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Summary
Background Predicting dementia early has major implications for clinical management and patient outcomes. Yet, we
still lack sensitive tools for stratifying patients early, resulting in patients being undiagnosed or wrongly diagnosed.
Despite rapid expansion in machine learning models for dementia prediction, limited model interpretability and
generalizability impede translation to the clinic.

Methods We build a robust and interpretable predictive prognostic model (PPM) and validate its clinical utility using
real-world, routinely-collected, non-invasive, and low-cost (cognitive tests, structural MRI) patient data. To enhance
scalability and generalizability to the clinic, we: 1) train the PPM with clinically-relevant predictors (cognitive tests,
grey matter atrophy) that are common across research and clinical cohorts, 2) test PPM predictions with
independent multicenter real-world data from memory clinics across countries (UK, Singapore).

Findings PPM robustly predicts (accuracy: 81.66%, AUC: 0.84, sensitivity: 82.38%, specificity: 80.94%) whether pa-
tients at early disease stages (MCI) will remain stable or progress to Alzheimer’s Disease (AD). PPM generalizes from
research to real-world patient data across memory clinics and its predictions are validated against longitudinal clinical
outcomes. PPM allows us to derive an individualized AI-guided multimodal marker (i.e. predictive prognostic index)
that predicts progression to AD more precisely than standard clinical markers (grey matter atrophy, cognitive scores;
PPM-derived marker: hazard ratio = 3.42, p = 0.01) or clinical diagnosis (PPM-derived marker: hazard ratio = 2.84,
p < 0.01), reducing misdiagnosis.

Interpretation Our results provide evidence for a robust and explainable clinical AI-guided marker for early dementia
prediction that is validated against longitudinal, multicenter patient data across countries, and has strong potential for
adoption in clinical practice.
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Research in context

Evidence before this study
We searched PubMed, bioRxiv, MedRxiv, ArXiv, IEEE Xplore,
ScienceDirect (from the inception of the databases to date)
for machine learning (ML) models of early dementia
prediction from routinely-collected clinical data, focusing on
models that predict future cognitive decline and are validated
against longitudinal data. Most ML models: 1) have limited
generalizability to clinical settings as they are developed on
research data that are invasive, costly and limited in
representing demographics and comorbidities in clinical
populations, 2) stratify individuals based on cross-sectional
(i.e. at different disease stages) rather than longitudinal data,
using clinical labels that are poorly constrained and may result
in misclassification.

Added value of this study
We bridge the gap between AI and clinical translation, by
building a robust and interpretable predictive prognostic
model (PPM) that: 1) introduces a transparent trajectory
modelling approach to reliably predict future cognitive health
from routinely-collected, low-cost multimodal data, 2)
generalizes from research cohort to multicenter real-world
patient data from memory clinics (UK, Singapore). We

demonstrate that the PPM robustly predicts whether patients
at early disease stages (MCI) will remain stable or progress to
AD, providing an individualized prognostic index of future
cognitive decline. This PPM-derived multimodal marker: 1)
reliably predicts future cognitive decline as validated against
longitudinal clinical outcomes, 2) is a more precise predictor
of conversion to AD than standard clinical markers (i.e. grey
matter atrophy, cognitive data) alone or clinical diagnosis,
enhancing its potential for translation to real-world clinical
settings.

Implications of all the available evidence
Translating our clinical AI-guided tool for early dementia
prediction in real-world clinical settings has potential to: 1)
reduce misdiagnosis at early stages of dementia, improving
patient wellbeing, 2) standardize diagnosis across memory
clinics, reducing inequalities in healthcare, 3) reduce the need
for invasive and costly diagnostic tests, 4) allow scarce
resources to be targeted to those who need them the most,
5) improve treatment outcomes when interventions (lifestyle
changes or new pharmacological targets) may have a chance
to work best.
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Introduction
Dementia poses a significant global healthcare chal-
lenge, impacting over 55 million people worldwide at an
estimated annual cost of $820 billion and a threefold
rise expected in 50 years.1 Alzheimer’s disease (AD)
stands as the predominant cause of dementia, ac-
counting for 60–80% of cases.2 Predicting who will
develop AD early has major implications for clinical
management and treatment. Recent positive phase three
clinical trial results (i.e. lecanemab, donanemab)3,4

highlight the critical need for early detection when
treatments may be maximally effective.5,6 Yet, we still
lack effective tools for early dementia diagnosis and
prognosis. Standard memory tests lack sensitivity,
especially at early disease stages, and most patients do
not have access to more specific positron emission to-
mography (PET) scans or lumbar punctures (i.e. cere-
brospinal fluid biomarkers). These invasive or costly
biomarkers are therefore not included in routine clinical
practice, leading to significant inequalities in healthcare.
As a result, up to a third of patients may be mis-
diagnosed and others diagnosed too late for treatment to
be effective (e.g.7).

