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Visualisation of Tree-Structured Data through
Generative Topographic Mapping

Nikolaos Gianniotis, Peter Tiňo

Abstract—We present a probabilistic generative approach for
constructing topographic maps of tree-structured data. Our
model defines a low dimensional manifold of local noise models,
namely (hidden) Markov tree models, induced by a smooth
mapping from low dimensional latent space. We contrast our
approach with that of topographic map formation using recursive
neural-based techniques, namely the Self-Organising Map for
Structured Data (SOMSD) [1]. The probabilistic nature of our
model brings a number of benefits: (1) naturally defined cost
function that drives the model optimisation; (2) principled model
comparison and testing for overfitting; (3) a potential for trans-
parent interpretation of the map by inspecting the underlying
local noise models; (4) natural accommodation of alternative local
noise models implicitly expressing different notions of structured
data similarity. Furthermore, in contrast with the recursi ve
neural-based approaches, the smooth nature of the mapping from
the latent space to the local model space allows for calculation
of magnification factors - a useful tool for the detection of data
clusters. We demonstrate our approach on three datasets: a toy
dataset, an artificially generated dataset and on a dataset of
images represented as quadtrees.

Index Terms—Topographic mapping, structured data, hidden
Markov tree model.

I. I NTRODUCTION

T OPOGRAPHIC visualisation is a valuable tool for the
analysis and interpretation of multivariate data. The Self

Organising Map (SOM) [2] is one of the most celebrated
tools that is of vast assistance to this task and has become
a paradigm inspiring numerous extensions. SOM is a type
of neural network that allows a nonlinear projection of data
residing in a high dimensional space to a lower dimensional
projection space. The lower dimensional space is a discrete
lattice of neurons (for visualisation purposes a two dimen-
sional lattice). According to the SOM paradigm, the formation
of the map is realised by iterating two steps of competition
and cooperation among the neurons. The competition step
involves the presentation of an input pattern and calculation
of the response of all neurons. The neurons are associated
with weights (codebook vectors). The response of a neuron
is measured as the Euclidean distance between its weight and
the input pattern. The neuron with the greatest response is the
winner of the competition. In the cooperation step, the winning
neuron is appropriately adjusted to increase its future response
to that particular pattern. Moreover, neurons that belong to the
neighbourhood (on the lattice) of the winner are also adjusted
to increase their future response, albeit proportionally to a
(usually) exponentially decaying distance from the winner.
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The heuristic nature of SOM inherently brings about certain
limitations, for example the lack of a principled cost function
(although see developments in e.g. [3]1 ). Comparison of map
formations resulting from different initialisations, parameter
settings, or optimisation algorithms can be problematic.

The Generative Topographic Map (GTM) algorithm [4] was
introduced as a principled probabilistic analog to SOM. As a
generative model GTM realises a “noisy” low dimensional
manifold in a high dimensional data space. It can be used
to model a given training dataset by adjusting its parameters
so that the model-generated data lying around the noisy low
dimensional manifold match (in the distribution sense) the
training data. GTM is a mixture of local generative models
(spherical Gaussians) that adheres to topological constraints
(constraints on the values that means of the Gaussians can
take). A simple example is that of requiring that the means
belong to a straight line. This could be useful if we be-
lieved that the data are intrinsically one-dimensional andare
adequately represented by a “noisy line”. This situation is
illustrated in Fig.1(a). The line on which the means of local
Gaussians are placed can be viewed as an image of a one-
dimensional interval under a linear (affine) map. Alternatively,
one may want to constrain the Gaussian means to lie on a
smooth curve. In that case, the one-dimensional interval would
be embedded in the high dimensional data space through a
smooth non-linear mapping. This is illustrated in Fig.1(b). The
GTM belongs to the class of so called latent-variable models
with latent space being the one-dimensional interval through
which the Gaussian means are constrained.

SOM has been extended in various ways to deal with
non-vectorial forms of data, such as sequences or trees [5],
[6]. Several modifications of SOM equip standard SOM with
additional feed-back connections that allow for natural pro-
cessing of recursive data types. Typical examples of such
models are Temporal Kohonen Map [7], recurrent SOM [8],
feedback SOM [9], recursive SOM [10], merge SOM [11],
SOM for structured data [1] and contextual SOM for structured
data [12]. These models rely on the same principles of
competition and cooperation that govern the SOM formation.
Again, formulation of a principled cost function is problematic
(although see developments in [13] along the lines of [3]). Also
problematic is explanatory interpretation of the visualisation
results in such approaches. Clusters may be formed on the map
that indicate some close relationship between the concerned
structured data items, but there is no explanation on what the

1Heskes [3] suggests a modified version of SOM by redefining thecodebook
vector (winner unit) associated with an input as the one closest to the input
with respect toaverageddistance across its local neighbourhood on the
codebook lattice.
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Fig. 1. Spherical Gaussians constrained on a one-dimensional line (a), spherical Gaussians constrained on a one-dimensional curve (b). Note that the straight
line (latent space) in (b) does not belong to the data space and is only plotted in the same figure as its image for convenience.

characteristics of the clusters are. Of course one can inspect
the individual data points to deduce those relationships once
the map has been formed, but reasoning about mapping of new
data items (not used for model fitting) can be still challenging.

In this paper, we extend GTM to the visualisation of tree-
structured data. We contrast this extension with recursive
neural-based approaches and point out potential benefits of
a principled probabilistic model-based formulation. For exam-
ple, the generative nature of our model formulation provides
us with an explanatory insight as to how the data might
have been generated. By observing the generative process and
its parameters we can understand characteristics of clusters
of projected data items and/or discern other patterns in the
data. Also, the smooth character of the embedding map from
the latent space into the model space enables us to use
techniques of information geometry to characterise areas on
the map of potentially clustered data by calculating local
expansion/contraction rates in the statistical manifold of local
models. Such knowledge is highly desirable for topographic
map understanding, but is impossible to obtain in a principled
manner form recursive extensions of SOM. As a candidate
member of the recursive neural-based techniques, we use the
SOM for structured data (SOMSD) [1].

The paper is organised as follows. Section II gives a brief
overview of recursive neural-based approaches for visualising
structured data. In Section III we present the GTM algorithm.
The class of local generative models used in this paper, the
hidden Markov tree model, is introduced in Section IV and its
use in extending the GTM to tree-structured data is presented
in Section V. We present our experiments and results in
Section VI. As a demonstration of the ease of extensibility
of this approach, in Section VII we present another local
generative model, the Markov tree model, that is used to derive
an alternative extension of GTM in the same setting of tree-
structured data. Section VIII introduces magnification factors
for the GTM extension based on hidden Markov tree models,
a useful tool for identifying clusters on the visualisationplot,
and experimental results are presented in Section VIII-C.
Section IX considers magnification factors for the alternative

extension of GTM. A discussion of the presented work follows
in Section X. Commonly used notation is summarised in Table
IV.

II. RECURSIVE NEURAL APPROACHES TO TOPOGRAPHIC

MAP FORMATION OF STRUCTURED-DATA

The original SOM [2] has inspired various extensions that
deal with data of non-vectorial types. An excellent overview
of those under a general framework can be found in [13]. The
following techniques try to capture the structure of the data, by
introducing a notion ofcontextthat is updated in a recursive
manner and is supposed to represent data items processed until
the current processing step. Neurons are arranged on a regular
2-dimensional lattice (for visualisation purposes). The same
notions of a learning rateη and a neighbourhood functionh
defined on pairs of neurons on the map, are inherited from
SOM:

h(i, I(t)) = e(−
dist(i,I(t))

σ2 ), (1)

where dist is the distance of neuronsi and I(t) on the
map andσ controls the neighbourhood size.I(t) denotes the
winner neuron at timet. Parametersη and σ are decreased
with time to allow for topographic convergence as in SOM
[2].

The Temporal Kohonen Map (TKM)[7], Recurrent SOM
(RSOM) [14] and Recursive SOM (RecSOM)[10] are
SOM extensions designed for the processing of sequences
[s1, s2, . . . , sT ] over R

d. In TKM and RSOM each neuron
i is equipped with a weight vectorwi ∈ R

d. In each neuron,
one input item is processed at each time stept in the context
given by the past activations of that neuron. When a new
input is presented, the neurons do not lose their past activity
immediately as in SOM, but the context information decays
gradually. The gradual decay is controlled by a parameter
α ∈ (0, 1). However, RSOM modifies TKM by summing
the deviation of the weightswi as opposed to distances. The
corresponding activations are listed in Table I.

RecSOM takes into account the context of inputs by explic-
itly augmenting each uniti with a context vectorci ∈ R

q that
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Fig. 2. Activation for labelu3 of a tree-pattern: Activation is calculated bottom up, thusthe children of input node3 are processed beforehand. Since nodes
4 and5 are leaf nodes their contexts are filled in with the specialnil vector. The winner neuronsI(4) andI(5) of the input labelsu4, u5 of nodes4 and
5 respectively are supplied as the context for node3.

TABLE I
ACTIVATIONS FOR SOM EXTENSIONS.

Name Activation

TKM yi(t) = α‖st − wi‖2 + (1 − α)yi(t − 1)

RSOM yi(t) = α(st − wi) + (1 − α)yi(t − 1)

RecSOM yi(t) = α‖st − wi‖2 + β‖[exp(−y1(t − 1)),

. . . , exp(−yN (t − 1))]T − ci‖2

stores the activationsy(t−1) = [y1(t−1) . . . yN (t−1)]T of all
the units in the map at the previous time step. Its activation
function in Table I uses two positive constantsα and β to
control the contribution of the weight and context vectors.
RecSOM has two Hebbian update rules, one for the weights
wi and one for the contextci, with their own learning rates.

SOM for Structured Data (SOMSD)presented in [1] is
an extension of SOM designed to process patterns expressed
as directed acyclic graphs (trees and sequences are special
cases). Each nodev of a graph pattern has a labeluv ∈ R

d.
Neuronsi are arranged again on a rectangular lattice structure.
The position of each neuroni on the lattice is described
by a coordinate vectorci. For the processing of a dataset
of graphs of maximum out-degreek, each neuroni besides
its weight vectorwi ∈ R

d is supplied with k additional
coordinate weight vectorsc(i)

j ∈ R
2 with j = 1, . . . , k.

Similarly to RecSOM, these additional weight vectors try to
capture the expected context of the nodev currently processed.
This context itself is formed by first calculating the winning
neuronsI(j) of the k children nodesj = 1, 2, .., k of node
v. The coordinate vectorscI(j) of the winning neurons are
then collected to form the context

[

cI(1), cI(2), . . . , cI(k)

]

. The
complete augmented input to SOMSD is formed by the label of
the current node and the context:

[

uv, cI(1), cI(2), . . . , cI(k)

]

.
The activation of uniti is calculated as:

yi(v) = µ1‖uv−wi‖
2+µ2(‖cI(1)−c

(i)
1 ‖2+· · ·+‖cI(k)−c

(i)
k ‖2),

(2)
where µ1 and µ2 are positive constants that control the
contribution of the input labeluv and the context vectorsc(i)

j .
Since, processing a node requires knowing the winning

neurons of its children nodes, processing of a graph must
proceed in a bottom-up fashion: before a nodev can be
processed all of its children must be already processed. This is
illustrated in Fig.2. Therefore, processing starts from the leaf
nodes (nodes without children). When processing a leaf node,
its context vectors are set to some default value representing
the empty treenil. The same applies to nodes with less than
k children where the coordinate vectorscj of the missing
children are substituted bynil. The coordinate vector ofnil

is typically chosen to be(−1, . . . ,−1), so that it resides
outside the lattice. SOMSD is trained in a Hebbian fashion
and as is usual in SOM-type formulations, the learning rate
and the neighbourhood radius decay gradually. The winner is
the neuron with the closest weight and context vectors to the
augmented input:

I(v) = argminiyi(v). (3)

If µ1 is set to 1 andµ2 is set to 0, SOMSD reduces to the
standard SOM algorithm. Also note that fork = 1, SOMSD
processes sequences.

