
Non-linear Prediction of Quantitative Structure–Activity
Relationships

Peter Tiňo∗,
School of Computer Science, Birmingham University, Birmingham B15 2TT, UK

Ian T. Nabney†,
Neural Computing Research Group, Aston University, Birmingham B4 7ET, UK

Bruce S. Williams, Jens Lösel,
Pfizer Global Research and Development, Sandwich, Kent CT13 9NJ, UK

Yi Sun
Faculty of Eng & Info Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK

Abstract

Predicting the log of the partition coefficient P is a long-standing benchmark problem
in Quantitative Structure-Activity Relationships (QSAR). In this paper we show that a
relatively simple molecular representation (using 14 variables) can be combined with lead-
ing edge machine learning algorithms to predict logP on new compounds more accurately
than existing benchmark algorithms which use complex molecular representations.

1 Introduction

The majority of pharmaceutical agents must cross a biological membrane to reach their site
of action and to be available in a cellular environment. Lipophilicity of the ‘drug’ molecule
has a major impact upon its distribution and biological action.1 Hence quantitative
measures of lipophilicity are very important in the development of drug molecules.

The partition coefficient of a molecule is the ratio of its solubility in n-octanol to its
solubility in water;2 the logarithm of this quantity, LogP, is a well established measure of a
compound’s lipophilicity. In principle, the measurement of the equilibrium concentration
of solute in the octanol and water phases, after shaking in a separatory funnel, is very
simple, and since good measured values are always to be preferred over calculated ones, it
would seem that there should be little need for a procedure to calculate them. However,
in practice, measurement of LogP for large numbers of compounds is costly and time
consuming, and hence computational methods are employed to estimate or predict values
where possible. In addition, it is valuable to have an estimate of lipophilicity before
synthesising novel compounds, and this can be only be done using a predictive model.

∗Email: p.tino@cs.bham.ac.uk
†Email: i.t.nabney@aston.ac.uk

1



Numerous methods for calculating LogP exist, mainly characterised as substructural and
whole molecular approaches.3

The aims of this paper are to evaluate a novel encoding scheme for pharmaceutical
molecules and assess its relevance for QSAR by applying a range of classical and more
recently developed statistical and machine learning algorithms. The results are compared
with state-of-the-art commercial programs. Throughout we take a model-based approach:
our belief is that the encoding of the data has encapsulated sufficient prior understanding
of the chemistry of the problem that a general-purpose statistical model will achieve the
best accuracy, given the large amount of training data available.

In Section 2 we describe the algorithms that we applied to the QSAR problem. Per-
formance measures are defined in Section 3 and the datasets in Section 4, where we also
discuss the results. Finally, Section 5 draws together the main conclusions and points the
way towards future work.

2 Modelling Algorithms

The aim of QSAR is to find a function q() which, given a structured representation of a
molecule, predicts its activity:

activity = q(structure). (1)

There are two main problems to solve:

1. the representation problem, i.e., how to encode molecules through the extraction
and selection of structural features;

2. the mapping problem, i.e., determining the form of the function q and setting any
free parameters so as to maximise the generalisation performance of the model.
For example, the weights attached to each input in a linear regression model are
estimated from data.

In this paper, we will focus on the second of the two tasks, using a novel molecular
encoding (an interaction fingerprint) developed at Pfizer. In this encoding, the molecule
is coded using fourteen numerical descriptors based on a two-dimensional representation
of the molecular structure. Values 1–10 are the InterAction Fingerprints, IAFs,4 of the
compounds. IAFs are the average counts for non-covalent interactions (strong, medium,
weak hydrogen bonds, Van der Waals and pi-interactions) around individual atom types as
found in experimental structures deposited in the Cambridge Structure Database summed
up over the whole molecule. Value 11 is the sum of volumes of Voronoi polyhedra which
were used to determine the IAFs and is used as a measure of size. Values 12–14 are
halogen counts for fluorine, chlorine and bromine.

The simplest predictive model always predicts a constant value, namely the mean
E(ttrn) of the training set targets, no matter what test input it receives. We will refer to
this model as the Naive predictor, and the this model provides a lower bound on useful
performance levels.

Besides the Naive model, we considered seven model classes that can be divided into
two categories: global and local models.

Global models use a single model for the problem which covers the entire input space.

2



Local models use a combination of models, each of which covers a smaller part of the
input space.