Maturing analytical techniques provide a turning
point in addressing these challenges and improving
early prediction and prognosis of dementia using lower-
cost, less invasive assessments. Despite, the increasing
success of Artificial Intelligence (AI) models based on
machine learning (ML) algorithms in stratifying
individuals, translating models to clinical practice is
hampered due to the following main reasons.8–11 First,
ML models developed using research cohort data alone8

may be limited in representing demographics and
medical comorbidities in clinical populations. Second,
research cohort data are rich (e.g. biomarkers) and
structured; in contrast, data in real-world settings are
collected using low-cost and less sensitive measures and
may be missing and “messy”, due to lack of standard-
ized methods for assessment across healthcare pro-
viders. As a result, ML models trained on research
cohort data may fail to generalize when tested on real-
world patient data. Third, many of the existing ML
models focus on stratifying individuals in a cross-
sectional manner (i.e. at different disease stages); yet,
predicting individualized health trajectories is key for
the prognosis of neurodegenerative disorders that span
a continuum from health to disease.12

To address these limitations that hamper clinical
translation, we build a robust and interpretable predic-
tive prognostic model (PPM) that extends beyond binary
patient classification approaches and predicts whether
and how fast individuals at early stages of the disease
(Mild Cognitive Impairment, MCI) or pre-symptomatic
(Cognitive Normal, CN) may progress to AD.13,14 We
demonstrate the clinical utility of our approach and
potential for adoption in clinical practice by 1) training
the PPM on multimodal baseline (first assessment) non-
invasive and low-cost data that are typically used in the
www.thelancet.com Vol ▪ ▪, 2024
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clinical assessment of dementia (cognitive tests, struc-
tural MRI) to enhance scalability, 2) testing the PPM on
independent (out-of-sample) real-world patient data
from memory clinics to assess generalizability, 3) vali-
dating PPM prognosis against longitudinal diagnosis
(i.e. conversion to AD) in real-world patient data. We
demonstrate that the PPM robustly predicts whether
patients at early disease stages (MCI) will remain stable
or progress to AD, as validated against longitudinal
clinical outcomes. Importantly, the PPM— trained on
multimodal research cohort data (USA) — generalizes
to real-world patient data from memory clinics in
distinct settings (UK, Singapore). We next derive an AI-
guided multimodal marker of future cognitive health;
that is, an individualized PPM-derived prognostic index
of cognitive decline over time. We demonstrate that this
clinical AI-guided marker predicts conversion to AD
more precisely than standard clinical markers (i.e. grey
matter atrophy, cognitive data) or clinical diagnosis at
initial assessment, demonstrating its potential to reduce
misdiagnosis and help clinicians standardize diagnosis
and assign patients to clinical management pathways
that best meet their needs.
Fig. 1: Overview of Cohort Data used for PPM training and validation:
(ADNI) data used as training Set, B. independent ADNI data used for vali
Brain Structure and Function in NHS Memory Clinics (QMIN-MC), D. mem
at the National University of Singapore (MACC).

www.thelancet.com Vol ▪ ▪, 2024
Methods
PPM training and test samples
We used data (Fig. 1; Supplementary Information: PPM
training and test samples) from: 1) a research cohort
(the Alzheimer’s Disease Neuroimaging Initiative,
ADNI) for PPM training with within-sample cross-vali-
dation (n = 410) and out-of-sample validation (n = 609),
2) two clinical cohorts as independent test datasets for
out-of-sample validation: Quantitative MRI of Brain
Structure and Function in NHS Memory Clinics
(QMIN-MC, n = 272; Figure S1, Table S1); Memory
Ageing & Cognition Centre at the National University of
Singapore dataset (MACC, n = 605).

These datasets differ in patient demographics and
data collection tools (e.g. 1.5 T and 3T MRI scanners for
ADNI, 3T scanners for QMIN-MC, MACC) allowing us
to test PPM interoperability across memory clinics and
countries. In particular, for ADNI individuals were
selected based on specific criteria related to amnestic
MCI and Alzheimer’s disease and MRI data were
collected across MRI acquisition sites in the US. In
contrast, for the QMIN-MC and MACC data were
collected from representing neurology-led and
A. research cohort data: Alzheimer’s Disease Neuroimaging Initiative
dation, C. memory clinic data used as test data: Quantitative MRI of
ory clinic data used as test data: Memory Ageing & Cognition Centre
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psychiatry-led memory services in the UK and
Singapore, respectively. Thus, these patient cohorts are
likely to reflect higher real-world diversity in patient
demographics and comorbidities typically encountered
in clinical practice, compared to research cohorts with
more selective recruitment criteria (e.g. ADNI).

Predictive prognostic modelling
We have developed a trajectory modelling approach
based on Generalized Metric Learning Vector Quanti-
zation (GMLVQ)15,16 that leverages multimodal data to
make predictions about future cognitive decline at early
dementia stages by iteratively adjusting class-specific
prototypes and learning class boundaries
(Supplementary Information: Predictive prognostic
model). GMLVQ incorporates a full metric tensor to
provide a robust distance measure (metric) tuned to the
classification task. The metric tensor can naturally
handle specific feature scaling and pairwise task-
conditional dependencies of the input features. Domi-
nant diagonal elements of the metric tensor identify key
univariate predictors, while the off-diagonal terms reveal
pairwise feature interactions contributing to this classi-
fication task.