III. OVERVIEW OF THE GENERATIVE TOPOGRAPHICMAP

Let us consider a dataset of staticd-dimensional vectors
T =

{

t(1), . . . , t(N)
}

that are independently generated from
some underlying distribution inRd. We model the density with
a mixture ofC spherical Gaussians:
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Fig. 3. GTM mapping from latent points to the means of Gaussian components. Adapted from [4].

p(T ) =

N
∏

n=1

M
∑

m=1

P (c)p(t(n)|c)

=

N
∏

n=1

C
∑

c=1

P (c)N (t(n); µc, σc), (4)

where P (c) are the mixing coefficients,µc the means of
the Gaussians andσc the standard deviations. For brevity of
presentation we shall assume thatP (c) = 1

C and that the
varianceσ2

c = σ2 is fixed. This model is an unconstrained
model in the sense that its parameters, the means, do not
adhere to any constraints and can move freely. This model
which is useful for density modelling can be further extended
to capture topographic organisation of the data points.

Topographic organisation can be imposed by requiring that
the means of the mixture model reside on an image (under a
smooth mapΓ) of a continuous Euclidean latent spaceV of
dimensionq < d (q = 2 for the purposes of visualisation).
The non-linear mappingΓ : V → R

d takes the form [4]:

Γ(x) = Wφ(x), (5)

which can be viewed as a RBF network with basis functions
φ(.) and weight matrixW . FunctionΓ maps each latent point
x ∈ V to a meanµ of the model in a non-linear manner.
SinceΓ is smooth, the projected points will retain their local
neighbourhood in the higher dimensional data space. For
tractability reasons we discretize the spaceV by a rectangular
grid of pointsxc, c = 1, . . . , C. The prior distribution on the
latent space is then:

p(x) =
1

C

C
∑

c=1

δ(xc − x), (6)

where δ(x) denotes the Dirac delta function, which is
δ(x) = 0, x 6= 0. Mapping Γ from the latent points to the
means of the Gaussian components is illustrated in Fig.3. We
can now formulate GTM as a mixture of Gaussians constrained
on Γ-images of latent pointsx ∈ V . The likelihood function
reads:

L= p(T ) =

N
∏

n=1

∫

x
p(x)p(t(n)|x)dx

=

N
∏

n=1

C
∑

c=1

p(xc)p(t(n)|xc)

=

N
∏

n=1

C
∑

c=1

p(xc)N (t(n); WΦ(xc), σ)

=

N
∏

n=1

C
∑

c=1

p(xc)N (t(n); µc, σ)

=
1

C

N
∏

n=1

C
∑

c=1

N (t(n); µc, σ)

∝
N
∏

n=1

C
∑

c=1

N (t(n); µc, σ). (7)

Training the GTM proceeds by maximising the likelihood
given the data,L, via the Expectation-Maximisation (E-M)
algorithm [4]. Having trained the model, it can be used for
visualising the data. To that end we note that the probability
of a data pointt(n) given a latent pointx is:

p(t(n)|x) = N (t(n); µx, σ). (8)

We can reverse this probability, using Bayes’ theorem, to
obtain the posterior of the latent pointx given t(n):

p(x|t(n)) =
p(t(n)|x)P (x)

p(t(n))
=

p(t(n)|x)P (x)
∑C

c′=1 p(t(n)|xc′)P (xc′)

=
p(t(n)|x)

∑C
c′=1 p(t(n)|xc′)

=
N (t(n); µx, σ)

∑C
c′=1 N (t(n); µxc′

, σ)
.

(9)

We can then represent each data pointt(n) with a pointp(n)

in the latent space given by the expectation of the posterior
distribution over all latent pointsx:

p
(n) =

C
∑

c=1

p(xc|t
(n))xc. (10)
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IV. A N OVERVIEW OF HIDDEN MARKOV TREE MODELS

We extend GTM to the visualisation of tree structures by
requiring that the points in the latent space generate the
parameters of hidden Markov tree models (HMTMs).

A treey is an acyclic directed graph and as such it consists
of a setUy = {1, 2, ..., Uy} of nodesu ∈ Uy , a set of directed
edges between the nodes (each edge goes from a parent node
to a child node) and a set of labelsou ∈ R

d on nodesu.
Each nodeu has a single parentρ(u) (apart from the node
number one, the root node) and each node has a set of children
ch(u) (apart from the leaf nodes). Furthermore we designate
subtrees. A subtree rooted at nodeu of a treey is referred to
by yu. Hence, the entire treey is equivalent to the subtreey1

rooted at its root. Moreover,y1/u denotes the entire tree except
for the subtree rooted at nodeu. This notation is illustrated in
Fig.4(a).

We also introduce a model for labels of the trees that cap-
tures the structure of the nodes. We associate with each nodeu
a discrete random variableQu which can be in one ofK (un-
observable) states. The variableQu stochastically determines
the label for nodeu. Each statek = 1, 2, ..., K is associated
with a parametrised emission distributionf(.; k) that produces
a label. So given a tree structurey, the model can label each
of the nodes depending on what stateQu ∈ {1, 2, ..., K} each
nodeu is in. What states will be entered and ultimately what
labels will be produced depends on the structure of the model.
By structure we mean a joint probability distribution over state
variables that characterises the relationship between statesQu

of all nodesu ∈ Uy . The simplest structure is the one where
all the states are independent from each other. In this case
a node can enter any state regardless of the state of any
other node and the joint distribution simplifies to a product
of probabilities. Such a simple structure, however, does not
capture the structural information in the trees induced by the
parent-child relationship of the nodes. A more appropriate
structure is to make each nodeu dependent on its parent
ρ(u). Thus, the stateQu is conditioned on the stateQρ(u) of
its parent. Such a structure implements a first-order Markov
property. Moreover, we assume that when the model labels
the tree it does not reveal the statesQu entered. Thus, the
underlying process that generates a treey is hidden from us,
and only the labelsou, u ∈ Uy are observed. This is illustrated
in Fig.4(b).

The resulting model, called the hidden Markov tree model
(HMTM) [15], is an extension of the hidden Markov model
(HMM) [16] operating on sequences. HMTM models tree
structurey by expressing a joint probability density for the
set of hidden state variablesQ1, . . . , QUy , each defined on
the support{1, 2, . . . , K}, and the set of labelso1, . . . , oUy
in R

d. The model is calledhiddenbecause the states cannot
be directly observed, whileMarkov refers to the fact that the
current state of a node depends only on that of its immediate
predecessor (parent).

An HMTM, in the same fashion as an HMM, is defined by
three sets of parameters:

• initial probability distributionπ = {p(Q1 = k)}k=1,...,K

– each element expressing the probability of the root node

being in statek ∈ {1, 2, . . . , K}.
• transition probability distributionT = {p(Qu =

k|Qρ(u) = l)}l,k=1,...,K – each element expressing the
probability of transiting from parentρ(u) in statel to the
child nodeu in statek. This probability is assumed to be
position-invariant.

• the emission parameters that parametrise Gaussian dis-
tributions, f(.; µk,Σk), one for each statek. Here,
µk ∈ R

d and Σk are the mean and covariance matrix,
respectively, of the Gaussian associated with emission
process in statek.

The Markovian dependencies of hidden states are realised
by the following conditions:

• Given the parent state, the child state is conditionally
independent of all other states:p(Qu = qu|{Qv =
qv}v 6=u) = p(Qu = qu|Qρ(u) = qρ(u)).

• Given the (hidden) state of a node, the corresponding
label is conditionally independent of all other variables in
the tree,p(Ou = ou|{Ov = ov}v 6=u, {Qv = qv}v 6=u) =
p(Ou = ou|Qu = qu).

Thus, the HMTM distribution can be factorised as follows:

p(y, Q1 = q1, . . . , QUy = qUy ) =

p(Q1 = q1)

(

∏

u∈Uy ,u6=1

p(Qu = qu|Qρ(u) = qρ(u))

)

×

(

∏

u∈Uy

p(Ou = ou|Qu = qu)

)

. (11)

Henceforth, for brevity we shall drop stating both random
variables and their instantiations, keeping only the latter.

Similarly to the forward-backward algorithm for HMM [16],
the likelihood of an HMTM can be efficiently computed by
the upward-downward algorithm. The motivation of this algo-
rithm stems from the observation that a direct calculation of
likelihood without knowledge of the hidden states requiresan
exponential number of steps. The upward-downward algorithm
defines the following quantities:

αk(u) = p(qu = k, y1/u) upward probability,

βk(u) = p(yu|qu = k) downward probability.

The model likelihood, given a treey, can then be calculated
using any nodeu ∈ Uy as:

p(y) =
K

∑

k=1

p(y, qu = k) =
K

∑

k=1

βk(u)αk(u). (12)

V. HMTM S AS NOISE MODELS FORGTM

This Section presents an extension of GTM from vectorial
to tree structured data in the spirit of [17], where GTM is
extended to visualise sequential data. Analogously to GTM,
each latent pointx ∈ V is mapped to an HMTM via a
smooth non-linear mappingΓ. Since the neighbourhood of
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Fig. 4. Notation in tree structures (a), Example of an HMTM where the hidden statesQ (states in grey) emit labelso (b).

Γ-images ofx is preserved, the resulting HMTMs will be
topographically organised. Here the observations are no longer
fixed-length vectorst, but treesy, as described in Section IV.
For each latent pointx we calculate the likelihoodp(y|x)
(see (12)). Each data itemy is subsequently mapped to the
location of the map where thep(y|x) is expected to be high.

The starting point of our formulation is the form of a
standard mixture model. However, this time the components
are not spherical Gaussians as in GTM, but HMTMs. As-
suming that the given treesT = {y(1), y(2), ..., y(N)} are
independently generated, the likelihood is expressed as:

L =
N
∏

n=1

p(y(n)) =
N
∏

n=1

C
∑

c=1

p(y(n)|xc)p(xc), (13)

where the mixing coefficients can be ignored asp(x) = 1
C .

Denote the number of nodesUy(n) of the n-th treey(n) by
Un and consider a regular grid{xc}C

c=1 in the latent spaceV .
The noise modelsp(y(n)|xc) are expanded using (11):

L∝
N
∏

n=1

C
∑

c=1

∑

q∈{1,2,...,K}Un

p(q1|xc)

Un
∏

u=2

p(qu|qρ(u), xc)

×
Un
∏

u=1

p(o(n)
u |qu, xc). (14)

In order to have the HMTM components topologically
organised — e.g. on a two-dimensional equidistant grid —
we constrain the mixture of HMTMs,

p(y) =
1

C

C
∑

c=1

p(y|xc), (15)

by requiring that the HMTM parameters be generated
through a parameterisedsmoothnonlinear mapping from the
latent space into the HMTM parameter space:

πc = {p(q1 = k|xc)}k=1,...,K

= {gk(A(π)φ(xc))}k=1,...,K , (16)

T c = {p(qu = k|qρ(u) = l, xc)}k,l=1,...,K

= {gk(A(T l)φ(xc))}k,l=1,...,K , (17)

Bc = {µ
(c)
k }k=1,...,K

= {A(Bk)φ(xc)}k=1,...,K , (18)

where
• the functiong(·) is the softmax function, which is the

canonical inverse link function of multinomial distribu-
tion andgk(·) denotes thek-th component returned by
the softmax, i.e.

gk

(

(a1, a2, ..., aq)
T
)

=
eak

∑q
i=1 eai

, k = 1, 2, ..., q.