There are two reasons why a local model might be expected to perform better than a
global model:

1. The form of the mapping that we are trying to learn may be different for different
regions of the input space. For example, for some compound classes the relationship
between inputs and targets may be linear, while for other compound classes it may
be quadratic.

2. The component models can be simpler (to match the complexity of the local map-
ping) which may make them easier to fit. For example, the parameters in a linear
regression model can be determined using linear algebra, while the parameters in
a neural network are determined by many iterations of a non-linear optimisation
algorithm.

The first of these reasons is particularly relevant to chemical structures.
If the input space has an obvious decomposition, then it may be possible to determine

the structure of the local model by hand. However, this is rarely the case, and so we used
models which discovered the decomposition automatically as part of the learning process.

The fundamental task in estimating the parameters of a model is to try to fit the
underlying generator of the data. This can be measured by how well the model predicts
target values on new data. Given a particular model class M there usually will be many
candidate models M ∈ M that can be potentially used as predictors for our task. In
general, complex candidates with a large number of free parameters will be able to model
the training data very well, but will perform poorly on an independent test set. This
happens because, loosely speaking, complex models are overly powerful and “read too
much into the training data”. They tend to concentrate on misleading details of noise in
the data and introduce rather arbitrary complex response patterns for inputs not covered
by the training set. This phenomenon is often referred to as over-fitting the (training)
data.

There are several approaches to deal with the phenomenon of over-fitting. One of the
most popular within the machine learning community consists of creating a validation
set that is disjoint from both the training and test sets. When reasoning about what
candidate M from the model class M to use as a representative of M, several candidates
M1,M2, ...,MC ∈ M of increasing model complexity are trained on the training set and
tested on the validation set. The candidate with the minimal validation set error is then
selected as a representative of M and its generalisation error is estimated on the test set.
Such a validation set approach to model selection is appropriate in situations when there
is enough data at our disposal, which is the case here.

It is helpful to define the statistical pattern recognition framework that we will use in
this paper (see also5). The most general information about a target variable t for inputs
x is given by the conditional density p(t|x). The variable is modelled as the output of a
deterministic function y with parameters w plus random noise ε:

t = y(x;w) + ε. (2)

Assuming that each data point (xn, tn) is drawn independently from a fixed distribution,
and that the noise model ε has a Gaussian distribution with zero mean and constant

3



variance σ2, the conditional density has the following form:

p(t|x) =
1

(2πσ2)1/2
exp

(
−{y(x;w)− t}2

2σ2

)
. (3)

If we take logs and ignore terms that do not depend on the network function y, we arrive
at the sum-of-squares error function

ED =
1
2

N∑
n=1

{y(xn;w)− tn}2 . (4)

In the experiments reported here, all models had fourteen inputs and a single output.

2.1 Global models

Obviously, the Naive predictor is a trivial global model. We considered four more global
model classes.

2.1.1 Linear regression – LR

The output y is a linear combination of input values x

y = y(x;w) =
d∑

i=1

wixi + b, (5)

where d is dimensionality of the input space and w = (w1, ..., wd, b) is the parameter
vector.

We set the weights so that the sum-squared error function is minimised on a training
dataset. In the case of linear regression, because E is a quadratic function of the weights,
this can be done using the pseudo-inverse of the data matrix, a standard technique from
linear algebra.6

Linear regression can be generalised by including non-linear functions of predictors,
while keeping the models linear in parameters. We augment the linear regression model
either with only squares x2

i of predictors xi,

y =
d∑

i=1

wixi +
d∑

i=1

w
(sq)
i x2

i + b, (6)

or with all quadratic terms xi · xj constructed from the predictors,

y =
d∑

i=1

wixi +
d∑

j≤i

w
(q)
ij xixj + b. (7)

Free parameters of such models, b, wi, w
(sq)
i , w

(q)
ij , can still be estimated using tools from

linear algebra. We refer to the former and latter models as LSR and LQR, respectively.

4



2.1.2 Multi-layer perceptron – MLP

The multi-layer perceptron is a non-linear regression model. It is probably the most widely
used architecture for practical applications of neural networks. In most cases the network
consists of two layers of adaptive weights with full connectivity between inputs and hidden
units, and between hidden units and outputs. It is capable of universal approximation in
the sense that it can approximate to arbitrary accuracy any continuous function from a
compact region of input space provided the number of hidden units is sufficiently large
and provided the weights and biases are chosen appropriately.7–9 In practice, this means
that provided there is enough data to estimate the network parameters, an MLP can
model any smooth function.

