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AI-guided patient stratification improves
outcomes and efficiency in the AMARANTH
Alzheimer’s Disease clinical trial

Delshad Vaghari1,6, Gayathri Mohankumar2,6, Keith Tan3, Andrew Lowe3,
Craig Shering4, Peter Tino5 & Zoe Kourtzi 1

Alzheimer’s Disease (AD) drug discovery has been hampered by patient
heterogeneity, and the lack of sensitive tools for precise stratification. Here,
we demonstrate that our robust and interpretable AI-guided tool (predictive
prognostic model, PPM) enhances precision in patient stratification,
improving outcomes and decreasing sample size for a AD clinical trial. The
AMARANTH trial of lanabecestat, a BACE1 inhibitor, was deemed futile, as
treatment did not change cognitive outcomes, despite reducing β-amyloid.
Employing the PPM, we re-stratify patients precisely using baseline data and
demonstrate significant treatment effects; that is, 46% slowing of cognitive
decline for slow progressive patients at earlier stages of neurodegeneration.
In contrast, rapid progressive patients did not show significant change in
cognitive outcomes. Our results provide evidence for AI-guided patient
stratification that is more precise than standard patient selection approa-
ches (e.g. β-amyloid positivity) and has strong potential to enhance effi-
ciency and efficacy of future AD trials.

Dementia presents amajor global healthcare challenge, affectingmore
than 55 million individuals around the world, with a projected three-
fold increase over the next 50 years1. Alzheimer’s disease (AD), the
predominant cause of dementia, accounts for 60–80% of dementia
cases2. Effective treatments to prevent the onset, delay the progres-
sion, or modify the course of AD are urgently needed to reduce the
global burden3. Despite decades of research and development, clinical
trials of potential disease-modifying treatments for dementia have
been largely unsuccessful. Cumulative expenditure on clinical-stage
AD research and development is estimated to have reached $42.5 bil-
lion since 19954,5, and the cost to develop a treatment for AD from the
preclinical stage to FDA approval is estimated to be $5.7 billion6.
Recruitment and patient selection from diverse and qualified pools of
volunteers7,8 often cause significant delays and contribute to the high
failure rates of these trials4,5.

Recent positive phase three clinical trial results (i.e., lecanemab,
donanemab)9,10 highlight the need for interventions earlier in the
progression of disease when treatmentsmay bemaximally effective11,12

and have the potential to enhance patient outcomes. Yet, we still lack
effective tools for precise stratification of patients at risk or early dis-
ease stages for inclusion in clinical trials. In particular, patient selection
often relies on biomarkers (e.g., β-Amyloid) that are limited in pre-
dicting AD progression and treatment outcomes due to variability in
amyloid binding and immune activation3,4,13,14. Further, up to a third of
patients at early Mild Cognitive Impairment (MCI) stages may be
misdiagnosed due to a lack of sensitive tools for early diagnosis.
Including patients with symptoms due to comorbidities (e.g., anxiety
or mood-related disorders) rather than dementia pathology in clinical
trials may impact trial efficiency and costs (i.e., larger numbers of
patients and longer recruitment are necessary), as well as confound
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efficacy signals due to increased heterogeneity in the patient sample.
Further, including patients who have progressed to advanced disease
stages may reduce the potential of targets (e.g., amyloid removal tar-
gets) to be effective3,15–17.

Recent developments in Artificial Intelligence (AI) based on
machine learning (ML) algorithms provide a turning point in precise
patient stratification in early dementia stages. We have developed and
validated a robust and interpretable predictive prognostic model
(PPM) that extends beyond binary patient classification approaches
and predicts not only whether but also how fast individuals at early
stages of the disease (MCI) or even pre-symptomatic stages (Cognitive
Normal, CN) may progress to AD18,19. PPM has been tested on inde-
pendent real-world patient data from memory clinics and validated
against longitudinal clinical outcomes20. PPM delivers an AI-guided
marker of future cognitive health thatpredicts progression toADmore
precisely than standard clinical assessments (i.e., cognitive data, MRI
scan)20 and biomarkers typically used for patient inclusion in clinical
trials (i.e., β-Amyloid positivity)19, offering potential to reduce mis-
diagnosis and optimize patient stratification.

Here, we test whether employing the PPM to improve patient
stratification may change the outcome and efficiency of a randomized
phase 2/3 clinical trial (AMARANTH, NCT02245737). AMARANTH
tested the effect of lanabecestat (AZD3293, LY3314814), a brain-
permeable inhibitor of human beta-site amyloid precursor protein-
cleaving enzyme 1 (BACE1/β-secretase)21. BACE1was considered to be a
promising therapeutic target for slowing disease progression in AD by
preventing the generation of Aβ peptides, reducing the effects of Aβ
toxicity and the formation of amyloid plaques in the brain. The
objective of the trial was to test the efficacy of lanabecestat in slowing
cognitive decline in patients diagnosedwithMCI due toADormild AD.
Despite lanabecestat reducing β-amyloid, the readout of the trial was
deemed unsuccessful, and the trial was terminated early due to a lack
of significant changes in primary cognitive outcomes.

We employed the PPM— trained on research data (ADNI) —to re-
stratify individuals in the AMARANTH trial data (independent test
data) into slow vs. rapid progressive based on baseline data (i.e., week
1, before treatment). In contrast to the futility assessment, we
demonstrate significant treatment effects on primary trial outcomes.
In particular, we test the effect of lanabecestat (20mg vs. 50mg) on
outcomes (β-amyloid, cognition: CDR-SOB, ADAS-Cog13) separately
for slow vs. rapidprogressive individuals.Our results demonstrate 46%
slowing of cognitive decline (as measured by CDR-SOB) for the slow
rather than the rapid progressive group following treatment with
lanabecestat 50mg compared to placebo. That is, patients stratified by
the PPM as slow progressive at earlier stages of neurodegeneration
showed slowing of cognitive decline related to β-amyloid reduction
due to treatment. Further, we show that using PPM for patient strati-
fication substantially decreases the sample size necessary for identi-
fying significant changes in cognitive outcomes. Our results suggest
that using PPM to stratify patients for clinical trials has strongpotential
to enhance their efficiency (faster and cheaper) and efficacy (more
reliable outcomes), as the right patients are included in the trials at the
right time.