Here the softmax function “squashes” the values of
A(π)φ(xc) and A(T l)φ(xc), which are unbounded,
to values in the range[0, 1]. This is necessary as the
elements inπc andT c are probabilities.

• xc ∈ R
2 is thec-th grid pointin the latent spaceV ,

• φ(·) = (φ1(·), ..., φM (·))T , φm(·) : R
2 → R a vector

function consisting ofM nonlinear smooth basis func-
tions (typically RBFs),

• the matricesA(π) ∈ R
K×M , A(T l) ∈ R

K×M and
A(Bk) ∈ R

d×M are the free parameters of the model.
Note that we decided not to directly model the covariance

of the emission distributions. We will elaborate on this point
later.

We require the likelihood to be maximised. This can be
achieved by adopting an E-M formulation of the problem
by writing the (complete data) likelihood in terms of hidden
indicator variablesz:
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zn
c =

{

1, if tree y(n) was generated by modelc;
0, otherwise.

zn
u,k,c =







1, if tree y(n) was generated by modelc
and nodeu was in statek;

0, otherwise.

zn
u,k,l,c =















1, if tree y(n) was generated by modelc,
nodeu was in statek and its parent
node is in statel;

0, otherwise.

The complete data likelihood and its logarithm read:

L̄=

N
∏

n=1

C
∏

c=1

[ K
∏

k=1

p(q1 = k|xc)
zn

c zn
1,k,c

×
Un
∏

u=2

K
∏

l=1

K
∏

k=1

p(qu = k|qρ(u) = l, xc)
zn

c zn
u,k,l,c

×
Un
∏

u=1

K
∏

k=1

p(o(n)
u |qu = k, xc)

zn
c zn

u,k,c

]

,

log L̄=

N
∑

n=1

C
∑

c=1

zn
c

[

zn
1,k,c

K
∑

k=1

log p(q1 = k|xc)

+

Un
∑

u=2

K
∑

l=1

K
∑

k=1

zn
u,k,l,c log p(qu = k|qρ(u) = l, xc)

+

Un
∑

u=1

K
∑

k=1

zn
u,k,c log p(o(n)

u |qu = k, xc)

]

. (19)

Following the E-M formulation, we maximise the expected
complete data log-likelihood with respect to the posteriordis-
tribution of the hidden (indicator) variables, given the data and
current parameter values. In the E-step, these posteriors (and
their expectations) over the hidden variables are estimated:

E[zn
c ] = p(xc|y

(n)), (20)

E[zn
u,k,c] = p(qu = k|y(n), xc), (21)

E[zn
u,k,l,c] = p(qu = k, qρ(u) = l|y(n), xc). (22)

The above probabilities are obtained by the upward-
downward algorithm as calculated in [18]. We can now express
the expected complete-data log-likelihood of the model as:

E[log L̄] =

N
∑

n=1

C
∑

c=1

p(xc|y
(n))

[

K
∑

k=1

p(q1 = k|y(n), xc) log p(q1 = k|xc)

+

Un
∑

u=2

K
∑

l=1

K
∑

k=1

p(qu = k, qρ(u) = l|y(n), xc)

× log p(qu = k|qρ(u) = l, xc)

+

Un
∑

u=1

K
∑

k=1

p(qu = k|y(n), xc)

× log p(o(n)
u |qu = k, xc)

]

. (23)

In the M-step, the derivatives of the expected log-likelihood
are calculated with respect to the parameters of the model:

∂E[log L̄]

∂A(π)
,
∂E[log L̄]

∂A(T l)
,
∂E[log L̄]

∂A(Bk)
.

This results in the following update equations:

Elementαk,i in matrix A(π):

∂E[log L̄]

∂αk,i
=

N
∑

n=1

C
∑

c=1

p(xc|y
(n))φi(xc)

×

(

p(q1 = k|y(n), xc) − p(q1 = k|xc)

)

,

(24)

Elementαl
k,i in matrix A(T l):

∂E[log L̄]

∂αl
k,i

=

N
∑

n=1

C
∑

c=1

p(xc|y
(n))φi(xc)

×
Un
∑

u=2

(

p(qu = k, qρ(u) = l|y(n), xc)

− p(qu = k|qρ(u) = l, xc)p(qρ(u) = l|y(n), xc)

)

,

(25)

Elementαl
k,i in matrix A(Bl):

∂E[log L̄]

∂αl
k,i

=

N
∑

n=1

C
∑

c=1

p(xc|y
(n))φi(xc)

×
Un
∑

u=1

(

p(qu = l|y(n), xc)ekΣ
−1
l (o(n)

u − µ
(c)
l )

)

,

(26)

where ek is defined as the row unit-vector which has all
elements equal to zero apart from entryk equal to 1,Σk, k =
1, 2, ..., K are the covariance matrices of the state-conditional
Gaussian emissions.

Regarding the covariance of the emission distribution, we
noticed that higher quality models were obtained when instead
of direct modelling of the covariance through the mapΓ, the
covariance was calculated, in the spirit of [4], at the end of
each M-step using standard update equations:



IEEE TRANSACTIONS ON NEURAL NETWORKS 8

TABLE II
PARAMETERS OFHMTM S FOR CREATING THE TOY DATASET. VARIANCE

WAS FIXED TO σ2 = 1.

Class Initial prob Transition prob Means of emissions

HMTM 1 0.7 0.3
0.9 0.1

0.1 0.9

−1.0

1.0

4.0

2.0

HMTM 2 0.7 0.3
0.9 0.1

0.1 0.9

−2.0

3.0

6.0

0.0

HMTM 3 0.7 0.3
0.1 0.9

0.9 0.1

−1.0

1.0

4.0

2.0

HMTM 4 0.7 0.3
0.1 0.9

0.9 0.1

−2.0

3.0

6.0

0.0

Σ
(c)
k,ij =

N
∑

n=1

p(xc|y
(n))

×
Un
∑

u=1

p(qu = k|y(n), xc)(o
(n)
u,i − µ

(c)
k,i)(o

(n)
u,j − µ

(c)
k,j)

×
1

∑N
n=1 p(xc|y(n))

∑Un

u=1 p(qu = k|y(n), xc)

(27)

wherei, j = 1, 2, ..., d index the elements of the mean and
label vectorsµ ando, respectively, as well as the elements of
the covariance matrixΣ.

After the training, to smooth the covariance structure of
local HMTMs addressed by arbitrary latent points, we recal-
culated the covariance matrices using the following scheme:
Covariance matrixΣk(x) of the HMTM addressed byx ∈ V
is expressed as a convex combination of the corresponding
covariance matrices2 Σ

(c)
k of HMTMs addressed by latent

centresxc, c = 1, 2, ..., C:

Σk(x) =

C
∑

c=1

νc(x)Σ
(c)
k , (28)

where

νc =
exp(−β‖x − xc‖)

∑C
c′=1 exp(−β‖x − xc′‖)

, (29)

and ‖ · ‖ denotes the Euclidean norm onV . The parameter
β > 0 quantifies to what degree local neighbourhoods ofx

are considered.
Here we have setβ = 10, but we have found that the

visualisation plots were similar for a wide range ofβ values. In
practice, compared to the obvious choice of directly parameter-
ising the covariance matrices through a smooth mapping from
the latent space, we found that this scheme leads to superior
models (viewed as density estimators and evaluated on a hold
out set) and hence better visualisation plots.

VI. EXPERIMENTATION

A. Datasets

We have used three datasets in our experiments. The first
dataset is an artificial toy dataset produced by sampling from 4

2note that a convex combination of symmetric positive definite matrices is
again a symmetric positive definite matrix.

TABLE III
CLASSES INTPB DATASET.

Class Symbol Description

A © Policemen with the lowered left arm

B x Policeman with the raised left arm

C * Ships with two masts

D • Ships with three masts

E △ Houses with one upper right window

F ▽ Houses with upper left and lower left window

G ⊳ Houses with two upper windows

H ⊲ Houses with lower left and upper right window

I ⋆ Houses with three windows

J � Houses with one lower left window

K + Houses with no windows

L ♦ Houses with one upper left window

HMTMs with 2 hidden states with two-dimensional Gaussian
emissions of fixed spherical variance, each corresponding to
one artificial class. Each of the4 classes has80 samples. All
patterns have the topology of a binary tree with 15 nodes. The
parameters of the models were set is such a way as to ensure
that it would be impossible to distinguish the classes from the
observations alone, without taking into account the underlying
tree structure. A plot of two-dimensional observations of all
the nodes for all trees is presented in Fig.5(a). The parameters
of the HMTMs are summarised in Table II.

The second dataset consists of benchmark images produced
by theTraffic Policeman Benchmark(TPB) software [19]. The
same software was used to produce a dataset to demonstrate
the functionality of SOM for Structured Data (SOMSD) in
[1]. This software provides an artificial domain for evalu-
ating learning algorithms that process structured patterns. It
produces images that resemble traffic policemen, houses and
ships of different shape, size and colour that are products of
a rule based grammar. Three sample images of each type
are illustrated in the in Fig.6(a), 6(b) and 6(c). Connected
components in each image have a parent-child relationship,
the object located lower and closer to the left edge being the
parent (i.e. the images must be interpreted bottom-up, leftto
right). In Fig.6(d), 6(e) and 6(f) tree representations of the
sample images corresponding to Fig.6(a), 6(b) and 6(c) are
displayed. TPB produces general acyclic graph structures,but
we restricted it to generate only images expressed as trees.
Each node in each tree is labelled with a two-dimensional
vector. This two-dimensional vector is a pair of coordinates
for the centre of gravity of the component that node stands
for. The dataset defines12 classes, each has50 samples, that
are presented in Table III. Fig.5(b) is a plot of the labels of
trees in the dataset. This illustrates what the observed data
looks like if the tree structure is ignored.

The third dataset consists of images interpreted as
quadtrees. A quadtree is a data structure used amongst other
things for storage of images [20]. It is a4-regular treey, i.e.
each parent nodeu has4 childrenvr ∈ ch(u), r = 1, . . . , 4. A
quadtreey stores an image in a recursive manner; the root note
u1 represents the entire image. At the first level of recursion,



IEEE TRANSACTIONS ON NEURAL NETWORKS 9

(a) (b)

Fig. 5. Labels of toy (a) and TPB (b) dataset. Each marker style indicates class membership of the tree to which each label belongs.

the image is partitioned into four equal square quadrants. At
the first level of quadtreey, each nodev ∈ ch(u1) represents
a quadrant, and is labelled by a scalar that expresses the mean
colour intensity of the quadrant. At the next level of recursion,
each quadrant is partitioned further into four quadrants and
their mean colour intensities are stored as labels in the nodes
at the second level of quadtreey. Partitioning continues in this
fashion either until a quadrant becomes a single pixel, or when
a certain criterion is met. Such a criterion can be a functionof
the relative change in mean colour intensity between a node
u and its parentρ(u). We note that quadtrees can represent
only images of a dimension that is a power of2 since images
are progressively divided into smaller square regions. Other
images must be padded with extra pixels or resized in order
to become of appropriate dimension.