We trained GMLVQ models to discriminate stable
MCI (sMCI: individuals who consistently received
an MCI diagnosis within a 3-year period) vs. progressive
MCI (pMCI: individuals who progressed to AD within a
3-year period)13 using baseline ADNI data (medial tem-
poral lobe grey matter (GM) density13,14 (see
Supplementary Information: MRI analysis: extracting
medial temporal grey matter density), The Adden-
brooke’s Cognitive Examination Revised memory scale
(ACE-R memory), Mini-Mental State Examination
(MMSE)) that corresponded to available datatypes in
clinical patient cohorts (QMIN-MC, MACC) that served
as test datasets. All data were adjusted for potential
confounding covariates (i.e. age, sex, and education).
Following previous work,13,14 we performed hyper-
parameter tuning for the model using a nested
cross-validation approach,17 considering two hyper-
parameters. To evaluate the model’s performance, we
employed 10 iterations of a 10-fold cross-validation.17 To
mitigate any potential biases due to class imbalance in
the dataset (sMCI, n = 290; pMCI, n = 120), we
resampled the data to generate balanced classes. For
each training-fold, we repeatedly (n = 400) randomly
down-sampled the majority class (i.e. sMCI) to match
the size of the minority class (i.e. pMCI). Further, we
introduced ensemble learning,18 combining multiple
models (n = 400) for robust learning of unbalanced
classes that is typical in real-world clinical data (i.e. pa-
tient groups are likely to vary in size). We selected the
top 20% (n = 80) models based on their training set
performance and estimated the class balanced accuracy
based on a) majority vote, i.e. the class label that receives
the most votes from the ensemble models is selected as
the final prediction,18 b) the average performance across
the selected classifiers.19 This ensemble learning
approach with cross-validation helps mitigate potential
individual model biases, resulting in more robust and
accurate predictions.20,21

Statistical analysis
We tested for data normality using the Shapiro–Wilk
test. As the data (i.e. PPM-derived prognostic index)
were not normally distributed (ADNI, PPM trained on
MRI and cognitive data, W (609) = 0.881, p < 0.001;
ADNI, PPM trained on cognitive data, W (609) = 0.862,
p < 0.001; QMIN-MC, PPM trained on MRI and
cognitive data, W (272) = 0.980, p < 0.001; QMIN-MC,
PPM trained on cognitive data, W (272) = 0.967,
p < 0.001; MACC, PPM trained on MRI and cognitive
data, W (605) = 0.959, p < 0.001; MACC, PPM trained
on cognitive data, W (605) = 0.954, p < 0.001), we used
Kruskal–Wallis H test Bonferroni corrected (p < 0.05) to
examine differences in the PPM-derived prognostic in-
dex across the different patient groups. We used
Spearman’s rank correlation to test whether the rela-
tionship between the PPM-derived prognostic index and
the rate of future cognitive decline (CDR change) was
significant. We used Steiger Z to compare correlations
and the DeLong test to compare AUCs (area under
ROC) across models.

Further, to test whether the PPM-derived prognostic
stratification (i.e. stable, slowly progressive, rapidly
progressive) from baseline (i.e. first assessment) patient
data is validated against longitudinal data (i.e. clinical
diagnosis indicating conversion to AD), we conducted a
survival analysis for the MACC sample over 6 years
(note, there are no longitudinal assessments yet avail-
able for QMIN-MC). We used logrank test to compare
the relative risk of ‘conversion to AD’ for patient groups
given different PPM-derived prognostic stratification.
We used a multivariate Cox proportional hazards
regression analysis to identify independent predictors of
‘conversion to AD’ with hazard ratios at 95% confidence
intervals (CIs). For more details on statistical analysis
methods, see Supplementary Information (Statistical
analyses).

Role of the funding source
The funders of the study had no role in study design, data
collection, data analysis, data interpretation, or writing of
the manuscript. LYL, DV, MCB, MM, ZL, KZ, JG, EC,
CC, BRU, TR and ZK had access to the dataset. All au-
thors accept responsibility to submit for publication.
Results
PPM-guided diagnosis: model training and within
sample validation
We trained the PPM on baseline data (i.e. first assess-
ment) from ADNI (n = 410; Fig. 1) to discriminate sMCI
www.thelancet.com Vol ▪ ▪, 2024
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(n = 290) from pMCI (n = 120) patients, using ACE-R
memory, MMSE, and GM density. These data types
were shown to have the highest contribution compared
to a range of features in discriminating sMCI vs. pMCI
(Figure S2, Table S2).

Our results showed 81.66% [81.23, 82.09] classifica-
tion accuracy (AUC: Area Under Curve: 0.84; [0.83,
0.84]) with sensitivity of 82.38% [81.69, 83.07] and
specificity of 80.94% [80.57, 81.29] (Table S2). Interro-
gating the PPM metric tensors (Fig. 2) shows that ACE-
R memory was the most discriminative feature (i.e.
feature with highest weight = 0.40 [0.37, 0.44]),
compared to MMSE (weight = 0.31 [0.29, 0.33]) and GM
density (weight = 0.29 [0.26, 0.32]). Positive off-diagonal
terms indicate a positive interaction between ACE-R
memory, MMSE and GM density, providing evidence
for the role of interactive multimodal features in accu-
rately distinguishing between sMCI and pMCI.