Results
PPM trained on ADNI stratifies clinically stable vs. declining
individuals
PPM adopts a trajectory modeling approach based on Generalized
Metric Learning Vector Quantization (GMLVQ)18,19 that leverages mul-
timodal data to make predictions about future cognitive decline at
early dementia stages by iteratively adjusting class-specific prototypes
and learning class boundaries (Supplementary Material: Predictive
prognostic model). GMLVQ incorporates a full metric tensor to pro-
vide a robust distancemeasure (metric) tuned to the classification task.
We trained the PPM on baseline data from ADNI (n = 256) to

discriminate Clinically Stable (n = 100) from Clinically Declining
(n = 156) patients, using β-Amyloid, APOE4, and medial temporal lobe
(MTL) GM density. Employing ensemble learning with cross-validation
and majority voting showed 91.1% classification accuracy (0.94 AUC:
Area Under Curve) with sensitivity of 87.5% and specificity of 94.2%
(Supplementary Table S1; Precision: 93.8%, F1 score: 90.5%). Note that
discriminating Clinically Stable vs. declining individuals comprises a
finer classification task compared to previouswork focusing onpatient
(AD) vs. healthy (cognitive normal) classifications22,23, where signals are
more discriminable and may result in higher model performance. The
difference between sensitivity and specificity is likely due to weaker
signals for the clinically declining compared to the stable class. Thus,
achieving higher than 90% accuracy and precision provides evidence
for PPM robustness.

Further, the PPM architecture is transparent and interpretable.
First, interrogating the metric tensors allows us to understand the
contribution of each feature to the model’s prediction (Fig. 1A). In
particular, the metric tensors indicate that β-amyloid burden is the
most discriminative feature compared toMTLGM density and APOE4.
This is consistent with the role of β-amyloid and MTL atrophy as
markers of Alzheimer’s pathology, consistent with the NIA-AA 2018
diagnostic framework of AD24

Second, interrogating the off-diagonal terms of the metric tensor
allows us to understand the feature interactions that contribute to the
model’s prediction. In particular, we observed a positive interaction
between baseline β-amyloid burden and APOE 4, while a negative
interaction between baseline β-amyloid burden and MTL GM density,
consistent with the role of β-amyloid and APOE 4 as risk factors for
progression to AD.

Third, the PPM prototypes (one per class: clinically stable, pro-
gressive) indicate the most discriminative class representatives and
allow us to predict an individual’s trajectory. That is, using the GMLVQ-
Scalar Projection method, we estimate the distance (based on the
learntmetric tensor) of an independent test dataset from the Clinically
Stable prototype and determine the PPM-derived prognostic index for
each individual, allowing individualized prognosis beyond binary
clinical labels (Fig. 1B; Supplementary Material: GMLVQ-Scalar Projec-
tion). In particular, we extracted the PPM-derived prognostic index for
each individual in an independent ADNI sample (out-of-sample vali-
dation, n = 419; cognitive normal individuals n = 119, patients with MCI
n = 150, patients with AD n = 150). We then used multinomial logistic
regression to capture the relationship of the PPM-derived prognostic
index to the rate of future tau accumulation anddetermine boundaries
for quartile classes that differ in likelihood of disease progression. We
scaled the boundaries so that PPM-derived prognostic index indicates
individuals who aremore likely to: (1) remain stable (PPM index values
below 0 fall within the 20th percentile of the future tau accumulation
slope), (2) experience rapidprogression (PPM index values higher than
1 fall above the 60th percentile of future tau accumulation), (3)
experience slower progression (PPM index between 0 and 1)18,19. Our
results (Fig. 1B) showed that the PPM-derived prognostic index was
significantly different across groups (Kruskal-Wallis H test
χ(2) = 121.46, p <0.001), with a significantly higher index (Bonferroni
corrected) for AD vs. MCI and CN (p < 0.001), MCI vs. CN (p <0.001).
This validation against clinical outcomes (i.e., diagnosis) provides
evidence that the PPM-derived prognostic score is clinically relevant.

PPM-guided stratification in the AMARANTH trial using
baseline data
We used the PPM trained on ADNI data to extract the PPM-derived
prognostic index from AMARANTH patients (Supplementary
Tables S2, S3 for sample sizes) with: APOE4 at week 1, structural MRI
(MTL GM density), florbetapir PET (β-amyloid) scans at three time
points (week 1, 52, 104), and cognitive measures (CDR-SOB, ADAS-
Cog13) at three time points (week 1, 52, 104). In particular, using the

Article https://doi.org/10.1038/s41467-025-61355-3

Nature Communications |         (2025) 16:6244 2

www.nature.com/naturecommunications


GMLVQ-Scalar Projection method, we estimated the distance of each
patient in the AMARANTH dataset at baseline (week 1) from the
Clinically Stable prototype, determined the PPM-derived prognostic
index for each individual in the AMARANTH sample and stratified
individuals as slow vs. rapid progressive based on baseline (week 1)
data (Fig. 2A; the sample size for stable was small (n = 5) and these data
were excluded from further analysis). There were no significant dif-
ferences in the PPM-derived prognostic index between treatment
groups at baseline (Kruskal-Wallis H test χ(2) = 2.9733, p =0.2261;
Fig. 2B). Interestingly, individuals in the slow progressive group
showed lower β-amyloid burden (t (330.22) = 11.833, p < 0.001), higher

MTL GM density (t (326.33) = −17.351, p <0.001) and better perfor-
mance in cognitive tests (i.e., lower CDR-SOB (t(911.03) = 6.38,
p <0.001) and ADAS-Cog13 (t (806.77) = 5.23, p < 0.001)) compared to
the rapid progressive group at baseline. These results suggest that
individuals stratified as slow progressive by the PPM were at earlier
stages of neurodegeneration and cognitive decline compared to
individuals stratified as rapid progressive, corroborating the link of the
PPM-derived prognostic score to cognitive decline and disease pro-
gression. Note that only 7.5% of the patients included in the trial had β-
amyloid less than 50 centiloid, indicating intermediate or high like-
lihood of AD, andmaking it harder to stratify into subgroups based on
β-amyloid alone. However, training the PPM on multimodal data
(rather than β-amyloid alone) allowed a more precise stratification to
subgroups at earlier vs. later disease progression stages.

PPM-guided stratification in the AMARANTH trial shows treat-
ment effects on β-Amyloid
We tested whether stratifying the AMARANTH dataset based on the
PPM-derived index at baseline (week 1) shows treatment effects on β-
Amyloid. In particular, we used a mixed model for repeated measures
(MMRM; Supplementary Table S4), to test Treatment (placebo, 20mg,
50mg) effects across timepoints (week 1, 52, 104) for each PPM-
stratified group (Slow vs. Rapid progressive).

We observed (Fig. 3A) a significant decrease in β-Amyloid for
lanabecestat 20mg and lanabecestat 50mg treatment compared to
placebo over time (week 104 compared to week 1). This decrease in β-
Amyloid was observed for both PPM-stratified groups (Slow, Rapid
progressive). In particular, MMRM analysis including fixed effects for
treatment, timepoint, PPM-stratified group showed significant main
effect of Timepoint (F(2, 485.43) = 37.01, p <0.001) and PPM-stratified
group (F(1, 489.19) = 84.04, p < 0.001), significant interactions for
Treatment × Timepoint (F(4, 484.87) = 10.27, p <0.001) and PPM-
stratified group x Timepoint (F(2, 485.46) = 8.38, p <0.001). Post-hoc
comparisons showed that this PPM-stratified group x Timepoint
interaction was significant for the lanabecestat 20mg (F(2,
184.22) = 5.36, p < 0.01) and lanabecestat 50mg (F(2, 146.80) = 3.47,
p <0.05) but not the placebo (F(2,152.76) = 1.20, p = 0.3033) group.