The images used here, are taken from the Amsterdam
Library of Object Images (ALOI) database [21]. We selected
72 images of a single object, a rubber duck, photographed
from different viewing angles. The dataset was divided intoa
training and validation set of48 and 24 images respectively.
The images were created by successively rotating the object
by an angle of5◦ degrees and photographing it from each
viewing angle. The images are colour images of dimension
192 × 144 (pixels). We converted the images into grayscale
and resized them into square images of dimensions64 × 64.
The number of grayscale levels was then further reduced to
4 levels, which allows enough detail to be discerned relative
to the original images. The values of the4 quantisation levels
were determined by first collecting the grayscale intensities
of all pixels from all images, and then using the k-means
algorithm to select4 centres in the space of pixel intensities.

All three datasets were normalised in each dimension to
zero mean and unit standard deviation.

B. Training

The lattice in the latent spaceV = [−1, 1]2 was a 10x10
regular grid (i.e.C = 100) and the RBF network consisted
of M = 17 basis functions; 16 of them were Gaussian radial
basis functions of varianceσ2 = 1 centred on a 4x4 regular
grid, and one was a constant functionφ17(xc) = 1 intended to
serve as a bias term (analogous to the bias in neural networks).

The state-conditional emission probability distributions
were modelled as two-dimensional spherical Gaussians. Dur-
ing training the emission covariance was updated according
to (27). Parameters were initialised randomly with uniform
distribution in [−1, 1].

We employed scaled conjugate gradient for optimising the
cost function (23). The gradient was calculated using (24)–
(26).

C. Results and discussion

In Fig.7(a) we see topographic organisation achieved by the
GTM-HMTM of the toy dataset forK = 2. The covariance
of the emission distribution was initially set toΣk = 2I
for both statesk = 1, 2 where I stands for the identity
matrix. We also tried initialising it withΣk = 2I, 3I, 5I with
similar success. Each point on the plot represents an input
pattern (tree) and four different markers correspond to thefour
generative classes used to construct the data set. Trainingis
completely unsupervised and class markers are used only after
the training when plotting the projections. A clear topographic
organisation of classes has been achieved - there is an evident
trend of patterns of the same class to belong to the same
cluster.

Fig.7(b) shows the visualisation of the traffic policeman
benchmark (TPB) data set produced by GTM-HMTM with
K = 2. The initial covariance matrix for the emission
distribution was set toΣk = 2I for both statesk = 1, 2. We
also tried initialising the covariance matrix withΣk = 1I, 3I
which yielded similar results andΣk = 0.5I which failed to
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Fig. 6. Sample images from TPB in (a), (b), (c) and their corresponding tree representations in (d), (e), (f).

(a) (b)

Fig. 7. Visualisation of toy (a) and TPB (b) dataset using GTM-HMTM.

achieve the same level of topographic organisation. Moreover,
we attempted training forK = 3, 4, but with suboptimal
results. One problem that makes training difficult is that as
the number of states (and consequently the number of free
parameters of the model) increases, it becomes more vital for
an E-M trained model to use a good initialisation strategy for
the weights. In GTM the initial weights are determined by the
linear projection space obtained through principal component
analysis [4]. In our case we do not have such a luxury. One
way of dealing (at least to certain degree) with the initialisation
problem would be to abandon the E-M framework and adopt
a more stable parameter fitting strategy (e.g. Bayesian), but

this is out of the scope of the present paper.

In Fig.7(b), next to each cluster a representative image
is displayed. The model has clearly achieved a level of
topographic organisation. It is interesting to note the emerging
sub-clusters. Class× has been split into two sub-clusters, one
with policemen with the right arm lowered and one with the
right arm raised. The same has happened for class© which
has been divided into policemen with the right arm lowered
and policemen with the arm raised. The sub-clusters of ships
are also interesting as not only has class∗ been divided into
three sub-clusters but the sub-clusters that surround class •
possibly indicate how the classes are related. Thus, the class
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• seems to act as a “link” between the three discovered sub-
clusters; class• represents ships with three masts, while the
three sub-clusters around class∗ are composed of ships with
either the two masts, with either the left, centre or right
mast missing. Nevertheless, the model has not been successful
in the visualisation of the classes representing houses. No
clusters have been formed as all classes have been merged
into one big cluster representing a super-class of all the
images of houses. One possible explanation for this inability
of discriminating between the classes of houses, is the shallow
tree representation of houses; typically they are shorter than
ships and traffic-policemen structures.

In Fig.8 the underlying state transitions are visualised.
The plot is organised as a grid ofK × K = 2 × 2 state
transition matricesp(qu = l|qρ(u) = k), each transition matrix
corresponding to an underlying local noise model (HMTM).
Topographic organisation of local noise models with respect to
their transition structure is evident in Fig.8 as state transitions
vary smoothly with their “latent space addresses”. In Fig.8
we see that state1 acts as a “trap” state for the entire plot,
that is if the model visits state1, it is extremely unlikely for
it to ever visit state2. Regarding transitions from state2 we
observe a more interesting behaviour. A strong tendency for
self-loops in state2 is observed at the upper-left and bottom-
left corner of Fig.8. However, this behaviour gradually changes
as we move towards the centre of the map; transitions to
state2 progressively lose their strength benefiting transitions
to state1. Around the centre of the map transitions to state
1 narrowly dominate transitions to state2. Moving further
towards the upper right part of the plot, transitions to state 1
and2 become almost equally likely. Moving from the centre
towards the bottom-right corner, transitions to state2 regain
their power, albeit not to the same strength as in the upper-left
and bottom-left corner of the plot.

The respective plot for the initial probabilities is not pre-
sented, as a particularly simple structure has emerged as a
result of the GTM-HMTM training; the initial probability
vector of all models is practically equal toπ = [0 1]T . Thus,
effectively all models pick the second state as their starting
state,q1 = 2.

In Fig.9 the underlying means of the emissions are vi-
sualised. This plot is organised as a grid of subplots. Each
subplot presents the space of emissionsR

d, where labelsou

reside, in which the means for statesk = 1 and k = 2
marked with circles and crosses, respectively. Evidently,the
means of the emissions are topographically organised as well
as the state transitions, as the positions of means change
gradually as we move in the plot. We note that images in
the TPB dataset are interpreted bottom-up (see Fig.6), and
that x-coordinates of the labels decrease leftwards whiley-
coordinates decrease upwards. Thus, components located at
the lower part of the TPB images have highery-coordinates
than components located closer to the top of the TPB images.
We observe that since state2 is effectively the starting state
for all models and since images are interpreted bottom-up,
the mean for state2 naturally has a greatery-coordinate than
the mean for state1 in the entire plot. We also observe the
following three general behaviours in the plot. The means

close to the upper-left corner of the plot lie far apart in
the x-axis, while being close in they-axis. This behaviour
progressively changes as we move towards the upper-right
corner of the plot, where the means have similarx-coordinates
but are distant in they-axis. Moving towards the bottom-centre
and bottom-right regions of the plot we notice that the means
approach each other. This behaviour reflects the nature of the
data points (trees) mapped in particular regions of the latent
space. In particular, the ship-classes reserve the left part of
the visualisation plot in Fig.7(b). As it can be seen in Fig.6,
ships are generally “wide” and “short” structures. Policeman
are concentrated at the right upper part of Fig.7(b), and are
generally “narrow” and “thin”(see Fig.6), while houses are
clustered densely at the bottom-centre of Fig.7(b) and appear
to be relatively “compact” (see Fig.6). In order to confirm these
observations, we measured the variance for the three classes
of ships, policeman and houses. We found that the variance
was 1.83, 0.69, 0.14 in the x-axis and0.58, 1.53, 0.42 in the
y-axis for the three classes respectively.

Inspecting Fig.8 in conjunction with Fig.9 we make the
following observations. In general, the mean for state1 con-
centrates more on modelling the labels of lowery-coordinates,
while the mean for state2 seems to concentrate more on the
labels of highery-coordinates. The classes of ships reserve
the area that corresponds to the left area in Fig.8 of self-
loops for state2, thus favouring the projection of “short”
classes3. Furthermore, the upper right area of the latent space,
in Fig.7(b), is reserved for the policemen classes, which are
“tall” structures. As noted, this corresponding area in thestate-
transition plot of Fig.8 is where transitions from state2 to
states1 and 2 become almost equally likely, thus favouring
such “tall” structures. Of course, if transitions from state 2 to
state1 were further strengthened at the expense of transitions
from state2 to itself, the projection of the policemen classes
to the corresponding area would be favoured even further.
This particular area in Fig.8 is the most favourable for the
projection of the policeman classes with respect to other
regions of the latent space. Finally, the respective area ofthe
house classes in Fig.8 corresponds to the area where a strong
tendency for self-loops for state2 occurs, that favours the
mapping of “short” structures. Clearly, despite of the similarity
in the state-transition probabilities in the respective areas of the
ship and house classes, the two classes are projected in well
separated areas due to the different underlying structure of
the means. The model-based nature of our visualisation plots
has a potential to bring a degree of transparency in analysing
and understanding of how the data items are organised in the
visualisation plot in Fig.7(b).

We also trained GTM-HMTM on the dataset of quadtrees.
We setK = 3 and the variance of the one-dimensional emis-
sions equal to1.0. However during training, GTM-HMTM
displayed numerical problems that prevented us from using the
dataset at the64 × 64 resolution that we determined earlier.
Thus, we reduced the images from64× 64 to 16× 16 pixels.
The results for GTM-HMTM on the quadtree dataset are

3recall that the values ofy-coordinate in TPB data increase in a top-down
direction.
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Fig. 8. TPB task: the plot is organised as a grid ofK × K = 2 × 2 transition matrices, with each transition matrix corresponding to one local HMTMs
underlying the visualisation plot.

displayed in Fig.10. Unfortunately, although a certain level of
topographic organisation is evident, the model does not seem
to be particularly successful at this task. We note certain trends
such as the presence of images at the bottom of the plot of
ducks facing to the right, while at the centre-left we come
across images facing to the left. The top right is dominated to
images of frontal views. Finally, close to the centre and slightly
to the left, we note an overlapping of images of different
orientations that have not been successfully organised on the
map.

Further insight regarding the topographic organisation for
the quadtree dataset can be gained by observing the plots for
the state transitions in Fig.11 and the means of the emissions in
Fig.12(a),12(b) and 12(c). The state transitions are very similar
across the entire plot and only subtle variations are noticeable.
All three plots for the means exhibit a very similar structure,
with abrupt changes close to the centre of the respective plots.
These observations suggest that the underlying local models
are very similar in terms of transition probabilities, and that it
is the means that mostly drive the topographical organisation.
The abrupt changes noted in the the plots of the means,
seem to be related to the overlapping of images of different
orientations, noted at about the same location in Fig.10 (close
to the centre of the plot).