We next asked whether structural MRI is necessary
for MCI patient stratification. Our results showed that
when PPM was trained with ACE-R memory and MMSE
alone, performance was similar to the model trained
with both cognitive and MRI data (accuracy = 80.03%
[79.71, 80.35], AUC = 0.83 [0.82, 0.83], sensi-
tivity = 80.58% [79.79, 80.35], specificity = 79.48%
[78.86, 80.10]; Table S2). Comparing between models
did not show a significant difference in AUC (DeLong
test: p = 0.516). However, performance was lower when
the PPM was trained with individual features alone
(Table S2; DeLong test: MMSE (p < 0.001), GM density
(p < 0.001); ACE-R Memory (marginal, p = 0.073)),
suggesting that PPM achieves best stratification when
leveraging the higher-order multivariate interactions
Fig. 2: PPM Metric Tensor for sMCI vs. pMCI classification: PPM
metric tensor generated using ACE-R memory, MMSE, and temporal
lobe GM density. The color scale represents predictive values for each
cell in the metric tensor, with diagonal terms summing to 1. The
diagonal terms show strong contribution of ACE-R memory (0.41
[0.37, 0.44]) compared to MMSE (0.31 [0.29, 0.33]) and GM density
(0.29 [0.26, 0.32]). Positive off-diagonal terms indicate interactions
between ACE-R memory, MMSE, and GM density.

www.thelancet.com Vol ▪ ▪, 2024
across multimodal data. If structural MRI data is not
available, PPM maintains good classification perfor-
mance when data from multiple complementary
cognitive tests that capture memory performance are
available.

PPM for prognosis
To extend the PPM beyond binary classification (sMCI
vs. pMCI) into a trajectory modelling approach that
predicts future cognitive decline, we used a scalar pro-
jection method13 to generate a PPM-derived prognostic
index (Supplementary Information: GMLVQ—Scalar
Projection). Leveraging an ensemble of GMLVQ classi-
fiers, we averaged the metric tensors and class pro-
totypes from the top 20% of models (80 classifiers)
resulting in similar performance (accuracy 81.40%
[80.22, 82.57]) as majority voting (Table S2). We next
extracted the scalar projection for each individual in an
independent ADNI sample (out-of-sample validation,
n = 609; cognitive normal individuals, n = 315, patients
with MCI, n = 106, patients with AD, n = 188). This
PPM-derived prognostic index indicates the distance of
an individual from the stable MCI prototype (i.e. higher
index indicates higher risk of future cognitive decline),
allowing individualized prognosis beyond binary clinical
labels.

Our results demonstrate that the PPM-derived
prognostic index is clinically relevant for predicting
cognitive health trajectories. First, we show that the
prognostic index derived from PPM trained on cognitive
and MRI data was significantly different across groups
(Fig. 3; Kruskal–Wallis H test χ(2) = 351.68, p < 0.001)
with significantly higher index (Bonferroni corrected)
for AD vs. MCI and CN (p < 0.001), MCI vs. CN
(p < 0.001). Regressing out education from GM density
and cognitive data to control for differences across in-
dividuals due to education, showed similar results; that
is, the PPM-derived prognostic index was significantly
different across groups (Kruskal–Wallis H test,
χ(2) = 372.62, p < 0.001) with significantly higher index
(Bonferroni corrected) for AD vs. MCI and CN
(p < 0.001), MCI vs. CN (p < 0.001). Further, we
observed similar results when the prognostic index was
derived from the PPM trained on cognitive data alone
(χ(2) = 366.37, p < 0.001; post-hoc caparisons (Bonfer-
roni corrected) for AD vs. MCI and CN (p < 0.001), but
not for MCI vs. CN (p = 0.221)).

Second, we show that the PPM-derived prognostic
index relates to future cognitive decline (Figure S3).
Spearman’s rank correlation showed that the prognostic
index derived from PPM trained on cognitive and MRI
data relates significantly to the rate of CDR change (after
regressing out age) across groups (rho = 0.54, p < 0.001,
95% CI [0.48, 0.60]). This correlation was significant for
CN (rho = 0.31, p < 0.001 [0.21, 0.41]), MCI (rho = 0.25,
p = 0.01 [0.06, 0.42]), AD (rho = 0.27, p < 0.001 [0.11,
0.41]). We observed similar results when the PPM was
5
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Fig. 3: PPM-derived prognostic index for ADNI Validation Set: Box plots of PPM-derived prognostic index for individuals (Cognitive Normal,
MCI, AD) from the ADNI validation set derived from PPM trained with: A. ACE-R memory, MMSE and GM density, B. ACE-R memory and MMSE.
The solid black line in the box plots indicates the median, solid black box represents the 25th to 75th percentile, the black horizontal lines
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trained on cognitive data alone; that is, significant cor-
relation across groups (rho = 0.52, p < 0.001 [0.46, 0.58]),
for CN (rho = 0.25, p < 0.001 [0.15, 0.36]), MCI
(rho = 0.23, p = 0.02 [0.04, 0.40]) and AD (rho = 0.21,
p = 0.01 [0.05, 0.36]). Comparing these correlations for
each group between models (PPM trained on MRI and
cognitive data vs. cognitive data alone) showed signifi-
cantly stronger effects for the former than the latter
(Stegler’s Z; CN: z = 1.70, p = 0.04; but not for MCI:
z = 0.37 (n = 106), p = 0.36 and AD, z = 1.152 (n = 149),
p = 0.13), suggesting that adding GM density enhances
PPM sensitivity in predicting future cognitive decline at
early or pre-symptomatic stages.

Translating PPM from research to clinical data: out
of sample validation
To test the interoperability and clinical utility of the
PPM, we tested the model trained on research cohort
data from ADNI with two independent data sets from
real-world patient cohorts (Fig. 1; QMIN-MC, n = 272;
MACC, n = 605).