Further, computing change in β-Amyloid burden over time (week
104 minus week 1) corroborated these results showing significantly
higher reduction in β-Amyloid for lanabecestat 20mg and lanabece-
stat 50mg compared to placebo for both the slow and rapid pro-
gressive group (Fig. 3B). In particular, we observed significantly higher
reduction of β-Amyloid for a) lanabecestat 20mg vs. placebo (Welch’s
Two Sample t test: Slow progressive group: t(55.289) = 2.95, p < 0.001;
Rapid progressive group: t(154.29) = 4.10, p <0 0.001) b) lanabecestat
50mg vs. placebo (Welch’s Two Sample t test: Slow progressive group:
t(62.362) = 3.86, p <0.001, Rapid progressive group: t(112.53) = 5.00,
p <0.001). Further, we observed stronger reduction in β-Amyloid due
to treatment for the rapid (21.91 % change) than slow (17.14 % change)
progressive group (Welch’s Two Sample t test: lanabecestat 20mg:
t(73.062) = 3.31, p <0.01; lanabecestat 50mg: t(94.62) = 2.54,
p =0.013). This result was potentially due to the higher β-Amyloid
burden for the rapid compared to the slow progressive group at
baseline (week 1; t(330.22) = 11.83, p <0.001).

Finally, similar analyses in the All Progressive group (n =434,
including individuals from the slow and rapid progressive groups)
showed a significant reduction in β-Amyloid due to treatment over
time compared to the placebo group. In particular, MMRM analysis
showed a significant main effect of timepoint (F(2,482.33) = 55.65,
p <0.001) and significant interactions of treatment x timepoint
(F(4,481.95) = 12.87, p <0.001). Comparing Least-square means (LSM)
for treatment effects over time (week 104 vs. week 1) across progressive
groups showed lower LSM for the Rapid progressive than the All Pro-
gressive group for treatment (lanabecestat 20mg, lanabecestat 50mg)
compared to placebo (Supplementary Table S5). In particular, we

Fig. 1 | PPM trained on ADNI data (n = 256) classifies Clinically Stable vs. Clini-
cally declining individuals. A PPM metric tensor based on training the PPM on
MTL Gray Matter (GM) Density, β-Amyloid, and APOE 4 for model training. The
color scale represents values for each cell in the metric tensor, with diagonal terms
summing to 1. The diagonal terms show strong contribution of β-amyloid burden
(weight: 0. 51) compared toGraymatter density (weight: 0. 34) andAPOE4 (weight:
0. 15). B PPM-derived prognostic index for an independent ADNI validation dataset
(n = 419): Box plots of PPM-derived prognostic index showing significant differ-
ences betweenCognitiveNormal: CN,MildCognitive Impairment:MCI, Alzheimer’s
Disease: AD (Kruskal-Wallis H two-sided tests, p <0.001, Bonferroni corrected).
Notches in the box plots indicate the median, the solid black box represents the
25th to 75th percentile, the black horizontal lines represent the range of the data,
black circles indicate outliers, and non-overlapping notches indicate significantly
different medians (p <0.05). PPM-derived prognostic index below 0 indicates
stable, above 1 indicates rapid progressive, and between 0 and 1 indicates slow
progressive individuals. Dashed lines indicate boundaries between stable vs. slow
progressive (red) and rapid progressive (green) based on a multinomial logistic
regression testing the relationship of the PPM-derived prognostic index to the rate
of future tau accumulation. Source data are provided as a Source Data file.
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observed the lowest LSM for lanabecestat 50mg for the Rapid Pro-
gressive group (LSM= − 25.38, SE = 3.28; placebo group: LSM= − 3.71,
SE = 2.90) compared to the Slow Progressive group (LSM= −14.04,
SE = 3.10; placebo group: LSM=3.48, SE = 3.21) and All Progressive
group (LSM=− 19.674, SE = 2.43), consistent with the result previously
reported for the AMARANTH trial21 (LSM= − 19.74, SE = 1.97).

Taken together, these results suggest that PPM-derived stratifi-
cation provides a more sensitive tool for assessing treatment effects,
showing stronger β-Amyloid reduction due to lanabecestat treatment
in the rapid progressive group than across all progressive individuals
or the whole sample considered in the AMARANTH trial.

PPM-guided stratification in the AMARANTH trial shows treat-
ment effects on cognitive outcomes
We tested whether stratifying the AMARANTH dataset based on the
PPM-derived index at baseline (week 1) shows treatment effects on
cognitive outcomes (CDR-SOB, ADAS-Cog13). In particular, we used a
mixed model for repeated measures (MMRM; Supplementary
Table S4), to test Treatment (placebo, 20mg, 50mg) effects across
timepoints (week 1, 52, 104) for each PPM-stratified group (Slow vs.
Rapid progressive).

We observed an overall increase in CDR-SOB scores over time
(week 104 vs. week 1), suggesting progression in dementia symptoms
(Fig. 4A). However, for the Slow progressive group, we observed a
significant decrease in CDR-SOB scores for lanabecestat 50mg com-
pared to placebo at week 104, suggesting slowing down of dementia
progression (Fig. 4A). In particular, MMRM analysis showed: a) sig-
nificant interactions: PPM-stratified group xTreatment x Timepoint
(F(4, 2173.3) = 2.62, p <0.05), Treatment × Timepoint (F(4,
2172.8) = 2.20, p =0.067), PPM-stratified group x Treatment (F(2,
1866.4) = 2.51, p = 0.08), PPM-stratified group x Timepoint (F(2,
2163.7) = 14.72, p <0.001); b) significant main effects of PPM-stratified
group (F(1, 1809.1) = 35.70, p <0.001), Treatment (F(2, 1870.5) = 3.00.,
p =0.05), Timepoint (F(2, 2190.7) = 24.08, p < 0.001). Post-hoc com-
parisons showed that PPM-stratified group x Timepoint interaction
was significant for the lanabecestat 20mg (F(2, 716.64) = 4.301,
p =0.014) and lanabecestat 50mg (F(2, 709.67) = 15.28, p < 0.001) but
not the placebo (F(2, 720.26) = 0.96, p =0.38) group.

