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Abstract—We present a probabilistic generative approach for
constructing topographic maps of tree-structured data. Ou
model defines a low dimensional manifold of local noise modgl|
namely (hidden) Markov tree models, induced by a smooth
mapping from low dimensional latent space. We contrast our
approach with that of topographic map formation using recursive
neural-based techniques, namely the Self-Organising Mapof
Structured Data (SOMSD) [1]. The probabilistic nature of our
model brings a number of benefits: (1) naturally defined cost
function that drives the model optimisation; (2) principled model
comparison and testing for overfitting; (3) a potential for trans-
parent interpretation of the map by inspecting the underlying
local noise models; (4) natural accommodation of alternatie local
noise models implicitly expressing different notions of stictured
data similarity. Furthermore, in contrast with the recursive
neural-based approaches, the smooth nature of the mappingdm
the latent space to the local model space allows for calcuian
of magnification factors - a useful tool for the detection of cta
clusters. We demonstrate our approach on three datasets: ay
dataset, an artificially generated dataset and on a datasetfo
images represented as quadtrees.

Index Terms—Topographic mapping, structured data, hidden
Markov tree model.

I. INTRODUCTION

The heuristic nature of SOM inherently brings about certain
limitations, for example the lack of a principled cost fupot
(although see developments in e.g.}[B] Comparison of map
formations resulting from different initialisations, @emeter
settings, or optimisation algorithms can be problematic.

The Generative Topographic Map (GTM) algorithm [4] was
introduced as a principled probabilistic analog to SOM. As a
generative model GTM realises a “noisy” low dimensional
manifold in a high dimensional data space. It can be used
to model a given training dataset by adjusting its paramseter
so that the model-generated data lying around the noisy low
dimensional manifold match (in the distribution sense) the
training data. GTM is a mixture of local generative models
(spherical Gaussians) that adheres to topological cantdra
(constraints on the values that means of the Gaussians can
take). A simple example is that of requiring that the means
belong to a straight line. This could be useful if we be-
lieved that the data are intrinsically one-dimensional anel
adequately represented by a “noisy line”. This situation is
illustrated in Fig.1(a). The line on which the means of local
Gaussians are placed can be viewed as an image of a one-
dimensional interval under a linear (affine) map. Alternalty,
one may want to constrain the Gaussian means to lie on a

OPOGRAPHIC visualisation is a valuable tool for th&mooth curve. In that case, the one-dimensional intervalavo
analysis and interpretation of multivariate data. The Selfe embedded in the high dimensional data space through a

Organising Map (SOM) [2] is one of the most celebrategmooth non-linear mapping. This is illustrated in Fig.1{He
tools that is of vast assistance to this task and has beco@ewm belongs to the class of so called latent-variable models
a paradigm inspiring numerous extensions. SOM is a tyR@th latent space being the one-dimensional interval tghou

of neural network that allows a nonlinear projection of dat@nich the Gaussian means are constrained.

residing in a high dimensional space to a lower dimensionalgson has been extended in various ways to deal with
projection space. The lower dimensional space is a discre{gn-vectorial forms of data, such as sequences or trees [5],
lattice of neurons (for visualisation purposes a two dime%]. Several modifications of SOM equip standard SOM with
sional lattice). According to the SOM paradigm, the formati 5qgjtional feed-back connections that allow for naturad-pr

of the map is realised by iterating two steps of competitio&bssing of recursive data types. Typical examples of such
and cooperation among the neurons. The competition stepdels are Temporal Kohonen Map [7], recurrent SOM [8],
involves the presentation of an input pattern and calafati feedpback SOM [9], recursive SOM [10], merge SOM [11],
of the response of all neurons. The neurons are associatg§\ for structured data [1] and contextual SOM for struature
with weights (codebook vectors). The response of a neurggta [12]. These models rely on the same principles of
is measured as the Euclidean distance between its weight @Bhpetition and cooperation that govern the SOM formation.
the input pattern. The neuron with the greatest responseis hgain, formulation of a principled cost function is problatit
winner of the competition. In the cooperation step, the wign (although see developments in [13] along the lines of [330A
neuron is appropriately adjusted to increase its futurpalese problematic is explanatory interpretation of the vistetisn

to that particular pattern. Moreover, neurons that belanthe  resylts in such approaches. Clusters may be formed on the map
neighbourhood (on the lattice) of the winner are also adflistiht indicate some close relationship between the conderne

to increase their future response, albeit proportionallyat stryctured data items, but there is no explanation on wret th
(usually) exponentially decaying distance from the winner

IHeskes [3] suggests a modified version of SOM by redefiningdidebook
N. Gianniotis and P. Tifo are with the School of ComputereBce, The vector (winner unit) associated with an input as the oneeslbo the input
University of Birmingham, Birmingham, B15 2TT, United Kidgm (e-mail:  with respect toaverageddistance across its local neighbourhood on the
nxg,pxt@cs.bham.ac.uk). codebook lattice.
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Fig. 1. Spherical Gaussians constrained on a one-dimealdioe (a), spherical Gaussians constrained on a one-diimeal curve (b). Note that the straight
line (latent space) in (b) does not belong to the data spagdsaonly plotted in the same figure as its image for converenc

characteristics of the clusters are. Of course one can @spextension of GTM. A discussion of the presented work follows
the individual data points to deduce those relationshiponin Section X. Commonly used notation is summarised in Table
the map has been formed, but reasoning about mapping of n&tv

data items (not used for model fitting) can be still challeggi

In this paper, we extend GTM to the visualisation of tree-”' RECURSIVE NEURAL APPROACHES TO TOPOGRAPHIC
structured data. We contrast this extension with recursive MAP FORMATION OF STRUCTUREBDATA
neural-based approaches and point out potential benefits of he original SOM[2] has inspired various extensions that
a principled probabilistic model-based formulation. Fram- deal with data of non-vectorial types. An excellent ovewie
ple, the generative nature of our model formulation prosid®f those under a general framework can be found in [13]. The
us with an explanatory insight as to how the data migf@llowing techniques try to capture the structure of theadlay
have been generated. By observing the generative procdss igifoducing a notion otontextthat is updated in a recursive
its parameters we can understand characteristics of ctustéanner and is supposed to represent data items processled unt
of projected data items and/or discern other patterns in tHe current processing step. Neurons are arranged on aregul
data. Also, the smooth character of the embedding map fréhflimensional lattice (for visualisation purposes). Thensa
the latent space into the model space enables us to f§sons of a learning ratg and a neighbourhood function
techniques of information geometry to characterise arems @efined on pairs of neurons on the map, are inherited from
the map of potentially clustered data by calculating loc&OM:
expansion/contraction rates in the statistical manifdli¢boal dist(i1(1))
models. Such knowledge is highly desirable for topographic (i, I() =" & ), (1)
map understanding, _but is impc_)ssible to obtain in a prireard_pl where dist is the distance of neuronsand I(t) on the
manner form recursive extensions of SOM._AS a cand|dq§¢ap ands controls the neighbourhood siz&(t) denotes the
member of the recursive neural-based techniques, we use \{igner neuron at time. Parameters) and ¢ are decreased
SOM for structured data (SOMSD) [1]. with time to allow for topographic convergence as in SOM

The paper is organised as follows. Section Il gives a bri¢d].
overview of recursive neural-based approaches for visimgli  The Temporal Kohonen Map (TKMJ7], Recurrent SOM
structured data. In Section Il we present the GTM algorithnfRSOM) [14] and Recursive SOM (RecSOM]10] are
The class of local generative models used in this paper, t8®M extensions designed for the processing of sequences
hidden Markov tree model, is introduced in Section IV and it , so, ..., s7] over R%. In TKM and RSOM each neuron
use in extending the GTM to tree-structured data is presenteis equipped with a weight vectap; € R¢. In each neuron,
in Section V. We present our experiments and results @ne input item is processed at each time stap the context
Section VI. As a demonstration of the ease of extensibiliyiven by the past activations of that neuron. When a new
of this approach, in Section VII we present another locaput is presented, the neurons do not lose their past Bctivi
generative model, the Markov tree model, that is used tovdlerimmediately as in SOM, but the context information decays
an alternative extension of GTM in the same setting of tregradually. The gradual decay is controlled by a parameter
structured data. Section VIl introduces magnificationtdee « < (0,1). However, RSOM modifies TKM by summing
for the GTM extension based on hidden Markov tree modelhe deviation of the weightay; as opposed to distances. The
a useful tool for identifying clusters on the visualisatiplot, corresponding activations are listed in Table I.
and experimental results are presented in Section VIII-C.RecSOM takes into account the context of inputs by explic-
Section IX considers magnification factors for the altekmat itly augmenting each unit with a context vectoe; € R? that
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Fig. 2. Activation for labelus of a tree-pattern: Activation is calculated bottom up, tkhes children of input nod@ are processed beforehand. Since nodes
4 and5 are leaf nodes their contexts are filled in with the spetiél vector. The winner neurons(4) and I(5) of the input labelsus, us of nodes4 and
5 respectively are supplied as the context for nGde

TABLE |
ACTIVATIONS FORSOM EXTENSIONS

Name | Activation yi(v) = ,ulHuv—wi||2+/L2(HCI(1)—C§1)||2+- . -—|—Hcl(k)—c,(;)||2),
TKM | 5:(t) = aflst — wi|® + (1 — a)ys(t — 1) (2)
RSOM | w;(t) = a(st — wi) + (1 — a)y,(t — 1) where 1y and pp are positive constants that control the
RecSOM | v () = allse — wil® + Bll[exp(—yi(t — 1)), contribution of the input labed,, and the context vectowsy).
oexp(—yn(t—INT — 2 Since, processing a node requires knowing the winning

neurons of its children nodes, processing of a graph must
proceed in a bottom-up fashion: before a nodecan be
processed all of its children must be already processed.ighi
illustrated in Fig.2. Therefore, processing starts froma kbaf
stores the activationg(t—1) = [y1(t—1)...yx(t—1)]7 of all podes (nodes without children). When processing a leaf ,noc}e
the units in the map at the previous time step. Its activatidl§ CONtext vectors are set to some default value represgnti
function in Table | uses two positive constantsand 3 to e empty treenil. The same applies to nodes with less than
control the contribution of the weight and context vectord; children where the coordinate vectoes of the missing
RecSOM has two Hebbian update rules, one for the weigi?ﬂ%'ldren are substituted byl. The coordinate vector afil

w; and one for the context;, with their own learning rates. 1S typically chosen to be—1,...,—1), so that it resides
outside the lattice. SOMSD is trained in a Hebbian fashion

SOM for Structured Data (SOMSD)resented in [1] is and as is usual in SOM-type formulations, the learning rate
an extension of SOM designed to process patterns expres8gél the neighbourhood radius decay gradually. The winner is
as directed acyc"c graphs (trees and sequences are Spéb%meuron with the closest Welght and context vectors to the
cases). Each node of a graph pattern has a label, € R¢. augmented input:
Neuronsi are arranged again on a rectangular lattice structure.

