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Abstract

Many pattern analysis problems require classification of examples into naturally or-

dered classes. In such cases nominal classification schemes will ignore the class order

relationships, which can have detrimental effect on classification accuracy. This paper

introduces two novel ordinal Learning Vector Quantization (LVQ) schemes, with metric

learning, specifically designed for classifying data items into ordered classes. Unlike in

nominal LVQ, in ordinal LVQ the class order information is utilized during training in

selection of the class prototypes to be adapted, as well as in determining the exact man-

ner in which the prototypes get updated. Prototype based models are in general more

amenable to interpretations and can often be constructed at a smaller computational cost

than alternative non-linear classification models. Experiments demonstrate that the pro-

posed ordinal LVQ formulations compare favourably with their nominal counterparts.

Moreover, our methods achieve competitive performance against existing benchmark

ordinal regression models.



1 Introduction

Most classification algorithms focus on predicting data labels from nominal (non-ordered)

classes. However, many pattern recognition problems involve classifying data into

classes which have a natural ordering. This type of problem, known as ordinal clas-

sification or ordinal regression, is commonly seen in several real life applications, as in

information retrieval (Chu et al., 2007) and medical analysis (Cardoso et al., 2005). In

such problems, although it is still possible to use the conventional (nominal) methods,

the order relation among the classes will be ignored, which may affect the stability of

learning and the overall prediction accuracy.

Lot of effort has already been devoted to the problem of ordinal classification in the

machine learning literature. A simple approach involves converting ordinal regression

to a set of nested binary classification problems that encode the ordering of the original

ranks. Results of these nested binary classifications are combined to produce the overall

label predictions. For example, (Frank et al., 2001) employs binary classification tree

learners, while (Waegeman et al., 2006) uses binary Support Vector Machines (SVM).

Another stream of ordinal regression research assumes that ordinal labels originate

from coarse measurements of a continuous variable. The labels are thus associated with

intervals on the real line. A group of algorithms, known as threshold models, focuses

on two main issues:

1) How to find the ‘optimal’ projection line, representing the assumed linear order

of classes, onto which the input data will be projected;

2) How to optimally position thresholds defining the label intervals so that the mar-

gin of separation between neighbouring classes is maximized.

For example, in the SVM context, a class of models under the name of Support Vector

Ordinal Regression (SVOR) have been developed. Shashua and Levin (Shashua et al.,

2002) proposed two large-margin principles: (i) The fixed-margin principle, in which

the margin of the closest pair of classes is being maximized leading to equal margins

between two neighbouring classes (the assumption that is too strict in most cases);

(ii) The sum of margins principle, which allows for different margins and only the

sum of all K − 1 margins is maximized (assuming there are K ordered categories).
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However, the order on the K − 1 class thresholds was not imposed. Therefore this

work was further extended in the SVOR with EXplicit ordering Constraints (SVOR-

EXC) formulation (Chu et al., 2007), where the order of class thresholds is considered

explicitly. Furthermore, Chu and Keerthi (Chu et al., 2007) also presented an alternative

SVOR model, namely SVOR with IMplicit ordering Constraints (SVOR-IMC).

Based on the SVOR-EXC and SVOR-IMC methods, Li and Lin (Li et al., 2007;

Lin et al., 2012) presented a reduction framework from ordinal regression to binary

classification based on ‘extended’ examples. We refer to this model as REDuction-

SVM (RED-SVM). This work was further extended into another reduction framework

known as Weighted LogitBoost (Xia et al., 2007).

However, the SVM based algorithms all suffer from high computational complexity

(in the number of training points) (Sun et al., 2010). Therefore, Sun et al. (Sun et al.,

2010) introduced a (non-SVM)-based model with a lower computational complexity -

Kernel Discriminant Learning for Ordinal Regression (KDMOR).

In this paper, we propose two novel Learning Vector Quantization based learning

models specifically designed for classifying data into ordered classes. Learning Vec-

tor Quantization (LVQ), originally introduced by Kohonen in (Kohonen, 1986, 1998),

constitutes a family of supervised learning multi-class classification algorithms. Classi-

fiers are parameterized by a set of prototypical-vectors, representing classes in the input

space, and a distance measure1 on the input data. In the classification phase, an un-

known sample is assigned to the class represented by the closest prototype. Compared

to SVM type methods, prototype based models are in general more amenable to inter-

pretations and can be constructed at a smaller computational cost. The function of such

classifiers can be more directly understood because of the intuitive classification of data

points to the class of their closet prototype (under a given metric).

In particular, we extend the recently proposed modifications of LVQ, termed Matrix

LVQ (MLVQ) and Generalized MLVQ (GMLVQ) (Schneider et al., 2009; Schneider ,

2010), to the case of ordinal classification. In MLVQ/GMLVQ the prototype positions,

as well as the (global) metric in the data space can be modified. Unlike in nominal LVQ,

in the proposed ordinal LVQ the class order information is utilized during training in

selection of the class prototypes to be adapted, as well as in determining the exact

1Different distance metric measures can be used to define the closeness of prototypes.
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manner in which the prototypes get updated. To the best of our knowledge this paper

presents the first attempt at extending the LVQ model with metric learning to ordinal

regression.

This paper is organized as follows: Section 2 gives a brief introduction to the LVQ

based methods related to this study. In section 3 we introduce two novel ordinal LVQ

approaches for classifying data with ordered labels. Experimental results are presented

and discussed in section 4. Section 5 concludes the study by summarizing the key

contributions.

2 Learning Vector Quantization (LVQ) and its Exten-

sions

Learning Vector Quantization (LVQ) constitutes a family of supervised learning al-

gorithms which uses Hebbian online learning to adapt prototypes to the training data

(Kohonen, 1998). The original version, named LVQ1, was introduced by Kohonen in

1986 (Kohonen, 1986).

Assume training data (xi, yi) ∈ Rm×{1, ..., K}, i = 1, 2, ..., n is given, m denoting

the data dimensionality and K is number of different classes. A typical LVQ network

consists of L prototypes wq ∈ Rm, q = 1, 2, 3, ..., L, characterized by their location

in the input space and their class label c(wq) ∈ {1, ..., K}. Obviously, at least one

prototype per class needs to be included in the model. The overall number of prototypes

is a model (hyper) parameter optimized e.g. in a data driven manner through a validation

process.

Given a distance measure d(xi, w) in Rm, i.e. the distances of the input sample

xi to the different prototypes w, classification is based on a winner-takes-all scheme:

a data point xi ∈ Rm is assigned to the label c(wj) of prototype wj with d(x,wj) <

d(x, wq),∀j 6= q.

Each prototype wj with class label c(wj) will represent a receptive field in the input

space2. Points in the receptive field of prototype wj will be assigned class c(wj) by

2The receptive field of prototype w is defined as the set of points in the input space which pick this

prototype as their winner.
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the LVQ model. The goal of learning is to adapt prototypes automatically such that the

distances between data points of class c ∈ {1, ..., K} and the corresponding prototypes

with label c (to which the data belong) is minimized.