For both QMIN-MC and MACC, we extracted the
PPM-derived prognostic index for each individual using
baseline data (i.e. data from the first clinical assessment
and MRI scan). We then tested whether the predicted
PPM-derived index of cognitive decline relates to clinical
diagnosis. For both QMIN-MC (Fig. 4A, χ(4) = 127.10,
p < 0.001) and MACC (Fig. 4B, χ(3) = 435.74, p < 0.001)
patients, the PPM-derived prognostic index was signifi-
cantly different across groups. In particular, when the
PPM was trained with cognitive and MRI data, the PPM-
derived index was significantly higher (Bonferroni post-
hoc comparisons) for AD vs. other groups (p < 0.001),
MCI vs. functional/attentional memory symptoms
(p < 0.001), moderate MCI vs. mild MCI or CN
(p < 0.001), and mild MCI vs. CN (p < 0.001).
Regressing out education from GM density and cogni-
tive data to control for differences across individuals due
to education, showed similar results; that is, the PPM-
derived prognostic index was significantly different
across groups (Kruskal–Wallis H test, QMIN-MC:
(χ(4) = 62.73, p < 0.001); MACC (χ(3) = 305.37,
p < 0.001)) with significantly higher index (Bonferroni
corrected) for AD vs. other groups (MCI, functional/
attentional memory symptoms, others, p < 0.001; non-
AD neurodegenerative diseases, p = 0.022), moderate
MCI vs. mild MCI or CN (p < 0.001), and mild MCI vs.
CN (p = 0.024). Further, we observed similar results
when the PPM was trained on cognitive data alone
(Fig. 4C; QMIN-MC, χ(4) = 106.45, p < 0.001; MACC,
χ(3) = 437.90, p < 0.001). Taken together, these results
provide evidence for the clinical utility of our PPM
represent the range of the data, crosses are outliers from the distribution,
(p < 0.05). PPM-derived prognostic index below 0 indicates stable, above
progressive individuals.
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trajectory modelling approach. In particular, the PPM
generalizes to real-world clinical data from two inde-
pendent samples, stratifies patients based on non-
invasive (MRI, cognitive data) data based on first
assessment and makes predictions for future cognitive
health that relate to clinical diagnosis.

Stratifying individuals based on the PPM-derived
prognostic index
To enhance the interpretability and clinical utility of the
PPM, we developed a methodology for stratifying in-
dividuals based on the PPM-derived prognostic index. We
used multinomial logistic regression to capture the rela-
tionship of the PPM-derived prognostic index to the rate
of cognitive decline (i.e. future MMSE change) and
determine boundaries for quartile classes that differ in
likelihood of disease progression. We scaled the bound-
aries so that PPM-derived prognostic index indicates in-
dividuals who are more likely to: 1) remain stable (PPM
index below 0), 2) experience rapid progression (PPM
index higher than 1), 3) experience slower progression
(PPM index between 0 and 1) (Figs. 3 and 4).

Our results demonstrate that this PPM-derived
stratification of patients is clinically relevant. In partic-
ular, for ADNI test data (Fig. 3), most cognitive normal
individuals (90.5%) were classified as stable, 58.5% of
individuals with MCI diagnosis were stratified as stable
and 42.5% as slowly progressive, while most AD in-
dividuals were stratified as progressive (96.2%). For
QMIN-MC (Fig. 4A), most individuals diagnosed with
AD (97.2%; n = 108) and non-AD neurodegenerative
disorders (90.7%; n = 43) were stratified as progressive,
while most individuals diagnosed with MCI (n = 63)
were stratified as stable (34.9%) or slowly (39.7%) pro-
gressive. For MACC (Fig. 4B), most individuals diag-
nosed with AD (n = 201) or moderate MCI (n = 116)
were stratified as rapidly progressive (92.5%, 59.5%,
respectively). In contrast, most individuals diagnosed
with mild MCI (n = 160) were stratified as slowly pro-
gressive (35.0%) or stable (50.0%) and most individuals
diagnosed as cognitive normal (CN, n = 128) were
stratified as stable (88.3%).

It is interesting to note that the PPM stratified some
individuals diagnosed with MCI as stable (QMIN-MC:
34.9%; MACC: 31.2%), consistent with previous studies
(e.g.7) reporting up to 35% misdiagnosis at early de-
mentia stages, suggesting that our modelling approach
has potential to reduce misdiagnosis. Further, including
biological data may facilitate reducing false positives; that
is, more patients were stratified as stable when the PPM
was trained on both cognitive and MRI data (QMIN-MC,
functional symptoms or other cognitive disorders:
and non-overlapping notches indicate significantly different medians
1 indicates rapidly progressive, and between 0 and 1 indicates slowly

7
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Fig. 4: PPM-derived prognostic index for clinical test data: Box plots of PPM-derived prognostic index for individuals from QMIN-MC validation
set (A, C; AD, MCI, Non-AD, Functional symptoms, Other) and the MACC (B, D; AD, Moderate MCI, mild MCI, cognitive normal) derived from PPM
trained with ACE-R memory, MMSE and GM density (A, B) or ACE-R memory and MMSE (C, D). The solid black line in the box plots indicates the
median, solid black box represents the 25th to 75th percentile, the black horizontal lines represent the range of the data, crosses are outliers from
the distribution, and non-overlapping notches indicate significantly different medians (p < 0.05). PPM-derived prognostic index below 0 indicates
stable, above 1 indicates rapidly progressive, and between 0 and 1 indicates slowly progressive individuals.
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79.3%; MACC, CN and mild MCI: 67.0%) than cognitive
data alone (QMIN-MC: 60.3%; MACC: 41.7%).