Further, computing change in CDR-SOB scores over time (week
104 minus week 1) corroborated these results showing significant
reduction in CDR-SOB scores (Welch’s Two Sample t test, t
(84.762) = 2.4475, p =0.016) for lanabecestat 50mg compared to pla-
cebo for the slow progressive group (Fig. 4B). In particular, the slow
progressive group showed 33.64 % change in CDR-SOB scores over
time compared to higher change in the a) Rapid progressive (80.84%)
in the lanabecestat 50mg group, b) the Slow (77.13%) and Rapid (70.41
%) in the placebo group. That is, the slow progressive group treated
with lanabecestat 50mg showed 46% reduction in cognitive decline
compared to the placebo group, suggesting slowing of dementia
progression for individuals stratifiedby the PPMasslowprogressive. In
contrast, no significant differences in CDR-SOB scores were observed
for a) lanabecestat 50mg compared to placebo in the rapid pro-
gressive group t(153.96) = −0.26, p =0.80, b) lanabecestat 20mg
compared to placebo in the slow (t(66.073) = 0.41, p = 0.68) or rapid (t
(186.19) = −0.53, p =0.60) progressive group.

Similar MMRM analyses for the All Progressive group (n = 1354,
including individuals in the slow and rapid progressive groups)
showed significant main effects of Timepoint (F(2,2195.0) = 23.68,
p <0.001) and Treatment (F(2,1883.7) = 3.68, p =0.03), but no sig-
nificant Treatment x Timepoint interaction (F(4, 2176.9) = 2.00,
p =0.09). Further, we did not observe significant changes in CDR-SOB
scores over time (week 104 minus week 1) for lanabecestat 20mg
(Welch’s Two Sample t test, t (266.93) = −0.35, p =0.72) nor lanabe-
cestat 50mg (Welch’s Two Sample t test, t (242.09) = 1.16, p =0.25)
compared to placebo. These results are consistent with the lack of
significant slowing of cognitive decline due to treatment, as previously
reported for the AMARANTH trial21.

Comparing Least-square means (LSM) for treatment effects over
time (week 104 vs. week 1) across progressive groups showed lower
LSM for the Slow progressive than the Rapid and All Progressive group
for treatment compared to placebo (Supplementary Table S5). In
particular, we observed the lowest LSM for lanabecestat 50mg in the
Slow Progressive group (LSM= 1.03, SE = 0.25; placebo group LSM=
2.21, SE = 0.24), compared to theRapidProgressive group (LSM= 2.86,
SE = 0.20); placebogroupLSM= 2.74, SE = 0.18) and theAll Progressive
group (LSM= 1.97, SE = 0.16), consistentwith the result observedwhen

Fig. 2 | PPM-based stratification of patients in the AMARANTH trial using
baselinedata.A Scatter plot ofβ-Amyloid againstMTLGMdensity forAMARANTH
baseline data (week 1) for placebo, lanabecestat 20mg, lanabecestat 50mg. Red
dots indicate data for Slow progressive; green dots indicate data for Rapid pro-
gressive individuals. Individuals with higher β-Amyloid and lower GM density are
stratified as Rapid progressive by the PPMmodel. Individuals with lower β-Amyloid
and higher GMdensity are stratified as Slowprogressive by the PPMmodel. B PPM-
derived prognostic index for AMARANTH data at baseline (week 1): Box plots
showing no significant differences in the PPM-derived prognostic index between
treatment groups (placebo, lanabecestat 20mg, lanabecestat 50mg) at baseline
(sample size: Supplementary Table S2, S3). Notches in the box plots indicate the
median, the solid black box represents the 25th to 75th percentile, the black hor-
izontal lines represent the range of the data, and black circles indicate outliers.
PPM-derived prognostic index below 0 indicates stable, above 1 indicates rapid
progressive, and between 0 and 1 indicates slow progressive individuals. Dashed
lines indicate boundaries between stable vs. slow progressive (red) and rapid
progressive (green) based on a multinomial logistic regression testing the rela-
tionship of the PPM-derived prognostic index to the rate of future tau accumula-
tion. Source data are provided as a Source Data file.
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the whole clinical trial sample was previously analyzed (LSM= 3.17,
SE = 0.18).

Finally, MMRM analyses showed a similar reduction (39%) in
ADAS-Cog13 scores for the slow progressive group compared to pla-
cebo (Supplementary Fig. S1A). In particular, we observed a significant
PPM-stratified group xTimepoint interaction (F(2, 2162.8) = 10.37,
p <0.001) but no other significant interactions (Supplementary
Table S4). Post-hoc comparisons showed that PPM-stratified group x
Timepoint interaction was significant across all groups (lanabecestat
20mg: F(2, 719.95) = 3.31, p = 0.03, lanabecestat 50mg: F(2,

706.74) = 6.83, p <0.001, placebo: F(2, 720.14) = 4.53, p =0.011), sug-
gesting that the lack of significant treatment effect may be due to
differences over time in ADAS-Cog13 in the placebo group. For lana-
becestat 50mg, computing change in ADAS-Cog13 scores over time
(week 104 minus week 1) showed lower change (18.62 %) for the Slow
progressive group than the Rapid progressive (42.99 %) and for Slow
(30.77%) and Rapid (33.62%) in the placebo group; that is, for the Slow
progressive group we observed similar treatment effects as for CDR-
SOB. However, this reduction in ADAS-Cog13 scores (39% reduction
compared to placebo) was not statistically significant (Welch’s Two

Fig. 3 | Treatment with lanabecestat in the AMARANTH trial decreases sig-
nificantly β-Amyloid load for both the slow and rapid progressive individuals.
AMean β-Amyloid levels over time for Slow, Rapid, and All Progressive individuals
(sample size: Supplementary Table S2) in the placebo (gray dashed), lanabecestat
20mg (blue), and lanabecestat 50mg (purple). Error bars indicate the standard
error of the mean across individuals (SEM). B. Box plots of change in β-Amyloid
levels (week 104 minus week1) for Slow, Rapid, and All Progressive (sample size:

Supplementary Table S2). Black lines in the box plots indicate the median for
placebo (gray), lanabecestat 20mg (blue), and lanabecestat 50mg (purple), the
solid black box represents the 25th to 75th percentile, the black vertical lines
represent the range of the data, and black circles indicate outliers. Asterisks indi-
cate significant differencesbetween treatment groups andplacebo. Sourcedata are
provided as a Source Data file.
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Sample t test, t (78.854) = 0.90, p =0.37) for lanabecestat 50mg
compared to placebo for the slow progressive group (Supplementary
Fig. S1B).

Considering LSM for treatment effects over time (week 104 vs.
week 1) showed similar results with the analysis of CDR-SOB. That is,
LSMwas lower for the Slow progressive than the Rapid progressive, All
Progressive group and the whole clinical trial sample for lanabecestat
50mg compared to placebo (Supplementary Table S5). Taken toge-
ther, these results suggest that PPM-derived stratification provides a
more sensitive tool for assessing treatment effects, providing evidence
for slowing of cognitive decline in the slow rather than the rapid

progressive group; that is, lanabecestat 50mg may slow disease pro-
gression at earlier stages of neurodegeneration.