In the training phase for each data point xi with class label c(xi), the closest pro-

totype with the same label is rewarded by pushing it closer to the training input; the

closest prototype with different label is penalized by moving it away of the pattern xi.

Several modifications of this basic learning scheme have been proposed, aiming to

achieve better approximation of decision boundaries, faster or more robust convergence

(Sato et al., 1996; Hammer et al., 2002). Many LVQ variants use the squared Euclidean

distance d2(x,w) = (x − w)T (x − w) as a distance measure between prototypes and

feature vectors. However, the use of Euclidean distance can be problematic in case of

high-dimensional, heterogeneous data sets where different scalings and correlations of

dimensions can be observed. Recently, special attention was paid to schemes for ma-

nipulating the input space metric used to quantify the similarity between prototypes and

feature vectors (Schneider et al., 2009; Hammer et al., 2002). Generalized Relevance

LVQ (GRLVQ), introduced in (Hammer et al., 2002), proposed an adaptive diagonal

matrix acting as the metric tensor of a (dis)similarity distance measure. This was further

extended in Matrix LVQ (MLVQ) and Generalized Matrix LVQ (GMLVQ) (Schneider

et al., 2009; Schneider , 2010) that use a fully adaptive metric tensor. Metric learning in

the LVQ context has been shown to have a positive impact on the stability of learning

and the classification accuracy (Schneider et al., 2009; Schneider , 2010).

2.1 Matrix LVQ (MLVQ)

Matrix LVQ (MLVQ) (Schneider , 2010) is a new heuristic extension of the basic LVQ1

(Kohonen, 1986) with a full (e.g. not only diagonal elements) matrix tensor based

distance measure. Given an (m×m) positive definite matrix Λ, the algorithm uses a

generalized form of the squared Euclidean distance

dΛ(xi, w) =
√

(xi − w)TΛ(xi − w). (1)

Positive definiteness of Λ can be achieved by substituting Λ = ΩTΩ, where Ω ∈
Rm×m, 1 ≤ l ≤ m is a full-rank matrix. Furthermore, Λ needs to be normalized after
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each learning step to prevent the algorithm from degeneration.

For each training pattern xi, the algorithm implements Hebbian updates for the clos-

est prototype w and for the metric parameter Ω. If c(xi) = c(w), then w is attracted

towards xi, otherwise w is repelled away (for more details please consult (Schneider ,

2010)).

2.2 Generalized MLVQ (GMLVQ)

Generalized Matrix LVQ (GMLVQ, see (Schneider et al., 2009; Schneider , 2010)) is a

recent extension of the Generalized LVQ (Sato et al., 1996) that uses the adaptive input

metric (1). The model is trained in an on-line-learning manner, minimizing the cost

function

fGMLV Q =
n∑

i=1

Φ

(
dΛ

+(xi, w)− dΛ
−(xi, w)

dΛ
+(xi, w) + dΛ−(xi, w)

)
(2)

based on the steepest descent method. Φ is a monotonic function, e.g. the logistic

function or the identity Φ(`) = ` (which we use throughout the paper), dΛ
+(xi, w) is the

distance of data point xi from the closest prototype with the same class label yi = c(xi),

and dΛ
−(xi, w) is the distance to xi from the closest prototype with a different class label

than yi.

Note that the numerator is smaller than 0 if the classification of the data point is

correct. The smaller the numerator, the greater the ‘security’ of classification, i.e. the

difference of the distance from a correct and wrong prototype. Note that, the ‘security’

of classification characterizes the hypothesis margin of the classifier. The larger this

margin, the more robust is the classification of a data pattern with respect to noise in the

input or function parameters (Schneider et al., 2009; Hammer et al., 2002)3. A large

margin generalization bound for the GMLVQ model was derived in (Schneider et al.,

2009). The bound represents a particularly strong result since it is dominated by the

margin size and the input space dimensionality does not explicitly occur in it.

The denominator scales the argument of Φ such that it falls in the interval [−1, 1].

The learning rules are derived from this cost function by taking the derivatives with

respect to the prototype locations w and the distance metric parameters Ω.

3We are thankful to the anonymous reviewer for pointing this out.
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Hebbian-like on-line updates are implemented for the closest correct prototype w+

(i.e. c(xi) = c(w+)) and the closest incorrect prototype w− (i.e. c(xi) 6= c(w−)), along

with the metric parameters Ω. While w+ is pushed towards the training instance xi, w−

is pushed away from it (for more details please see (Schneider et al., 2009)).

All previous LVQ variants (with or without metric learning) were designed for nom-

inal classification problems. However, the training examples may be labeled by classes

with a natural order imposed on them (e.g classes can represent rank). Pattern recogni-

tion problems of classifying examples into ordered classes, namely ordinal classifica-

tions, have received a great attention in the recent literatures. They lend themselves to

many practical applications as in (Chu et al., 2007; Cardoso et al., 2005). In this paper

we would like to extent the LVQ framework to ordinal classification, since the existing

LVQ models do not consider the ordinal label information explicitly during learning.

3 The Proposed Ordinal LVQ Classifiers

This section presents two novel methodologies based on LVQ for classifying data with

ordinal classes.

We assume that we are given training data (xi, yi) ∈ Rm × {1, ..., K}, where i =

1, 2, .., , n, and K is the number of different classes. In the ordinal classification prob-

lem, it is assumed that classes are ordered yK > yK−1 > ... > y1, where > denotes

the order relation on labels. As in LVQ models, the proposed classifier is parameterized

with L prototype-label pairs:

W = {(wq, k) | wq ∈ Rm, q ∈ {1, ..., L} , k ∈ {1, ..., K}} . (3)

We assume that each class k ∈ {1, 2, ..., K}, may be represented by P prototypes4

collected in the set W (k),

W (k) = {w ∈ W | c(w) = k}, (4)

leading to total number of L = K · P prototypes. The prototypes define a classifier by

means of a winner-takes-all rule, where a pattern xi ∈ Rm is classified with the label

4Of course, this imposition can be relaxed to a variable number of prototypes per class.
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of the closest prototype, c(xi) = c(wj), j = arg minl d
Λ(xi, wl), where dΛ denotes the

metric (1).

Whereas nominal versions of LVQ aim to position the class prototypes in the input

space so that the overall misclassification error is minimized, the proposed ordinal LVQ

models adapt the class prototypes so that the average absolute error of class mislabeling

is minimized. Loosely speaking, this implies that some class mislabeling (e.g. claiming

class c(wj) = (k + 1) instead of class c(xi) = k) will be treated as ‘less serious’ than

other ones (e.g. outputting c(wj) = K instead of c(xi) = 1), where the ‘seriousness’

of misclassification will be related to5 |c(xi) − c(wj)|. In the next section we describe

identification of prototypes to be modified, given each training input xi.

3.1 Identification of Class Prototypes to be Adapted

The initial step in each training instance xi, i = 1, 2, ..., n, focuses on detecting the

‘correct’ and ‘incorrect’ prototype classes (with respect to c(xi)) that will be modified.