Next, we present the results obtained by using SOMSD on
the three datasets. We tried numerous parameter settings for
SOMSD, all with rectangular lattices, Gaussian neighbourhood
functions and600 training iterations, and picked the best
results, for the toy and TPB datasets where class information
is provided, according to the criterion described below. For the

toy dataset we found that the best parameters were a lattice
of dimensions28× 28, a learning rate of0.5, an initial radius
of 5 and weighting coefficients ofµ1 = 0.99 andµ2 = 0.01.
For the TPB dataset the we chose a network of dimensions
114 × 87, a learning rate of1.5, an initial radius of60 and
weighting coefficients ofµ1 = 0.01 and µ2 = 0.99. Finally
for the quadtree dataset, the parameters were a network of
dimensions90× 90, a learning rate of0.5, initial radius of90
and weighting coefficients ofµ1 = 0.05 and µ2 = 0.95. By
inspecting the plots we can see that GTM-HMTM is better at
the toy dataset, while SOMSD is better at the TPB dataset as it
manages to distinguish between all of the classes, especially
the classes of houses that are problematic in GTM-HMTM.
This is interesting, because SOMSD seems to be more sensi-
tive than GTM-HMTM to data items of shallow structure. On
the other hand, SOMSD does not discover the sub-classes that
GTM-HMTM does for the policemen and ships. Regarding
the quadtree dataset, although we tried numerous parameter
settings we could not obtain a good result for the same dataset
of 16× 16 of images. Nevertheless, when we further reduced
the dimensions of the images down to8 × 8 pixels, SOMSD
was able to a achieve good topographic organisation, displayed
in in Fig.14, indicating that the transformed images preserve
sufficient information. However, SOMSD does not seem to
utilise the entire map when projecting the data, as it does
for the toy and TPB dataset (the same problem also appeared
when training with smaller maps). Thus, in Fig.14 only the
region of the map containing projections is displayed.

The toy data set is clearly biased towards GTM-HMTM and
SOMSD was not able to cluster the trees in a fashion reflecting
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Fig. 9. TPB task: means of emissions for statesk = 1, 2 corresponding to the local HMTMs. Means corresponding to states 1 and 2 are marked with circles
and crosses respectively.

the organisation of the underlying generative process. This
raises an important point we would like to stress. Of course,
there is no single best model for topographic organisation of
data of a given form. This issue is even more pronounced
in the case of unsupervised learning in structured domains,
where for models such as SOMSD a clear cost functional being
minimised during the parameter fitting process is missing.
Besides not knowing exactly what the model is optimised
for, there is an additional difficulty: recursive models such
as SOMSD are non-autonomous dynamical systems that can
be difficult to understand. But without a clear understanding
of the underlying dynamics, we can never know exactly what
is driving topographical organisation of the projections.As a
consequence, given a new tree, it might be possible to guess
where its image on the SOMSD map will lie, but under-
standing the process of its formation will remain problematic.
Consequently, it is difficult to grasp the structure of a trained
topographic map on a deeper level - one is forced to produce
only verbal descriptions as in the previous two paragraphs.

In contrast, a clear model-based formulation of GTM-

HMTM enables us not only to analyse and understand the
trained model (and hence understand the organisation of the
map in terms of organisation of local prototype HMTM noise
models), but also to understand exactly what kinds of data our
model is suitable for. It is also important to understand that the
class of noise models (in our case HMTM) inherently dictates
along what lines will the data projections/representations be
organised on the visualisation plot. Close regions on the
computer screen (latent spaceV) will correspond to ”close”
noise models (HMTMs) and hence trees will be organised on
the map with respect to how closely they adhere to different
HMTMs defined by different regions on the map. We will
study the issues of metric on the latent space induced by the
choice of noise models in the Section VIII.

There are two problems in applying HMTM to the third
dataset of quadtrees. First, the particular HMTM emission
model (Gaussian) does not correspond well to the discrete
nature of quadtree labels employed here - binomial or multi-
nomial distribution would fit the bill much better. Second,
dendencies in the quadtree structures can be better modeled
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Fig. 10. Visualisation of reduced resolution quadtree dataset(16×16) for GTM-HMTM. Images are plotted as transparent to allow visibility of overlapping
ones.
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Fig. 11. Quadtree task: the plot is organised as a grid ofK ×K = 3× 3 transition matrices, with each transition matrix corresponding to one local HMTM
underlying the visualisation plot.

using observable and position-dependent first-order transitions,
This corresponds directly to the nature of the process by which
quadtrees are generated from images. In our framework, it is
easy to modify local noise models for trees such that disrete

nature of emissions and dependency structure of quadtrees are
accounted for. This will be done in section VII.

Because of the absence of a clear cost function, the per-
formance of SOMSD was measured in [1] as the accuracy of
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(a) (b) (c)

Fig. 12. Quadtree task: means of emissions of GTM-HMTM for quadtree dataset. Each subplot corresponds to a state.

(a) (b)

Fig. 13. Visualisation of toy (a) and TPB (b) dataset using SOMSD.

classification of data into known classes (the class information
was not used during the training) using data representations
on the map. After the map formation, a secondary hold-out
test dataset was used. Items from the test set were represented
on the trained map and each test item was predicted to have
the class label of its closest neighbour (from the training set)
on the map. The accuracy was then defined as the percentage
of correctly classified test points. The results of this measure
on the toy dataset were 90% and 60% for GMT-HMTM and
SOMSD respectively. The results were reversed for the TPB
dataset: GMT-HMTM and SOMSD achieved 55% and 95% of
accuracy respectively. Regarding the quadtree dataset, where
data items cannot be classified as they do not belong to distinct
classes, we formulated an analogous performance criterion.
Again after map formation, the items from a secondary hold-
out test dataset were represented on the trained map. The
difference of the viewing angle of the photographed rubber
duck of each test item and its closest neighbour (from the
training set) was calculated. The performance criterion was
then calculated as the average of the absolute differences of
the viewing angles (a lower score is preferable). According

to this criterion GTM-HMTM achieved a score of30.833 and
SOMSD a score of23.26.

We stress again, that such a procedure makes sense only
when the class organisation of the data correlates with the
driving force behind the topographic map formation. If, for
example, the classes of trees are organised along the lines that
cannot be reasonably captured by HMTM modelling, there is
simply no reason why the achieved classification accuracy of
GMT-HMTM should be high. But low classification rate would
just mean that our model-driven topographic map formation
does not correlate with the particular class labelling scheme.
In such cases one can simply switch to local noise models that
are more correlated with the class labelling. Alternatively, one
might say that he/she wanted to see topographically organised
data representations driven by aspects captured by HMTM (or
any other noise model employed) and stick with the obtained
topographic maps, irrespective of the class labels. This isan
unsupervised learning setting after all. Again, without knowing
the exact mechanism behind the topographic map formation, it
is problematic to assign any performance-related interpretation
to the classification rate obtained on the trained map.
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Fig. 14. Visualisation of reduced resolution quadtree dataset (8 × 8) for SOMSD.

VII. A LTERNATIVE LOCAL NOISE MODEL FORMULATIONS

In general, GTM consists of two components, a generative
probabilistic model, and a suitable constrained parametrisa-
tion. For a given data type, there can be many different
choices of local noise models in the data space. Since in
the GTM formulation, two data items are viewed as being
“close” if they are generated by the same (or similar) local
noise model, the nature of the topographic map is determined
by our choice of the noise model. The methodology is general
and can easily accommodate different notions of similarity
between structured data items4. As a brief demonstration
we introduce another generative model on trees, which we
call the Markov Tree Model(MTM). Unlike HMTM, MTM
has observable states (which makes their interpretation and
estimation easier) and are capable of limited accommodation
of positional information in the trees.

A MTM is an observable process operating on trees of
a particular class, trees where each parent node has exactly
R children. The process generates a discrete labelou ∈
{1, . . . , K} for each nodeu ∈ Uy of tree y. Labelling of
the tree proceeds in a top-down fashion, starting from the
root node u1, and working down towards the leaves. At
transition from a parent nodeρ(u) to its child nodeu, a
label ou is assigned. The label assignment is conditionally
dependent on labeloρ(u) of the parentρ(u) and the position
pos(u) ∈ {1, 2, ..., R} of the child. This dependency is
expressed as a probabilityp(ou|oρ(u), pos(u)). A MTM is
the first-order Markov process, where the label of a node is
conditionally independent from all the labels that belong to
ancestor nodes, given its position and parent node. Transitions

4or, more generally, different data types.

are governed byR transition matricesB(r), one for each child
position r = 1, . . . , R, with entriesbr

kl = p(ou = l|oρ(u) =
k, pos(u) = r) for k, l = 1, . . .K.

We impose a non-informative flat initial state probability
distribution for the root node,p(o1) = 1

K . The scaled5 model
log-likelihood for a datasetT = {y(1), ..., y(N)} is then:

log p(y)∝
N

∑

n=1

Un
∑

u=2

K
∑

k=1

K
∑

l=1

R
∑

r=1

δoρ(u),kδou,lδpos(u),r

× log p(ou = l|oρ(u) = k, pos(u) = r)

=

N
∑

n=1

K
∑

k=1

K
∑

l=1

R
∑

r=1

( Un
∑

u=2

δoρ(u),kδou,lδpos(u),r

)

× log p(ou = l|oρ(u) = k, pos(u) = r)

=
N

∑

n=1

K
∑

k=1

K
∑

l=1

R
∑

r=1

ν
(n)
rkl

× log p(ou = l|oρ(u) = k, pos(u) = r),

(30)

whereδ·,· is the Kronecker delta andν(n)
rkl is the number of

times the transition from a parent node labelled byk to the
r-th child labelled byl occurs in treey(n).

In order to built a GTM that utilises MTMs as noise
models, we need a suitable parametrisation of the multinomial
emissions along the lines of GTM-HMTM (see section V):

Br(xc) = {gl(W
r,kφ(x))}k,l=1...K . (31)

5discardingp(o1) = 1
K

.
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For C latent points organised on a regular grid in spaceV
and datasetT , a constrained mixture ofC MTMs is formed.
Using (30), the complete data log-likelihood (upto a constant
factor) of GTM-MTM is:

logL=

N
∑

n=1

log

C
∑

c=1

Un
∏

u=2

p(ou|oρ(u), pos(u))

=

N
∑

n=1

log

C
∑

c=1

Un
∏

u=2

K
∏

k=1

K
∏

l=1

R
∏

r=1

p(ou = l|oρ(u) = k, pos(u) = r)
δoρ(u),kδou,lδpos(u),r

.

(32)

Employing the E-M formulation, we seek to maximise the
expected complete-data log-likelihood, calculated in theE-
step:

E[logL] =
N

∑

n=1

C
∑

c=1

K
∑

k=1

K
∑

l=1

R
∑

r=1

p(xc|y
(n))ν

(n)
rkl

× log p(ou = l|oρ(u) = k, pos(u) = r). (33)

Partial derivatives of (33) with respect to elements of
parameter matricesW s,t to be used in the M-step read:

∂

∂wst
jm

E[logL] =

N
∑

n=1

C
∑

c=1

K
∑

l=1

p(xc|y
(n))ν

(n)
stl

×
1

p(ou = l|oρ(u) = t, pos(u) = s)

× φm(xc)p(ou = j|oρ(u) = t, pos(u) = s)

×

(

δl,j − p(ou = l|oρ(u) = t, pos(u) = s)

)

.

(34)

We experimented with two datasets, a toy dataset con-
structed by sampling three MTM models, and the quadtree
dataset that was used in GTM-HMTM.