The position of each neuron on the lattice is described

by a coordinate vector;. For the processing of a dataset

of graphs of maximum out-degrée each neurori besides

its weight vectorw; € R is supplied withk additional ~ If 41 is setto 1 andu, is set to 0, SOMSD reduces to the
coordinate weight vectorg”? € R2 with jo=1,... .k standard SOM algorithm. Also note that fbr= 1, SOMSD
Similarly to RecSOM, these additional weight vectors try t@f0CESSEs sequences.

capture the expected context of the nedaurrently processed.

This context itself is formed by first calculating the wingin

neurons/(j) of the k children nodesj = 1,2, ..,k of node Ill. OVERVIEW OF THE GENERATIVE TOPOGRAPHICMAP

v. The coordinate vectorg;(;) of the winning neurons are

then collected to form the conte{«tl(l),cl(g), e ,Cz(k)]- The Let us consider a dataset of statiedimensional vectors
complete augmented input to SOMSD is formed by the label 8f = {¢(V),... ,¢(")} that are independently generated from
the current node and the Conte*’uv, Cr(1), CI(2)s- - 5 01(1@)}- some underlying distribution iR¢. We model the density with
The activation of unit is calculated as: a mixture ofC' spherical Gaussians:

I(v) = argmin;y;(v). (3)
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Fig. 3. GTM mapping from latent points to the means of Gauss@mponents. Adapted from [4].
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where P(c) are the mixing coefficientsyu, the means of
the Gaussians anel. the standard deviations. For brevity of
presentation we shall assume thafc) = & and that the
variances? = o2 is fixed. This model is an unconstrained
model in the sense that its parameters, the means, do not
adhere to any constraints and can move freely. This model
which is useful for density modelling can be further exteshde =
to capture topographic organisation of the data points.

Topographic organisation can be imposed by requiring that
the means of the mixture model reside on an image (under a

smooth mapl’) of a continuous Euclidean latent spa@eof ~le=t
dimensiong < d (¢ = 2 for the purposes of visualisation). _Trammg the G proceeds by maximising the likelihood

The non-linear mappind : V — R¢ takes the form [41: given the data., _via thg Expectation-Ma_ximisation (E-M)
I ppIng - v [4] algorithm [4]. Having trained the model, it can be used for

visualising the data. To that end we note that the probgbilit
of a data point(™) given a latent pointz is:
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which can be viewed as a RBF network with basis functions )1y (n).
¢(.) and weight matri¥¥¥ . Functionl' maps each latent point p(™2) = N("; pgg, 0). (8)

x € V to a meanu of the model in a non-linear manner. We can reverse this probability, using Bayes’ theorem, to
Sincel is smooth, the projected points will retain their locabbtain the posterior of the latent poimtgiven ¢():
neighbourhood in the higher dimensional data space. For

tractability reasons we discretize the spatby a rectangular ) p(t™|z)P(x) Pt |2) P(z)
grid of pointsz,, ¢ = 1,...,C. The prior distribution on the P(x[t")= @) ST ) Pla)
latent space is then: p o=1P o )Pz
™M) N pg,0)
= ¥ C (n) T §C ). :
1 Yoo PEMze) oL N(E 7N:BC/’U)

. . .. We can then represent each data peift with a pointp(™)
where d(x) denotes the Dirac delta function, which is : : .
5(x) = 0,2 # 0. Mapping T’ from the latent points to the in the latent space given by the expectation of the posterior

. s - jstribution over all latent points:
means of the Gaussian components is illustrated in Fig.3. \R)e P
can now formulate GTM as a mixture of Gaussians constrained c
on I'-images of latent points € V. The likelihood function p™) = Zp(mc|t(”>)ccc. (10)
reads: c=1
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IV. AN OVERVIEW OF HIDDEN MARKOV TREE MODELS being in statek € {1,2,...,K}.

« transition probability distributionT = {p(Q. =
k|Qpwy = D}ik=1,..xk — €ach element expressing the
probability of transiting from pareni(u) in statel to the

child nodeu in statek. This probability is assumed to be
position-invariant.

the emission parameters that parametrise Gaussian dis-
tributions, f(.; u,,3r), one for each state:. Here,

u, € R? and X, are the mean and covariance matrix,

We extend GTM to the visualisation of tree structures by
requiring that the points in the latent space generate the
parameters of hidden Markov tree models (HMTMs).

A treey is an acyclic directed graph and as such it consists
of asetdy = {1,2,...,Uy} of nodesu € Uy, a set of directed
edges between the nodes (each edge goes from a parent node
to a child node) and a set of labets, € R? on nodesu.

Each nodeu has a single pareni(u) (apart from the node . ) . , L
number one, the root node) and each node has a set of children respectlyely, of the Gaussian associated with emission
ch(u) (apart from the leaf nodes). Furthermore we designate process 'rT staté. ) . )
subtrees. A subtree rooted at nodef a treey is referred to The Marko_wan depgndenues of hidden states are realised
by y,,. Hence, the entire treg is equivalent to the subtrag, ~ PY the following conditions:

rooted at its root. Moreovey, ,, denotes the entire tree except « Given the parent state, the child state is conditionally
for the subtree rooted at node This notation is illustrated in independent of all other stateg(Q. = q.[{Q. =
F|g4(a) QU}v;zéu) = p(Qu = QUlQp(u) = Qp(u))'

We also introduce a model for labels of the trees that cap- Given the (hidden) state of a node, the corresponding
tures the structure of the nodes. We associate with eachmode label is conditionally independent of all other variables i
a discrete random variabtg,, which can be in one of (un- the tree,p(O, = 0,[{O0y = 0u}vtu, {Qv = G }ostu) =
observable) states. The varialilg, stochastically determines P(Oy = 04|Qu = qu)-
the label for nodeu. Each statek = 1,2, ..., K is associated Thus, the HMTM distribution can be factorised as follows:
with a parametrised emission distributigi.; k) that produces
a label. So given a tree structuge the model can label each
of the nodes depending on what stéig € {1,2, ..., K} each Py, Q1 =aq1,...,Quy = ‘JUy) =
nodew is in. What states will be entered and ultimately what
labels will be produced depends on the structure of the model p(Q1 = Q1)< H P(Qu = qu|Qpu) = qP(W))

By structure we mean a joint probability distribution ovéats uctly u7l

variables that characterises the relationship betwedessin, . .

of all nodesu € Uy. The simplest structure is the one where % ( H P(Ou = 0u]Qu = q“))' (11)
all the states are independent from each other. In this case
a node can enter any state regardless of the state of anfenceforth, for brevity we shall drop stating both random
other node and the joint distribution simplifies to a produsfariables and their instantiations, keeping only the tatte

of probabilities. Such a simple structure, however, does no Similarly to the forward-backward algorithm for HMM [16],
capture the structural information in the trees inducedti® tthe likelihood of an HMTM can be efficiently computed by
parent-child relationship of the nodes. A more appropriathe upward-downward algorithm. The motivation of this algo
structure is to make each node dependent on its parentrithm stems from the observation that a direct calculatibn o
p(u). Thus, the stat€),, is conditioned on the stat@,.,) of likelihood without knowledge of the hidden states requaes
its parent. Such a structure implements a first-order Mark@xponential number of steps. The upward-downward algorith
property. Moreover, we assume that when the model labelsfines the following quantities:

the tree it does not reveal the stat®s entered. Thus, the

underlying process that generates a tgess hidden from us, .

and only the labels,,, u € Uy are observed. This is illustrated ag(u) = p(qu = k,y1,)  upward probability,

in Fig.4(b). Br(u) = p(y,|qu = k) downward probability.

The resulting model, called the hidden Markov tree model
(HMTM) [15], is an extension of the hidden Markov model
(HMM) [16] operating on sequences. HMTM models tree The model likelihood, given a treg, can then be calculated
structurey by expressing a joint probability density for theUsing any node: € Uy as:

uGUy

set of hidden state variableg, .. .,QUy, each defined on K K

.the support{1,2,.. - K}, anld the set of labelsy, ..., OUy p(y) = Zp(% o =k) = Zﬂk(U)ak(U). (12)

in R%. The model is callechiddenbecause the states cannot =1 =1

be directly observed, whil&larkov refers to the fact that the

current state of a node depends only on that of its immediate V. HMTM S AS NOISE MODELS FORGTM

predecessor (parent). _ _ _ This Section presents an extension of GTM from vectorial
An HMTM, in the same fashion as an HMM, is defined by tree structured data in the spirit of [17], where GTM is

three sets of parameters: extended to visualise sequential data. Analogously to GTM,

« initial probability distributionm = {p(Q1 = k)}r=1,...xk each latent pointe € V is mapped to an HMTM via a
— each element expressing the probability of the root nodemooth non-linear mapping@. Since the neighbourhood of
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Fig. 4. Notation in tree structures (a), Example of an HMTMenéthe hidden state9 (states in grey) emit labels (b).

I'-images ofx is preserved, the resulting HMTMs will be
topographically organised. Here the observations are ngdp
fixed-length vectors, but treesy, as described in Section IV. me={p(a1 = Flwe)}r=r,..

For each latent pointz we calculate the likelihoogh(y|x) = {gn(AM p(@e) rmr, (16)
(see (12)). Each data item is subsequently mapped to the

location of the map where thg(y|x) is expected to be high.

The starting point of our formulation is the form of a T ={p(qu = klgp) =, Tc) bri=1,... K
standard mixtqre model. _However, this time the components ={gs(A (Tl)¢(mc))}kl L K (17)
are not spherical Gaussians as in GTM, but HMTMs. As-
suming that the given treeg = {y), y®@ ..y} are

independently generated, the likelihood is expressed as: B.— {Hl(:)}kzl
N N o —{ABY (@)} (18)
L=]]r@™) = H Z y"lz)p(z),  (13)  where
n=t n=te=l « the functiong(-) is the softmax function, which is the

canonical inverse link function of multinomial distribu-
tion and g, (-) denotes thek-th component returned by
the softmax, i.e.

where the mixing coefficients can be ignoredpés) =
Denote the number of noddsy<n) of the n-th tree y(™ by
,, and consider a regular grigle.}<_; in the latent spac®.