The first layer of the network forms Nhid linear combinations of these inputs to give
a set of intermediate activation variables which are then transformed by the non-linear
activation functions of the hidden layer, here chosen to be the tanh function, to give the
hidden unit outputs zj

zj = tanh

(
d∑

i=1

w
(1)
ji xi + b

(1)
j

)
j = 1, . . . , Nhid. (8)

Here w
(1)
ji represents the elements of the first-layer weight matrix and b

(1)
j are the bias

parameters associated with the hidden units.
The zj are then transformed by the second layer of weights and biases to give the

network output y

y =
Nhid∑
j=1

w
(2)
j zj + b(2). (9)

We make the same assumption about the noise model as for linear regression, and
therefore use the sum-of-squares error function given by (4). Because of the non-linear
relationship between the network weights and the output, it is no longer possible to
use a matrix pseudo-inverse to find the weights directly. However, the back-propagation
algorithm can be used to compute the error gradients ∂E/∂wi efficiently,5 and these
gradients can be used to adjust the weights to minimise E using a non-linear optimisation
routine. In the experiments reported in this paper, all the networks were trained using
the scaled gradient method.10

We considered Nhid from the range Nhid ∈ {1, 2, 3, 5, 10, 15, 20, 30}. To stabilise the
performance, for each number of hidden units Nhid, we trained a committee of Nexp = 10
networks of the same topology. Given a test input, the predictive output y was obtained
as the mean of the outputs yj of the committee members:

y =
1

Nexp

Nexp∑
j=1

yj . (10)

The number of hidden neurons was determined by the performance on the validation set:
we picked Nhid with the smallest validation set MSE. It can be shown (see,5 Chapter
9) that the expected error of the committee is not greater than the average error of the
networks that make up the committee. In practice, the committee error is often better
than that of any individual network.

5



2.1.3 MLP with automatic relevance determination – MLP-ARD

Selecting relevant input variables from a large set of possibilities is a common problem
in applications of pattern analysis. Selecting variables based on the magnitude of their
correlation with the target variable is based only on linear relationships; frequently the
importance of inputs is only revealed in a non-linear mapping. What is required is a way
to determine the importance of each input to a trained model.

We have used a Bayesian approach to this problem,11,12 which also has the benefit
of regularising the model. In the Bayesian approach, we start with a prior probability
distribution p(w) which expresses our knowledge of the parameters before the data is
observed. Typically this is quite a broad distribution, reflecting the fact that we only have
a vague belief in a range of possible parameter values (for example, that the magnitude of
the parameters should usually be less than 10). Once we have observed the data, Bayes’
theorem

p(w|D) =
p(D|w)p(w)

p(D)
, (11)

(where p(w) is the prior, p(D|w) is the dataset likelihood, and p(D), known as the evi-
dence, is a normalisation factor that ensures that the posterior integrates to 1) can be used
to update our beliefs and we obtain the posterior probability density p(w|D). Since some
parameter values are more consistent with the data than others, the posterior distribution
is concentrated on a smaller range of values than the prior distribution.

The prior probability distribution for the weights of a neural network should embody
our prior knowledge on the sort of mappings that are ‘reasonable’. In general, we expect
the underlying generator of our datasets to be smooth, and the network mapping should
reflect this belief. A neural network with large weights will usually give rise to a map-
ping with large curvature, and so we favour small values for the network weights. The
requirement for small weights suggests a Gaussian prior distribution with zero mean of
the form

p(w) =
1

ZW (α)
exp

(
−α

2
‖w‖2

)
, (12)

where α represents the inverse variance of the distribution and the normalisation constant
is given by

ZW (α) =
(

2π

α

)W/2

, (13)

where W is the number of weights stored in the weight vector w.
Because α is a parameter for the distribution of other parameters (weights and biases),

it is known as a hyperparameter. Ignoring the normalisation constant, which does not
depend on the weights, this prior is equivalent to a weight error term (after taking the
negative log) of the form

αEW =
α

2
‖w‖2 =

α

2

W∑
i=1

w2
i . (14)

This error term regularises the weights by penalising overly large magnitudes. The error
function E used in training is found by taking the negative log of (11); ignoring constants,
it has the form

E = αEW + βED (15)

where ED is as in (4), and β = 1/σ2 is the inverse variance of the likelihood (3).