Subsequently, the correct prototypes will pushed towards xi, whereas the incorrect ones

will be pushed away from xi.

Correct and Incorrect Prototype Classes

Due to the ordinal nature of labels, for each training instant xi and prototype wq, q =

1, 2, ..., L, the correctness of prototype’s label c(wq) is measured through the absolute

error loss function H (c(xi), c(wq)) (e.g. (Dembczynski et al., 2008)):

H (c(xi), c(wq)) =| c(xi)− c(wq) | (5)

Given a rank loss threshold Lmin, defined on the range of the loss function6, the

class prototypes wq with H(c(xi), c(wq)) ≤ Lmin will be viewed as ‘tolerably correct’,

while prototypes with H(c(xi), c(wq)) > Lmin will be classified as ‘incorrect’. This is

illustrated in Figure 1. The sets of correct and incorrect prototype classes for input xi

hence read:

5Of course, other order related costs could be used.
6in our case [0,K − 1]
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N (c(xi))
+ = {c(wq) ∈ {1, 2, 3.., , K} | |c(xi)− c(wq)| ≤ Lmin} (6)

and

N (c(xi))
− = {c(wq) ∈ {1, 2, 3.., , K} | |c(xi)− c(wq)| > Lmin} , (7)

respectively.

Figure 1: Correct and incorrect prototype classes estimation. Given training pattern
c(xi) = 2 indicated with square, and threshold Lmin = 1. White circles are proto-
types of correct classes with respect to c(xi), while black circles indicate prototypes of
incorrect classes.

Prototypes to be Adapted

Given a training pattern xi, the nominal LVQ techniques adapt either the closest proto-

type or the closest pair of correct/incorrect prototypes. In our case we need to deal with

the class prototypes in a different way.

1) Correct prototypes with labels in N(c(xi))
+: For correct prototypes it makes

sense to push towards xi only the closest prototype from each class in N(c(xi))
+.

The set of correct prototypes to be modified given input xi reads:

W (xi)
+ = {wz(k)| c(wz(k)) = k ∈ N+(c(xi)), z(k) = arg min

l∈W (k)
[dΛ(xi, wl)]} (8)

2) Incorrect prototypes with labels in N(c(xi))
−: For incorrect prototypes it is de-

sirable to push away from xi all incorrect prototypes lying in the ‘neighbourhood’

of xi. In our case the neighbourhood will be defined as a sphere of radius D under

the metric dΛ.

W (xi)
− = {wz| c(wz) ∈ N−(c(xi)), dΛ(xi, wz) < D}. (9)
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3.2 Prototype Weighting Scheme

Unlike in nominal LVQ, we will need to adapt multiple prototypes, albeit to a different

degree. Given a training input xi, the attractive and repulsive force applied to cor-

rect and incorrect prototypes w will decrease and increase, respectively, with growing

H(c(xi), c(w)). In addition, for incorrect prototypes w, the repulsive force with dimin-

ish with increasing distance form xi. In the two following sections we describe the

prototype adaptation schemes in greater detail.

Given a training pattern xi, there are two distinct weighting schemes for the correct

and incorrect prototypes w in W (xi)
+ and W (xi)

−, respectively.

1) Weighting correct prototypes w ∈ W (xi)
+:

We propose a Gaussian weighting scheme,

α+ = exp

{
−(H(c(xi), c(w)))2

2σ2

}
, (10)

where, σ is the Gaussian kernel width.

2) Weighting incorrect prototypes w ∈ W (xi)
−:

Denote by εmax the maximum rank loss error within the set W (xi)
−,

εmax = max
w∈W (xi)−

H(c(xi), c(w)).

The weight factor α− for incorrect prototype w ∈ W (xi)
− is then calculated as

follows:

α− = exp

{
−(εmax −H(c(xi), c(w)))2

2σ2

}
· exp

{
−(dΛ(xi, w))2

2σ′2

}
, (11)

where σ′ is the Gaussian kernel width for the distance factor in α−.

These weighting factors will be utilized in two prototype update schemes introduced

in the next two sections.

3.3 Ordinal MLVQ (OMLVQ) Algorithm

In this section we generalize the MLVQ algorithm 2.1 to the case of linearly ordered

classes. We will refer to this new learning scheme as Ordinal MLVQ (OMLVQ). In

particular, there are two main differences between MLVQ and OMLVQ:
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• In OMLVQ the order information on classes is utilized to select appropriate mul-

tiple prototypes (rather than just the closest one as in MLVQ) to be adapted.

• The ordinal version of MLVQ realizes Hebbian updates for all prototype parame-

ters in W (xi)
+ and W (xi)

−, using the assigned weights α±. Similarly to MLVQ,

each prototype update ∆w will be followed by a corresponding metric parameter

update ∆Ω.

The OMLVQ training algorithm is outlined in greater detail below.

1) Initialization: Initialize the prototype positions7 wq ∈ Rm, q = 1, 2, ..., L.

Initialize the matrix tensor parameter Ω by setting it equal to the identity matrix

(Euclidean distance).

2) While a stopping criterion (in our case the maximum number of training epochs)

is not reached do:

1) Randomly select a training pattern xi, i ∈ {1, 2, ..., n}, with class label

c(xi).

2) Determine the correct and incorrect classes for xi, N (c(xi))
+ and N (c(xi))

−

based on (6) and (7), respectively.

3) Find collections of prototypes W (xi)
+ and W (xi)

− to be adapted using (8)

and (9).

4) Assign weight factors8 α± to the selected prototypes (Eq. (10) and (11)).

5) Update the prototypes from W (xi)
+, W (xi)

− and the distance metric Ω as

follows:

1) ∀ w ∈ W (x)+ do:

w = w + ηw · α+ ·Λ · (xi − w) (w dragged towards xi)

Ω = Ω− ηΩ · α+ ·Ω · (xi − w)(xi − w)T (dΛ(xi, w) is shrinked)

7Following (Schneider et al., 2009; Schneider , 2010), the means of P random subsets of training

samples selected from each class k, where k ∈ {1, 2, ..., K}, are chosen as initial states of the prototypes.

Alternatively, one could run a vector quantization with P centers on each class.
8For ease of presentation we omit from the notation the classes of the prototypes and the training

point.
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2) ∀ w ∈ W (x)− do:

w = w − ηw · α− ·Λ · (xi − w) (w pushed away from xi )

Ω = Ω + ηΩ · α− ·Ω · (xi − w)(xi − w)T (dΛ(xi, w) is increased).

Here ηw, ηΩ are positive learning rates for prototypes and metric9, re-

spectively. They decrease monotonically with time as (Darken et al.,

1992):

ηg ← ηg

1 + τ(t− 1)
(12)

where g ∈ {Ω, w}, τ > 0 determines the speed of annealing10, and t

indexes the number of training epochs done.

Similarly to the original MLVQ (see section 2.1), to prevent the algo-

rithm from degeneration, Ω is normalized after each learning step so

that
∑

i Λii = 1 (Schneider et al., 2009; Schneider , 2010).