PPM-guided stratification in the AMARANTH trial changes with
treatment
We asked whether treatment has an effect on PPM-guided stratifica-
tion; that is, whether patients stratified as slow progressive using the
PPM-derived prognostic score at baseline (week 1) remain in the slow
progressive or transition to the rapid progressive group when strati-
fied based on the PPM-derived prognostic score at week 104. For the
placebo, we expected that individuals will transition from the slow to

Fig. 4 | Treatment with lanabecestat in the AMARANTH trial decreases sig-
nificantly CDR-SOB scores for the slow but not the rapid progressive indivi-
duals. AMean CDR-SOB over time for Slow, Rapid, and All Progressive individuals
(sample size: Supplementary Table S3) in the placebo (gray dashed), lanabecestat
20mg (blue), and lanabecestat 50mg (purple). Error bars indicate the standard
error of the mean across individuals (SEM). B Box plots of change in CDR-SOB
(week 104 minus week1) for Slow, Rapid, and All Progressive (sample size:

Supplementary Table S3). Black lines in the box plots indicate the median for
placebo (gray), lanabecestat 20mg (blue), and lanabecestat 50mg (purple), the
solid black box represents the 25th to 75th percentile, the black vertical lines
represent the range of the data, and black circles indicate outliers. Asterisks indi-
cate significant differences between slow progressive individuals in the 50mg
treatment group vs. placebo. Source data are provided as a Source Data file.
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the rapid progressive group due to neurodegeneration. We reasoned
that treatment may slow dementia progression, resulting in a lower
number of individuals in the slow group transitioning to rapid
progression.

Our results showed that treatment decreased the PPM-derived
score compared to placebo, suggesting that treatment slowed cogni-
tive decline (Fig. 5). In particular, a three-way ANOVA on the PPM-
derived scores showed a significant Treatment x Timepoint interaction
(F(2, 562) = 3.16, p <0.05) but not a significant PPM-stratified group
x Treatment x Timepoint x (F(2, 562) = 0.08, p = 0.92). That is, we
observed a higher increase in the PPM-derived scores in the placebo
group rather than the treatment (lanabecestat 20mg, lanabecestat
50mg) groups over time. In particular, for the placebo group, 60% of
individuals in the slow progressive group transitioned to rapid pro-
gressive, consistent with increased neurodegeneration over time.
Treatment with lanabecestat 20mg decreased this to 44.4% (χ²
(1) = 7.36, p < 0.01) while lanabecestat 50mg to 33.3% (lanabecestat
50mg vs. placebo: χ² (1) = 7.36, p < 0.001). In contrast, individuals in

the placebo group stratified as rapid progressive at baseline (week 1)
remained mostly in this group rather than transitioning to the slow
progressive group; that is, the percentage of individuals that remained
in the rapid progressive group across weeks (week 1, 104) were 98.5%
for the placebo, 95.8% for the lanabecestat 20mg and 96.2% for the
lanabecestat 50mg group. Taken together, these results provide
additional evidence that lanabecestat 50mg may slow dementia pro-
gression at earlier stages of neurodegeneration, that is for individuals
stratified by the PPM at baseline as slow rather than rapid progressive.

PPM-guided stratification in the AMARANTH trial decreases
sample size necessary for treatment effects on cognitive
outcomes
In light of our findings showing that lanabecestat 50mg may slow
dementia progression asmeasured by a decrease inCDR-SOB scores in
the slow progressive group, we asked whether PPM-guided stratifica-
tion reduces the sample size necessary for future clinical trials. We
conducted power calculations to estimate the sample size needed
when comparing lanabecestat 50mg to placebo (i.e., decrease in CDR-
SOB change between week 104 and week 1). Figure 6 shows that
including slow progressive individuals based on PPM-guided stratifi-
cation, reduces drastically the sample size necessary.

In particular, for the slow progressive group, we observed a sig-
nificant moderate effect size (Cohen’s d =0.51) for CDR-SOB change in
lanabecestat 50mg vs. placebo (t(84.76) = 2.45; p =0.016). We esti-
mated that for this effect size, a sample size of n = 82 per group
(lanabecestat 50mg vs. placebo) would be required for 90% power at
alpha 0.05, (n = 117 at alpha =0.01, n = 164 at alpha 0.001). In contrast,
power calculations for all progressive group (i.e., including both slow
and rapidprogressive individuals) showed that a sample size ofn = 762
per group would be required for a small effect size (Cohen’s d =0.15);
i.e., significant change in lanabecestat 50mg vs. placebo and 90%
power at alpha 0.05 (n = 1198 at alpha =0.01, n = 1760 at alpha 0.001).
This is consistent with the lack of significant treatment effect on cog-
nitive outcomes that was observed in the AMARANTH trial (n = 1380
for both lanabecestat 50mg and placebo). Redesigning the AMAR-
ANTH trial to include only individuals stratified by the PPM at baseline
as slowprogressive would result to 90.00% reduction in sample size at
alpha 0.01 (lanabecestat 50mg vs. placebo at week 104), compared to
the sample size for the all progressive group included in the AMAR-
ANTH trial.

Discussion
Recruiting the right patients at early disease stages is key to efficient
clinical trials, maximizing the potential to reveal treatment effects.
Patient heterogeneity and lack of sensitive tools for stratification at
early stages of dementia pose amajor challenge for ADdrug discovery.
To address this challenge, we built a robust and interpretable clinical-
AI tool (PPM) based on a multimodal machine learning approach that
supports feature extraction, precise patient classification to clinically
stable vs. progressive and trajectorymodeling to derive individualized
patient prognosis. We have previously shown that the PPM predicts
progression to AD at early dementia stages more precisely than stan-
dard clinical markers (i.e., gray matter atrophy, cognitive decline, β-
amyloid positivity) or clinical diagnosis18–20. Here, we demonstrate that
the PPM provides a robust tool for patient stratification and inclusion/
exclusion in clinical trials with strong potential impact for drug dis-
covery in the following key respects.