6



It is helpful to generalise this notion to multiple hyperparameters α1, . . . , αg corre-
sponding to groups of weights W1, . . . , Wg. For Automatic Relevance Determination
(ARD), we associate a separate hyperparameter with each input variable; this represents
the inverse variance of the prior distribution of the weights fanning out from that in-
put. During Bayesian learning it is possible to modify the hyperparameters; for example,
using the evidence procedure, we find their optimal value, subject to some simplifying
approximations to make the analysis tractable. Because hyperparameters represent the
inverse variance of the weights, a small hyperparameter value means that large weights
are allowed, and we can conclude that the corresponding input is important. A large
hyperparameter value means that the weights are constrained near zero, and hence the
corresponding input is less important.

2.1.4 Gaussian Process – GP

Gaussian processes (GPs) are a relatively recent development in non-linear modelling,13

though they have a longer history in spatial statistics, where the technique is also known
as ‘kriging’. Gaussian processes are particularly suited to regression problems since in
these circumstances we can perform the first level of Bayesian inference (computing the
posterior distribution of the parameters) analytically.

A Gaussian process is a stochastic process Y (x) where every joint density function is
Gaussian and is therefore defined completely by its mean and covariance. For simplicity,
we will consider only Gaussian processes with zero mean. The covariance of Y (x) and
Y (x′) is usually defined by a function C(x,x′).

Recall that the training dataset consists of ordered pairs (xtrn
1 , ttrn

1 ), . . . , (xtrn
Ntrn

, ttrn
Ntrn

).
Now suppose that ttrn

i is a sample from a random variable T (xtrn
i ). To make a prediction

T ∗ at a new input x∗ we need to compute the conditional distribution p(T ∗|T1, . . . , TNtrn).
Since our model is a Gaussian process, this distribution is also Gaussian and is completely
specified by its mean and variance. Let K denote the covariance matrix of the training
data, k denote the Ntrn × 1 covariance between the training data and T ∗ and k∗ de-
note the variance of T ∗. Then K+, the (Ntrn + 1) × (Ntrn + 1) covariance matrix of
(T1, T2, . . . , TNtrn , T ∗), can be partitioned

K+ =
[
K k

kT k∗

]
. (16)

The mean and variance at x∗ are given by

E[T ∗] = kT K−1ttrn (17)

var[T ∗] = k∗ − kT K−1k. (18)

We use the mean as our prediction, while the covariance can be used to compute error
bars.

The covariance function is defined by the spherical Gaussian kernel of width σ2

C(x,x′) = exp
(
‖x− x′‖/2σ2

)
. (19)

In general, larger widths imply “smoother” regression functions. For Gaussian kernels and
normalized input data, for which the standard deviation is equal to 1 in all dimensions,

7



the widely accepted rule of thumb is to make the kernel width approximately equal to the
input dimensionality d (in our case d = 14). We considered widths from the set

σ2 = {6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 40, 50, 60}.

The “optimal” kernel width was determined by the validation set performance. We report
the GP test set performance using σ2 with the smallest validation set MSE.

It is well-known that GP prediction scales badly with the number of training examples.
This is because K is an Ntrn × Ntrn matrix, and the matrix inversion needed in (17) is
O(N3

trn). This is problematic in this application, as we need to use large training sets to
obtain good generalisation performance. We therefore used with a sparse on-line version
of GP prediction developed in.14

2.2 Local models

We considered three kinds of local model, namely K-nearest-neighbour regression, hierar-
chical mixture of experts, and regression trees.

2.2.1 K-nearest-neighbour regression – KNNR

K-nearest-neighbour regression (KNNR) can be considered a committee of K experts of
a special type: given a test input x the prediction yj of the j-th expert is equal to the
target value ttrn

j(x) of the training pair (xtrn
j(x), t

trn
j(x)) whose input xtrn

j(x) is the j-th closest
point to x among all the training inputs {xtrn

1 , ...,xtrn
Ntrn

}. The output of the model is
therefore the average target value for the K training data points closest to x.

In the experiments, we varied the number of neighbours, K, between 1 and 15 and the
“optimal” K was determined on the validation set by selecting K from the model with
the minimal validation set MSE.

