamen and IFG for learning frequency statistics (Fish-
er’s z test, z " 2.1, p " 0.037i); (2) left vmPFC and caudate
for learning frequency statistics (Fisher’s z test, z " 2.0, p
" 0.043i); (3) left caudate and hippocampus for learning
context-based statistics (Fisher’s z test, z " -3.1, p "
0.002i). Comparing pre-training connection probability be-
tween groups showed no significant main effect of group
(F(1,40) " 1.3, p " 0.267, BF10 " 0.221j) nor a significant
group ! pathway interaction (F(2.53,101.05) " 1.7, p " 0.185,
Greenhouse–Geisser corrected, BF10 " 0.417j; DTI path-
ways shown in Fig. 4: left vmPFC-caudate, right vmPFC-
caudate, left caudate-hippocampus, right putamen-IFG).
These results show training-specific connectivity changes in
key dissociable pathways that cannot be simply explained
by differences in connectivity between groups (training, no-
training control) before training. Taken together, these re-
sults provide evidence for training-specific changes in
connection probability related to individual decision strat-
egy.

Discussion
Here, we sought to identify the WM pathways involved

in statistical learning of temporal structures. Our behav-
ioral results demonstrate that individuals differ in their
strategy when learning to extract predictive statistics. Our
DTI results demonstrate that these strategies engage
distinct cortico-striatal circuits for learning behaviorally-
relevant statistics. Our findings advance our understand-
ing of the brain pathways involved in statistical learning in
three main respects.

First, we provide evidence that training without trial-by-
trial feedback results in changes in WM connectivity that

relate to behavioral improvement in a statistical learning
task. Human and animal studies have shown that DTI
measurements can capture short-term (Sagi et al., 2012)
and long-term (Scholz et al., 2009) WM plasticity. How-
ever, most of this work has focused on reward-based
learning that involves training with trial-by-trial feedback,
rather than statistical learning that occurs by mere expo-
sure to the environment. For example, WM changes have
been shown to predict behavioral performance in motor
learning (Scholz et al., 2009; Taubert et al., 2010;
Sampaio-Baptista et al., 2013) and reward-based learning
(Cohen et al., 2008, 2009; de Wit et al., 2012). Our results
are consistent with studies showing WM connectivity
changes related to implicit sequence learning (Bennett
et al., 2011; Song et al., 2012) in the context of a serial
reaction task. However, our prediction task extends be-
yond sensory-motor learning or previous work using im-
plicit measures of anticipation (i.e., RT reduction or
familiarity judgments). Our paradigm allows us to directly
test whether exposure to temporal sequences facilitates
the observers’ ability to explicitly predict the identity of the
next stimulus in a sequence. Importantly, modeling the
participants’ predictions allows us to characterize individ-
ual decision strategies (matching versus maximization)
when learning to extract behaviorally relevant statistics.

Second, we demonstrate that individual decision strat-
egies engage dissociable cortico-striatal pathways (Alex-
ander et al., 1986; Lawrence et al., 1998) that show
learning-dependent changes in WM connectivity. In par-
ticular, we show that matching (i.e., extracting exact se-
quence statistics) relates to WM connectivity changes
between the caudate, hippocampus and thalamus; these
areas are known to be involved in the visual cortico-
striatal pathway (Seger, 2009, 2013). In contrast, maxi-
mizing relates to WM connectivity changes between
prefrontal (vmPFC), cingulate and basal ganglia (caudate)
regions that are thought to be involved in the motivational
cortico-striatal pathway as well as prefrontal (dorsolateral
PFC: IFG) and basal ganglia (anterior putamen) regions
that are thought to be involved in the executive cortico-
striatal pathway. These findings are consistent with pre-
vious work showing that WM integrity or structural
connectivity relate to individual variability in performance
in the context of decision-making tasks. For example,
connectivity in dissociable brain circuits involving hip-
pocampal and striatal regions predicts performance in
reversal learning (Cohen et al., 2008) and novelty-seeking
versus reward dependence (Cohen et al., 2009). Further,

Table 3. DTI ANCOVA between groups (training, no-training control) with strategy index

Peak voxel
Seed Cluster location Hemisphere Cluster size x y z p value t value
Frequency statistics
vmPFC vmPFC, ACC, caudate (head) L 283 -14 36 -12 0.004 4.87
vmPFC vmPFC, ACC, caudate (head) R 80 18 42 -8 0.024 4.84