The results for the toy dataset are displayed in Fig.15. The
three clusters are clearly discerned. Data points are numbered
to indicate the MTM they originate from. Regarding the
quadtree dataset, the results are displayed in Fig.16. Training
GTM-MTM with the original resolution of64 × 64 did not
yield any numerical problems as experienced in GTM-MTM.
Clearly, GTM-MTM has achieved a much higher quality of
topographic organisation than GTM-HMTM. The upper-left
corner is dominated by images of ducks facing to the right,
while the lower-right corner is dominated by images facing to
the left. In between the two, close to the centre of the map,
we find images of frontal views. Finally, as we move from the
lower left corner towards the top, we come across images of
rear views.

Furthermore, we measured the performance of GTM-MTM
using the same criterion as we did for GTM-HMTM and
SOMSD on the quadtree dataset in Section VI-C. Recall
that GTM-HMTM and SOMSD scored30.833 and 23.26
respectively, while GTM-MTM achieved the lowest score of
18.125.

VIII. M AGNIFICATION FACTORS FORGTM-HMTM

The topographic organisation of the data on the two-
dimensional space allows the inspection of spatial data re-
lationships in the high dimensional space and the inferenceof
potential clusters and relations between the data points. How-
ever, we must keep in mind that the data-points are projected
on the latent space in a non-linear way. This means that data
points that are distant in the data space (assuming some notion
of a metric in the data space) may be projected close to each
other. Thus, even though the smooth mapping does preserve
the neighbourhood structure, it does not necessarily preserve
distances in the latent space.

Magnification factors for the GTM are introduced in [22].
Each point x of latent spaceV is mapped to the mean
µ ∈ Rd of a spherical Gaussian density viaΓ(x) =
µ = Wφ(x). Thus, a smooth two-dimensional statistical
manifold of isotropic Gaussians is induced. An infinitisimal
displacementdx at a latent pointx ∈ V is mapped to a
displacementdy at Γ(x) on the manifold of Gaussian means:
dy = Jdx, where J is Jacobian of the mappingΓ at x.
Consider an infinitesimal rectangle located atx ∈ V and
defined by displacementsdx1 = dx1e1, dx2 = dx2e2 along
a cartesian coordinate system{e1, e2} in V . Its area is equal
to dA = dx1dx2. The area of theΓ-image of this rectangle6 is
equal todA′ = dA·det(JT J) [22]. In [22] magnification fac-
tors are calculated as the ratiodA′/dA = det(JT J) by which
the area of minute local patches atx ∈ V expands/contracs as
the patches get embedded in the high-dimensional data space
via the non-linear mapping mappingΓ.

However, as pointed out in [22], this definition of magni-
fication factors gives no information as to what directions in
the latent space correspond to dominant stretching/contraction.
Moreover, expansion in one direction can be compensated by
contraction in another (orthogonal) one. Bishop, Svensénand
Williams [22] suggest to perform eigenanalysis of the local
metric tensorsJT J . In this spirit, we will quantify magni-
fication by examining the effect of minute local directional
displacements in the latent space on the corresponding noise
models (HMTM or MTM).

It should be noted that the approach of [22] concentrat-
ing on expansions/contractions on the manifold of means
of local spherical Gaussians in the data space cannot be
directly applied here. The generative probabilistic visualization
models studied in this paper naturally induce a metric in
the structured data space. Loosely speaking, two data items
(trees) are considered to be close (or similar) if both of
them are well-explained by the same underlying noise model
(e.g. HMTM) from the two-dimensional manifold of noise
models. We emphasise, that in this framework, the distance
between structured data items is implicitly defined by the
local noise models that drive the topographic map formation.
If the noise model changes, the perception of what kind
of data items are considered similar changes as well. In
this paper, we quantify the extend to which small positional
changes in the latent space lead to changes in the distributions
defined by the corresponding noise models. It is important to

6the image is not necessarily a rectangle
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Fig. 15. Visualisation of toy dataset for GTM-MTM.

Fig. 16. Visualisation of quadtree dataset(64 × 64) for GTM-MTM.

quantify the changes in a parametrization-free manner - we
use approximations of Kullback-Leibler divergence.

In our model, each pointx in the latent spaceV maps to
a HMTM p(·|x). The entire latent space induces a smooth
two-dimensional manifoldM of HMTMs embedded in the
manifoldH of all HMTMs of the same structural form. In or-
der to appreciate how the latent space is stretched ormagnified
we perturb a latent pointx ∈ V by an infinitesimally small
perturbationdx. The new pointx+dx maps to a new HMTM
p(·|x + dx). We measure the statistical “distance” between
the two HMTMs,p(·|x) and p(·|x + dx), by employing the
Kullback-Leibler divergence (KLD). The KLD between two

HMTMs cannot be analytically calculated (as HMTMs are
latent variable models), but it can be practically measuredas
theobservedKLD, D̂KL. In particular, for two HMTMsp(·|x)
and p(·|x + dx), and a set ofN trees y(1), y(2), ..., y(N),
generated byp(·|x), the observed KLD is

D̂KL[p(·|x)||p(·|x + dx)] =
1

N

N
∑

n=1

log
p(y(n)|x)

p(y(n)|x + dx)
.

(35)
We employ two different approaches for measuring KLD.

The first approach is an approach that can be applied to any
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noise model while the second one applies specifically for
HMTMs (and HMMs as a special case).

A. KLD as Fisher information matrix

Each latent point has two coordinatesx = (x1, x2)
T ∈ V

is mapped via a smooth non-linear mapping to an HMTM
p(·|x) on the manifold M of HMTMs. If we displace
x by an infinitesimally small perturbationdx, the KLD
DKL[p(·|x)‖p(·|x + dx)] between the corresponding noise
modelsp(·|x), p(·|x + dx) ∈ M can be approximated via
Fisher information matrix

F (x) = −Ep(·|x)[∇
2 log p(.|x)], (36)

that acts like a metric tensor on the Riemannian manifold
M [24]:

DKL[p(·|x)‖p(·|x + dx)] = dxT F (x) dx. (37)

The situation is illustrated in Fig.17. We base the calculation
of the observed Fisher information matrix on the upward
recursion of the likelihood estimation for HMTMs [18].

• The recursion starts from the leavesu of the tree:

βk(u; x) = p(ou|qu = k, x). (38)

• Recursive step for non-leaves nodesu:

βk(u; x) = p(yu|qu = k; x)

=

{

∏

v∈c(u)

p(yv|qu = k; x)

}

× p(ou|qu = k; x)

=

{

∏

v∈c(u)

K
∑

i=1

p(yv|qv = i; x)

× p(qv = i|qu = k; x)

}

p(ou|qu = k; x)

=

{

∏

v∈c(u)

K
∑

i=1

βi(v; x)p(qv = i|qu = k; x)

}

× p(ou|qu = k; x). (39)

• Final step:

p(y|x) =
K

∑

k=1

βk(1; x)p(q1 = k|x). (40)

Starting again from the leaves of the treey, we recursively
evaluate 1st-order derivatives of likelihood with respectto the
latent coordinatesx1, x2. Let r ∈ {1, 2}, 1st-order derivative
is (details can be found in Appendix B):

∂

∂xr
p(y|x) =

K
∑

k=1

{

∂

∂xr
βk(1; x)

}

p(q1 = k|x)

+ βk(1; x)

{

∂

∂xr
p(q1 = k|x)

}

. (41)

The recursion is repeated once more, this time calculating
the 2nd-order derivatives. Letr, s ∈ {1, 2}:

∂2

∂xr∂xs
p(y|x) =

K
∑

k=1

{

∂2

∂xr∂xs
βk(1; x)

}

p(q1 = k|x)

+

{

∂

∂xr
βk(1; x)

}{

∂

∂xs
p(q1 = k|x)

}

+

{

∂

∂xs
βk(1; x)

}{

∂

∂xr
p(q1 = k|x)

}

+ βk(1; x)

{

∂2

∂xr∂xs
p(q1 = k|x)

}

. (42)

Finally, we need the derivatives of the log-likelihood:

∂2

∂xr∂xs
log p(y|x) =

p(y|x) ∂2

∂xr∂xs
p(y|x) − ∂

∂xr
p(y|x) ∂

∂xs
p(y|x)

p(y|x)2
.

(43)

The elements of the information matrix are calculated given
a set of trees

{

y(1), . . . , y(N)
}

sampled by modelp(·|x):

F̂(x)r,s = −
1

N

N
∑

n=1

∂2

∂xr∂xs
log p(y(n)|x). (44)

The above calculations depend on the 1st- and 2nd-order
derivatives of initial state, state transition and state-conditional
emission probabilities with respect to the latent coordinates:

1st-order derivatives for initial probability for statek ac-
cording to (16):

∂

∂xr
p(q1 = k|x) = gk(A(π)φ(x))

×

(

A
(π)
k

∂φ(x)

∂xr
−

K
∑

i=1

gi(A
(π)φ(x))A

(π)
i

∂φ(x)

∂xr

)

.

(45)

2nd-order derivatives for initial probability for statek:

∂2

∂xr∂xs
p(q1 = k|x) =

∂

∂xs
gk(A(π)φ(x))

×

(

A
(π)
k

∂φ(x)

∂xr
−

K
∑

i=1

gi(A
(π)φ(x))A

(π)
i

∂φ(x)

∂xr

)

+gk(A(π)φ(x))

(

A
(π)
k

∂2φ(x)

∂xr∂xs

−
K

∑

i=1

[

∂

∂xs
gi(A

(π)φ(x))A
(π)
i

∂φ(x)

∂xr

+gi(A
(π)φ(x))A

(π)
i

∂2φ(x)

∂xr∂xs

])

.

(46)

1st-order derivatives for transition probability from state l
to statek according to (17):
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Fig. 17. Two-dimensional manifoldM of local noise modelsp(·|x) parametrised by the latent spaceV through (14) and (16)-(18). The manifold is embedded
in manifoldH of all noise models of the same form. Latent coordinatesx are displaced tox+dx. Kullback-Leibler divergenceDKL[p(·|x)‖p(·|x+ dx)]
between the corresponding noise modelsp(·|x), p(·|x+ dx) ∈ M can be determined via Fisher information matrixF(x) that acts like a metric tensor on
the Riemannian manifoldM.

∂

∂xr
p(qu = k|qρ(u) = l; x) = gk(A(T l)φ(x))

×

(

A
(T l)
k

∂φ(x)

∂xr
−

K
∑

i=1

gi(A
(T l)φ(x))A

(T l)
i

∂φ(x)

∂xr

)

.

(47)

2nd-order derivatives for transition probability from state l
to statek:

∂2

∂xr∂xs
p(qu = k|qρ(u) = l; x) =

∂

∂xs
gk(A(T l)φ(x))

×

(

A
(T l)
k

∂φ(x)

∂xr
−

K
∑

i=1

gi(A
(T l)φ(x))A

(T l)
i

∂φ(x)

∂xr

)

+gk(A(T l)φ(x))

(

A
(T l)
k

∂2φ(x)

∂xr∂xs

−
K

∑

i=1

[

∂

∂xs
gi(A

(T l)φ(x))A
(T l)
i

∂φ(x)

∂xr

+gi(A
(T l)φ(x))A

(T l)
i

∂2φ(x)

∂xr∂xs

])

. (48)

1st-order derivatives for means of the emission distribution
for statek according to (18):

∂

∂xr
µk =

∂

∂xr
A(Bk)φ(x) = A(Bk) ∂

∂xr
φ(x). (49)

2nd-order derivatives for means of the emission distribution
for statek:

∂2

∂xr∂xs
µk =

∂2

∂xr∂xs
A(Bk)φ(x) = A(Bk) ∂2

∂xr∂xs
φ(x).