2.2.2 Hierarchical mixtures of experts – HME

The HME model15 divides the input space into a nested set of regions. In each region a
simple surface (a linear hyperplane) is fitted to the data. The regions have ‘soft’ bound-
aries, which means that points belong to more than one region. Figure 1 shows the
architecture of the HME model. The architecture consists of a binary tree (the generali-
sation to more branches at each node is trivial) consisting of gating networks and experts.
These networks receive the input vector x and produce scalar outputs pi with the property
that pi ≥ 0 and

∑
i pi = 1. The output is a sum of the expert predictions weighted by the

pi. To form a deeper tree, each expert is expanded recursively into a gating network and
a set of sub-experts.

The role of the gating networks is to partition the input space so that each expert
only has to model a small region. In our experiments, all the local models were linear
regression predictors with a Gaussian noise model. This model gives rise to a well-defined
conditional probability p(t|x) and all the parameters can be adjusted using the negative
log likelihood of the training data.

The hierarchy can be specified by the depth D of the hierarchical tree and the branch-
ing factor BF – the number of children of each internal node. The number of local linear
regression experts in the hierarchy, i.e. the number of leaves of the hierarchical tree, is
given by (BF )D−1.

8



Expert Expert Expert Expert

x

Gating
Network

Gating
Network

Output

Gating
Network

x

x

Figure 1: Architecture of a two-level HME model. The gating networks act as switches between
the experts.

We considered the following hierarchies (BF,D): simple mixtures (2, 1), (4, 1); depth-
2 hierarchies (2, 2), (3, 2); and deeper hierarchies (2, 3), (3, 3), (2, 4), (3, 4). The hierarchy
used on the test set was determined by the minimal validation set MSE.

2.2.3 Regression Trees – RT

Regression trees (RTs) are computationally efficient non-parametric models that consti-
tute a good compromise between comprehensibility and predictive accuracy. A regression
tree consists of a hierarchy of nodes. With the exception of the bottom nodes (leaves) of
the tree, each node contains a logical test on one of the input variables xi, i ∈ {1, ..., d}.
Each test has the form [Variable Operator Value] (e.g. x2 < 5.7), and has two possi-
ble outcomes, true or false. Any path from the top node (root) to a leaf can be seen as a
conjunction (i.e. logical and) of logical tests on the input coordinates. These conjunctions
are logical representations of a partition of the input space. Each leaf contains a local
predictive model, which in the the case of standard RTs is simply a constant value. The
local model associated with a leaf operates over a corresponding region of the input space
that is defined by the conjunction.

However, constant values in the leaves lead to a regression surface that is not contin-
uous (in fact, a step function). A smoother model is achieved by allowing non-constant
leaf models, e.g. linear functions of inputs x.16,17 An example of a regression tree with
linear models in the leaves is shown in figure 2.

We trained a large collection of RTs with constant and linear regression models in the

9



x > 1

x > −1

f(x)=−x−1 f(x)=x+1

f(x)=−2x+4

x−1 0 1

f(x)

1

Figure 2: Example of regression tree with linear models in the leaves. The tree defines a piece-
wise linear function on real line. Arcs corresponding to true and false decisions are shown as
solid and dashed lines, respectively.

leaves using the system RT4.1.17 The individual RT constructions are controlled by a
set of hyperparameters determining the type of local regression models and other model
specific entities, such as the pruning methods etc.

The construction of RTs involved a pruning mechanism, where for each hyperparam-
eter value a sequence of trees is generated (using a method called lowest statistical sup-
port17), and for every regression tree in that sequence its generalisation error is estimated
via a 5-fold cross validation on the training set. The representative RT for each particular
hyperparameter setting is the one with the lowest estimated generalisation error.

The hyperparameter setting to be used on the test set was determined by the minimal
validation set MSE.

We characterise the RTs by the local regression model (constant(C)/linear regres-
sion(LR)), the overall number of nodes N and the number of leaves L. For example, the
tree in figure 2 is characterised by (LR, N=5, L=3).

3 Experiments

3.1 Performance measures

We evaluate the test set model performance via two related measures, namely mean square
error and percent improvement over the Naive model.

Suppose we are given Ntrn and Ntst training and test input-target pairs (xtrn
n , ttrn

n )
and (xtst

n , ttstn ), respectively. Model prediction, given a test input xtst
n , is denoted by t̂n.