3) End While

Note that, unlike in the original MLVQ, during the training, adaptation of the pro-

totypes is controlled by the corresponding weight factors α± which reflect, (i) the class

order (see (10), (11)), and (ii) the distance of incorrect prototypes from training inputs

(see (11)).

3.4 Ordinal GMLVQ (OGMLVQ) Algorithm

This section extends the update rules of the GMLVQ Algorithm (section 2.2) to the

case of ordinal classes. The algorithm, referred to as Ordinal GMLVQ (OGMLVQ),

will inherit from GMLVQ its cost function (2). There are two main differences between

OGMLVQ and GMLVQ:

9The initial learning rates are chosen individually for every application through cross-validation. We

imposed ηw > ηΩ, implying slower rate of changes to the metric, when compared with prototype modi-

fication. This setting has proven better performance in other matrix relevance learning applications (e.g.

(Schneider et al., 2009; Schneider , 2010))
10In our experiments τ was set to 0.0001
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• For each training pattern xi, GMLVQ scheme applies Hebbian update for the

single closest prototype pair (with the same and different class labels with respect

to the label c(xi) of xi, see section 2.2). On the other hand, in OGMLVQ there

will be updates of r ≥ 1 prototype pairs from W (xi)
+ × W (xi)

− (see (8) and

(9)). This is done in an iterative manner as follows:

Set W± = W (xi)
±, r=0.

While (W+ 6= ∅ and W− 6= ∅)

1) r ← r + 1.

2) Construct ‘the closest’ prototype pair Rr = (wa, wb), where

a = arg min
l∈W+

dΛ(xi, wl), b = arg min
l∈W−

dΛ(xi, wl). (13)

3) Update wa, wb and Ω (to be detailed later).

4) W+ ← W+ \ {wa}, W− ← W− \ {wb}.

End While

• In order to control prototype adaptation by their corresponding weight factors α±

(Eq. (10) and (11)), OGMLVQ scales the metric (1) (used in the original GMLVQ

cost function (2)) as

dΛ
α+(xi, wa) = α+ · dΛ(xi, wa)

dΛ
α−(xi, wb) = α− · dΛ(xi, wb) (14)

The OGMLVQ cost function reads:

fOGMLV Q =
n∑

i=1

r∑
j=1

Φ(µ(xi, Rj)), (15)

where

µ(xi, Rj) =
dΛ

α+(xi, wa)− dΛ
α−(xi, wb)

dΛ
α+(xi, wa) + dΛ

α−(xi, wb)
, (wa, wb) = Rj.

The cost function fOGMLV Q will be minimized with respect to prototypes and

metric parameter Ω using the steepest descent method. Recall that dΛ
α+(xi, wa) is
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the distance of the data point xi from the correct prototype wa, and dΛ
α−(xi, wb) is

the distance from the incorrect prototype wb and, Φ is a monotonic function set

(as in GMLVQ) to the identity mapping.

To obtain the new adaptation rules for the OGMLVQ algorithm, we present deriva-

tives of µ(xi, Rj) with respect to the prototype pair (wa, wb) = Rj (13) and the metric

parameter Ω .

Derivatives of µ(xi, Rj) with respect to the correct prototype wa,

∂µ(xi, Rj)

∂wa

=
∂µ(xi, Rj)

∂dΛ
α+(xi, wa)

· ∂dΛ
α+(xi, wa)

∂wa

= γ+ · ∂dΛ
α+(xi, wa)

∂wa

,

where

γ+ =
∂µ(xi, Rj)

∂dΛ
α+(xi, wa)

=
(dΛ

α+(xi, wa) + dΛ
α−(xi, wb))− (dΛ

α+(xi, wa)− dΛ
α−(xi, wb))

(dΛ
α+(xi, wa) + dΛ

α−(xi, wb))2

=
2dΛ

α−(xi, wb)

(dΛ
α+(xi, wa) + dΛ

α−(xi, wb))2
(16)

and

∂dΛ
α+(xi, wa)

∂wa

= −2α+ · [ΩTΩ](xi − wa) = −2α+ ·Λ(xi − wa) (17)

Derivatives of µ(xi, Rj) with respect to the incorrect prototype wb,

∂µ(xi, Rj)

∂wb

=
∂µ(xi, Rj)

∂dΛ
α−(xi, wb)

· ∂dΛ
α−(xi, wb)

∂wb

= γ− · ∂dΛ
α−(xi, wb)

∂wb

,

where

γ− =
∂µ(xi, Rj)

∂dΛ
α−(xi, wb)

=
−(dΛ

α+(xi, wa) + dΛ
α−(xi, wb))− (dΛ

α+(xi, wa)− dΛ
α−(xi, wb))

(dΛ
α+(xi, wa) + dΛ

α−(xi, wb))2

=
−2dΛ

α+(xi, wa)

(dΛ
α+(xi, wa) + dΛ

α−(xi, wb))2
, (18)

and

∂dΛ
α−(xi, wb)

∂wb

= −2α− · [ΩTΩ](xi − wb) = −2α− ·Λ(xi − wb) (19)
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Furthermore, derivatives of µ(xi, Rj) with respect to the metric parameter Ω,

∂µ(xi, Rj)

∂Ω
=

(
∂dΛ

α+ (xi,wa)

∂Ω
− ∂dΛ

α− (xi,wb)

∂Ω

) (
dΛ

α+(xi, wa) + dΛ
α−(xi, wb)

)

(dΛ
α+(xi, wa) + dΛ

α−(xi, wb))2

−

(
∂dΛ

α+ (xi,wa)

∂Ω
+

∂dΛ
α− (xi,wb)

∂Ω

) (
dΛ

α+(xi, wa)− dΛ
α−(xi, wb)

)

(dΛ
α+(xi, wa) + dΛ

α−(xi, wb))2
(20)

=
2dΛ

α−(xi, wb)

(dΛ
α+(xi, wa) + dΛ

α−(xi, wb))2
· ∂dΛ

α+(xi, wa)

∂Ω

+
−2dΛ

α+(xi, wa)

(dΛ
α+(xi, wa) + dΛ

α−(xi, wb))2
· ∂dΛ

α−(xi, wb)

∂Ω
(21)

using (16) and (18) then,

∂µ(xi, Rj)

∂Ω
= γ+ · ∂dΛ

α+(xi, wa)

∂Ω
+ γ− · ∂dΛ

α−(xi, wb)

∂Ω
(22)

where

∂dΛ
α+(xi, wa)

∂Ω
= 2α+ · [Ω (xi − wa)(xi − wa)

T ] (23)

and

∂dΛ
α−(xi, wb)

∂Ω
= 2α− · [Ω (xi − wb)(xi − wb)

T ] (24)

Note that the OGMLVQ cost function (15) is a sum of r “weighted versions” of the

GMLVQ cost function (Schneider et al., 2009) (eq. (2)). The only difference is that

the distances from data points to prototypes are linearly scaled by factors α± (see eq.