First, we demonstrate that the PPMprovides amore sensitive tool
for patient stratification than standard approaches used for patient
selection in clinical trials (e.g., β-amyloid positivity). It is important to
know that the PPM was pretrained on research data (ADNI) and tested
on theAMARANTHdata (independent sample), supporting its utility as
a patient stratification tool for clinical trials. Using the PPM to re-
stratify the patients included in the AMARANTH trial showed

Fig. 5 | Alluvial plot illustrating changes in PPM-guided stratification due to
lanabecestat treatment in the AMARANTH trial. Percentage of patients in each
treatment group (placebo, lanabecestat 20mg, lanabecestat 50mg) transitioning
between PPM-stratified groups (slow vs. rapid progressive) from baseline to week
104. There is a reduction in the percentage of patients transitioning from the slow
progressive group (red) at baseline to the rapid progressive group (green) at week
104 compared to placebo. Conversely, there is an increase in the percentage of
patients transitioning from the rapid progressive group at baseline to the slow
progressive at week 104 compared to placebo. Source data are provided as a
Source Data file.
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treatment effects on outcomes, despite the fact that the trial had been
deemed futile. In particular, the PPM predicted whether patients
would progress to AD slowly vs. rapidly based on baseline data (i.e.,
week 1 before treatment). Testing the effect of treatment over
24 months (lanabecestat 20mg vs. lanabecestat 50mg) provides evi-
dence that the slow progressive group showed not only a reduction in
β-amyloid but, importantly 46% reduction in cognitive decline (i.e.,
decrease in CDR-SOB) compared to placebo. This is in contrast to the
rapid progressive group that showed higher reduction in β-amyloid
but no significant difference in cognitive outcomes compared to pla-
cebo. We observed a similar slowing of cognitive decline (39%) for
ADASCog-13, consistent with previous trials suggesting that ADAS-Cog
may be less sensitive in capturing cognitive decline at early dementia
stages25. Our results are consistent with the findings from—recently
FDA and MHRA approved—anti-amyloid antibody target (lecanemab,
donanemab) phase 3 trials9,10; e.g., lecanemab was shown to slow the
rate of cognitive decline by 27%9. Although these are independent
trials that cannot be directly compared, our results suggest that our AI-
guided patient stratification has strong potential to enhance the effi-
cacy of trials and aid the discovery of new treatments.

Second, individuals stratified by the PPMas slowprogressive were
shown to be at earlier stages of neurodegeneration based on baseline
measurements (i.e., higher gray matter density, lower β-amyloid and
better cognitive scores) compared to individuals in the rapid pro-
gressive group. AD develops gradually, involving a cascade of patho-
physiological events beginning with the deposition of β-amyloid that
may promote widespread pathological tau protein accumulation,
leading to neurodegeneration and cognitive impairment26. It is likely
that individuals in the rapid progressive group had progressed to later
stages of neurocognitive decline, when it was too late for the lanabe-
cestat treatment to be effective in slowing cognitive decline, despite
the fact that it resulted in β-amyloid reduction. Interestingly, most
patients in the trial were stratified by the PPM as rapid progressive;
therefore, when all individuals in the trial were considered, the results
were similar to the rapid progressive group; that is, reduction in β-
amyloid but no significant changes in cognitive declinewere observed.
This is consistent with recent work suggesting that the timing of β-
amyloid removal during a clinical trial is key for the trial success. If
patients are too advanced at the start of the trial, or the underlying
disease has progressed to amore advanced stage during the course of

treatment because β-amyloid was not removed early enough, treat-
ments may be less effective3. Evidence from previous trials of both
successful and unsuccessful anti-β-amyloid therapies suggests that
there is little clinical effect of amyloid removal if patients progressed
past the mild dementia phase16,27. Further, recent clinical trial results
(i.e., lecanemab, donanemab)9,10 showing decline in cognitive symp-
toms highlight the importance for treatments earlier in disease pro-
gression before damage has settled in the brain and when treatments
may be more likely to be effective11,12. Finally, previous phase II and III
trials of BACE inhibitors have shown a robust relationship between
dose and degree of β-amyloid reduction, suggesting that a lower dose
may be more effective at early stages of the disease28. Our results
showing slowing of cognitive decline for the higher lanabecestat dose
(50mg vs. 20mg) for the slow progressive group suggest that higher
dose of BACE inhibition may be more effective over a 24-month
treatment period, as in the AMARANTH trial.

Our modeling approach has the potential to redefine inclusion/
exclusion criteria for clinical trials, reducing patient heterogeneity that
is known to hamper statistical power29. We have previously shown20

that our multimodal clinical AI marker (i.e., PPM-derived prognostic
index) that captures the multivariate relationships across predictors is
more sensitive in early prediction and prognosis of AD than standard
clinical markers (β-amyloid, gray matter atrophy, cognitive scores).
This is consistent with previous work demonstrating the benefit of
integrating multimodal biomarkers for predicting future changes in
cognition23,30–34. Further, PPM implements a trajectory modeling
approach extending beyond binary classifications22 based on clinical
labels (e.g., CN vs AD) that are poorly constrained; that is, individual
patients at the classboundary thatdiffer only slightly in their trajectory
may be misclassified35. In contrast, our PPM-derived clinical AI marker
provides a continuous index of future cognitive health from baseline
data, reducing misdiagnosis associated with clinical labels and aiding
patient stratification based on prognosis (i.e., predicted progres-
sion to AD).

Third, the GMLVQ framework with ensemble learning that we
adopt in our PPM enables us to develop: a) robust models36,37by
combining data frommultiple disease-relevant modalities, rather than
considering single data types, b) interpretable models for early
dementia prediction and prognosis, that is key for trusted clinical-AI
solutions. In particular, interrogating the model metric tensors allows

Fig. 6 | Power calculations showdecreased sample size for detecting reduction
in cognitive decline with lanabecestat treatment in the AMARANTH trial.
Power (1-beta) of detecting a significant treatment effect (lanabecestat 50mg vs.
placebo) for CDR-SOB change (week 104 minus week 1) at different sample sizes

and alpha level of 0.05. Smaller sample size (90% redcution) is needed to detect
treatment effects on cognitive outcomes for the Slow (red; effect size: Cohen’s
d =0.51) compared to the All Progressive (blue; effect size: Cohen’s d =0.15) group.
Source data are provided as a Source Data file.
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us to assess the contribution of different features (i.e., predictors and
their interactions) to patient stratification and determine the most
predictivedata types to include in clinical trials. Further, estimating the
distance (based on the trained PPMmetric tensors) of an independent
test dataset (AMARANTH sample) from the Clinically Stable prototype
allows us to predict individual patient trajectories, re-stratify the trial
sample and test treatment effects in slow vs. rapid progressive groups.
This has the potential to accelerate clinical trials and reduce the costs
associated with data collection by (a) focusing on key data types to be
collected for patient stratification and treatment outcome assessment,
(b) tailoring treatment targets to the right patient groups at different
stages of disease progression. Integrating novel markers (e.g., blood
biomarkers, digital markers fromwearable technologies) for dementia
diagnosis into our multimodal modeling approach provides the
potential to move to less-invasive and more cost-effective clinical
trials.

Finally, we show that using PPM for patient stratification sub-
stantially decreases the sample size necessary for identifying sig-
nificant changes in treatment outcomes. Recruitment and retention of
a large number of qualified, diverse volunteers to participate in clinical
research studies remain key barriers to the successful completion of
AD clinical trials7,8. Thus, identifying the right patients at earlier stages
for neurodegeneration to include in clinical trials decreases sample
heterogeneity and size with strong potential to enhance trial efficiency
(faster and cheaper). A possible limitation is that the PPM was trained
with biomarker data (β-amyloid, gray matter density) from PET and
MRI scans. We have previously shown that PPM reliably predicts cog-
nitive decline when trained with cognitive data alone; yet, adding
biomarker data enhances the precision of patient18–20. Future work is
needed to test whether training the PPM with less-invasive and cost-
effective data types (e.g., blood markers, cognitive tests) would pro-
vide a reliable stratification tool, reducing further costs and patient
burden, and enhancing the efficiency of AD clinical trials.