The noise modelg(y™|x.) are expanded using (11): gk ((ar, as, ...,aq)T) _ qeak k=120
i=1€"
N O U Here the softmax function “squashes” the values of
coc [ X wlalze) [ plaulgpe. =) AMg(z,) and ATVg(z,), which are unbounded,
n=1c=1 ge(1,2,. K }Vn w2 to values in the rangg0,1]. This is necessary as the
elements inr, andT'. are probabilities.
« Hp )|qu7:ch (14) o x. € R? is thec-th grid pointin the latent spacg,

o () = (61(), o))", 6 () : R* — R a vector
function consisting ofM nonlinear smooth basis func-
In order to have the HMTM components topologically  tions (typically RBFs),

organised — e.g. on a two-dimensional equidistant grid — | the matricesA(™ ¢ REXM AT ¢ REXM gpg

we constrain the mixture of HMTMs, ABY ¢ RIXM gre the free parameters of the model.
o Note that we decided not to directly model the covariance
(y) = 1 Z (y|z.) (15) of the emission distributions. We will elaborate on thisrgoi
Py =7 po Yie later.

We require the likelihood to be maximised. This can be

by requiring that the HMTM parameters be generateachieved by adopting an E-M formulation of the problem

through a parameterisesmoothnonlinear mapping from the by writing the (complete data) likelihood in terms of hidden
latent space into the HMTM parameter space: indicator variables::
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o _ [ 1 if tree y(™ was generated by mode]
¢ 7] 0, otherwise

1,if tree y(™) was generated by model

Zy ke = and nodey was in statek;
0, otherwise
1,if tree y(™) was generated by mode]
n nodewu was in statek and its parent
Zu,k,l,c =

node is in staté;
0, otherwise

The complete data likelihood and its logarithm read:

plar = k) e
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2 ko logp(0 gy = k, mc)} : (19)

1k=1

Following the E-M formulation, we maximise the expected

complete data log-likelihood with respect to the postedisr

tribution of the hidden (indicator) variables, given theadand
current parameter values. In the E-step, these posteaoid (
their expectations) over the hidden variables are estihate

B[] =p(xc|y™), (20)
Elz} o) =plqu = kly("), z.), (21)

The above probab|I|t|es are obtained by the upward-
downward algorithm as calculated in [18]. We can now express
the expected complete-data log-likelihood of the model as:

N C
Ellog £] = Z Zp ly™)
n=1c=1
K
1> plar = kly™, z) log p(qr = kl.)
k=1
U, K K
+ Z Z Zp qu = k, Ap(u) = l|y(n)7 mc)
u=2 [=1 k=1
x log p(qu = klgp) =1, xc)

+> > plgu = kly™, 2.)
u=1 k=1

X logp(og”)|qu =k, mc)} (23)
In the M-step, the derivatives of the expected log-liketiio

are calculated with respect to the parameters of the model:

OE[log L] OE[log L] OE|log L]
QAT 7 AT 7 gABY

This results in the following update equations:

Elementoy, ; in matrix A(™

— = T, i(Tc
Do~ 2 2 Myl
. (P(ql =kly™, z.) — p(q1 = klwf:)),
(24)
Elementak . in matrix A @,
Tim = ; ;p(wcly )9i(xe)
Un
x (p(qu =k, qpu) = lly™, zc)
u=2
= plas = Ha =z )pla) =11y, 20 ).
(25)
Elementa/, , in matrix A(B):
N
El
8 Ogﬁ :Zzp |y (bz :BC)
aak i n=1c=1
Un
u=1
(26)

where e, is defined as the row unit-vector which has all
elements equal to zero apart from enkrnequal to 1,3, k =
1,2,..,
Gaussian emissions.

Regarding the covariance of the emission distribution, we

noticed that higher quality models were obtained when atste
of direct modelling of the covariance through the niapthe

covariance was calculated, in the spirit of [4], at the end of

each M-step using standard update equations:

K are the covariance matrices of the state-conditional
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TABLE Il TABLE Il
PARAMETERS OFHMTM S FOR CREATING THE TOY DATASETVARIANCE CLASSES INTPBDATASET.
WAS FIXED TOo2 = 1.

Class| Symbol | Description

Class Initial prob Transition prob | Means of emissions

A O Policemen with the lowered left arm
HMTM 1 0.70.3 0.90.1 —10 4.0 B X Policeman with the raised left arm
0.10.9 1.0 20 C * Ships with two masts
HMTM 2 0.70.3 0901 —2.06.0 D . Ships with three masts
0.10.9 3.0 0.0 E A Houses with one upper right window
HMTM 3 0.70.3 0.10.9 —1.0 40 F \V4 Houses with upper left and lower left window
090.1 1.0 2.0 G < Houses with two upper windows
HMTM 4 0.70.3 8; 8? _32(')0 88 H > Houses with lower left and upper right window
s . . | * Houses with three windows
J O Houses with one lower left window
K + Houses with no windows
N L O Houses with one upper left window
() _
Ek,ij = Zp(wCIy(”))
n=1
Un HMTMs with 2 hidden states with two-dimensional Gaussian
% Z (qu = K| () 4 )(o(n) _ (C))(O(n) _ (C)) . . . . .
PGu = RIY" 75X )(Oy i — Hig ) Oy 5 — i emissions of fixed spherical variance, each corresponding t
u=1 1 one artificial class. Each of theclasses ha80 samples. All
N - patterns have the topology of a binary tree with 15 nodes. The
Yoy P(@ly™) 370 p(qu = kly™, ) parameters of the models were set is such a way as to ensure

(27) that it would be impossible to distinguish the classes frbm t
wherei, j — 1,2, ..., d index the elements of the mean anéabservations alone, without taking into account the uryitegl

label vectorss ando, respectively, as well as the elements of €€ Structure. A plot of two-dimensional observations bf a
the covariance matris. the nodes for all trees is pre_sent_ed in Fig.5(a). The parmmet
After the training, to smooth the covariance structure & the HMTMs are summarised in Table IIl.

local HMTMs addressed by arbitrary latent points, we recal- The second dataset consists of benchmark images produced
culated the covariance matrices using the following schent®y theTraffic Policeman BenchmafiPB) software [19]. The
Covariance matrix(x) of the HMTM addressed by € V same software was used to produce a dataset to demonstrate
is expressed as a convex combination of the correspondifi§ functionality of SOM for Structured Data (SOMSD) in
covariance matricész,(f) of HMTMs addressed by latent[1]- This software provides an artificial domain for evalu-

centrese,, ¢ =1,2,....C: ating learning algorithms that process structured patteln
produces images that resemble traffic policemen, houses and
. (c) ships of different shape, size and colour that are produfcts o
2i(@) = ;Vc(m)zk ’ (28) a rule based grammar. Three sample images of each type
where a are illustrated in the in Fig.6(a), 6(b) and 6(c). Connected
exp(— 8|z — x.||) components in each image have a parent-child relationship,
Ve = Zc exp(—fl|z — zo|))’ (29)  the object located lower and closer to the left edge being the
¢=1m ¢ parent (i.e. the images must be interpreted bottom-up tdeft
and | - || denotes the Euclidean norm on The parameter ight) |n Fig.6(d), 6(e) and 6(f) tree representations fué t
B8 >0 ql_Jantlfles to what degree local neighbourhoodscof sample images corresponding to Fig.6(a), 6(b) and 6(c) are
are considered. displayed. TPB produces general acyclic graph structimets,

_Here we have sef = 10, but we have found that the ;e regtricted it to generate only images expressed as trees.
visualisation plots were similar for a wide rangeotalues. In gach node in each tree is labelled with a two-dimensional
practice, compared to the obvious choice of directly pat@me \octor. This two-dimensional vector is a pair of coordimate
ising the covariance matrices through a smooth mapping frqg} the centre of gravity of the component that node stands
the latent space, we found that this scheme leads to SUPERI' The dataset definek classes. each had® samples, that
models (viewed as density estimators and evaluated on a hgld presented in Table IIl. Fig.5(b) is a plot of the labels of
out set) and hence better visualisation plots. trees in the dataset. This illustrates what the observed dat
looks like if the tree structure is ignored.

The third dataset consists of images interpreted as
A. Datasets .

) _ guadtrees A quadtree is a data structure used amongst other
We have used three datasets in our experiments. The fif§hgs for storage of images [20]. It issaregular treey, i.e.
dataset is an artificial toy dataset produced by sampling #0 5., parent node has4 childrenv, € ch(u),r = 1,...,4. A

2note that a convex combination of symmetric positive dedimitatrices is quadtreey stores an imagg ina recurSive.manner; the root r.mte

again a symmetric positive definite matrix. uy represents the entire image. At the first level of recursion,

VI. EXPERIMENTATION



IEEE TRANSACTIONS ON NEURAL NETWORKS 9

@) (b)

Fig. 5. Labels of toy (a) and TPB (b) dataset. Each markee shdicates class membership of the tree to which each laddehgs.

the image is partitioned into four equal square quadrants. B. Training

the first level of quadtreg, each node € ch(u;) represents  The |attice in the latent space = [—1,1]2 was a 10x10

a quadrant, and is labelled by a scalar that expresses the Me&ylar grid (i.e.C’ = 100) and the RBF network consisted
colour intensity of the quadrant. At the next level of reeons ¢ 3y — 17 basis functions: 16 of them were Gaussian radial
each quadrant is partitioned further into four quadrantd ap5sis functions of variance? — 1 centred on a 4x4 regular
their mean colour intensities are stored as labels in th@®0¢iq, and one was a constant functiony (z..) = 1 intended to

at the second level of quadtrge Partitioning continues in this garve as a bias term (analogous to the bias in neural networks
fashion either until a quadrant becomes a single pixel, ®Wh e state-conditional emission probability ~distributon

a certain criterion is met. Such a criterion can be a functibn \yere modelled as two-dimensional spherical Gaussians. Dur
the relative change in mean colour intensity between a nogg training the emission covariance was updated according
u and its parenp(u). We note that quadtrees can represend (27). Parameters were initialised randomly with uniform
only images of a dimension that is a powerd$ince images istribution in [—1,1].

are progressively divided into smaller square regions.eDth e employed scaled conjugate gradient for optimising the

images must be padded with extra pixels or resized in ordgst function (23). The gradient was calculated using (24)—
to become of appropriate dimension. (26).