We conducted voxel-wise regression on connection probability change (subtracting pre- from post-training connection probability maps) with strategy index
per group and tested for significant differences between groups. Significance was determined using the TFCE method and corrected for multiple compari-
sons with FWER under random field theory for a " 0.05. Seed regions were selected from the AAL atlas and the clusters were labeled using the Atlas of the
Human Brain (Mai et al., 1997). The MNI coordinates, the p value, and the t value of the peak voxel are shown. Positive (negative) t values indicate higher
(lower) correlation coefficient for the training compared to the no-training control group.
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Figure 5. Group comparison (training versus no-training control). A, Whole-brain tractography: clusters showing significantly higher
correlation coefficient of connection probability change (post- minus pre-training) with strategy index for the training versus the
no-training control group. Results are displayed in radiologic convention (left is right) and are overlaid on the MNI template. An
enlarged view of each significant cluster is displayed for better visibility. Scatterplots of connection probability change with strategy
index for the peak voxel of each cluster are shown on the right panel. B, Seed-to-target tractography: correlations of connection
probability change with strategy index. For learning frequency statistics, correlations were significantly different between groups for
WM connectivity between right putamen and IFG (training: r " 0.65, CI " [0.44,0.90]; no-training control: r " 0.09, CI " [-0.45,0.53])
and between left vmPFC and caudate (training: r " 0.47, CI " [0.16,0.74]; no-training control: r " -0.16, CI " [-0.62,0.37]). For learning
context-based statistics, correlations were significantly different between groups for WM connectivity between left caudate and
hippocampus (training: r " -0.69, CI " [-0.86,-0.37]; no-training control: r " 0.16, CI " [-0.25,0.57]). Individual participant data for the
training group are indicated by black circles; data for the no-training control group are indicated by gray triangles.
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connectivity in dissociable cortico-striatal circuits in-
volved in habitual versus goal-directed learning (de Wit
et al., 2012) is shown to predict individual strategy choice
(Piray et al., 2016). Here, we demonstrate that learning-
dependent changes of structural connectivity in these
pathways relate to individual variability in decision strat-
egy. Interestingly, there is accumulating evidence for in-
teractions between learning and individual decision
strategy (Rieskamp and Otto, 2006; Fulvio et al., 2014).
Learning rate and decision strategy have been shown to
be correlated, that is, faster learning of complex struc-
tures is associated with maximizing (i.e., selecting the
most probable outcomes in a given context) rather than
matching the exact sequence statistics (Wang et al.,
2017a). Considering individual decision strategy provides
further insights into individual variability in learning: we
show that individuals engage dissociable structural brain
networks to solve the same task depending on their de-
cision strategy (matching versus maximization), suggest-
ing alternate brain routes to learning predictive structures.

Recent fMRI work on learning temporal structures pro-
vides complementary evidence that functional changes in
brain regions involved in these cortico-striatal pathways
relate to individual decision strategies (Wang et al.,
2017b). Although fMRI reveals learning-dependent changes
in the processing within specific brain regions, it does not
test for structural connectivity between these regions. In
contrast, DTI before versus after training allows us to test
for changes in the structural connectivity between nodes
within a brain network, extending beyond fMRI changes in
local network nodes. Our DTI findings are consistent with
previous functional imaging studies showing that brain
regions in the visual cortico-striatal pathway are involved
in implicit sequence learning (Schendan et al., 2003; Al-
bouy et al., 2008; Gheysen et al., 2011; Rose et al., 2011;
Stillman et al., 2013; Rosenthal et al., 2016) and predictive
associations (Turk-Browne et al., 2010; Hsieh et al., 2014;
Hindy et al., 2016). In contrast, brain regions in the moti-
vational cortico-striatal pathway (i.e., prefrontal and cin-
gulate cortex) are thought to be involved in decision
making, monitoring performance and switching between
associations and strategies (Heekeren et al., 2008; Rush-
worth and Behrens, 2008) as well as predictive coding
(Monchi et al., 2001; Bar, 2009). Previous work on humans
and animals provides evidence for the role of caudate in
switching between strategies (Monchi et al., 2001; Cools
et al., 2004; Seger and Cincotta, 2006) and learning after
a rule reversal (Cools et al., 2002; Pasupathy and Miller,
2005). Further, putamen, known to be involved in skilled
and habitual performance (Daw et al., 2005; Balleine and
O’Doherty, 2010), may facilitate learning by maximizing.