(14)). As such, the OGMLVQ cost function inherits all the discontinuity problems of

the GMLVQ cost functional at receptive field boundaries of the prototypes. As argued

in (Schneider et al., 2009), the GMLVQ prototype and metric updates resulting from

gradient descent on the GMLVQ cost function are valid whenever the metric is differ-

entiable (see also (Hammer et al., 2002, 2005)). Using delta function (as derivative

of the Heaviside function) the argument can be made for cost functions rewritten with

respect to full ‘reasonable’ distributions on the input space (with continuous support)

(Schneider et al., 2009). Since weighting of distances in individual GMLVQ cost func-

tions that make up the OGMLVQ cost function preserves differentiability of the metric
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and because the OGMLVQ cost function is a sum of such individual weighted GMLVQ

cost functions, the theoretical arguments made about updates from the GMLVQ cost

function also fall through in the case of the OGMLVQ cost function.

We summarize the OGMLVQ algorithm below:

1) Initialization: Initialize the prototype positions wq ∈ Rm, q = 1, 2, ..., L.

Initialize the matrix tensor parameter Ω by setting it equal to the identity matrix

(Euclidean distance).

2) While a stopping criterion (in our case the maximum number of training epochs)

is not reached do:

1) Randomly select a training pattern xi, i ∈ {1, 2, ..., n}, with class label

c(xi).

2) Determine the correct and incorrect classes for xi, N (c(xi))
+ and N (c(xi))

−

based on (6) and (7), respectively.

3) Find collections of prototypes W (xi)
+ and W (xi)

− to be adapted using (8)

and (9).

4) Assign weight factors α± to the selected prototypes (Eq. (10) and (11)).

5) Set W± = W (xi)
±, r=0.

While (W+ 6= ∅ and W− 6= ∅)

1) r ← r + 1.

2) Construct ‘the closest’ prototype pair Rr = (wa, wb) as in (13).

3) Update the prototypes position:

∆wa = 2ηw · γ+ · α+Λ(xi − wa)

(wa dragged towards xi )

∆wb = 2ηw · γ− · α−Λ(xi − wb)

(wb pushed away11 from xi )

11Note that unlike γ+, γ− is negative.
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4) update the metric parameter Ω,

∆Ω = −2ηΩ

· [γ+α+Ω(xi − wa)(xi − wa)
T + γ−α−Ω(xi − wb)(xi − wb)

T ]

where γ+ and γ− are given in (16) and (18), respectively.

ηw, ηΩ are the learning rates for prototypes and metric respectively, and

they normally decrease throughout the learning as given in (12).

Each Ω update is followed by a normalization step as described in the

OMLVQ algorithm (see section 3.3).

5) W+ ← W+ \ {wa}, W− ← W− \ {wb}.

End While

3) End While

During the adaptation, distances between the training point xi and the correct pro-

totypes in W+ are on average decreased, in line with the aim of minimizing the rank

loss error. Conversely, the average distances between xi and the incorrect prototypes in

W− are increased, so that the risk of higher ordinal classification error (due to the high

rank loss error of incorrect prototypes) is diminished.

Note that while OMLVQ is a heuristic extension of MLVQ, updating each prototype

independently of the others, the OGMLVQ is an extension of GMLVQ, with parameter

updates following in a principled manner from a well-defined cost function. In OGM-

LVQ the prototypes are updated in pairs as explained above.

4 Experiments

We evaluated the performance of the proposed ordinal regression LVQ methods through

a set of experiments conducted on two groups of data sets: eight benchmark ordinal

regression data sets12 (Sun et al., 2010; Chu et al., 2007; Li et al., 2007; Lin et al.,

2012; Xia et al., 2007) and two real-world ordinal regression data sets (Lin et al., 2012).

12Regression data sets are available at http://www.gatsby.ucl.ac.uk/˜chuwei/

ordinalregression.html
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The ordinal LVQ models, OMLVQ and OGMLVQ, were assessed against their nominal

(non-ordinal) counterparts, MLVQ and GMLVQ, respectively. The ordinal LVQ models

were also compared with benchmark ordinal regression approaches.

The experiments utilized three evaluation metrics to measure accuracy of predicted

class ŷ with respect to true class y on a test set:

1) Mean Zero-one Error (MZE) - (misclassification rate) the fraction of incorrect

predictions,

MZE =

∑v
i=1 I(yi 6= ŷi)

v
.

where v is the number of test examples and I(yi 6= ŷi) denotes the indicator

function returning 1 if the predicate holds and 0 otherwise.

2) Mean Absolute Error (MAE) - the average deviation of the prediction from the

true rank,

MAE =

∑v
i=1 |yi − ŷi|

v
.

3) Macroaveraged Mean Absolute Error (MMAE) (Baccianella et al., 2009) -

macroaveraged version of Mean Absolute Error - it is a weighted sum of the

classification errors across classes,

MMAE =
1

K

K∑

k=1

∑
yi=k |yi − ŷi|

vk

.

where K is the number of classes and vk is the number of test points whose

true class is k. The macroaveraged MAE is typically used in imbalanced ordinal

regression problems as it emphasizes errors equally in each class.

For comparison purposes and with respect to the eight benchmark ordinal regres-

sion data sets we conducted the same pre-processing as described in (Sun et al., 2010;

Chu et al., 2007; Li et al., 2007; Lin et al., 2012; Xia et al., 2007). Data labels were dis-

cretized into ten ordinal quantities using the equal-frequency binning. Hence, the eight

benchmark ordinal regression data sets are balanced with respect to their classes distri-

bution. The input vectors were normalized to have zero mean and unit variance. Each

data set was randomly partitioned into training/test splits as recorded in Table 1. The

partitioning was repeated 20 times independently, yielding 20 re-sampled training/test
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sets. For these class-balanced data sets, the experimental evaluations were done using

the MZE and MAE measures.

The two real-world ordinal ranking problems were represented by two data sets:

cars and the red wine subset redwine of the wine quality set from the UCI machine

learning repository (Hettich et al., 1998). For fair comparison, we followed the same

experimental settings as in (Lin et al., 2012). We randomly split 75% of the examples

for training and 25% for testing, as recorded in Table 1, and conducted 20 runs of such a

random splits. The cars problem intends to rank cars to four conditions (unacceptable,

acceptable, good, very good), while the redwine problem ranks red wine samples to

11 different levels (between 0 and 10, however, the actual data only contains samples

with ranks between 3 and 8). It is worth mentioning that the two data sets are highly

imbalanced (with respect to their classes distribution). In the cars data set the class

distribution (percentage of instances per class) is as follows: unacceptable - 70%, ac-

ceptable - 22%, good - 4% and very good - 4%. The redwine data set has the following

class distribution: 3 - 1%, 4 - 3%, 5 - 43%, 6 - 40%, 7 - 12% and 8 - 1%. Real-world

ordinal regression data sets are often severly imbalanced, i.e. are likely to have different

class populations at their class order, and (unlike in many previous ordinal classifica-

tion studies) ordinal classification algorithms should be examined in both balanced and

imbalanced class distribution cases13. As shown in (Baccianella et al., 2009), testing

a classifier on imbalanced data sets using standard evaluation measures (e.g. MAE)

may be insufficient. Therefore, along with the MZE and MAE evaluation measures, we

examined our prototype based models with the Macroaveraged Mean Absolute Error

(MMAE)(Baccianella et al., 2009) that is specially designed for evaluating classifiers

operating on imbalanced data sets.