(50)

Finally, we need to calculate the 1st- and 2nd-order deriva-
tives of the basis functions:

∂

∂xr
φ(x) =

[

∂φ1(x)

∂xr
, . . . ,

∂φM (x)

∂xr

]

, (51)

where for the RBF kernels:

∂

∂xr
φm(x) = −

1

σ2
φm(x)(xr − µm,r), (52)

∂2

∂xr∂xs
φ(x) =

[

∂2

∂xr∂xs
φ1(x), . . . ,

∂2

∂xr∂xs
φM (x)

]

,

(53)
and

∂2

∂xr∂xs
φm(x) =−

1

σ2
φm(x)

+ (xr − µm,r)(xs − µm,s)
1

σ4
φm(x).

(54)

In order to illustrate the magnification factors on manifold
M, we calculate the observed Fisher information matrix for
each latent centrexc, c = 1, 2, . . . , C. We can then compute
the KLD between eachxc and its perturbationxc + dx by
(37). Here we perturb each latent centrexc in 16 regularly
spaced directions on a small circle (we have set its radius to
10−5). This is illustrated in Fig.18 for8 directions. We note
that alternatively, we could have used SVD decomposition of
the Fisher information matrix to find and quantify the local
dominant stretching directions in the latent space.

B. Direct recursive approximation of KLD

In [25] an efficient method for approximating the KLD
between two HMTMs is presented. The approximation is
based on the upward recursion and calculates an upper bound
for KLD. It is particularly fast compared to the previous
approach as its computations rely only on the parameters of
the models and does not need to calculate the likelihoods of
samples generated by the models.

With each hidden statek = 1, 2..., K we associate an
upward probabilityβk(u; x) = p(yu|qu = k, x). Given a tree
y, the likelihoodp(y|x) can be efficiently calculated by the
upward recursion, as in (38), (39) and (40).

The approximation relies on two results. First we note again
that by definition, the KLD between two multidimensional
distributionsw andw̃ is:
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Fig. 18. A latent point in spaceV is perturbed in8 regularly spaced directions on a small circle in order to measure the local magnification factor.

κ[w, w̃] =
∑

i

wi log
wi

w̃i
. (55)

Secondly, given two mixturesF =
∑

i wifi and F ′ =
∑

i w′
if

′
i the following lemma is proved [25] for the KLD

between them:

DKL[F ||F ′] = DKL[
∑

i

wifi||
∑

i

w′
if

′
i ] ≤ κ[w, w̃]

+
∑

i

wiDKL[fi||f
′
i ]. (56)

Furthermore, in the case ofD-dimensional Gaussian emis-
sions we have:

DKL[N(.; µ, C)||N(.; µ′, C ′)] =

1

2

[

log(
detC ′

detC
) − D + tr(C ′−1C) + (µ − µ′)T C ′−1(µ − µ′)

]

.

(57)

This result is important because we will treat emissions
p(ou|qu = k, x) as mixtures of Gaussians (in our case
presented here, the mixtures are simplified to singled-
dimensional Gaussians). The KLD between two HMTMs
p(.|x) andp(.|x + dx) can be approximated as follows:

• Recursion starts at leaf nodesu; we treat emissions
p(ou|qu = k, x) as a mixture and apply (56) to obtain
approximationDk:

Dk[u; x, x + dx] =

DKL[p(ou|qu = k, x)||p(ou|qu = k, x + dx)] =

DKL[N(ou; µk, C)||N(ou; µ′
k, C ′)]. (58)

Primed quantities correspond to modelp(·|x + dx).

• Recursive step; for internal nodesu use (56) to rewrite
(39):

Dk[u; x, x + dx] =

DKL[p(ou|qu = k, x)||p(ou|qu = k, x + dx)]

+
∑

v∈c(u)

DKL

[ K
∑

i=1

βi(v; x)p(qv = i|qu = k; x)||

K
∑

i=1

βi(v; x + dx)p(qv = i|qu = k; x + dx)

]

≤ DKL[N(ou; µk, σk)||N(ou; µ′
k, σ′

k)]

+
∑

v∈c(u)

(

κ[p(qv|qu = k, x), p(qv|qu = k, x + dx)]

+

K
∑

i=1

p(qv = i|qu = k, x)Di[v; x, x + dx]

)

.

(59)

• Final step; the upper bound of KLD is found by again
using (56) to rewrite (40) in the root node (node number
1):

K[y; x, x + dx] = κ[p(q1|x), p(q1|x + dx)]

+

K
∑

k=1

p(q1 = k|x)Dk[1; x, x + dx].

(60)

Given a set of trees
{

y(1), . . . , y(N)
}

sampled by model
p(·|x) an estimate of KLD is approximated as

D̂KL[p(·|x)||p(·|x+dx)] =
1

N

N
∑

n=1

K(y(n), x, x+dx). (61)

The above formula requires some explanation. It can be
seen in all equations above, that thelabels of the trees are
not utilised for estimating the KLD approximation as they
eventually vanish due to (57), i.e. KLD between Gaussians
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can be calculated via a closed-form formula. The sample of
trees is still needed though, because the recursion above is
driven by their topologicalstructure. Note however, that in
our sample, all trees have the same topology. In this case the
KLD can be approximated using a single tree:

D̂KL[p(·|x)||p(·|x + dx)] = K(y(1), x, x + dx). (62)

The same procedure as for the Fisher information matrix
is applied here too, namely perturbing a latent point in 16
regularly spaced directions on a small circle (again the radius
is set to10−5) and measuring the KLD between the original
HMTM model x and the perturbed modelx + dx.

C. Results on Magnification Factors

Magnification plots for the toy and TPB datasets have been
produced following the approaches of Sections VIII-A and
VIII-B. In both approaches we define on the latent space
a rectangular grid of 25x25 latent points. This divides the
grid in 625 squares with a latent point at the centre of each
square. Increasing the number of grid points results to finer
magnification plots. Each latent centre is perturbed in 16
regularly spaced directions on a small circle of radius10−5.
KLD between the noise model corresponding to the original
latent point and the noise model corresponding to its perturbed
version is measured via both approaches. For each latent
point, out of the 16 directions of perturbation, the direction of
maximal magnification is represented by a straight line drawn
through the centre of the corresponding square. The length
of the line signifies the level of the magnification, i.e. shorter
lines indicate lower magnification, longer lines indicate higher
magnification. The shading of each square also signifies the
level of magnification; brighter squares are associated with
higher magnification, whereas darker squares are associated
with lower magnification.

We observe that both plots of Fig.19(a) and 19(b) illustrate
very similar magnifications for the toy dataset. It can be seen
in both figures that the data have been organised in 4 distinct
clusters, well separated by light regions that signify thatthe
clusters have clear boundaries and are indeed different from
each other (compare with Fig.7(a)).

Fig.20(a) and 20(b) illustrate the resulting plots for the TPB
dataset. The light region concentrated in the left upper corner
of the plot concerns the topographic organisation of the two
ship classes (see Fig.7(b)). The high magnification indicates
that data points projected in this area are very dissimilar to
each other as abrupt changes occur in the underlying models.
This is verified by the fact that we have identified that class
∗, the class of ships with two masts, has been split into
three sub-clusters. On the other hand, the classes of policemen
exhibit a gentler separation between them as indicated by the
moderately light area close to the right upper corner. Finally
the region of the classes of houses, which as we saw earlier
have all been projected in one super-cluster, is characterised
by very low magnification. This suggests, that indeed that this
super-cluster is dense and that the underlying models fail to
discern differences between house patterns.

In Fig.21 magnification factors for the quadtree dataset are
displayed using the KLD approximation method. The plot does
not impart information on the presence of any clusters. How-
ever, when inspected in conjunction with the state transitions in
Fig.11 and the means of the emissions in Fig.12(a),12(b) and
12(c), we can see how it reflects the situation of the visualisa-
tion plot in Fig.10 where an overlapping of images of different
orientations occurs. We recall that transition probabilities vary
only little across the plot. Also, the plots of means exhibita
common abrupt change close to their respective centres. We
see that the magnification factors effectively summarise the
behaviour of the means corresponding to the three states: a
high magnification is observed at the centre of the plot where
the means change the most.

IX. M AGNIFICATION FACTORS FORGTM-MTM

We also calculate magnification factors GTM-MTM. For
MTMs we can resort to a fast approximation of KLD by
assuming that the trees are sufficiently deep and that the
compared MTMs are not too dissimilar. Using a result from
[26], we calculate the KLD between a MTM addressed by
p(·|x) and its perturbed versionp(·|x + dx) by:

D̂KL[p(·|x)||p(·|x + dx)] =
R

∑

r=1

K
∑

k=1

πr
k

K
∑

l=1

p(ou = l|oρ(u) = k, pos(u) = r|x)

× log
p(ou = l|oρ(u) = k, pos(u) = r|x)

p(ou = l|oρ(u) = k, pos(u) = r|x + dx)
, (63)

where probabilitiesπr
k are obtained as the normalised left

eigenvector of the state transition matrix with eigenvalue1.
The magnification factors for the toy dataset are presented

in Fig.22(a). The clusters illustrated in Fig.15 are visible here
too, clearly separated by bright boundaries signifying stretches
in the latent space. Inspecting the state transitions for the
toy dataset (similar to Fig.8), a clear structure is observed.
For example in Fig.22(b), where the transition probabilities
that correspond to the3-rd child are illustrated, the regions
underlying the three clusters indicate different trends. In the
case of quadtree data set, thelocal metric structure of GTM-
MTM was varying rather slowly and so the magnification
factor plot (reflecting local differentiable structure of the noise
manifold) was almost flat. The topographic organisation is
driven by small local changes in the noise models. Maps of
magnification factors are not well suited for such situations.

We also calculated magnification factors via Fisher infor-
mation matrices. The magnification factor plots were virtually
identical to the ones obtained via KLD approximation.

X. D ISCUSSION

Unlike in recursive neural-based approaches to topographic
maps formation, the optimisation of the free parameters of
GTM-HMTM is driven by a well defined cost function -
negative log of the likelihood function (13). The complexity
of the E-step isO(NCUK2), whereU is the average number
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Fig. 19. Fisher information (a) and KLD approximation (b) for GTM-HMTM on toy dataset.
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(b)

Fig. 20. Fisher information (a) and KLD approximation (b) for GTM-HMTM on TPB dataset.

 

 

Fig. 21. KLD approximation for GTM-HMTM on quadtree dataset.

of nodes in a tree data item. The complexity of the M-
step depends on the optimisation procedure employed. A

scaled conjugate gradient implementation has a complexity
of O(2W 2), where W is the number of parameters of the
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Fig. 22. Magnification factors for GTM-MTM on toy dataset (a). State transitions for3-rd child node for toy dataset (b).
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Fig. 23. Evolution of log-likelihood for GTM-HMTM on training (line with + marker) and validation (line with o marker) set.

model. For GTM-HMTM this isW = M(K + K2 + Kd)
(covariance of emissions is not modelled directly). Despite the
high number of parametersW , we found that in practice this
does not present a significant difficulty in training the model
because of its highly constrained nature. What seems to make
training difficult is the lack of a good initialisation procedure.