Mean squared error measures the average squared difference between model predictions
t̂n and the corresponding targets ttstn ,

MSE =
1

Ntst

Ntst∑
n=1

(t̂n − ttstn )2. (20)

10



It is useful to report improvement of MSE relative to the baseline MSEnaive of the
Naive predictor always predicting mean

t̂naive =
1

Ntrn

Ntrn∑
n=1

ttrn
n , (21)

of the training targets,

MSEnaive =
1

Ntst

Ntst∑
n=1

(t̂naive − ttstn )2. (22)

The degree of improvement (expressed in percentages) of the model over the Naive pre-
dictor is quantified by the improvement over Naive (ION) measure

ION =
MSEnaive −MSE

MSEnaive
· 100%. (23)

ION is closely related to squared multiple correlation that uses variance in test targets
instead of MSEnaive

1.

3.2 Datasets

We worked with two datasets:

• Dataset I is a set of 6912 compounds together with their LogP values that is freely
available on the Internet. 10% of the set was used as a test set and, when needed,
another 10% was set apart as a validation set for model selection. The remaining
data was used as a training set.

• Dataset I+II consists of Dataset I augumented by Dataset II, a new set of 226
compounds whose LogP values were measured at Pfizer. Dataset II served as a
completely blind test set for models trained on the whole of Dataset I2.

Compounds in both datasets were coded by Pfizer as 14-dimensional real-valued vec-
tors. For the experiments involving neural networks, the Netlab toolbox18 was used.

The experimental results for sets Dataset I and Dataset I+II are presented in Tables
1 and 2, respectively.

3.3 Discussion

For laboratory chemists the key question is which method of calculating logP gives the
most accurate results. It is vital that this accuracy is evaluated on unseen data, since
there is no point in using a predictive model if the true value has already been measured.
We compared our results for Dataset I with those of four commonly used commercial
methods for LogP prediction: ClogP,19 (PC Models Version 4.71 implemented in the
Daylight System) AlogP,20,21 (implemented in Cerius2) a multilinear regression of IAFs,

1Variance in test targets can be viewed as MSE of a simple predictor always predicting the mean of the test
targets. Usually the variance over the training targets is close to that of the test targets, in which case squared
multiple correlation can be interpreted as measuring ION

2When needed, 10% of Dataset I was set apart as a validation set for model selection.

11



Table 1: Experimental results on Dataset I.

Dataset I
model selected
class MSE ION model

Naive 2.690 0 Naive

LR 0.799 70.3 LR
LSR 0.717 73.3 LSR
LQR 0.740 72.5 LQR
MLP 0.641 76.2 Nhid = 15
MLP-ARD 0.611 77.3 Nhid = 15
GP 0.601 77.7 σ2 = 40

KNNR 0.918 65.9 K=4
RT 0.737 72.6 LR, N=21, L=11
HME 0.658 75.5 BF=2, D=3

and MlogP22 (an in-house implementation). These systems are based on much more
complex molecular representations than the 14 variables used in our models. For example,
the ClogP algorithm breaks down a molecule into fragments, each of which is assigned
a value in a weighted sum. Correction factors (e.g. bond types, branching at isolated
carbon atoms) and interaction factors (e.g. aliphatic proximity and π-bonds) are then
used to modify the initial estimate.

The results for the benchmark algorithms on Datasets I and I+II are given in Table 3.
The results seem to show a clear advantage for the ClogP method on Dataset I, but
it has to be stressed that these compounds have been used as part of the training set
for both the ClogP method and the multilinear regression of IAFs. Hence they should
be considered as training set performance, rather than true generalisation performance.
The test results on Dataset I+II are based entirely on 226 compounds of pharmaceutical
interest that were not used for training any of the methods in this paper (or the benchmark
algorithms) and are thus much more representative of the performance of each technique
on new data. A comparison of the ION values with Table 2 shows that hierarchical
mixtures of experts and regression trees outperformed all the standard methods, while
the multi-layer perceptron and Gaussian processes performed better (all equal) than all
but ClogP. The large worsening in ION on the test set for ClogP is a sign that the model
is significantly over-fitted to its training data. This can be compared with the machine
learning algorithms used in this paper, whose performance on the test set is comparable
to that on the training set.

4 Conclusions

1. The novel compound representations we used are relatively simple, yet can lead to
results comparable to those of commercial state-of-art products operating on more
complicated molecular representations. This is particularly clear when comparing

12



Table 2: Experimental results on Dataset I+II.