In sum, there is increasing interest in adopting AI tools for clinical
trial optimization and drug discovery13,38–42. With trials lasting around
18months for dementia that typically spans decades, enriching clinical
trials with the right patients for specific targets is fundamental to
clinical trial outcomes, may account for past failures43 and inform go /
no-go decisions44. Clinical AI tools have the potential to play a key role
in improving trial design by assisting trial enrichment with the right
patients classified prior to enrollment based on AI-guided stratifica-
tion. Further, including data from underrepresented groups that may
be disproportionately affected by dementia is key for tackling the
global dementia challenge and developing precision medicine inter-
ventions. Our vision is to scale up our predictive prognostic modeling
approach to a responsible AI-guided stratification system that will
support smarter multi-arm multi-stage trials, accelerating new target
discovery for dementia treatment.

Methods
PPM training and test samples
We used data from: (1) a research cohort (the Alzheimer’s Disease
Neuroimaging Initiative, ADNI) for PPM training with within-sample
cross-validation (n = 256) and independent test (n = 419), (2) a Rando-
mizedClinical Trial cohort (AMARANTH, n = 1354), as independent test
dataset for out-of-sample validation (see Supplementary Material for
more information on ADNI and AMARANTH samples, including
Patients, Randomization, and Blinding). All data were collected in
accordance with ethics approvals at each site and following ethical
guidelines (Declaration of Helsinki), including informed consent from
participants and approved by the ethics committees at each site.

AMARANTH is a phase 2/3, multicenter, randomized, double-
blind, placebo-controlled, global clinical trial of Drug Substance:
lanabecestat21. Lanabecestat is a brain-permeable inhibitor of human
Beta-site amyloid precursor protein-cleaving enzyme 1 (BRACE1/β-

secretase). Patients enrolled in the trial were diagnosed with MCI due
to AD or mild AD. The objective of the trial was to test the efficacy of
lanabecestat 20mg lanabecestat and lanabecestat 50mg (compared
to placebo) in slowing AD decline at the end of the double-blind,
placebo-controlled period compared to baseline. AD decline was
measured by changes in cognition (primary outcome: ADAS-Cog13: 13-
item Alzheimer Disease Assessment Scale–cognitive subscale; sec-
ondary outcomes: CDR-SB: Clinical Dementia Rating–sum of boxes,
MMSE: Mini-Mental State Examination). AMARANTH was terminated
early (approximately 16 months prior to planned completion) due to
futility analysis. Because of this early termination, we included data
from the placebo-controlled periods of the study (weeks: 1, 52, 104;
Supplementary Table S2, S3) from patients with: APOE4 at week 1,
structural MRI, florbetapir PET (β-amyloid) scans at three time points
(week 1, 52, 104), and cognitive measures (CDR-SOB, ADAS-Cog13) at
three time points (week 1, 52, 104).

ADNI and AMARANTH datasets differ in patient demographics
and data collection tools, allowing us to test PPM interoperability
across research cohorts and clinical trial data. In particular, for ADNI,
patients were selected with specific criteria related to amnestic MCI
and Alzheimer’s disease and MRI data were collected across MRI
acquisition sites in the US. For AMARANTH, data were collected from
patients diagnosed with early AD (i.e., patients with MCI; MCI due to
AD) and patients diagnosed with mild dementia of the Alzheimer’s
type in Australia, Belgium, Canada, the USA, France, Germany, the
United Kingdom, Italy, Japan, and Poland. We have previously
demonstrated PPM interpretability across diverse research and clinical
cohort data collected across sites and countries20.

Predictive prognostic modeling
We have developed a trajectory modeling approach based on Gen-
eralized Metric Learning Vector Quantization (GMLVQ)18–20 that
leverages multimodal data tomake predictions about future cognitive
decline at early dementia stages by iteratively adjusting class-specific
prototypes and learning class boundaries (Supplementary Material:
Predictive Prognostic Model).

Generalized Learning Vector Quantization (GLVQ) is a supervised
classification method that iteratively modifies class-specific proto-
types to identify boundaries between discrete classes. The GLVQ
classifiers are defined by a set of vectors known as class prototypes
that represent the classes within the input space. During the training
phase, the prototypes are updated iteratively based on the training
examples. For each training example, the GLVQ classifier determines
the closest prototype for each class. The prototypes are then adjusted
so that the prototype representing the sameclass as the input example
(the closest ‘correct’ prototype) is moved closer to the example, while
the closest prototype among the prototypes representing different
classes (the closest ‘incorrect’ prototype) is moved further away.
During training, for each class, the GLVQ algorithm aims to minimize
the distances between the training examples of the given class and the
prototypes that share the same class label, while maximizing the dis-
tances to the prototypes of the other classes. This process helps to
form class boundaries with large classification margins. Once the
training is completed, the GLVQ classifier can be used for classifying
test data. Given a previously unseen input vector, the classifier assigns
to it the class label of the closest prototype.

GMLVQ is an extension of the GLVQ algorithm that learns the
metric to be used in the input space that enhances class separation.
The learnt metric is determined through the corresponding metric
tensor. GMLVQ incorporates a full metric tensor to provide a robust
distance measure (metric) tuned to the classification task. This metric
defines a distance that naturally groups togethermembers of the same
class while separating the different classes away from each other.
Mathematically, it provides specific feature scaling and quantifies
pairwise task-conditional dependencies of the input features. Diagonal
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elements of the metric tensor identify key predictors, while the off-
diagonal terms reveal pairwise feature interactions contributing to the
classification task.

Following our previous work18,19, we trained GMLVQ models to
discriminate Clinically Stable (CN individuals who remain stable for 4+
years following baseline; n = 100) vs. Clinically Declining (individuals
have a baseline diagnosis (at date of FBP scan) of either CN (n = 17) or
MCI (n = 139) but received a diagnosis of dementia in future clinical
evaluation (i.e., progressed to dementia (n = 75)), or had been diag-
nosed with dementia in a clinical evaluation prior to baseline (i.e.,
reverted (n = 81); n = 156) using ADNI data at baseline: medial temporal
lobe gray matter (MTL GM) density18,19 (see Supplementary Material:
MRI analysis: extracting medial temporal gray matter density), β-
Amyloid andAPOE4. All data were adjusted by regressing out potential
confounding covariates (i.e., age, sex, and education). Following our
previous work,18,19, we used the steepest descent method to minimize
the cost function through online learning and performed hyperpara-
meter tuning for themodel using a nested cross-validation approach45,
considering two hyperparameters. To evaluate the model’s perfor-
mance, we employed 10 iterations of a 10-fold cross-validation45. To
mitigate any potential biases due to class imbalance in the dataset
(Clinically Stable, n = 100; Clinically Declining, n = 156), we resampled
the data to generate balanced classes. For each training fold, we
repeatedly (n = 400) randomly down-sampled the majority class (i.e.,
Clinically Declining) to match the size of the minority class (i.e.,
Clinically Stable). Further, we used ensemble learning46, combining
multiple models (n = 400) for robust learning of unbalanced classes.
We selected the top 20% (n = 80) models based on their training set
performance and estimated the class balanced accuracy based on (a)
majority vote, i.e., the class label that receives themost votes from the
ensemble models is selected as the final prediction46, (b) the average
performance across the selected classifiers47. This ensemble learning
approach with cross-validation helps mitigate potential individual
model biases, resulting in more robust and accurate predictions36,37.