The images used here, are taken from the Amsterddm Results and discussion
Library of Object Images (ALOI) database [21]. We selected In Fig.7(a) we see topographic organisation achieved by the
72 images of a single object, a rubber duck, photograph€d M-HMTM of the toy dataset foix' = 2. The covariance
from different viewing angles. The dataset was divided iatoOf the emission distribution was initially set ta, = 27/
training and validation set of8 and 24 images respectively. for both statesk = 1,2 where I stands for the identity
The images were created by successively rotating the objetatrix. We also tried initialising it with, = 217,31, 51 with
by an angle of5° degrees and photographing it from eaclimilar success. Each point on the plot represents an input
viewing angle. The images are colour images of dimensi@attern (tree) and four different markers correspond tofooe
192 x 144 (pixels). We converted the images into grayscalgenerative classes used to construct the data set. Traming
and resized them into square images of dimensins 64. completely unsupervised and class markers are used oely aft
The number of grayscale levels was then further reduced tte training when plotting the projections. A clear topqujra
4 levels, which allows enough detail to be discerned relati@ganisation of classes has been achieved - there is amneévide
to the original images. The values of thejuantisation levels trend of patterns of the same class to belong to the same
were determined by first collecting the grayscale inteesiti cluster.
of all pixels from all images, and then using the k-means Fig.7(b) shows the visualisation of the traffic policeman
algorithm to select! centres in the space of pixel intensitiesbenchmark (TPB) data set produced by GTM-HMTM with

K = 2. The initial covariance matrix for the emission
distribution was set t&; = 21 for both states: = 1,2. We

All three datasets were normalised in each dimension #dso tried initialising the covariance matrix with, = 17,37

zero mean and unit standard deviation. which yielded similar results anil;, = 0.51 which failed to
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Fig. 6. Sample images from TPB in (a), (b), (c) and their cgponding tree representations in (d), (e), (f).

X %KX X;é’ X x
” XX >¥ o «
%%\(x R

(@) (b)

Fig. 7. Visualisation of toy (a) and TPB (b) dataset using GAMTM.

achieve the same level of topographic organisation. Margovthis is out of the scope of the present paper.

we attempted training fo’ = 3,4, but with suboptimal

results. One problem that makes training difficult is that as In Fig.7(b), next to each cluster a representative image
the number of states (and consequently the number of fisedisplayed. The model has clearly achieved a level of
parameters of the model) increases, it becomes more vital f8Pographic organisation. It is interesting to note the ieyimey

an E-M trained model to use a good initialisation strategy f@¢ub-clusters. Class has been split into two sub-clusters, one
the weights. In GTM the initial weights are determined by th@ith policemen with the right arm lowered and one with the
linear projection space obtained through principal congmn fight arm raised. The same has happened for cf@swhich
analysis [4]. In our case we do not have such a luxury. Ofi@s been divided into policemen with the right arm lowered
way of dealing (at least to certain degree) with the inisiaion and policemen with the arm raised. The sub-clusters of ships
problem would be to abandon the E-M framework and adopte also interesting as not only has claskeen divided into

a more stable parameter fitting strategy (e.g. Bayesiart), bree sub-clusters but the sub-clusters that surround elas
possibly indicate how the classes are related. Thus, thes cla
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e seems to act as a “link” between the three discovered sudtese to the upper-left corner of the plot lie far apart in
clusters; clas® represents ships with three masts, while théhe z-axis, while being close in thg-axis. This behaviour
three sub-clusters around clas@re composed of ships with progressively changes as we move towards the upper-right
either the two masts, with either the left, centre or rightorner of the plot, where the means have similaroordinates
mast missing. Nevertheless, the model has not been sugkedsidt are distant in thg-axis. Moving towards the bottom-centre
in the visualisation of the classes representing houses. Alod bottom-right regions of the plot we notice that the means
clusters have been formed as all classes have been merggproach each other. This behaviour reflects the natureeof th
into one big cluster representing a super-class of all tliata points (trees) mapped in particular regions of thentate
images of houses. One possible explanation for this ingbilispace. In particular, the ship-classes reserve the left gfar
of discriminating between the classes of houses, is théoshal the visualisation plot in Fig.7(b). As it can be seen in Fjg.6
tree representation of houses; typically they are shohent ships are generally “wide” and “short” structures. Poligam
ships and traffic-policemen structures. are concentrated at the right upper part of Fig.7(b), and are

In Fig.8 the underlying state transitions are visualisedenerally “narrow” and “thin"(see Fig.6), while houses are
The plot is organised as a grid df x K = 2 x 2 state clustered densely at the bottom-centre of Fig.7(b) and appe
transition matrice®(q. = |q,(.) = k), €ach transition matrix to be relatively “compact” (see Fig.6). In order to confirnesie
corresponding to an underlying local noise model (HMTM)bservations, we measured the variance for the three slasse
Topographic organisation of local noise models with respec of ships, policeman and houses. We found that the variance
their transition structure is evident in Fig.8 as statedittons was 1.83,0.69,0.14 in the xz-axis and0.58,1.53,0.42 in the
vary smoothly with their “latent space addresses”. In Fig.g-axis for the three classes respectively.
we see that stat¢ acts as a “trap” state for the entire plot, Inspecting Fig.8 in conjunction with Fig.9 we make the
that is if the model visits state, it is extremely unlikely for following observations. In general, the mean for stateon-
it to ever visit state2. Regarding transitions from stafewe centrates more on modelling the labels of loweroordinates,
observe a more interesting behaviour. A strong tendency f@hile the mean for stat® seems to concentrate more on the
self-loops in state is observed at the upper-left and bottomtabels of highery-coordinates. The classes of ships reserve
left corner of Fig.8. However, this behaviour graduallyebes the area that corresponds to the left area in Fig.8 of self-
as we move towards the centre of the map; transitions lsops for state2, thus favouring the projection of “short”
state2 progressively lose their strength benefiting transitiondassed Furthermore, the upper right area of the latent space,
to statel. Around the centre of the map transitions to stati Fig.7(b), is reserved for the policemen classes, whigh ar
1 narrowly dominate transitions to stafe Moving further “tall” structures. As noted, this corresponding area instee-
towards the upper right part of the plot, transitions toestat transition plot of Fig.8 is where transitions from stateto
and2 become almost equally likely. Moving from the centrgtatesl and 2 become almost equally likely, thus favouring
towards the bottom-right corner, transitions to stateegain such “tall” structures. Of course, if transitions from statto
their power, albeit not to the same strength as in the upgder-Istate1 were further strengthened at the expense of transitions
and bottom-left corner of the plot. from state2 to itself, the projection of the policemen classes

The respective plot for the initial probabilities is not preto the corresponding area would be favoured even further.
sented, as a particularly simple structure has emerged a3ras particular area in Fig.8 is the most favourable for the
result of the GTM-HMTM training; the initial probability projection of the policeman classes with respect to other
vector of all models is practically equal to = [0 1]7. Thus, regions of the latent space. Finally, the respective arethef
effectively all models pick the second state as their stgrti house classes in Fig.8 corresponds to the area where a strong
state,q; = 2. tendency for self-loops for stat2 occurs, that favours the

In Fig.9 the underlying means of the emissions are vinapping of “short” structures. Clearly, despite of the $amify
sualised. This plot is organised as a grid of subplots. Eaghthe state-transition probabilities in the respectivesarof the
subplot presents the space of emissi@fs where labelso,  ship and house classes, the two classes are projected in well
reside, in which the means for statés= 1 and k = 2 separated areas due to the different underlying structéire o
marked with circles and crosses, respectively. Eviderlg, the means. The model-based nature of our visualisatiors plot
means of the emissions are topographically organised ds welds a potential to bring a degree of transparency in analysin
as the state transitions, as the positions of means chaage understanding of how the data items are organised in the
gradually as we move in the plot. We note that images irisualisation plot in Fig.7(b).
the TPB dataset are interpreted bottom-up (see Fig.6), andie also trained GTM-HMTM on the dataset of quadtrees.
that z-coordinates of the labels decrease leftwards while We setk = 3 and the variance of the one-dimensional emis-
coordinates decrease upwards. Thus, components locatedjghs equal tol.0. However during training, GTM-HMTM
the lower part of the TPB images have highecoordinates displayed numerical problems that prevented us from usiag t
than components located closer to the top of the TPB imag@staset at thé4 x 64 resolution that we determined earlier.
We observe that since stateis effectively the starting state Thus, we reduced the images fraht x 64 to 16 x 16 pixels.

for all models and since images are interpreted bottom-uphe results for GTM-HMTM on the quadtree dataset are
the mean for stat@ naturally has a greatgr-coordinate than

the mean for state in the ent”‘e plOt.- We also observe the secq) that the values af-coordinate in TPB data increase in a top-down
following three general behaviours in the plot. The meanection.
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Fig. 8. TPB task: the plot is organised as a gridfofx K = 2 x 2 transition matrices, with each transition matrix corresgiog to one local HMTMs
underlying the visualisation plot.