Finally, we conducted an ordinal regression to test
the rate at which the PPM index discriminates between
groups (AD; MCI; MACC: CN; QMIN-MC: Functional
Symptoms, Others) across the QMIN-MC and MACC
validation samples. Our results showed that when the
PPM was trained on MRI and cognitive data, the PPM-
derived prognostic index discriminated between groups
at an overall rate of 0.70 (i.e. 0.75 for AD; 0.68 for MCI;
0.66 for CN compared to other groups). When the PPM
was trained on cognitive data alone, the overall rate was
0.69 (i.e. 0.75 for AD; 0.68 for MCI; 0.63 for CN,
compared to other groups).

Comparing PPM-derived prediction to standard
clinical assessments and statistical approaches
To assess the clinical validity and utility of the PPM, we
conducted additional analyses comparing the PPM
against predictions derived from: 1) assessments typi-
cally available in clinical practice, 2) simpler ML models
(logistic regression), 2) more conventional statistical
methods (multiple regression). Our results show that
PPM has higher accuracy and sensitivity than these
modelling approaches.

First, in most clinical settings, MCI vs. AD diagnosis
is based on age, education and cognitive scales (e.g.
MMSE). Training and testing the PPM with these
datatypes results in 74.64% accuracy, sensitivity:
75.00%, specificity: 75.04%. In contrast, training and
testing the PPM with cognitive data (ACE-R memory,
MMSE) and GM density achieved significantly (DeLong
test: p < 0.001) higher accuracy (81.36%, sensitivity:
81.92%, specificity: 80.76%).

Second, PPM trained on ADNI ACE-R mem, MMSE
and GM density performs (class balanced accuracy for
10 repetitions of 10 fold cross-validation) better than a
logistic regression model when tested on the ADNI
www.thelancet.com Vol ▪ ▪, 2024
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validation sample. In particular, PPM showed accuracy:
81.66 ± 0.25%, AUC: 0.84, sensitivity: 82.38%, speci-
ficity: 80.94%. In contrast, a logistic regression model
with class balanced accuracy (10 repetitions of 10 fold
cross-validation) showed accuracy: 73.41 ± 0.95%, AUC:
0.82 with sensitivity: 62.98%, specificity: 86.42%. That
is, PPM showed both higher accuracy and sensitivity
than a simple logistic regression model (t-test, t
(198) = 8.86, p < 0.001; permutation testing showed that
PPM outperforms logistic regression 92% of the times).

Third, we trained a multiple regression model on
ADNI training data using ACE-R mem, MMSE and GM
density to predict future cognitive decline (rate of
MMSE change). Testing this multiple regression model
on the ADNI validation dataset showed Root Mean
Squared Error (RMSE) of 1.81. In contrast, using the
PPM-derived prognostic index to predict future cogni-
tive decline in the ADNI validation sample showed
significantly (Diebold–Mariano Test: T = −2.043,
p = 0.04) lower RMSE (1.74). Further, using the same
multiple regression model to predict future cognitive
decline (rate of MMSE change) in MACC based on the
PPM-derived prognostic index showed significantly
(Diebold–Mariano Test: T = −9.136, p < 0.001) lower
RMSE (1.60) than using ACE-R mem, MMSE and GM
density as predictors (2.17). These results, suggest our
PPM-derived marker predicts future cognitive decline
more precisely than standard clinical assessments.

Longitudinal validation of PPM-derived prognosis
We tested whether the PPM-derived stratification based
on the prognostic index (i.e. stable, slowly progressive,
and rapidly progressive) from baseline (i.e. first assess-
ment) patient data is validated against future clinical
outcomes (i.e. longitudinal data on clinical diagnosis
indicating conversion to AD). We used longitudinal data
available for MACC over 6 years. We conducted survival
analyses to investigate the risk of converting to AD for
CN and MCI patients with longitudinal diagnoses
(n = 387) that were stratified using the PPM-derived
prognostic index at baseline as stable (n = 189), slowly
(n = 111) or rapidly (n = 87) progressive.

First, we validate PPM-derived predictions at first
assessment against longitudinal clinical diagnosis.
Fig. 5A shows that individuals who were predicted by
the PPM to remain stable rarely (0.5%) converted to AD,
while 18.9% of individuals predicted to progress slowly
vs. 41.4% of individuals predicted to progress rapidly
converted to AD within a 3-year period (Kaplan–Meier
graphical display; survival rates per year based on
annual assessments). In contrast, based on clinical
diagnosis, 3.2% of CN, 11.8% of mild MCI, and 30.6%
of moderate MCI individuals converted to AD within 3
years. Kaplan–Meier survival analysis showed an overall
‘non-conversion to AD’ advantage for the stable group
(logrank test, stable group vs. slowly progressive group,
χ2 = 41.31 on df = 1, Bonferroni-adjusted p < 0.01),
www.thelancet.com Vol ▪ ▪, 2024
while a higher risk of conversion to AD for rapidly
progressive (logrank test, slowly progressive vs. rapidly
progressive, χ2 = 13.64 on df = 1, Bonferroni-adjusted
p < 0.01).

Second, we demonstrate that the PPM-derived
prognostic index is a stronger predictor of conversion
to AD risk than standard clinical markers (i.e. grey
matter atrophy, cognitive decline) at baseline. In
particular, a multivariate Cox Proportional Hazard
(CoxPH; continuous variable) model22 showed that the
PPM-derived prognostic index (hazard ratio = 3.42 [1.36,
8.60], p = 0.015) —rather than GM density (p = 0.24) or
MMSE (p = 0.92), was a significant predictor of con-
version to AD.