PPM-derived prognostic index
Moving beyond binary classifications, we extended the GMLVQ fra-
mework to generate continuous predictions for each individual in the
test dataset. In particular, we extracted a PPM-derived prognostic
index employing a GMLVQ-Scalar Projection18,19 that extracts distance
information (based on the learnt metric tensor) between the sample
vector and the learnt class prototypes (representing Clinically stable
vs. Declining). GMLVQ-Scalar Projection thusmeasures the distance as
defined by the learnt metric tensor, between an individual and the
prototype representingClinically Stable along the direction separating
Clinically Stable vs. Declining (the line connecting stable and pro-
gressive class prototypes). We extracted the scalar projection using
the average prototypes and metric tensors of the selected top 20%
classifiers to capture robust information across the ensemble of
trained classifiers. The scalar projection yields a large positive value for
Clinically Declining individuals and a zero or negative value for Clini-
cally Stable individuals. That is, the scalar projection index captures
information about how far an individual is from the Clinically Stable
prototype, serving as an individualized PPM-derived prognostic index.
We have previously shown that this index relates significantly to the
rate of memory decline18,20and future tau accumulation19, allowing us
to estimate how fast an individual progresses from MCI to AD.

Following our previous work 18we next used multinomial logistic
regression to test the relationshipof the PPM-derivedprognostic index
to the rate of future tau accumulation (e.g., future Tau slope in fusi-
form gyrus that showed significant tau accumulation for Clinically
Declining individuals) and determine quartile classes (based on
boundaries) that represent different levels of progression. We esti-
mated the probabilities of each quartile class for a range of boundary
values and identified the boundaries based on the quartile class with

the highest probability at each value. The lower boundary (at the 20th

percentile of the future tau accumulation slope) indicates individuals
who are more likely to experience slower progression (slow pro-
gressive), while the higher boundary (at the 60th percentile of future
tau accumulation) indicates individuals who are more likely to
experience faster progression (rapid progressive). This multinomial
logistic regression model allows us to stratify individuals based on
their PPM-derived prognostic index (i.e., scalar projection score) and
future tau accumulation slope.

Statistics & reproducability
We extracted the PPM-derived prognostic index for each individual in
the ADNI test dataset and the AMARANTH dataset. All available data
for the PPM input features were used (Supplementary Table S2, S3 for
sample size); no statisticalmethodwas used to pre-determine the PPM
test sample size. We used the Kruskal-Wallis non-parametric test
(SPSS) for comparisons of the PPM-derived prognostic index across
groups, as the index data were not normally distributed (Shapiro-
Wilk test).

To ensure direct comparison to the analysis previously performed
on the AMARANTH data21, we used a mixed model of repeated mea-
sures (MMRM), that is typically used in individual-randomized trials
with longitudinal continuous outcomes and missing data. We tested
the efficacy of lanabecestat 20mg and lanabecestat 50mg (compared
to placebo) across time points (week 1: baseline, week 52, week 104)
on: (a) biomarker outcome: β-amyloid, (b) cognitive outcomes: CDR-
SOB, ADAS-Cog13. We conducted this analysis separately for each
group (slow progressive, rapid progressive) and for the full sample (All
progressive: slow and rapid progressive), including fixed effects for
treatment, timepoint, PPM-stratified group.We included the following
covariates in the MMRM: covariates for disease status at baseline, age
at baseline, APOE4 genotype, baseline outcomemeasure, AChEI use at
baseline, and pooled country.We calculated Least-squaremeans (LSM;
emmeans R package) from the MMRM model (mmrm, lme4 R packa-
ges) that represent model-adjusted means, including fixed effects for
treatment, timepoint and their interactions, while accounting for
covariates and unbalanced data. Pairwise comparisons of LSM across
treatment groups and timepoints were performed using post-hoc
tests, correcting formultiple comparisons. This approach ensures that
reported means accurately reflect treatment effects while accounting
for within-subject correlations and repeatedmeasurements over time.
We repeated these analyses with non-parametric ANCOVA tests (same
fixed effects and covariates as for MMRM analyses) to account for
deviations from normality (Supplementary Fig. S2, Supplementary
Material: Non-parametric Statistical analysis), with similar results as the
MMRM analyses.

Further, for each group (slow progressive, rapid progressive) we
computed change in outcomes (β-amyloid, cognitive data) at week 104
from baseline (i.e., week 104 minus week 1). We used Welch’s t test to
test for differences in outcomes across groups (i.e., lanabecestat
20mg, lanabecestat 50mg vs. placebo), as it does not assume equal
variances between the groups and allows adjusting the degrees of
freedom used in the test to accommodate differences in variance.
MMRM, post hoc comparisons andWelch’s t tests were conducted in R.

Finally, we conducted power analysis, using the ‘pwr.t.test‘ func-
tion (pwrpackage inR), to estimate sample size for change inCDR-SOB
(week 104 minus week 1) for lanabecestat 50mg vs. placebo. A power
level of 0.90 (1-β) was chosen to minimize the risk of Type II error,
ensuring a high probability of detecting a true treatment effect. We
used a standard significance threshold of α =0.05, and more con-
servative estimates of α =0.01, α = 0.001.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
Data may be obtained in accordance with AstraZeneca’s data sharing
policy described at: https://astrazenecagrouptrials.pharmacm.com/
ST/Submission/Disclosure. The raw trial data are protected and are
not available due to data privacy laws. Anonymized processed data
for studies directly listed on Vivli can be requested through Vivli at
www.vivli.org. AstraZeneca Vivli member page is available outlining
further details: https://vivli.org/ourmember/astrazeneca/. Data not
listed on Vivli could be requested through Vivli at https://vivli.org/
members/enquiries-aboutstudies-not-listed-on-the-vivli-platform/.
Source data for the figures are provided with this paper and are
available at the Cambridge University repository: https://doi.org/10.
17863/CAM.117732 Source data are provided in this paper.

Code availability
Code for figures is available at the Cambridge University repository:
https://doi.org/10.17863/CAM.117732.
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