Dataset I+II
model selected
class MSE ION model

Naive 4.075 0 Naive

LR 1.190 70.8 LR
LSR 1.084 73.4 LSR
LQR 1.163 71.5 LQR
MLP 1.075 73.6 Nhid = 15
MLP-ARD 1.119 72.5 Nhid = 15
GP 1.074 73.6 σ2 = 50

KNNR 1.738 57.3 K=6
RT 0.979 76.0 LR, N=21, L=11
HME 0.953 76.6 BF=2, D=3

Table 3: Results of four commonly used methods for LogP prediction.

Dataset I Dataset I+II
method MSE ION MSE ION

ClogP 0.175 93.5 1.023 74.9
AlogP 0.550 79.5 1.164 71.4
MlogP 2.109 21.6 1.088 73.3
IAF 1.318 51.0 1.077 73.6

the generalisation performance on previously unseen compounds; this is precisely
the situation of most value to working chemists.

2. Advanced regression tools such as hierarchical mixtures of experts (HME) operating
on the novel representation achieve results comparable with those of more complex
and expensive state-of-art products.

3. Local regression models tend to out-perform global regression models.

There is clearly scope to improve these results further, both by increasing the size of
feature set used as inputs, and by developing further the regression models. We have
a particular interest in taking the local modelling further by combining it with hierar-
chical visualisation techniques.23 Preliminary results with this combined model are very
promising.

13



References

1. Lipinski, C.; Lombardo, F.; Dominy, B.; Feeney, P. Advanced Drug Delivery Reviews
1997, 23, 3–25.

2. Sangster, J. Octanol-Water Partition Coefficients: Fundamentals and Physical Chem-
istry; Wiley Series in Solution Chemistry, Vol. 2 Wiley: , 1997.

3. Mannhold, R.; van de Waterbeemd, H. J. Computer-Aided Mol. Design 2001, 15,
337–354.

4. Lösel, J. Interaction Fingerprints – a new descriptor for noncovalent interactions
around functional groups. In MGMS ; 1998.

5. Bishop, C. M. Neural Networks for Pattern Recognition; Oxford University Press:
1995.

6. Golub, G. H.; van Loan, C. F. Matrix Computations; Johns Hopkins University Press:
Baltimore, 1996.

7. Hornik, K.; Stinchcombe, M.; White, H. Neural Networks 1989, 2, 359–366.

8. Stinchecombe, M.; White, H. Universal approximation using feed-forward networks
with non-sigmoid hidden layer activation functions. In Proceedings of the International
Joint Conference on Neural Networks, Vol. 1; IEEE: San Diego, 1989.

9. Hornik, K. Neural Networks 1991, 4, 251–257.

10. Møller, M. Neural Networks 1993, 6, 525–533.

11. MacKay, D. J. C. Neural Computation 1992, 4, 448–472.

12. Neal, R. M. Bayesian Learning for Neural Networks; Lecture Notes in Statistics 118;
Springer-Verlag: New York, 1996.

13. Williams, C. K. I. Prediction with Gaussian Processes: from Linear Regression to
Linear Prediction and Beyond. In Learning and Inference in Graphical Models; Jor-
dan, M. I., Ed.; Kluwer: Dordrecht, 1998.

14. Csató, L.; Opper, M. Neural Computation 2002, 14, 641-668.

15. Jacobs, R. A.; Jordan, M. I.; Nowlan, S. J.; Hinton, G. E. Neural Computation
1991, 3, 79–87.

16. Torgo, L. Functional models for regression tree leaves. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML-97); Morgan Kaufmann Publishers:
1997.

17. Torgo, L. Inductive Learning of Tree-vased Regression Models, Thesis, University of
Porto, 1999.

18. Nabney, I. T. Netlab: Algorithms for Pattern Recognition; Advances in Pattern Recog-
nition Springer-Verlag: London, 2002.

19. Hansch, A.; Leo, A. Substituent Constants for Correlation Analysis in Chemistry and
Biology; Wiley Interscience Wiley: New York, 1979.

20. Ghose, A.; Crippen, G. J. Comput. Chem. 1986, 7, 565–577.

21. Viswanadhan, V.; Ghose, A.; Revankar, G.; Robins, R. J.Chem.Inf.Comput.Sci.
1989, 29, 163–172.

14



22. Moriguchi, I.; Hirono, S.; Liu, Q.; Nakagome, I.; Matsushita, Y. Chem. Pharm.
Bull. 1992, 40, 127–130.

23. Tiňo, P.; Nabney, I. T. IEEE J. Pattern Analysis and Machine Intelligence 2002,
24, 639–656.

15