Third, we demonstrate that stratifying patients at
baseline based on the PPM is more precise than stan-
dard stratification based on clinical diagnosis. In
particular, a multivariate CoxPH22 model (categorical
variable) showed that stratification based on the PPM-
derived marker (i.e. stable, slowly vs. rapidly progres-
sive) or clinical diagnosis (i.e. CN, mild MCI, moderate
MCI) were significant predictors of conversion to AD,
with the PPM-derived marker showing a higher hazard
ratio (hazard ratio = 2.84 [1.88, 4.29], p < 0.01) than
clinical diagnosis (hazard ratio = 1.98 [1.23, 3.18],
p < 0.01).

Further, using Kaplan–Meier survival analysis, we
compared the risk of conversion to AD when individuals
were stratified based on a) the PPM-derived prognostic
index, b) clinical diagnosis at baseline, that is, mild MCI
(Fig. 5B) or moderate MCI (Fig. 5C). Our results showed
that stratifying individuals based on PPM compared to
clinical diagnosis supports more precise prediction of
conversion to AD risk. Fig. 5B shows that nearly half of
the patients (49.0%) with mild MCI who were stratified
by the PPM as stable did not convert to AD within a 3-
year window; in contrast, stratifying based on clinical
diagnosis predicts that individuals with mild MCI are at
risk of converting to AD within three years of first
assessment (year 1, 2.6%; year 2, 7.2%; year 3, 11.7%).
Our results showed that the ‘conversion to AD’ risk for
all individuals with clinical diagnosis of mild MCI
(Fig. 5B) was significantly higher than individuals with
mild MCI who were stratified by the PPM as stable
(49.0%; logrank test, χ2 = 9.29 on df = 1, Bonferroni-
adjusted p < 0.01) from year 1 onwards, while signifi-
cantly lower than individuals with mild MCI who were
stratified by the PPM as rapidly-progressive (14.4%;
logrank test, χ2 = 10.62, on df = 1, Bonferroni-adjusted
p < 0.01) from year 3 onwards (χ2 = 11.75, p < 0.01).
This advantage of PPM-based stratification is more
prominent at early stages of disease (i.e. mild MCI).
That is, we didn’t observe any significant differences
between the overall ‘conversion to AD’ risk for all in-
dividuals with clinical diagnosis of moderate MCI
(Fig. 5C) vs. individuals with moderate MCI who were
stratified by the PPM as: a) slowly progressive (35.2%,
9
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Fig. 5: Survival analysis for MACC data: Survival curves (Kaplan–Meier estimator) are fit to longitudinal clinical diagnosis data for MACC CN and
MCI individuals A. Survival curves for all MACC patients with longitudinal clinical diagnoses (n = 387) stratified based on clinical diagnosis at first
assessment (mild MCI: solid black line; moderate MCI: dashed black line) or the PPM-derived index (stable: green, n = 189; slowly progressive:
yellow, n = 111; rapidly progressive: red, n = 87). B. Survival curves for patients with clinical diagnoses of mild MCI (n = 153) stratified based on

Articles

10 www.thelancet.com Vol ▪ ▪, 2024

http://www.thelancet.com


Articles
logrank test, p = 0.26), b) rapidly progressive (60.2%,
logrank test, p = 0.38).

Taken together, our results provide evidence for an
AI-guided multimodal marker (i.e. PPM-derived prog-
nostic index) that predicts risk of conversion-to-AD at
early stages (i.e. mild MC) more precisely than standard
clinical markers (i.e. grey matter atrophy, cognitive
decline) or clinical diagnosis at first assessment.
Discussion
To bridge the gap between AI and clinical translation,
we built a robust and interpretable clinical-AI tool based
on a predictive prognostic model (PPM) that: 1) in-
troduces a transparent trajectory modelling approach to
reliably predict future cognitive health from multimodal
routinely-collected data, 2) generalizes from research
cohort to real-world patient data, enhancing clinical
utility and potential for adoption into healthcare, 3) de-
livers an AI-guided multimodal marker that supports
more precise prediction of conversion to AD at early
stages than standard clinical markers (i.e. grey matter
atrophy, cognitive decline) or clinical diagnosis. This
integrative modelling approach provides the following
main advances for translating robust and responsible AI
models for early dementia prediction to real-world
clinical settings.

First, adopting a GMLVQ framework with ensemble
learning enables us to develop a robust model20,21 by
combining data from multiple disease-relevant modal-
ities, rather than considering single data types. PPM
harnesses the power of multimodal data to predict from
routinely-collected, non-invasive and low-cost data
(cognitive data, structural MRI) that may be less sensi-
tive than biomarkers but can be collected more readily at
population level. This AI-guided approach to robust
early prediction at scale has strong potential to: 1)
improve patient wellbeing and reduce healthcare costs
as fewer patients undergo invasive and costly diagnostic
tests, 2) target scarce resources to those that need them
the most, 3) standardize diagnosis across memory
clinics, reducing inequalities in healthcare.