displayed in Fig.10. Unfortunately, although a certaireleaf toy dataset we found that the best parameters were a lattice
topographic organisation is evident, the model does nanhseef dimension28 x 28, a learning rate 00.5, an initial radius
to be particularly successful at this task. We note certainds of 5 and weighting coefficients gf; = 0.99 and u2 = 0.01.
such as the presence of images at the bottom of the plotrafr the TPB dataset the we chose a network of dimensions
ducks facing to the right, while at the centre-left we comgl4 x 87, a learning rate ofl.5, an initial radius of60 and
across images facing to the left. The top right is dominated weighting coefficients ofu; = 0.01 and 2 = 0.99. Finally
images of frontal views. Finally, close to the centre anglgly for the quadtree dataset, the parameters were a network of
to the left, we note an overlapping of images of differerdimensions90 x 90, a learning rate 0.5, initial radius of90
orientations that have not been successfully organiseden and weighting coefficients aofi; = 0.05 and us = 0.95. By
map. inspecting the plots we can see that GTM-HMTM is better at
Further insight regarding the topographic organisation féhe toy dataset, while SOMSD is better at the TPB dataset as it
the quadtree dataset can be gained by observing the plotsrf@nages to distinguish between all of the classes, esfyecial
the state transitions in Fig.11 and the means of the emisgionthe classes of houses that are problematic in GTM-HMTM.
Fig.12(a),12(b) and 12(c). The state transitions are vienjjar  This is interesting, because SOMSD seems to be more sensi-
across the entire plot and only subtle variations are nakite tive than GTM-HMTM to data items of shallow structure. On
All three plots for the means exhibit a very similar struetur the other hand, SOMSD does not discover the sub-classes that
with abrupt changes close to the centre of the respectits.pldSTM-HMTM does for the policemen and ships. Regarding
These observations suggest that the underlying local rmodéle quadtree dataset, although we tried numerous parameter
are very similar in terms of transition probabilities, amatit Settings we could not obtain a good result for the same datase
is the means that mostly drive the topographical orgamisati of 16 x 16 of images. Nevertheless, when we further reduced
The abrupt changes noted in the the plots of the meaiisg dimensions of the images downgox 8 pixels, SOMSD
seem to be related to the overlapping of images of differewgs able to a achieve good topographic organisation, disgla
orientations, noted at about the same location in Fig.18s¢cl in in Fig.14, indicating that the transformed images preser
to the centre of the plot). sufficient information. However, SOMSD does not seem to
Next, we present the results obtained by using SOMSD ##ilise the entire map when projecting the data, as it does
the three datasets. We tried numerous parameter settingsf@ the toy and TPB dataset (the same problem also appeared
SOMSD, all with rectangular lattices, Gaussian neighboach When training with smaller maps). Thus, in Fig.14 only the
functions and600 training iterations, and picked the besfegion of the map containing projections is displayed.
results, for the toy and TPB datasets where class informatio The toy data set is clearly biased towards GTM-HMTM and
is provided, according to the criterion described below.the SOMSD was not able to cluster the trees in a fashion reflecting
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the organisation of the underlying generative processs THIMTM enables us not only to analyse and understand the
raises an important point we would like to stress. Of coursained model (and hence understand the organisation of the
there is no single best model for topographic organisation map in terms of organisation of local prototype HMTM noise
data of a given form. This issue is even more pronounceubdels), but also to understand exactly what kinds of data ou
in the case of unsupervised learning in structured domaimspdel is suitable for. It is also important to understand tha
where for models such as SOMSD a clear cost functional beialgss of noise models (in our case HMTM) inherently dictates
minimised during the parameter fitting process is missinglong what lines will the data projections/representatibe
Besides not knowing exactly what the model is optimisearganised on the visualisation plot. Close regions on the
for, there is an additional difficulty: recursive models Buccomputer screen (latent spat® will correspond to "close”

as SOMSD are non-autonomous dynamical systems that cemise models (HMTMs) and hence trees will be organised on
be difficult to understand. But without a clear understagdirthe map with respect to how closely they adhere to different
of the underlying dynamics, we can never know exactly wh&tMTMs defined by different regions on the map. We will

is driving topographical organisation of the projectioAs. a study the issues of metric on the latent space induced by the
consequence, given a new tree, it might be possible to guebsice of noise models in the Section VIII.

where its image on the SOMSD map will lie, but under- ) ] ]
standing the process of its formation will remain probleimat  1here are two problems in applying HMTM to the third
Consequently, it is difficult to grasp the structure of arteal dataset of quadtrees. First, the particular HMTM emission
topographic map on a deeper level - one is forced to proddEE’del (Gaussian) does not correspond well to the discrete

only verbal descriptions as in the previous two paragraphsnature of quadtree labels employed here - binomial or multi-
nomial distribution would fit the bill much better. Second,

In contrast, a clear model-based formulation of GTMdendencies in the quadtree structures can be better modeled
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Fig. 10. Visualisation of reduced resolution quadtree skitél 6 x 16) for GTM-HMTM. Images are plotted as transparent to allowibiigy of overlapping
ones.

State-transition probabilities
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Fig. 11. Quadtree task: the plot is organised as a grikof K = 3 x 3 transition matrices, with each transition matrix corrasgiog to one local HMTM
underlying the visualisation plot.

using observable and position-dependent first-orderitians, nature of emissions and dependency structure of quadtrees a
This corresponds directly to the nature of the process byglvhiaccounted for. This will be done in section VII.

quadtrees are generated from images. In our framework, it isBecause of the absence of a clear cost function, the per-
easy to modify local noise models for trees such that disrgrmance of SOMSD was measured in [1] as the accuracy of
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Fig. 12. Quadtree task: means of emissions of GTM-HMTM foaditee dataset. Each subplot corresponds to a state.
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Fig. 13. Visualisation of toy (a) and TPB (b) dataset usingvisD.

classification of data into known classes (the class inftiona to this criterion GTM-HMTM achieved a score 86.833 and
was not used during the training) using data represenwtiddOMSD a score 0£3.26.

on the map. After the map formation, a secondary hold-out\ye stress again, that such a procedure makes sense only
test dataset was used. Items from the test set were repeese(iiyen the class organisation of the data correlates with the
on the trained map and each test item was predicted t0 h@fRing force behind the topographic map formation. If, for
the class label of its closest neighbour (_from the trainiag s example, the classes of trees are organised along the fiaes t
on the map. The accuracy was then defined as the perceniagenot be reasonably captured by HMTM modelling, there is
of correctly classified test points. The results of this nieas simply no reason why the achieved classification accuracy of
on the toy dataset were 90% and 60% for GMT-HMTM ang\ .M TM should be high. But low classification rate would
SOMSD respectively. The results were reversed for the TFj’gst mean that our model-driven topographic map formation
dataset: GMT-HMTM and SOMSD achieved 55% and 95% @fyes not correlate with the particular class labelling sohe
accuracy respectively. Regarding the quadtree datas&riewh, g,ch cases one can simply switch to local noise models that
data items cannot be classified as they do not belong to distigre more correlated with the class labelling. Alternagiyehe
classes, we formulated an analogous performance criterigfignt say that he/she wanted to see topographically orgdnis
Again after map formation, the items from a secondary holgrt5 representations driven by aspects captured by HMTM (or
out test dataset were represented on the trained map. Thg other noise model employed) and stick with the obtained
difference of the viewing angle of the photographed rubbgg,qgraphic maps, irrespective of the class labels. Thanis
duck of each test item and its closest neighbour (from trﬁﬁ"lsupervised learning setting after all. Again, withoubwing
training set) was calculated. The performance criteriors We,e exact mechanism behind the topographic map formation, |
then calculated as the average of the absolute differerfceqsopromemaﬂc to assign any performance-related intéagicn

the viewing angles (a lower score is preferable). According the classification rate obtained on the trained map.
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Fig. 14. Visualisation of reduced resolution quadtree sktté8 x 8) for SOMSD.

VII. ALTERNATIVE LOCAL NOISE MODEL FORMULATIONS  are governed by transition matricesB"), one for each child

In general, GTM consists of two components, a generatig@sitionr = 1,..., R, with entriesb; = p(o, = l|oyw) =
probabilistic model, and a suitable constrained parasetri k,pos(u) =r) for k,l=1,... K.
tion. For a given data type, there can be many different We impose a non-informative flat initial state probability
choices of local noise models in the data space. Since digtribution for the root nodep(o1) = 4. The scalet model
the GTM formulation, two data items are viewed as beirk§g-likelihood for a datase?” = {y), ...y} is then:
“close” if they are generated by the same (or similar) local
noise model, the nature of the topographic map is determined

N U, K K R

by our choice of the noise model. The methodology is general log p(y) o 80 . 100, 10n0s(u
and can easily accommodate different notions of similarity ,;uﬂ;;; pluy OO I pos(u),
between structured data itefnsAs a brief demonstration x log p(0y = l|op) = k,pos(u) =r)
we introduce another generative model on trees, which we N K K R ,U,
call the Markov Tree Mode(MTM). Unlike HMTM, MTM — ( 50 100, 10n0s(u T)
has observable states (which makes their interpretatich an ;;;; 1;2 ol O Tpostu),
estimation easier) and are capable of limited accommadatio x logp(oy = l|oy) = k,pos(u) =)
of positional information in the trees. N K K R

A MTM is an observable process operating on trees of _ )
a particular class, trees where each parent node has exactly ;;;; ™
R children. The process generates a discrete lahele x log p(0u = 1|0y = k,pos(u) =),
{1,...,K} for each nodeu € Uy of tree y. Labelling of (30)

the tree proceeds in a top-down fashion, starting from the

root node u;, and working down towards the leaves. At \yheres  is the Kronecker delta arndﬁ’,;l) is the number of

transition from a parent nodg(u) to its child nodeu, a {imes the transition from a parent node labelled/byo the
label o, is assigned. The label assignment is conditionally i, child labelled byl occurs in treey(™.

dependent on labad, . of the parentp(u) and the position |, orger to built a GTM that utilises MTMs as noise

pos(u) € {1,2,...R} of the child. This dependency isqqels we need a suitable parametrisation of the multiabmi

expressed as a probabilifyou[0,(), pos(u)). A MTM is  oissions along the lines of GTM-HMTM (see section V):
the first-order Markov process, where the label of a node is

conditionally independent from all the labels that belong t

r _ r.k
ancestor nodes, given its position and parent node. Transit B (zc) = {g(W""¢(@)) }ri=1...kc (31)

4or, more generally, different data types. Sdiscardingp(o1) = %
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For C latent points organised on a regular grid in spate VIIl. M AGNIFICATION FACTORS FORGTM-HMTM
an(_j datasef, a constrained m|xture_> c(ﬁ MTMs is formed. The topographic organisation of the data on the two-
Using (30), the complete data log-likelihood (upto a contagimensional space allows the inspection of spatial data re-
factor) of GTM-MTM is: lationships in the high dimensional space and the inferefice
potential clusters and relations between the data poirds:-H

N C Un ever, we must keep in mind that the data-points are projected

log £= Z logz P(0u|0p(u), pos(u)) on the latent space in a non-linear way. This means that data
";1 Czl “U:2 ‘% n points that are distant in the data space (assuming sonm@noti

_ Z logz 1—"I H H H of a metric in the data space) may be prOJegted close to each

v e st oot other. Thus, even though the smooth mapping does preserve

the neighbourhood structure, it does not necessarily prese
distances in the latent space.
(32) Magnification factors for the GTM are introduced in [22].