On each data set, the algorithm parameters were chosen through 5-fold cross-validation

on the training set. Test errors were obtained using the optimal parameters found for

each data re-sampling, and were averaged over the 20 trials (runs). We also report

standard deviations across the 20 trails.

13We are thankful to the anonymous reviewer for pointing this out.
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Table 1: Ordinal regression data sets partitions

Data set Dimension Training Testing

Pyrimidines 27 50 24

MachineCpu 6 150 59

Boston 13 300 206

Abalone 8 1000 3177

Bank 32 3000 5182

Computer 21 4000 4182

California 8 5000 15640

Census 16 6000 16784

Cars 8 1296 432

Redwine 11 1200 399

4.1 Comparison with MLVQ and GMLVQ

This section evaluates performance of the proposed OMLVQ and OGMLVQ algorithms

against their standard nominal versions MLVQ and GMLVQ. For the eight benchmark

ordinal regression data sets, the MZE and MAE results, along with standard deviations

(represented by error bars), across 20 runs are shown in Figures 2 and 3, respectively.

Furthermore, the MZE, MAE and MMAE results, along with standard deviations (rep-

resented by error bars) across 20 runs, for the two real-world ordinal regression data

sets are presented in Figures 4.a, 4.b and 4.c, respectively.

The results in general confirm that the proposed ordinal LVQ models achieve better

performance in terms of MZE, MAE and MMAE rates than their standard (nominal)

LVQ counterparts. On average, across the eight benchmark ordinal regression data

sets the OMLVQ algorithm outperforms the baseline MLVQ by relative improvement

of 10% and 18% on MZE and MAE, repectively. Furthermore, OGMLVQ achieves

relative improvements over the baseline GMLVQ of 5% and 15% on MZE and MAE,

respectively. For the two real-world ordinal regression data sets, on average the OM-

LVQ algorithm outperforms the baseline MLVQ by relative improvement of 41%, 48%

and 46% on MZE, MAE and MMAE, repectively. And the OGMLVQ achieves relative
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improvements over the baseline GMLVQ of of 14%, 15% and 8% on MZE, MAE and

MMAE, repectively.
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Figure 2: MZE results for the eight benchmark ordinal regression data sets.
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Figure 3: MAE results for the eight benchmark ordinal regression data sets.

4.2 Comparison with Benchmark Ordinal Regression Approaches

This section compares (in terms of MZE, MAE and MMAE) the proposed ordinal LVQ

approaches (OMLVQ and OGMLVQ) against five benchmark ordinal regression meth-

ods: two threshold SVM based models (SVOR-IMC and SVOR-EXC (Chu et al., 2007)

with the Gaussian kernel), two reduction frameworks (the SVM based model RED-

SVM with perceptron kernel (Li et al., 2007; Lin et al., 2012) and the Weighted Log-
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(b) MAE Results
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(c) MMAE Results

Figure 4: MZE, MAE and MMAE results for the the two real-world ordinal regression

data sets shown in (a), (b) and (c), respectively.

itBoost (Xia et al., 2007)), and a non SVM based - Kernel Discriminant Learning for

Ordinal Regression method (KDLOR (Sun et al., 2010)).

The first comparison was conducted on eight benchmark ordinal ranking data sets

used in (Chu et al., 2007; Sun et al., 2010; Li et al., 2007; Lin et al., 2012; Xia et al.,

2007). We used the same data set pre-processing and experimental settings as in (Chu

et al., 2007; Sun et al., 2010; Li et al., 2007; Lin et al., 2012; Xia et al., 2007).

MZE and MAE test results14, along with standard deviations over 20 training /test

re-samplings, are listed in Tables 2 and 3, respectively15. We use bold face to indicate

the lowest average error value among the results of all algorithms.

In comparison with other methods and with respect to the eight benchmark ordi-

nal ranking data sets, OGMLVQ and OMLVQ algorithms achieve the lowest MZE re-

sults on four data sets, with OGMLVQ being lowest in Pyrimidines, MachineCPU,

and Abalone data sets, and OMLVQ in Boston data set. Furthermore, OGMLVQ and

OMLVQ attain the lowest MAE for three data sets Pyrimidines, MachineCPU, and

Abalone, with OGMLVQ being slightly better than OMLVQ on all data sets. Note that

on Abalone data set, both ordinal LVQ models beat the competitors out-of-sample by a

14The underlying eight benchmark data sets are considered as balanced (with respect to their class

distribution). Thus, we did not examine their MMAE results.
15MZE results of the Weighted LogitBoost reduction model is not listed because only MAE of this

algorithm was recorded in (Xia et al., 2007).
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Table 2: Mean Zero-one Error (MZE) results along with standard deviations, (±) across

20 training/test re-sampling, for the ordinal LVQ models (OMLVQ and OGMLVQ) and

the benchmark algorithms KDLOR reported in (Sun et al., 2010), SVOR-IMC (with

Gaussian kernel), SVOR-EXC (with Gaussian kernel) reported in (Chu et al., 2007),

RED-SVM (with Perceptron kernel) reported in (Lin et al., 2012). The best results are

marked with bold font.
Data set KDLOR SVOR-

IMC

SVOR-

EXC

RED-

SVM

OMLVQ OGMLVQ

Pyrimidines 0.739±

(0.050)

0.719±

(0.066)

0.752±

(0.063)

0.762±

(0.021)

0.660 ±

(0.060)

0.645±

(0.106)

MachineCpu 0.480±

(0.010)

0.655±

(0.045)

0.661±

(0.056)

0.572±

(0.013)

0.431±

(0.079)

0.415±

(0.096)

Boston 0.560±

(0.020)

0.561±

(0.026)

0.569±

(0.025)

0.541±

(0.009)

0.532±

(0.017)

0.534±

(0.024)

Abalone 0.740±

(0.020)

0.732±

(0.007)

0.736±

(0.011)

0.721±

(0.002)

0.545±

(0.021)

0.532±

(0.049)

Bank 0.745±

(0.0025)

0.751±

(0.005)

0.744±

(0.005)

0.751±

(0.001)

0.756 ±

(0.016)

0.750±

(0.008)

Computer 0.472±

(0.020)

0.473±

(0.005)

0.462±

(0.005)

0.451±

(0.002)

0.535±

(0.019)

0.510±

(0.010)

California 0.643±

(0.005)

0.639±

(0.003)

0.640±

(0.003)

0.613±

(0.001)

0.710±

(0.018)

0.680±

(0.007)

Census 0.711±

(0.020)

0.705±

(0.002)

0.699±

(0.002)

0.688±

(0.001)

0.754±

(0.154)

0.735±

(0.014)

large margin. However, relative to the competitors, OMLVQ and OGMLVQ exhibit the

worst performance on three data sets (Computer, California and Census), and compa-

rable performances on the remaining data sets Boston and Bank. Note that on the three

data sets where the ordinal LVQ methods were beaten by the competitors, the original

LVQ methods performed poorly as well (see Figures 2 and 3). We hypothesize that

the class distribution structure of those data sets may not be naturally captured by the

prototype based methods.
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We also examined the performance of our prototype based models, using the two

real-world ordinal ranking problems, against two SVM-based ordinal regression ap-

proaches (SVOR-IMC (Chu et al., 2007) with the Gaussian kernel and RED-SVM with

perceptron kernel (Li et al., 2007; Lin et al., 2012))16.