Having trained GTM-HMTM via E-M, the data points are
projected from the data space on the latent space. To this
end we calculate the responsibilities (posterior probabilities)
of the underlying HMTMs models. Our mixture of noise
models (HMTMs) is a constrained mixture, constrained by the
smooth two-dimensional structure of the latent space. Hence,
neighbouring latent points correspond to noise models (local
HMTMs) that lead to similar answers (responsibilities) when
queried about a certain data point (tree). The data point can
then be placed at the mean location of the responsibilities (10)
in order to reflect the contribution of all local models. The
same also applies to a newly incoming data point. The method
is transparent in the sense that we can understand why a certain

point was placed in a particular position in the visualisation
(latent) space by inspecting the underlying local models. This
level of transparency is not readily provided when visualising
new trees using recursive neural-based techniques such as
SOMSD. Also, in such models it is difficult to quantify what
the induced notion of similarity between trees really means.
For example, why exactly does SOMSD place some trees
close together and some further apart? Can one have some
form of control over the shaping of visualisation plots? In
GTM-HMTM this is done by imposing the form of local noise
models. Then two data items (trees) are viewed as “similar”,
if they are highly probable under the same local noise model
(HMTM or MTM). Of course, it is possible to have different
notions of similarity even for the same data set. It can well be
that there are two users that would like to see the same data
items organised on the visualisation plot using different criteria
for item similarity, depending on what aspects of the data they
are interested in. Then it is up to the user to formulate the
appropriate noise model and let the data visualisation be driven
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by it. This capability of accommodating alternative noise
models was demonstrated in Section VII, where an alternative
noise model, the MTM, was introduced. The same machinery
for parametrisation and optimisation as for the GTM-HMTM
was adopted to derive GTM-MTM. The two extensions rely on
the same principles for achieving topographic organisation but
work with different notions of similarity. The latent variable
nature of HMTM gives it potentially a richer expressive power,
but at the price of introducing additional level of unobserved
variables in the GTM-HMTM formulation. HMTM also allows
for continuous observations. On the other hand, HMTM does
not discriminate between children nodes. In contrast, MTM is
not a latent variable model and works with discrete emissions.
Crucially, it does consider an ordering on the children nodes.

In both GTM formulations, there is a potential of gaining
an insight about the driving forces behind the topographic
map formations by inspecting the learnt structure local noise
models as in Fig.8, 9, 11, 12(a), 12(b), 12(c), 19(a), 19(b),
20(a), 20(b), 21, 22(a) and 22(b).

Another important advantage of the principled probabilistic
model formulation is the possibility to inspect the tendency
of the model to overfit the training data, by measuring the
log-likelihood on an independent validation set. For example,
for the GTM-HMTM and the TPB task, the validation set
consists of 88 patterns produced in the same manner as the
training set. During training, the log-likelihoods of the model
on the training and validation sets were calculated in each
iteration. The evolution of the log-likelihood for both data sets
is presented in Fig.23. It is apparent that the constrained nature
of our model prevents it from overfitting the training sample.
For the case of GTM-MTM and quadtree dataset, we show
log-likelihood evolutions in Fig.24(a) and 24(b). We examine
two training sessions. The first one corresponds to a training
session where overfitting occurs. In order to avoid overfitting
we changed the variance of the radial basis functionsφ of the
RBF network from1.0 to 2.0 and performed a second training
session. Increasing the variance in the RBF network, has the
effect of making the basis functions wider, less localised,
blending them to a higher degree in their overlapping regions.
In terms of the GTM, this has the effect of not allowing local
noise models to become very different from their neighboursin
terms of parameters, which enforces a form of regularisation.
The evolution of the log-likelihood with RBF variance equalto
2.0 is illustrated in Fig.24(b). Even though, we observed very
similar topographic organisations in both training sessions,
the second session achieves better generalisation performance,
which is advantageous if new data items are to be projected
on the map. We stress, that checking the model likelihood
on a hold-out sample is a natural way of detecting possible
overfitting. In case of a highly overfitted model, it would be
difficult to interpret visualisation plots as representingany
general tendency in the data. We also note that dealing with the
overfitting issue in case of recursive neural based formulations
is problematic - it is not clear how one would go about
quantifying the level of overfitting in the first place.

As for the measure of accuracy used in Section VI-C
to quantify the quality of visualisations, we note that, as
discussed at the end of Section VI-C, it is not directly related

to what the models are optimised for and therefore does not
constitute an objective criterion to discriminate betweenthe
models.

The generative nature of GTM-HMTM allows further data
exploration after a first impression of the visualisation through
hierarchical visualisation in the spirit of [27]. Also, theincor-
poration of priors on the model parameters is straightforward.
MAP estimation is possible by a adding to (23) an additional
term, namely the log-likelihood of the prior density on the
parameters.

Furthermore, the fact that the non-linear mapping of GTM-
HMTM from the latent space to the local model space is
smooth allows us to calculate magnification factors. We have
presented two approaches toward this end, precise Fisher
information matrix and KLD approximation, which have been
verified by experiments. This constitutes a useful tool for the
study of clusters and can be used to further interpret the
visualisation plot as magnifications of the manifoldM of local
models. The presence of low magnification in a certain region
can help us infer the presence of a potential cluster as we
expect the generative process of the underlying local models
to change only slightly as we move in that region. On the
contrary, high magnification signifies the volatility of thelocal
models and hence that data points in the region are expected
to differ significantly from each other.

XI. CONCLUSIONS

We have presented GTM-HMTM, an alternative method for
topographic organisation of tree-structured data. The model is
an extension of the GTM algorithm and thus is based on a
sound probabilistic formulation. Compared with recursiveneu-
ral based approaches, the main advantages of GTM-HMTM
include:

1) The model-based nature of GTM-HMTM may pro-
vide a degree of transparency of the visualisation plot
formation and a principled interpretation of the data
visualisations.

2) There is a well defined cost function driving the model
training that can be used for principled model compari-
son.

3) Trained models can be checked in a natural way for
possible overfitting by comparing log-likelihoods on
training and validation sets.

4) Alternative local noise model formulations allow the
user to express in a natural way a notion of structured
data similarity that will be driving the topographical
organisation in visualisation plots.

5) Smooth mapping from the latent soace to the local noise
model space enables the calculation of magnification
factors, a useful tool that supplements our understanding
of the visualisation plots.

6) It is straightforward to extend the methodology to in-
clude hierarchical visualisations for detailed user-guided
exploration of subsets of data.

For illustration purposes we compared visualisation plots
obtained with GTM formulations with those obtained by
SOMSD - a representative of recursive neural-based topo-
graphic map constructions.
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Fig. 24. Evolution of log-likelihood for GTM-MTM on training (line with + marker) and validation (line with o marker) set. In (a) the variance of the
radial basis functions is set to1.0 and in (b) it is set to2.0.

APPENDIX A
NOTATIONS

Commonly used symbols and notation are summarised in
Table IV.

TABLE IV
COMMONLY USED SYMBOLS AND NOTATION.

Notation Meaning

A(π) matrix parametrising initial probabilities for GTM-HMTM

A(Tk) matrix parametrising transition probabilities from statek

for GTM-HMTM

A(Bk) matrix parametrising means of Gaussians at statek

for GTM-HMTM

DKL[·||·] Kullback-Leibler divergence

E[·] expectation operator

L model likelihood

N Gaussian density

g softmax function

t instance of vector variable

y instance of tree structure variable

ou label of nodeu

qu instantiation of state variable of nodeu

βk(u) downward probability for nodeu at statequ = k

M two-dimensional manifold of HMTMs constrained onV

V continuous Euclidean latent space

x latent point, belongs toV

p(·|x) probabilistic model addressed by latent pointx

p(·|x + dx) perturbed version of probabilistic modelp(·|x)

addressed by latent point(x + dx)

φ non-linear smooth basis function

z hidden indicator variable defined in E-M training

APPENDIX B
DERIVATIVES FOR KLD AS FISHER INFORMATION

Based on the recursive evaluation of likelihood of (38), (39)
and (40), we recursively calculate 1st-order derivatives of the
likelihood with respect to the latent coordinatesx1, x2. Let
r ∈ {1, 2}:

• The recursion starts from the leaves of the tree:
∂

∂xr
βk(u; x) =

∂

∂xr
p(ou|qu = k, x). (64)

• Recursive step for non-leaves nodesu:

∂

∂xr
βk(u; x) =

∂

∂xr
p(yu|qu = k; x)

=

{

∂

∂xr
γk(u; x)

}

p(ou|qu = k; x)

+ γk(u; x)

{

∂

∂xr
p(ou|qu = k; x)

}

, (65)

where

γk(u; x) =
∏

v∈c(u)

ζk(u, v; x),

ζk(u, v; x) =

K
∑

i=1

βi(v; x)p(qv = i|qu = k; x),

∂

∂xr
γk(u; x) = γk(u; x)

∑

v∈c(u)

∂

∂xr
log ζk(u, v; x),

∂

∂xr
ζk(u, v; x) =

K
∑

i=1

∂

∂xr
βi(v; x)p(qv = i|qu = k; x)

+
K

∑

i=1

βi(v; x)
∂

∂xr
p(qv = i|qu = k; x).

(66)

• Final step:

∂

∂xr
p(y|x) =

K
∑

k=1

{

∂

∂xr
βk(1; x)

}

p(q1 = k|x)

+ βk(1; x)

{

∂

∂xr
p(q1 = k|x)

}

. (67)

We repeat the recursion once more, this time calculating the
2nd-order derivatives. Letr, s ∈ {1, 2}:

• The recursion starts from the leaves of the tree:

∂2

∂xr∂xs
βk(u; x) =

∂2

∂xr∂xs
p(ou|qu = k, x). (68)
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• Recursive step:

∂2

∂xr∂xs
βk(u; x) =

∂2

∂xr∂xs
p(yu|qu = k; x)

=
∂2

∂xr∂xs
γk(u; x)p(ou|qu = k; x)

+
∂

∂xr
γk(u; x)

∂

∂xs
p(ou|qu = k; x)

+
∂

∂xs
γk(u; x)

∂

∂xr
p(ou|qu = k; x)

+ γk(u; x)
∂2

∂xr∂xs
p(ou|qu = k; x),

(69)

where

∂2

∂xr∂xs
γk(u; x) = γk(u; x)

(

∑

v∈c(u)

∂

∂xr
log ζk(u, v; x)

)

×

(

∑

v∈c(u)

∂

∂xs
log ζk(u, v; x)

)

+ γk(u; x)

( K
∑

i=1

−1

(ζk(u, v; x))2

×
∂

∂xr
ζk(u, v; x)

∂

∂xs
ζk(u, v; x)

+
1

ζk(u, v; x)

∂2

∂xr∂xs
ζk(u, v; x)

)

.

(70)

and

∂2

∂xr∂xs
ζk(u, v; x) =

K
∑

i=1

∂2

∂xr∂xs
βi(v; x)

× p(qv = i|qu = k; x)

+
∂

∂xr
βi(v; x)

∂

∂xs
p(qv = i|qu = k; x)

+
∂

∂xs
βi(v; x)

∂

∂xr
p(qv = i|qu = k; x)

+ βi(v; x)
∂2

∂xr∂xs
p(qv = i|qu = k; x).

(71)

• Final step:

∂2

∂xr∂xs
p(y|x) =

K
∑

k=1

{

∂2

∂xr∂xs
βk(1; x)

}

p(q1 = k|x)

+

{

∂

∂xr
βk(1; x)

}{

∂

∂xs
p(q1 = k|x)

}

+

{

∂

∂xs
βk(1; x)

}{

∂

∂xr
p(q1 = k|x)

}

+ βk(1; x)

{

∂2

∂xr∂xs
p(q1 = k|x)

}

.

(72)
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