. i . I Each pointz of latent spaceV is mapped to the mean
Employing the E-M formulation, we seek to maximise the RY of a spherical Gaussian density via(z) —

expected complete-data log-likelihood, calculated in Ee i — Wo(z). Thus, a smooth two-dimensional statistical

step: manifold of isotropic Gaussians is induced. An infinitisima
K displacementdz at a latent pointr € V is mapped to a
. () displacemently atI'(x) on the manifold of Gaussian means:
> plaely™)y . . ;
o ot o Tkl dy = Jdx, where J is Jacobian of the mapping at .
o — Consider an infinitesimal rectangle located saatc V and
x 1 w = 1o, =k, =r). (33 _ )
. . _ng(o |O”( .) pos(u) = ). (33) defined by displacementér; = dxie;, dxs = dxses along
Partial derivatives ?f (33) with respect to elements of cartesian coordinate systefa;, e»} in V. Its area is equal
parameter matriceBV ™" to be used in the M-step read:  to A = dz;dz,. The area of th&-image of this rectangfeis
equal tod A’ = dA-det(J7J) [22]. In [22] magnification fac-
N C / _ T :
o o (n tors are calculated as the ratiel’ /dA = det(J" J) by which
awTEUOg L] = Z Z Zp(wcw( ))Vétl) the area of minute local patchesaat V expands/contracs as

1
10y = by pos(us) = 1) stk POuwirescr,

o~

plo, =

N C
Ellog L] :ZZ

"

Jm n=lec=11=1 the patches get embedded in the high-dimensional data space
1 via the non-linear mapping mappirig
ploy =10,y = t,pos(u) = s) However, as pointed out in [22], this definition of magni-
X P (xc)p(0y = jlop) = t, pos(u) = s) fication factors gives no information as to what directions i

Moreover, expansion in one direction can be compensated by
(34) contraction in another (orthogonal) one. Bishop, Sveresh

) _ Williams [22] suggest to perform eigenanalysis of the local
We experimented with two datasets, a toy dataset COfetric tensorsJ”.J. In this spirit, we will quantify magni-

structed by sampling three MTM models, and the quadtr@gation by examining the effect of minute local directional

dataset that was used in GTM-HMTM. o displacements in the latent space on the corresponding nois
The results for the toy dataset are displayed in Fig.15. Th§gdels (HMTM or MTM).

three clusters are clearly discerned. Data points are ntedbe ¢ should be noted that the approach of [22] concentrat-
to indicate the MTM they originate from. Regarding thgng on expansions/contractions on the manifold of means
quadtree dataset, the results are displayed in Fig.160i@i of |ocal spherical Gaussians in the data space cannot be
GTM-MTM with the original resolution of64 x 64 did not gjrectly applied here. The generative probabilistic vigaion
yield any numerical problems as experienced in GTM-MTMyqdels studied in this paper naturally induce a metric in
Clearly, GTM-MTM has achieved a much higher quality ofhe structured data space. Loosely speaking, two data items
topographic organisation than GTM-HMTM. The upper-lefirees) are considered to be close (or similar) if both of
corner is dominated by images of ducks facing to the righhem are well-explained by the same underlying noise model
while the lower-right corner is dominated by images faciag Ye.g. HMTM) from the two-dimensional manifold of noise
the left. In between the two, close to the centre of the Maodels. We emphasise, that in this framework, the distance
we find images of frontal views. Finally, as we move from thgetyeen structured data items is implicitly defined by the
lower left cormner towards the top, we come across images |gta| noise models that drive the topographic map formation
rear views. If the noise model changes, the perception of what kind
Furthermore, we measured the performance of GTM-MTMt qata items are considered similar changes as well. In
using the same criterion as we did for GTM-HMTM andpis paper, we quantify the extend to which small positional

SOMSD on the quadiree dataset in Section VI-C. Rec@lhanges in the latent space lead to changes in the distritsuti
that GTM-HMTM and SOMSD scored0.833 and 23.26  gefined by the corresponding noise models. It is important to

respectively, while GTM-MTM achieved the lowest score of
18.125. Sthe image is not necessarily a rectangle

the latent space correspond to dominant stretching/cctidra
X (5173’ —plou = l|0p(u) = t,pos(u) = s))
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Fig. 15. Visualisation of toy dataset for GTM-MTM.

0wy

Fig. 16. \Visualisation of quadtree datagétl x 64) for GTM-MTM.

quantify the changes in a parametrization-free manner - WlMTMs cannot be analytically calculated (as HMTMs are
use approximations of Kullback-Leibler divergence. latent variable models), but it can be practically measwed

In our model, each point in the latent space’ maps to theobserveLD, Dy .. In particular, for two HMTM37('L‘[”)
a HMTM p(-|z). The entire latent space induces a smoof'd P(-|z + dz), and a set ofV trees_y(l),y@),...,y( )
two-dimensional manifold\{ of HMTMs embedded in the 9enerated by(:[z), the observed KLD is
manifold H of all HMTMs of the same structural form. In or-
der to appreciate how the latent space is stretchedamnified | XN (™)
we perturb a latent poink € V by an infinitesimally small 7 i ) _ =
perturbationdz. The new pointc +dz maps to a new HMTM Drclp(l@lpCle + de)] N nz::l o ply™]z +dz)’
p(:|x + dz). We measure the statistical “distance” between (35)
the two HMTMs, p(-|x) andp(-|x + dx), by employing the ~ We employ two different approaches for measuring KLD.
Kullback-Leibler divergence (KLD). The KLD between twoThe first approach is an approach that can be applied to any
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noise model while the second one applies specifically for
HMTMs (and HMMs as a special case).

A. KLD as Fisher information matrix

k=1
. . - T a

. Each IatenF point has two coprdmates_ _(xl,xg) eV + ﬂk(l,w)}{ (@ = k|m)}

is mapped via a smooth non-linear mapping to an HMTM Oz, Oz

p(-|) on the manifold M of HMTMs. If we displace 0 _ 0 _

x by an infinitesimally small perturbatiomz, the KLD + axsﬁ’“(l’w) apr(Ch = klz)

Dkrlp(-|z)|p(-|]z + dx)] between the corresponding noise
modelsp(-|x), p(:|z + dx) € M can be approximated via +5k(1;%’){
Fisher information matrix

b = Ho) b, (42)

Finally, we need the derivatives of the log-likelihood:

F(z) = —Ep(z)[V* log p(.|2)], (36)
that acts like a metric tensor on the Riemannian manifold 2 log p(ylz) =
M [24]: or,.0z, CePWIE) =

2
p(yle) 55— p(yle) —

-p(y|z) 72-p(y|x)

Drrlp(|x)|p(|x + dx)] = da” F(z) dv.  (37)

p(yle)?
The situation is illustrated in Fig.17. We base the caléofat (43)
of the observed Fisher information matrix on the upward
recursion of the likelihood estimation for HMTMs [18]. The elements of the information matrix are calculated given
« The recursion starts from the leavesf the tree: a set of treeg{y"),..., 4"} sampled by modeh(-|z):
5k(u7w) :p(0u|QU = k,ilt) (38) N
F = _ () 44
. [ - F(x),s =—— — ™).
Recursive step for non-leaves nodes (), N 2~ 92,0, ogp(y'™|x) (44)

Br(u; ) = p(Y,lqu = k; )

The above calculations depend on the 1st- and 2nd-order
= { H P(Yylgu = k; CC)} derivatives of initial state, state transition and statestitional
vec(u) emission probabilities with respect to the latent coortina
X p(oulgqu = k; ) 1st-order derivatives for initial probability for state ac-
K cording to (16):
={ I D orw.le = i)
vec(u) =1 o ™)
: plar = klz) = gi(A™ @(x))
x p(qo = ilqu = k; fc)}p(oulqu =k;z) Oz, B
0¢(x 0¢(x
x | (A2 S g A g a2,
=3 11 D s (e =ilg. = k; @) T r
vEc(u) 1=1 (45)
x p(ou|qu = k; x). (39) L _ -
2nd-order derivatives for initial probability for state
o Final step:
x D par = be) = (A ()
plyle) =Y Alieplq = kle).  (40)  OweOs oz,
k=1 9¢(x) m) 09(x)
A™ _ (A A
Starting again from the leaves of the trgewe recursively 8 ( kO, ;g ( P@)A; oz,
evaluate 1st-order derivatives of likelihood with respecthe - 8%6(x)
latent coordinates:, z,. Let r € {1,2}, 1st-order derivative +gk(A(’T)¢(:c))<A§:r)a 5
is (details can be found in Appendix B): X LrOLs
9 9¢(x)
- (A () 4™ 92
) spo > | g amonam 25
sptyia) = { 5 uti@) folan = H) - :
oz, — ox, +gi(A(7T)¢(iL‘))AE7T) 0°p(x) .
o 3xraxs
soa{ Lo =ro}. @) (46)

The recursion is repeated once more, this time calculatinglst-order derivatives for transition probability from t&d
the 2nd-order derivatives. Let s € {1, 2}: to statek according to (17):
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X
2
+1

X + dx

X1

H

Fig. 17. Two-dimensional manifoldA of local noise modelg(-|) parametrised by the latent spa¥ahrough (14) and (16)-(18). The manifold is embedded
in manifold H of all noise models of the same form. Latent coordinatesre displaced ta: + da. Kullback-Leibler divergence) i 1, [p(:|x)||p(:|x + d)]
between the corresponding noise modelgx), p(:|« + dx) € M can be determined via Fisher information math}«) that acts like a metric tensor on
the Riemannian manifold\1.

0 1

o0 — O (x) = ——= () (T — o, 1), 52
o P(du = klap() = L) = ge(ATV () 5z, o (®) = gz Om (@)@ = phmr) (52)
K
(T,) 99 () (T (T, 99() 02 0? 0
AT = =) gi(ATVe(x) AT —— ). S _g
( k 8(177« ; 8(177« 8:177«8555 (b(w) axraxs (bl ($), ] 8177«8505 ¢M (m) ’
(47) (53)
and
2nd-order derivatives for transition probability from t&ad 52 1
to statek: - N
o state 95,07 m(x) = dm(x)
1
02 0 T +(w7‘_p’m7‘)(w3 ~ Ky s)_(bm(m)
W = I{j = l = A( l) ’ ’ 0'4
) X )
% (A;Tz) o(x) Zgi(A(Tl)tb(:c))Az(-Tl) ¢(m)> In order to illustrate the magnif_icatiorj factors_ on manifold
Oz, ] O, M, we calculate the observed Fisher information matrix for
T 026(x each latent centre.,c = 1,2,...,C. We can then compute
-ng(1‘1(:’11)¢>(~’5))(AJ(g Z)Téx) the KLD between eack. and its perturbation. + dx by
K e (37). Here we perturb each latent centtg in 16 regularly
-y { 9 g_(A(Tl)qb(m))A(_Tl)a(ﬁ(m) spaced directions on a small circle (we have set its radius to
P oz ' ox, 1079). This is illustrated in Fig.18 foB directions. We note

T T, 0%6(x) that alternatively, we could have used SVD decomposition of
+gi(Al l)qb(:v))Al(- l)ib. (48) the Fisher information matrix to find and quantify the local

Oz, 0 dominant stretching directions in the latent space.
1st-order derivatives for means of the emission distrdmuti

for statek according to (18): B. Direct recursive approximation of KLD

iuk _9 B p(z) = A(Bk)i(b(w)_ (49)  In [25] an efficient method for approximating the KLD

Oy Oy Oy between two HMTMs is presented. The approximation is
2nd-order derivatives for means of the emission distrdmuti based on the upward recursion and calculates an upper bound

for statek: for KLD. It is particularly fast compared to the previous
92 92 2 approach as its computations rely only on the parameters of

Trom. M = 8IT8.§C5A(Bk)¢(w) = A(Bk)ﬁﬂw)- the models and does not need to calculate the likelihoods of
(50) samples generated by the models.
With each hidden staté = 1,2..., K we associate an
Finally, we need to calculate the 1st- and 2nd-order derivapward probabilitys;, (u; ) = p(y,|q. = k,x). Given a tree
tives of the basis functions: y, the likelihoodp(y|z) can be efficiently calculated by the
upward recursion, as in (38), (39) and (40).
9 o) = 9¢1 () o O () : (51)  The approximation relies on two results. First we note again
Oz, Oz, Oz, that by definition, the KLD between two multidimensional
where for the RBF kernels: distributionsw andw is:
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perturbed versions of latent poin

neighbouring latent poin

original latent point

neighbouring latent point neighbouring latent poin

Fig. 18. A latent point in spac¥® is perturbed in8 regularly spaced directions on a small circle in order to snea the local magnification factor.