Third, our findings suggest that learning temporal struc-
tures implicates cortico-striatal pathways that are com-
mon for learning frequency and context-based statistics.
Our findings show that following training connectivity in
the motivational (vmPFC, ACC, caudate) and executive
(IFG, putamen) cortico-striatal pathways increases for in-
dividuals who select the most probable outcome in a
context. This is consistent with the role of the motivational
pathway in goal-directed and model-based learning, while

the role of putamen in habitual and model-free learning
(Balleine and O’Doherty, 2010; de Wit et al., 2012; Piray
et al., 2016). Thus, it is possible that individuals recruit
goal-directed circuits to acquire temporal structures (from
simple repetitive patterns to probabilistic contingencies),
while habitual learning mechanisms when selecting the
most probable outcome in a given context. In addition to
these common pathways, learning context-based statis-
tics involves connectivity changes between caudate and
hippocampus that relate to matching. That is, extracting
the exact context-target contingencies engages a path-
way that is known to be involved in probabilistic learning
and novelty seeking (Cohen et al., 2009; Stillman et al.,
2013). As our paradigm tested learning of structures that
increased in context-length over time, it does not allow us
to dissociate learning time course from task demands. It
would be interesting in the future to investigate the time
course with which these pathways are involved in the
learning of frequency and context-based statistics.

Finally, we consider our results in light of recent studies
that provide controversial evidence for the efficacy of
cognitive training. Several studies have shown that cog-
nitive training improves performance on the trained task
(e.g., working memory; Klingberg, 2010; Morrison and
Chein, 2011); however, whether training generalizes to
other tasks and has longer-term effects on cognitive per-
formance remains debated (Owen et al., 2010; Bavelier
et al., 2012). Further, several DTI studies have shown
structural plasticity following cognitive training in a range
of tasks: from working memory to reasoning and language
learning (Mackey et al., 2012; Schlegel et al., 2012;
Román et al., 2017). Yet, it remains unknown whether
these structural changes due to cognitive training are
long-lasting or have an effect on real-life abilities. Our
study aimed to investigate the pathways involved in sta-
tistical learning of temporal structures rather than develop
a cognitive training program. To this end, we trained and
tested the same participants in multiple sessions. That is,
we tested participants both before and after training and
ensured that the training-dependent differences we ob-
served in behavior and brain connectivity were not due to
differences across participants before training. Impor-
tantly, differences in brain connectivity due to training were
related to changes in behavioral performance, suggesting
training-specific effects rather than brain changes related to
general factors (e.g., task familiarity, motivation, task en-
gagement). Additional evidence for training specificity came
from training the same individuals with the same stimuli and
task but with sequences that differed in their structure. In
particular, we showed that learning frequency statistics ver-
sus context-based statistics resulted in differences in be-
havior (i.e., strategy) and learning-dependent changes in
WM connectivity. Further, our no-training control experiment
provides complimentary evidence for test-retest reliability
and ensures that our results were not due to the participants
simply becoming familiar with the stimuli and/or task be-
tween the two scanning sessions. We have tightly controlled
for interscanner variability, consistent with previous multi-
site studies (Magnotta et al., 2012; Palacios et al., 2017),
suggesting that it is unlikely that the learning-dependent
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differences we observed between groups (training versus
no-training control group) could be due to differences in data
quality. Further, an active training control (i.e., training par-
ticipants with the same stimuli but on a different task) would
be appropriate for testing specificity to the training task.
However, selecting the appropriate control task is con-
founded by the fact that statistical learning has been shown
to occur by mere exposure to the stimuli (i.e., without per-
forming a task) and generalize across similar tasks (Shanks,
2004; Perruchet and Pacton, 2006; Turk-Browne and Scholl,
2009; Frost et al., 2015). Further work is needed to translate
these basic research findings to effective training programs:
future studies employing multi-arm interventions and com-
paring across groups trained on different tasks are needed
to determine which task provides the most effective training,
whether brain connectivity changes related to statistical
learning are long-lasting, generalize to novel (i.e., untrained)
settings and relate to real-life changes in cognitive abilities.

In sum, here we investigated learning-dependent plas-
ticity in brain pathways that mediate statistical learning.
Our findings provide evidence that WM connectivity
changes with learning to support our ability to extract
behaviorally-relevant statistics. This learning-dependent
plasticity relates to individual decision strategies, impli-
cating distinct cortico-striatal circuits in learning predic-
tive statistics. Interestingly, these pathways have been
previously implicated in reward-based learning (Cohen
et al., 2008, 2009; de Wit et al., 2012; Piray et al., 2016),
artificial grammar (Flöel et al., 2009), and language learn-
ing (Schlegel et al., 2012; Hofstetter et al., 2016). Consid-
ering findings across studies, it is possible that common
WM pathways subserve learning of temporal structures
with feedback or by mere exposure, suggesting potential
common brain mechanisms for supervised versus unsu-
pervised learning that may support a range of functions
from learning simple temporal contingencies to extracting
complex linguistic structures.
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