Second, the GMLVQ framework allows us to develop
transparent models for early dementia prediction, that is
key for trusted clinical-AI solutions. In particular,
interrogating the model metric tensors allows us to rank
the contribution of different data types (i.e. clinically-
relevant predictors) and their interactions for patient
classification. This has potential to advance our under-
standing of disease mechanisms and enhance model
clinical diagnosis (mild MCI: solid black line) at first assessment or the P
n = 56; rapidly progressive: red, n = 22). C. Survival curves for patients w
clinical diagnosis (moderate MCI: dashed black line) at first assessment o
progressive: red, n = 65). We did not fit a survival curve for moderate M
(n = 5).

www.thelancet.com Vol ▪ ▪, 2024
interpretability, in contrast to deep learning methods
that may be difficult to interpret and generalize (for
review23).

Third, PPM extends from diagnosis to prognosis to
capture individual disease trajectories. Most machine
learning models for dementia prediction have focused
on binary classifications24 based on clinical labels (e.g.
CN vs AD) that are poorly constrained; as a result in-
dividual patients at the class boundary that differ only
slightly in their trajectory may be misclassified.8 Tra-
jectory modelling approaches that estimate time to AD
conversion (e.g.25–27) may be limited by target uncertainty
(e.g. variability in follow-up assessments, clinical diag-
nosis). In contrast, PPM provides a continuous index of
future cognitive health from first assessment data,
reducing misdiagnosis associated with clinical labels.
We demonstrate that the PPM-derived prognostic index
reliably predicts cognitive decline over time (i.e. changes
in CDR) and is a better predictor of conversion to AD
than standard clinical assessments (i.e. cognitive data,
MRI scan). Thus, PPM supports precise prognostication
with strong potential to impact both the diagnostic and
treatment pathway, allowing patients and their families
to plan for the future, facilitating clinicians to determine
a personalized diagnostic and treatment pathway.

Fourth, PPM-derived prognosis (i.e. prediction of
progression to AD) generalizes to independent real-
world patient data from memory clinics. Lack of
generalizability of ML models is a key barrier to
adoption in healthcare. Validation of ML classification
models against independent clinical cohorts remains
limited, with a recent review8 reporting that most
models use the same research dataset (i.e. ADNI) for
training and test. Some models using patient cohort
data focus on cross-sectional data and stratification
across classes (e.g. AD vs. healthy controls,28,29). In
contrast, PPM makes predictions about future pro-
gression to AD that generalize and are validated against
longitudinal data in independent real-world patient
cohorts. To enhance PPM generalizability and clinical
utility, we take the following steps: 1) train the PPM
with clinically-relevant predictors (e.g. medial temporal
lobe atrophy) that are common across research and
clinical cohorts, 2) implement imputation methods for
harmonizing cognitive data across cohorts with
missing data, 3) test the model with independent
multicenter data samples from different countries
(USA, UK, Singapore). Potential limitations to gener-
alizability include the size and diversity of the popu-
lation sample as well as data collection tools (cognitive
PM-derived index (stable: green, n = 75; slowly progressive: yellow,
ith clinical diagnoses of moderate MCI (n = 108) stratified based on
r the PPM-derived index (slowly progressive: yellow, n = 38; rapidly
CI patients stratified by the PPM as stable due to small sample size
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tests tailored for diverse populations, MRI scanners of
different magnetic field strength) used for training and
testing the model. Access to larger real-world patient
data across healthcare systems and countries collected
using different tools will allow us to train and test the
PPM on highly diverse clinical cohorts. This will
ensure that PPM predictions are validated across more
representative populations, enhancing global clinical
utility.

Importantly, we derive a clinical-AI multimodal
biomarker, validating the clinical utility of the PPM-
derived index not only for diagnosis but also prognosis
against longitudinal clinical outcomes. We demonstrate
that the PPM-derived marker predicts conversion to AD
more precisely than clinical diagnosis at early stages of
disease. In particular, patients stratified as stable or
slowly progressive by the PPM have lower risk of con-
version to AD than when stratified based on clinical
diagnosis (i.e. mild MCI) at first assessment. Thus, our
clinical AI-guided marker has strong potential to help
clinicians assign patients to the clinical management
pathway that best meets their needs (i.e. reducing
invasive diagnostic testing and hospitalization rates).
For example, mild MCI patients stratified by the PPM as
rapidly progressive may need to proceed with invasive
diagnostic testing (e.g. PET scans) and pharmacological
treatments, while patients stratified as stable and at
lower risk of conversion to AD may be recommended
life-style interventions and follow up at a later time.
Thus, the PPM-derived marker has strong potential to
aid clinicians standardize diagnosis and interventions
across healthcare systems and allocate resources to
those that need them the most, reducing costs and in-
equalities in dementia care.

Finally, scaling up the PPM to a clinical-AI tool for
adoption in healthcare involves the following next steps:
1) extending to prediction of dementia subtypes (e.g.
Lewy body, vascular, frontotemporal) based on different
data modalities (e.g. grey matter, white matter scans), 2)
including clinical care data to capture comorbidities and
blood biomarkers that are emerging as a potential scal-
able tool for dementia prediction, 3) including data from
underrepresented groups that may be disproportionately
affected by dementia.30 Uncovering the key predictors of
progression to different dementia subtypes for diverse
cohorts is key for tackling the global dementia challenge
and developing precision medicine interventions. Our
vision is to scale-up our predictive prognostic modelling
approach to a responsible AI decision support system
that will aid clinicians to assign the right patient at the
right time to the right diagnostic and treatment
pathway, enhancing clinical management efficiency,
patient wellbeing and outcomes.
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