The MZE and MAE test results of the cars and redwine data sets for the two com-

pared algorithms were reported in (Lin et al., 2012). MZE, MAE and MMAE test

results over 20 training/test random re-samplings are listed in Table 417. We use bold

face to indicate the lowest average error value among the results of all algorithms.

In comparison with SVOR-IMC (Chu et al., 2007) and RED-SVM (Li et al., 2007;

Lin et al., 2012)), on the two real-world ordinal regression data sets (cars and redwine),

the prototype based models for ordinal regression (OMLVQ and OGMLVQ) show a

competitive performance in MZE and MAE. For the cars data set, among the com-

pared algorithms the OMLVQ model is performing the best with respect to the MZE

and MAE results. For the redwine data set, the RED-SVM yields the best MZE/MAE

performance. The OMLVQ and OGMLVQ models are slightly worse than RED-SVM,

but better than the SVM-IMC algorithm.

4.3 Sensitivity of the Ordinal LVQ Models to the Correct Region

As specified in section 3.1, the rank loss threshold Lmin defines the sets of correct and

incorrect prototype classes. Given classes 1, 2, ..., K, the value of the Lmin is defined

on the range of the absolute error loss function, i.e. [0, K − 1].

The following experiment investigates the sensitivity of the presented models to the

choice of the correct region18, i.e. the value of Lmin. The experiment was conducted

on four data sets with different number of classes K (Pyrimidines and Abalone with

K = 10; cars and redwine with K = 4 and K = 6, respectively). Using settings of the

best-performing models from the previous experiments, we examined sensitivity of the

16Unfortunately we have not been able to obtain codes for the two other ordinal regression algorithms

considered in this study (Weighted LogitBoost (Xia et al., 2007) and KDLOR (Sun et al., 2010)).
17MMAE results of the SVM based models are not listed because only MZE and MAE of these algo-

rithms were recorded in (Lin et al., 2012). Furthermore, MZE of the SVOR-IMC with Gaussian kernel

algorithm were not reported in (Lin et al., 2012).
18We are thankful to the anonymous reviewer for suggesting this experiment.
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model performance with respect to varying Lmin in the range [L∗min−1, L∗min+1], where

L∗min denotes the ‘optimal’ value of Lmin found using cross-validation as described

above.

The MAE and MMAE19 results are presented in Tables 5 and 6, respectively. As

expected, sensitivity with respect to variations in Lmin is much greater if the number

of classes is small (e.g. cars and redwine). In such cases, setting the ‘right’ value’

of Lmin is crucial. Not surprisingly, for small number of classes the selected value of

Lmin was 0. Interestingly, OGMLVQ appears to be more robust to changes in Lmin than

OMLVQ. We speculate that this is so since OMLVQ in each training step updates all se-

lected correct and incorrect prototypes independently of each other. On the other hand,

OGMLVQ updates only the closest pair of correct and incorrect prototypes, affecting

potentially a smaller number of prototypes.

4.4 Discussion

OGMLVQ slightly outperforms OMLVQ in almost all cases. This may be due to princi-

pled adaptation formulation through the novel cost function (15). Interestingly enough,

this is also reflected in the nominal classification case, where GLVQ (later extended

to GMLVQ) has been shown to be superior to LVQ1 (later extended to MLVQ) (Sato

et al., 1996).

As expected, ordinal LVQ methods demonstrate stronger improvements over their

nominal counterparts in terms of MAE, rather than MZE. As an example, this is illus-

trated in Figure 5 obtained on a MachineCpu test set. The figure compares the true class

labels in the selected test set (a) against the predicted ones generated by MLVQ, OM-

LVQ, GMLVQ and OGMLVQ ((b), (c), (d) and (e), respectively). Although there are

several misclassifications by our ordinal LVQ methods (OMLVQ and OGMLVQ), they

incorporate less deviations (from their true ordinal label) when compared to the devia-

tions occurring in the MLVQ and GMLVQ misclassifications. Clearly, the ordinal LVQ

schemes efficiently utilize the class order information during learning, thus improving

the MAE performance.

19The MMAE results of the Pyrimidines and Abalone data sets were not assessed as they are considered

as balanced data sets, and hence their MAE and MMAE results coincide.
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(e) OGMLVQ

Figure 5: Ordinal prediction results of a single example run in MachineCpu data set
(true labels in (a)) obtained by MLVQ, OMLVQ, GMLVQ and OGMLVQ shown in
(b),(c),(d) and (e), respectively.

Interestingly enough, we observed that reshaping the class prototypes in the ordi-

nal LVQ methods by explicit use of the class order information stabilizes the training

substantially, when compared to the nominal LVQ methods. Provided the class distri-

bution in the data space respects the class order, the class prototypes of ordinal LVQ

will quickly reposition to reflect this order. Then most misclassifications that need to

be acted on during training have low absolute error, i.e. most misclassifications happen

on the border of receptive fields of ordered prototypes with small absolute differences

between the classes of data points and those of their closest prototypes. This stabilizes

the training in that only relatively small prototype updates are necessary. In nominal

LVQ, where the order of classes is not taken into account during training, larger jumps
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in absolute error can occur. For example in Figures 6 and 7 we show evolution of

MAE error rates as the training progresses (measured in training epochs) for a single

run of (O)MLVQ and (O)GMLVQ on the Abalone and Boston data sets, respectively.

The same training sample and similar experimental settings for MLVQ and OMLVQ,

as well as for GMLVQ and OGMLVQ were used.
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Figure 6: Evolution of MAE in the course of training epochs (t) in the Abalone training
set obtained by the MLVQ, OMLVQ algorithms, in (a) and (b), respectively.
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(a) GMLVQ
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(b) OGMLVQ

Figure 7: Evolution of MAE in the course of training epochs (t) in the Boston training
set obtained by the GMLVQ, OGMLVQ algorithms, in (a) and (b), respectively.

5 Conclusion

This paper introduced two novel prototype-based learning methodologies, especially

tailored for classifying data with ordered classes. Based on the existing nominal LVQ
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methods with metric learning, Matrix LVQ (MLVQ) and Generalized MLVQ (GM-

LVQ) (Schneider et al., 2009; Schneider , 2010), we proposed two new ordinal LVQ

methodologies - Ordinal MLVQ (OMLVQ) and Ordinal GMLVQ (OGMLVQ).