« Recursive step; for internal nodesuse (56) to rewrite
=3 wilog 2L, (55) (39):
wj
i Dyu;x,x + dx] =

Secondly, given two mixtures” = >, w;f; and F' = Drrlp(oul|qu =k, x)|[p(0ulqu = k,x + dzx)]

>, wif! the following lemma is proved [25] for the KLD K .
between them: + Z Dkr Zﬂi 0;2)p(qy = i|qu = k; )|
vEc(u) i=1

K

Zﬁi(v;m +dx)p(q, =ilg, = k;x + dm)}
i=1

< DKL[N(OM s Uk)HN(Ou; /L;cv U;c)]

Dk o[F||F'| = Dkr| szsz Zwlfz ] < klw, w]

“"szDKL fz“f] (56)
+ Z < QU|QU—k .’1}) (QU|Qu:k7m+dm)]
. . . . . vEc(u)
Furthermore, in the case dP-dimensional Gaussian emis-
sions we have: +Zp(qv = ilqu =k, ) Di[v; z, @ + dw])-

(59)
Drr[N(;p,C)IN(; ¢/, C)] =
l[log(detC/)
2 detC

« Final step; the upper bound of KLD is found by again
~D+tr(C"'C) + (p— )"C" " (u—p')].  using (56) to rewrite (40) in the root node (node number

57) 1
This result is important because we will treat emissions Kly; z, z + dx] = k[p(q1|2), p(q1 ]|z + dz)]
p(ou|gn = k,x) as mixtures of Gaussians (in our case K
presented here, the mixtures are simplified to singdle —I—Zp(ql = klx)Dy[l; z, x + dz].
dimensional Gaussians). The KLD between two HMTMs k=1
p(.|x) andp(.|x + dx) can be approximated as follows: (60)
o Recursion starts at leaf nodes we treat emissions Given a set of treeg{y(l) y(N)} sampled by model

p(oulgu = k,x) as a mixture and apply (56) to obtainy(.|z) an estimate of KLD is approxmated as
approximationDy,:

N
D x)||p(-|e+dx)] ”),m,m—l-dcc . (61
Defuse. o + da] = kr[p(-|2)||p(:| z:: ). (61)
Dirlp(oulqu = k. z)||p(oulqu = k,z + dx)] = The above formula requires some explanation. It can be
Dg1[N(ou; pg, C)||N(0u; 1, C'). (58) seen in all equations above, that tlabels of the trees are

not utilised for estimating the KLD approximation as they
Primed quantities correspond to mog#l|x + dx). eventually vanish due to (57), i.e. KLD between Gaussians
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can be calculated via a closed-form formula. The sample ofln Fig.21 magnification factors for the quadtree dataset are
trees is still needed though, because the recursion aboveligplayed using the KLD approximation method. The plot does
driven by their topologicaktructure Note however, that in not impart information on the presence of any clusters. How-
our sample, all trees have the same topology. In this case #wer, when inspected in conjunction with the state tramsitin
KLD can be approximated using a single tree: Fig.11 and the means of the emissions in Fig.12(a),12(b) and
12(c), we can see how it reflects the situation of the visaalis

. - ) tion plot in Fig.10 where an overlapping of images of differe
Drrlp(l2)llp(z +de)] = K(y*™, 2,z +dz).  (62) qrientations occurs. We recall that transition probaietitvary

The same procedure as for the Fisher information matr0ly little across the plot. Also, the plots of means exhébit
is applied here too, namely perturbing a latent point in 1g°mMmon abrupt change close to their respective centres. We
is set t0105) and measuring the KLD between the originaP€haviour of the means corresponding to the three states: a

HMTM model z and the perturbed moded + dz. high magnification is observed at the centre of the plot where
the means change the most.

C. Results on Magnification Factors
e IX. MAGNIFICATION FACTORS FORGTM-MTM
Magnification plots for the toy and TPB datasets have been

produced following the approaches of Sections VIII-A and We also calculate magnification factors GTM-MTM. For
VIII-B. In both approaches we define on the latent spaddTMs we can resort to a fast approximation of KLD by
a rectangular grid of 25x25 latent points. This divides th@ssuming that the trees are sufficiently deep and that the
grid in 625 squares with a latent point at the centre of eaé@mpared MTMs are not too dissimilar. Using a result from
square. Increasing the number of grid points results to fink6], we calculate the KLD between a MTM addressed by
magnification plots. Each latent centre is perturbed in I8:|x) and its perturbed versiop(-|x + d) by:

regularly spaced directions on a small circle of radl@s®.
KLD between the noise model corresponding to the original

latent point and the noise model corresponding to its pleettr Dicr[pCla)llp(le + dz)] =

. . . R K K
version is measured via both approaches. For each latent - - - -
point, out of the 16 directions of perturbation, the direntof 2; ; Tk ;p(ou = oy = k,pos(u) = rlz)
r= = =

maximal magnification is represented by a straight line draw
through the centre of the corresponding square. The length  x log
of the line signifies the level of the magnification, i.e. shor

lines indicate lower magnification, longer lines indicaigter  \yhere probabilitiest] are obtained as the normalised left
magnification. The shading of each square also signifies igenvector of the state transition matrix with eigenvalue
level of magnification; brighter squares are associatedh Wit The magnification factors for the toy dataset are presented
higher magnification, whereas darker squares are associgifFig.22(a). The clusters illustrated in Fig.15 are vieiblere
with lower magnification. too, clearly separated by bright boundaries signifyingtsties
We observe that both plots of Fig.19(a) and 19(b) illustrat the latent space. Inspecting the state transitions fer th
very similar magnifications for the toy dataset. It can benseqaoy dataset (similar to Fig.8), a clear structure is obsgrve
in both figures that the data have been organised in 4 distiipgj, example in Fig.22(b), where the transition probaleititi
clusters, well separated by light regions that signify e that correspond to tha-rd child are illustrated, the regions
clusters have clear boundaries and are indeed differem ermderIying the three clusters indicate different trendstHe
each other (compare with Fig.7(a)). case of quadtree data set, loeal metric structure of GTM-
Fig.20(a) and 20(b) illustrate the resulting plots for tHeBI MTM was varying rather slowly and so the magnification
dataset. The light region concentrated in the left uppeneor factor plot (reflecting local differentiable structure bitnoise
of the plot concerns the topographic organisation of the twganifold) was almost flat. The topographic organisation is
ship classes (see Fig.7(b)). The high magnification ind&atgriven by small local changes in the noise models. Maps of
that data points projected in this area are very dissimiar pagnification factors are not well suited for such situagion
each other as abrupt changes occur in the underlying modelsye also calculated magnification factors via Fisher infor-
This is verified by the fact that we have identified that clas§ation matrices. The maghnification factor plots were vifua

*, the class of ships with two masts, has been split infgentical to the ones obtained via KLD approximation.
three sub-clusters. On the other hand, the classes of padice

exhibit a gentler separation between them as indicated éy th
moderately light area close to the right upper corner. inal
the region of the classes of houses, which as we saw earlienlike in recursive neural-based approaches to topogcaphi
have all been projected in one super-cluster, is charaerimaps formation, the optimisation of the free parameters of
by very low magnification. This suggests, that indeed thigt thlGTM-HMTM is driven by a well defined cost function -
super-cluster is dense and that the underlying models dail negative log of the likelihood function (13). The complgxit
discern differences between house patterns. of the E-step iD(NCUK?), whereU is the average number

p(ou = lopw) = k,pos(u) = r|z)
p(oy = l|0p(u) = k,pos(u) = r|x + dx)

, (63)

X. DISCUSSION



IEEE TRANSACTIONS ON NEURAL NETWORKS 23

(a) (b)

Fig. 19. Fisher information (a) and KLD approximation (by 8TM-HMTM on toy dataset.