Unlike in nominal LVQ, in ordinal LVQ the class order information is utilized dur-

ing training in selection of the class prototypes to be adapted, as well as in determining

the exact manner in which the prototypes get updated. In particular, the prototypes

are adapted so that the ordinal relations amongst the prototype classes are preserved,

reflected in reduction of the overall mean absolute error. Whereas in the OMLVQ

approach the prototypes are adapted independently of each other, in the OGMLVQ

approach the prototypes are updated in pairs based on minimization of a novel cost

function.

Experimental results on eight benchmark data sets and two real-world imbalanced

data sets empirically verify the effectiveness of our ordinal LVQ frameworks when

compared with their standard nominal LVQ versions. The mean zero-one error (MZE),

mean absolute error (MAE) and macroaveraged mean absolute error (MMAE) (in case

of imbalanced data sets) rates of the proposed methods were considerably lower, with

more pronounced improvements on the MAE (in case of balanced data sets) and MAE,

MMAE rates (in case of imbalanced data sets) when compared to the MZE rate. In

addition, our ordinal models exhibit more stable learning behavior when compared to

their nominal counterparts. Finally, in comparison with existing benchmark ordinal

regression methods, our ordinal LVQ frameworks attained a competitive performance

in terms of MZE and MAE measurements.
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Table 3: Mean Absolute Error (MAE) results, along with standard deviations (±) across

20 training/test re-sampling, for the ordinal LVQ models (OMLVQ and OGMLVQ) and

the benchmark algorithms KDLOR reported in (Sun et al., 2010), SVOR-IMC (with

Gaussian kernel), SVOR-EXC (with Gaussian kernel) reported in (Chu et al., 2007),

RED-SVM (with Perceptron kernel) reported in (Lin et al., 2012), Weighted Logit-

Boost, reported in (Sun et al., 2010). The best results are marked with bold font.

Data set KDLOR SVOR-

IMC

SVOR-

EXC

RED-

SVM

Weighted

LogitBoost

OMLVQ OGMLVQ

Pyrimidines 1.1±

(0.100)

1.294±

(0.204)

1.331±

(0.193)

1.304±

(0.040)

1.271±

(0.205)

1.004±

(0.123)

0.985±

(0.169)

MachineCpu 0.690±

(0.015)

0.990±

(0.115)

0.986±

(0.127)

0.842±

(0.022)

0.800±

(0.087)

0.660±

(0.291)

0.630±

(0.176)

Boston 0.700±

(0.035)

0.747±

(0.049)

0.773±

(0.049)

0.732±

(0.013)

0.816±

(0.056)

0.742±

(0.048)

0.731±

(0.050)

Abalone 1.400±

(0.050)

1.361±

(0.013)

1.391±

(0.021)

1.383±

(0.004)

1.457±

(0.014)

0.732±

(0.035)

0.731±

(0.068)

Bank 1.450±

(0.020)

1.393±

(0.011)

1.512±

(0.017)

1.404±

(0.002)

1.499±

(0.016)

1.501±

(0.025)

1.462±

(0.009)

Computer 0.601±

(0.025)

0.596±

(0.008)

0.602±

(0.009)

0.565±

(0.002)

0.601±

(0.007)

0.776±

(0.018)

0.698±

(0.023)

California 0.907±

(0.004)

1.008±

(0.005)

1.068±

(0.005)

0.940±

(0.001)

0.882±

(0.009)

1.238±

(0.048)

1.208±

(0.018)

Census 1.213±

(0.003)

1.205±

(0.007)

1.270±

(0.007)

1.143±

(0.002)

1.142±

(0.005)

1.761±

(0.033)

1.582±

(0.018)
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Table 4: Mean Zero-one Error (MZE), Mean Absolute Error (MAE) and Macroaver-

aged Mean Absolute Error (MMAE) results on the real-world cars and redwine data

sets, along with standard deviations, (±) across 20 training/test re-sampling, for the

ordinal LVQ models (OMLVQ and OGMLVQ) and the benchmark algorithms (SVOR-

IMC with Gaussian kernel and RED-SVM with Perceptron kernel) reported in (Lin

et al., 2012). The best results are marked with bold font.
Data set Algorithm MZE MAE MMAE

Cars SVOR-IMC N/A 0.051±(0.002) N/A

RED-SVM 0.064±(0.003) 0.061±(0.003) N/A

OMLVQ 0.035±(0.012) 0.044±(0.016) 0.069±(0.029)

OGMLVQ 0.111±(0.029) 0.128±(0.035) 0.281±(0.080)

Redwine SVOR-IMC N/A 0.429±(0.004) N/A

RED-SVM 0.327±(0.005) 0.357±(0.005) N/A

OMLVQ 0.358±(0.014) 0.405±(0.016) 0.535±(0.067)

OGMLVQ 0.331±(0.009) 0.364±(0.014) 0.555±(0.083)

Table 5: Mean Absolute Error (MAE) results, along with standard deviations (±) across

20 training/test re-sampling, obtained using varying number of rank loss threshold (

(Lmin − 1), (Lmin) and (Lmin + 1)), on four ordinal regression data sets. Note that,

the value of Lmin is determined using a cross validation procedure on each of the four

examined data sets. The best results are marked with bold font.
Data set K Lmin Algorithm MAE (Lmin − 1) MAE (Lmin) MAE (Lmin + 1)

Cars 4 0 OMLVQ N/A 0.044±(0.016) 0.403±(0.027)

0 OGMLVQ N/A 0.128±(0.035) 0.324±(0.034)

Redwine 6 0 OMLVQ N/A 0.405±(0.016) 0.800±(0.080)

0 OGMLVQ N/A 0.364±(0.014) 0.440±(0.019)

Pyrimidines 10 1 OMLVQ 1.274±(0.177) 1.004± (0.123) 1.300±(0.168)

1 OGMLVQ 1.162±(0.199) 0.985±(0.169) 1.062±(0.130)

Abalone 10 1 OMLVQ 0.885±(0.082) 0.732±(0.035) 0.901±(0.104)

1 OGMLVQ 0.740±(0.011) 0.731±(0.068) 0.886±(0.034)
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Table 6: Macroaveraged Mean Absolute Error (MMAE) results, along with standard

deviations (±) across 20 training/test re-sampling, obtained using varying number of

rank loss threshold ( (Lmin−1), (Lmin) and (Lmin +1)), on two ordinal regression data

sets. Note that, the value of Lmin is determined using a cross validation procedure on

each of the four examined data sets. The best results are marked with bold font.
Data set K Lmin Algorithm MMAE (Lmin − 1) MMAE (Lmin) MMAE (Lmin + 1)

Cars 4 0 OMLVQ N/A 0.069±(0.029) 0.268±(0.036)

0 OGMLVQ N/A 0.281±(0.080) 0.390±(0.062)

Redwine 6 0 OMLVQ N/A 0.535±(0.067) 0.781±(0.145)

0 OGMLVQ N/A 0.555±(0.083) 0.678±(0.071)
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