@ (b)
Fig. 20. Fisher information (a) and KLD approximation (by 8TM-HMTM on TPB dataset.

s 7/
A VAe .
e |

Fig. 21. KLD approximation for GTM-HMTM on quadtree dataset

of nodes in a tree data item. The complexity of the Mscaled conjugate gradient implementation has a complexity
step depends on the optimisation procedure employed.oh O(2W?2), where W is the number of parameters of the
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Fig. 23. Evolution of log-likelihood for GTM-HMTM on traimg (line with + marker) and validation (line with o marker) set.

model. For GTM-HMTM this isW = M(K + K? + Kd) point was placed in a particular position in the visualisati
(covariance of emissions is not modelled directly). Destiie (latent) space by inspecting the underlying local modefgs T
high number of parametei$’, we found that in practice this level of transparency is not readily provided when visuatjs
does not present a significant difficulty in training the mlodeew trees using recursive neural-based techniques such as
because of its highly constrained nature. What seems to m&®MSD. Also, in such models it is difficult to quantify what
training difficult is the lack of a good initialisation prodere. the induced notion of similarity between trees really means
. . . , For example, why exactly does SOMSD place some trees

I-!avmg trained GTM-HMTM via E-M, the data points are lose together and some further apart? Can one have some
projected from the data space on the Iaten_t space. TO ®%m of control over the shaping of visualisation plots? In
end we calcula}te the responsibilities (poste_rlor prohlaadmbl GTM-HMTM this is done by imposing the form of local noise
of the underlylng_ HMTMs njodels._ Our mlxture_of NOIS&nodels. Then two data items (trees) are viewed as “similar”,
models (HMTMs) is a constrained mixture, constrained by ﬂhethey are highly probable under the same local noise model

smooth two-dimensional structure of the latent space. H'en%HMTM or MTM). Of course, it is possible to have different
neighbouring latent points correspond to noise rT‘Ode'S""(lo%otions of similarity even for the same data set. It can well b

HMTMs) that lead to similar answers (responsibilities) Whethat there are two users that would like to see the same data

queried about a certain data point (tree). The data point s organised on the visualisation plot using differeiteda

then be placed at the mean location of the responsibilifié} ( for item similarity, depending on what aspects of the daggyth
in order to reflect the contribution of all local models. Th%r interested in. Then it is up to the user to formulate the
same also applles to a newly incoming data point. The methgﬁ)ropriate noise model and let the data visualisation vermlr

is transparent in the sense that we can understand why acert
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by it. This capability of accommodating alternative noiséo what the models are optimised for and therefore does not
models was demonstrated in Section VII, where an alter@atigonstitute an objective criterion to discriminate betwdba
noise model, the MTM, was introduced. The same machinemodels.
for parametrisation and optimisation as for the GTM-HMTM The generative nature of GTM-HMTM allows further data
was adopted to derive GTM-MTM. The two extensions rely oexploration after a first impression of the visualisatiorotigh
the same principles for achieving topographic organisaiat hierarchical visualisation in the spirit of [27]. Also, tliecor-
work with different notions of similarity. The latent vakike poration of priors on the model parameters is straightfodwa
nature of HMTM gives it potentially a richer expressive powe MAP estimation is possible by a adding to (23) an additional
but at the price of introducing additional level of unobsatv term, namely the log-likelihood of the prior density on the
variables in the GTM-HMTM formulation. HMTM also allows parameters.
for continuous observations. On the other hand, HMTM doesFurthermore, the fact that the non-linear mapping of GTM-
not discriminate between children nodes. In contrast, MM HMTM from the latent space to the local model space is
not a latent variable model and works with discrete emissiorsmooth allows us to calculate magnification factors. We have
Crucially, it does consider an ordering on the children modepresented two approaches toward this end, precise Fisher
In both GTM formulations, there is a potential of gainingnformation matrix and KLD approximation, which have been
an insight about the driving forces behind the topograph¥erified by experiments. This constitutes a useful tool for t
map formations by inspecting the learnt structure locakeoistudy of clusters and can be used to further interpret the
models as in Fig.8, 9, 11, 12(a), 12(b), 12(c), 19(a), 19(jisualisation plot as magnifications of the manifald of local
20(a), 20(b), 21, 22(a) and 22(b). models. The presence of low magnification in a certain region
Another important advantage of the principled probabdistcan help us infer the presence of a potential cluster as we
model formulation is the possibility to inspect the tendencexpect the generative process of the underlying local nsodel
of the model to overfit the training data, by measuring th® change only slightly as we move in that region. On the
log-likelihood on an independent validation set. For exlEmp contrary, high magnification signifies the volatility of thecal
for the GTM-HMTM and the TPB task, the validation setnodels and hence that data points in the region are expected
consists of 88 patterns produced in the same manner as theliffer significantly from each other.
training set. During training, the log-likelihoods of theodel
on the training and validation sets were calculated in each Xl. CONCLUSIONS
iteration. The evolution of the log-likelihood for both dagets ~ We have presented GTM-HMTM, an alternative method for
is presented in Fig.23. It is apparent that the constraim¢ara topographic organisation of tree-structured data. Theehisd
of our model prevents it from overfitting the training samplean extension of the GTM algorithm and thus is based on a
For the case of GTM-MTM and quadtree dataset, we shdy®und probabilistic formulation. Compared with recursiesi-
log-likelihood evolutions in Fig.24(a) and 24(b). We exami ral based approaches, the main advantages of GTM-HMTM
two training sessions. The first one corresponds to a trginificlude:
session where overfitting occurs. In order to avoid ovemfifti 1) The model-based nature of GTM-HMTM may pro-
we changed the variance of the radial basis functipid the vide a degree of transparency of the visualisation plot
RBF network from1.0 to 2.0 and performed a second training formation and a principled interpretation of the data
session. Increasing the variance in the RBF network, has the visualisations.
effect of making the basis functions wider, less localised, 2) There is a well defined cost function driving the model
blending them to a higher degree in their overlapping regjion training that can be used for principled model compari-

In terms of the GTM, this has the effect of not allowing local son.

noise models to become very different from their neighbaurs  3) Trained models can be checked in a natural way for
terms of parameters, which enforces a form of regularigsatio possible overfitting by comparing log-likelihoods on
The evolution of the log-likelihood with RBF variance eqt@l training and validation sets.

2.0 is illustrated in Fig.24(b). Even though, we observed very 4) Alternative local noise model formulations allow the
similar topographic organisations in both training sessjo user to express in a natural way a notion of structured
the second session achieves better generalisation perficen data similarity that will be driving the topographical

which is advantageous if new data items are to be projected organisation in visualisation plots.

on the map. We stress, that checking the model likelihood5) Smooth mapping from the latent soace to the local noise

on a hold-out sample is a natural way of detecting possible =~ model space enables the calculation of magnification

overfitting. In case of a highly overfitted model, it would be factors, a useful tool that supplements our understanding

difficult to interpret visualisation plots as representiagy of the visualisation plots.

general tendency in the data. We also note that dealing hith t 6) It is straightforward to extend the methodology to in-

overfitting issue in case of recursive neural based forrarat clude hierarchical visualisations for detailed user-gdid

is problematic - it is not clear how one would go about exploration of subsets of data.

qguantifying the level of overfitting in the first place. For illustration purposes we compared visualisation plots
As for the measure of accuracy used in Section VI-Gbtained with GTM formulations with those obtained by

to quantify the quality of visualisations, we note that, aS8OMSD - a representative of recursive neural-based topo-

discussed at the end of Section VI-C, it is not directly mdat graphic map constructions.
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Fig. 24. Evolution of log-likelihood for GTM-MTM on trainig (line with + marker) and validation (line with o marker) set. In (a) theiaace of the
radial basis functions is set th0 and in (b) it is set t®2.0.

APPENDIXA « The recursion starts from the leaves of the tree:
NOTATIONS 9 9 ) "
. . . —Ok(u; ) = —p(o =k, x).
Commonly used symbols and notation are summarised in ox, Be(us @) ox, (Ouldu ) (64)
Table IV. « Recursive step for non-leaves nodes
p
TABLE IV
COMMONLY USED SYMBOLS AND NOTATION. —Br(u;2) = —p(y,|qu = k; @)
ox, ox,
. . )
Notation Meaning — {3 %(u; iB)}P(Ou|Qu =k w)
AT matrix parametrising initial probabilities for GTM-HMTM Lr
A matrix parametrising transition probabilities from stdte + ’Yk(w w){—P(OuMu =k; iﬂ)}, (65)
for GTM-HMTM ox,
AB matrix parametrising means of Gaussians at state where
for GTM-HMTM
DrrL[||] Kullback-Leibler divergence Vi (u; @) = H C(u, vy ),
B[] expectation operator UGC(U)
L model likelihood
N Gaussian density Cr(u,v; ) Zﬁz (v;z)p = ilqu = k;x),
g softmax function 5 5
t ?nstance of vector variable ‘ 5 v (u; ) = vi(u; ) Z 5 log Ci(u, v; ),
y instance of tree structure variable Ly vee() Ly
oy label of nodeu P
Gu instantiation of sta‘u-e variable of node 5 Cr(u, v ) Z o 10(qo = i|qu = k; )
Br(w) downward probability for node: at stateq,, = k Ly
M two-dimensional manifold of HMTMs constrained 3h 9
Vv continuous Euclidean latent space + Z Bi(v; w)a—p(qv =i|q, = k; ).
T latent point, belongs to’ i= Lr
p(-|x) probabilistic model addressed by latent paint (66)
p(-|x + dx) | perturbed version of prgbablllstlc model(-|x) « Final step:
addressed by latent poilitc + dx)
1) non-linear smooth basis function K
z hidden indicator variable defined in E-M training 8:0 Z { k(L w)}p((h = kl|z)
" k=1
0
APPENDIXB "

DERIVATIVES FORKLD AS FISHER INFORMATION We repeat the recursion once more, this time calculating the

Based on the recursive evaluation of likelihood of (38),)(3¢nd-order derivgtives. Let, s € {1,2}:
and (40), we recursively calculate 1st-order derivativethe ~  The recursion starts from the leaves of the tree:

likelihood with respect to the latent coordinates, . Let o2 02
re {172}: Mﬂ (u iL‘) 01,02 p(ou|Qu = k,:n) (68)
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« Recursive step:

02 o2
0z,0% B (u; ) 8:CT(9xSp(y“|q z)
62
= m’m(u; x)p(ou|qu = k; )
0 0
+ a—xr'}/k(uv m)a—xsp(ouMu = k, :B)
0 0
+ a—xs%(ua m)a—xrp(ouMu =k;x)
2
+ v (u; w)mp(OuMu =kx),

(69)

where

0
> 5 1og<k<u7v;:v>)

vece(u) r

0
Dz log (. (u, v; 3’»’))

%{;xs%(u;m) =7k(u§w)(
K
+wg(u;w>(z

=1

S

s
(Cr(u,v;x))?

X ick(u,v;m)i@(u,v;m)

ox, 0xs
1 0?
+ Cr(u, v; @) Oz, 024 Sk (w, v; cc))
(70)
and
9 o
axTaxS Ck (U, U3 CE) - ; al'raws 61 (U7 CE)
X p(qy = t|qu = k; )
0 0 )
+ 3—L«6i(v’ w)a—xsp(qv = i|lgu = k;x)
0 0 )
+ a—xsﬁi(v, w)a—xrp(qv =i|qu = k; x)
0?2 )
+ Bilv; fﬂ)mp(% = ilqu = k; ).
(71)
« Final step:

02 K 52
mp(yll‘) = Z {mﬁk(l; w)}p(ql = k|z)

+ k{_;i%ﬁk(l;w)}{ai%p(ql = kll’)}
+{a%sﬂk(1;w)}{%p(m kll’)}
9
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